
Continuous Obstructed Detour Queries
Rudra Ranajee Saha
Department of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
darklord.saha@gmail.com

Tanzima Hashem
Department of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
tanzimahashem@cse.buet.ac.bd

Tasmia Shahriar
Department of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
shahriartasmia@gmail.com

Lars Kulik
Dept of CIS, University of Melbourne, Melbourne, Australia
lkulik@unimelb.edu.au

Abstract
In this paper, we introduce Continuous Obstructed Detour (COD) Queries, a novel query type
in spatial databases. COD queries continuously return the nearest point of interests (POIs) such
as a restaurant, an ATM machine and a pharmacy with respect to the current location and
the fixed destination of a moving pedestrian in presence of obstacles like a fence, a lake or a
private building. The path towards a destination is typically not predetermined and the nearest
POIs can change over time with the change of a pedestrian’s current location towards a fixed
destination. The distance to a POI is measured as the summation of the obstructed distance from
the pedestrian’s current location to the POI and the obstructed distance from the POI to the
pedestrian’s destination. Evaluating the query for every change of a pedestrian’s location would
incur extremely high processing overhead. We develop an efficient solution for COD queries and
verify the effectiveness and efficiency of our solution in experiments.

2012 ACM Subject Classification Information systems → Location based services

Keywords and phrases Obstacles Continuous Detour Queries Spatial Databases

Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.14

Acknowledgements I This research was partially supported under the Australian Research Coun-
cil’s Discovery Projects funding scheme (project number DP180103332).

1 Introduction

Efficient processing of location-based queries in the presence obstacles like a river, a fence or
a private property has become an important research area in recent years. Obstructed space
is different from road networks and the Euclidean space, which ignore the obstacles in the
space. It is not possible to adapt the query processing algorithms for the Euclidean space
or road network settings to the obstructed space as the presence of obstacles brings new
challenges for processing location-based queries in real time. Considering the importance of
the applications of obstructed location-based queries for pedestrians, in the last few years,
researchers have developed solutions [1, 5, 16, 20] for variant location-based queries in the
obstructed space that were previously addressed in the Euclidean space or road networks.

© Rudra Ranajee Saha, Tanzima Hashem, Tasmia Shahriar, and Lars Kulik;
licensed under Creative Commons License CC-BY

10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Amy Griffin, and Monika Sester; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160150529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:darklord.saha@gmail.com
mailto:tanzimahashem@cse.buet.ac.bd
mailto:shahriartasmia@gmail.com
mailto:lkulik@unimelb.edu.au
http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Continuous Obstructed Detour Queries

p1

p2

lc' d

p6

p3 p4

p5

p7

p8

p9 p10

p11

p12

p13

p14

p15

lc

(a) Euclidean Space.

p1

p2

lc' d

p6

p3 p4

p5

p7

p8

p9 p10

p11

p12

p13

p14

p15
lc

o1 o2

o3 o4

o5 o6

o7

o8

o9

o10

o11

o12

o13

(b) Obstructed Space.

Figure 1 An Example of a Continuous Detour Query for k = 2.

We introduce a Continuous Obstructed Detour (COD) query that allows a moving
pedestrian continuously monitor the POI with the smallest obstructed detour distance, which
is measured as the summation of distances from the user’s current location to the POI, and
from the POI to the user’s destination by avoiding the obstacles. For example, a tourist
enjoying a scenic view may not follow a predetermined walking path and instead want to visit
a restaurant or a souvenir shop before arriving at the hotel. A pedestrian roaming around
the city may want to buy a medicine from a pharmacy before she goes to her usual bus stop
to home. In both scenarios, users have fixed destinations but do not have a predetermined
path to reach the destination, and need to visit a POI before reaching the destinations.

A COD query can be extended to a COkD query that continuously returns k POIs
with the k smallest detour distances for a moving user heading towards a fixed destination.
Figure 1 shows an example of a continuous detour query for k = 2 in both Euclidean
and obstructed space. The Euclidean distance is measured as the length of the direct line
connecting two locations. In Figure 1(a), when a user is at lc, POIs p1 and p2 are the 1st
and 2nd nearest detour POIs based on the Euclidean distances. When the user moves to
lc
′, the answer changes, and p3 and p4 become the 1st and 2nd nearest detour POIs based

on the Euclidean distances. In Figure 1(b), the obstacles are shown using rectangles. The
obstructed distance is the length of the shortest path between two locations without crossing
any obstacle. Figure 1(b) shows that p2 and p1 are the 1st and 2nd obstructed nearest detour
POIs when the user is at lc. When the user moves to lc′, the answer changes, and p15 and p3
become the 1st and 2nd obstructed nearest detour POIs.

The COkD query cannot be modeled and processed as a continuous obstructed nearest
neighbor (POI) query because of the presence of a destination. Although the obstructed
distance of a POI to the destination is constant, it differs for multiple POIs, and the obstructed
nearest detour POI is determined with respect to both current location and destination of
the moving pedestrian. Hence, the solution [10] for moving k nearest neighbor (kNN) queries
in the obstructed space is not applicable for COkD queries.

Since the path to reach the destination is not predefined, for a COkD query, the obstructed
nearest detour POIs need to be re-evaluated in real time with respect to every changed
location and the destination location of the moving user. Thus, a COkD query can be
processed with the repeated evaluation of obstructed k detour (OkD) queries, where an OkD
query returns k obstructed nearest detour POIs with respect to a user’s current location
and destination. Researchers have proposed obstructed k group nearest neighbor (OkGNN)
algorithms [15, 16] that return k POIs having k smallest obstructed aggregate distances
with respect to multiple query locations. An OkGNN query is same as an obstructed k

detour (OkD) query when the number of query location is two. However, the straightforward

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:3

application of the OkD algorithm for processing a COkD query is not feasible as it would incur
extremely high processing overhead, specially in the obstructed space as the computation of
the number of obstructed distance increases with the increase of the number of the query
re-evaluation. The search for the obstructed nearest detour POIs independently using OkD
queries accesses the same POIs and obstacles multiple times. Thus, the major challenges for
processing a COkD query efficiently is to reduce the frequency of the query re-evaluation
and the retrieval of the same POIs and obstacles from the database.

To address the challenges for a COkD query, we develop a safe region [10, 13] based
solution that avoids the re-evaluation of the query as much as possible. The key idea of
our safe region based approach is to retrieve the obstructed nearest detour POIs from a
database with respect to a user’s current location and destination, and then identify the
regions, obstructed integrated safe region (OISR) and obstructed safe regions (OSRs) with
respect to the retrieved POIs. We exploit geometric properties to compute such regions.
If a user resides in the OISR, the user’s movement does not change the order of already
retrieved k obstructed nearest detour POIs. Thus, the computation of an OISR avoids the
re-computation of the query answer. If a user leaves an OISR, we compute obstructed safe
regions (OSRs) with respect to the retrieved POIs to check whether new POIs are required to
be retrieved from the database. Computation of OSRs allows us to avoid the retrieval of the
same POIs multiple times, which in turn decreases the number of same obstacles retrieved
for computing the obstructed distances of the POIs.

To further improve the efficiency of our approach, we propose two algorithms: a single
point retrieval method (SPRM) and a multiple point retrieval method (MPRM), to retrieve
new POIs from the database when a moving user leaves the current safe region. The aim of
SPRM and MPRM is to refine the POI search space, i.e., reduce the number of the retrieval
of new POIs, for identifying k obstructed nearest detour POIs with respect to the current
location lc and destination d of a moving user. A smaller number of retrieved POIs reduces
the computational overhead and I/O cost for retrieving obstacles from the database.

The key difference between SPRM and MPRM is that SPRM incrementally retrieves
obstructed nearest detour POIs with respect to the first location and the destination of
the moving user (e.g., lc and d in Figure 1), whereas for MPRM the obstructed nearest
detour POIs are retrieved with respect to few of the current locations and destination of the
moving user (e.g., lc and d, and lc′ and d in Figure 1). SPRM does not retrieve the same
POI multiple times but may retrieve additional POIs, whereas MPRM reduces the retrieval
of additional POIs in return of increasing the number of obstructed distance computations
with respect to multiple locations (e.g., lc and lc′ in Figure 1).

We summarize our key contributions below:

We introduce and formulate COkD queries in spatial databases that allow pedestrians to
monitor the nearest detour POIs in the presence of obstacles.

We develop an efficient safe-region based solution for processing COkD queries. To the
best of our knowledge, we are the first to address the problem of COkD queries.

We develop two algorithms, SPRM and MPRM, to refine the POI search space and
retrieve new POIs in the refined search space.

We perform extensive experiments using a real data set to show the efficiency and
effectiveness of our proposed solution.

GISc ience 2018

14:4 Continuous Obstructed Detour Queries

Table 1 A List of Symbols.

Notation Description Notation Description

k The number of required nearest detour POIs x The number of auxiliary POIs
lc The current location d The destination
lf The location from where a user starts to move oi An obstacle
ls The location used to compute safe regions O The set of obstacles
z The (k + x)th nearest POI of ls P The set of all POIs
pi A POI L The list (set) of (k + x) obstructed nearest detour POIs
A The set of k obstructed nearest detour POIs for lc and d Tp POI R-tree
de(p, q) Euclidean distance between p and q d∆(p, q) Obstructed distance between p and q

se(a, b, c) Summation of de(a, b) and de(b, c) se∆(a, b, c) Summation of de(a, b) and d∆(b, c)
s∆(a, b, c) Summation of d∆(a, b) and d∆(b, c) To Obstacle R-tree

2 Problem Formulation

In a COkD query, initially, a moving user provides her current location lc, a destination d and
the number k of desired nearest (detour) POIs. Later the moving user periodically updates
her current location lc. The obstructed space may include obstacles like buildings, parks,
lakes, etc. An obstructed path is calculated as the shortest path between two points in the
obstructed space, where a path does not intersect the interior of an obstacle. The obstructed
distance between two points is the length of the obstructed path between those points. The
obstructed detour distance s∆(lc, pi, d) of a POI pi is measured as the summation of the
obstructed distances from pi to lc and pi to d. Similar to existing work in the obstructed
space [16, 15], the POIs and obstacles are indexed using two separate R-trees [7], POI R-tree
and obstacle R-tree in the database. Table 1 summarizes the symbols used in the paper.

A COkD query is formally defined as follows.

I Definition 1. A Continuous Obstructed k Detour Query: Given a set of POIs P
and a set of obstacles O, the current location lc of a moving user, a destination d, and the
required number of the obstructed nearest detour POIs k, a COkD query returns A, a set of k
obstructed nearest detour POIs that have k smallest obstructed detour distances with respect
to every instance of lc and d, i.e., s∆(lc, pi, d) ≤ s∆(lc, pj , d) for pi ∈ A and pj ∈ P −A.

3 Related Work

Efficient approaches have been proposed in the literature for variants of spatial queries in
the obstructed space. Processing spatial queries in the presence of obstacles has been first
addressed in [19]. In [6, 17, 19], the authors developed algorithms to find the nearest POIs
with respect to a static location in the obstructed space. In [5], the authors developed an
algorithm to process continuous obstructed nearest neighbor queries. In [4] and [1], the
authors developed solutions for efficient processing of obstructed reverse nearest neighbor
queries and obstructed optimal sequenced route queries, respectively. In [20], the authors
addressed obstructed range nearest neighbor queries. Obstructed group nearest neighbor
(OGNN) queries that return a POI with the minimum obstructed aggregate distance have
been addressed in [15, 16]. An OGNN query transforms to an obstructed detour query if the
number of query location is two (i.e., a user’s current location and destination). This paper
focuses on the COkD query, which is different from all of the above mentioned queries.

In [19], the authors proposed the first algorithm to compute the obstructed distance
between two locations. Instead of directly applying the obstructed distance computation
algorithm between two locations, in [16], the authors developed an algorithm to efficiently
compute multiple obstructed distances with respect to a single point without retrieving same
obstacles multiple times. To compute the obstructed detour distance, we need to compute
two obstructed distances from a common POI, and thus, we use the algorithm in [16].

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:5

Continuous nearest neighbor queries [3, 11] and continuous detour queries [12, 14, 18]
have been addressed in road networks that ignore the presence of the obstacles. In [12], the
authors proposed an incremental approach using a shortest path tree to process continuous
detour queries in the road network. In [14, 18], the authors developed a solution for detour
queries with an assumption that a user travels in a predetermined path towards a destination.
In COkD queries, a pedestrian’s path towards a destination is not known before and can be
obstructed by the obstacles.

Researchers have already shown that computing safe regions can significantly reduce
the query processing overhead for processing moving nearest neighbor queries [8, 10, 13].
However, none of these approaches take the destination into account, and thus, the computed
safe regions are not applicable for a COkD query, where a pedestrian moves towards a fixed
destination.

4 Safe Regions

We develop a safe region based approach for processing COkD queries. The underlying idea
is to identify the safe regions based on already retrieved POIs, obstructed integrated safe
region (OISR) and the intersection of obstructed safe regions (OSRs), where the query answer
does not change and any new POI does not need to be retrieved from the database for a
moving user, respectively. These regions can help us to reduce the computational overhead
and the retrieval of same POIs multiple times from the database. The larger the safe regions,
the smaller is the number of times POIs need to be retrieved from the database. Considering
this issue, we retrieve auxiliary POIs in addition to the required number (k) of POIs with an
intuition that additional POIs can reduce the processing overhead. The number of auxiliary
POIs x is decided in experiments.

Suppose that L is a set of ordered k + x obstructed nearest detour POIs that have been
retrieved from the database with respect to a moving user’s location ls and a fixed destination
d for x ≥ 0. An OSR of a retrieved POI represents the area, where a user’s movement cannot
incur another POI that has not yet been retrieved from the database to have a smaller
obstructed detour distance than the retrieved POI. Thus, additional POIs are not retrieved
from the database if a user moves inside the intersection of the OSRs of the retrieved POIs.
An OISR represents an area where the current COkD answer for a moving user does not
change. To compute the OISR, in addition to OSRs we need to know the obstructed fixed
rank region (OFRR) that represents the area where a user’s movement does not change the
relative ranking (based on the obstructed detour distance) of the retrieved POIs in L.

In Sections 4.1 and 4.2, we show how the presence of a fixed destination d makes the
computation of OSRs and OFRR different from the existing OSR and OFRR computation
techniques for obstructed nearest neighbor queries [10]. In Section 4.3, we combine OSRs
and OFRR to compute an OISR.

4.1 Obstructed Safe Region (OSR)
Let z represent the POI that has the (k + x)th smallest obstructed detour distance with
respect to ls and d. Based on the retrieved k + x obstructed nearest POIs with respect to ls
and d, we first define the obstructed known region: a set of points that have equal or smaller
obstructed detour distances than that of z with respect to ls and d. Figure 2(a) shows an
obstructed known region for k = 2 and x = 1, where p1, p2, and p3 have been retrieved as
k + x obstructed nearest detour POIs with respect to lf and d. Note that lf is the location
from where a user starts to move, and ls is the location used to compute safe regions. Thus,

GISc ience 2018

14:6 Continuous Obstructed Detour Queries

o1

o2

o4

o3

p1
lf

p2

d

p3

p4

o1

o2

o4

o3
p2

p3

d

p4

p1
lf

o1

o2

o4

o3

p4

d

p3

p1
lf

p2

(a) Known Region. (b) OSR∆(ls, p1). (c) OSR∆(ls, p2).

Figure 2 (a) Known Region, and (b)-(c) OSRs.

the first time when a safe region is computed, both lf and ls point to the same location. In
all figures, we only show lf and we assume that the safe regions are computed for the first
time and ls points to lf .

Let po be a POI located outside the obstructed known region that has not yet been
retrieved from the database. For a POI pi in the obstructed known region, the obstructed
safe region with respect to pi, denoted by OSR∆(ls, pi), is defined as follows:

OSR∆(ls, pi) = {l|s∆(l, pi, d) ≤ s∆(l, po, d)}
= {l|d∆(l, pi) + d∆(pi, d) ≤ d∆(l, po) + d∆(po, d)} (1)

Here l refers to a point location. Thus OSR∆(ls, pi) is a set of points, where each point l
satisfies s∆(l, pi, d) ≤ s∆(l, po, d).

From the definition of the known region, d∆(ls, po) + d∆(po, d) ≥ d∆(ls, z) + d∆(z, d).
Rearranging we have, d∆(ls, po) ≥ d∆(ls, z) + d∆(z, d) − d∆(po, d). On the other hand,
according to the triangular inequality, d∆(ls, l) + d∆(l, po) ≥ d∆(ls, po). By rearranging
and replacing d∆(ls, po) with its tighter bound, we have the tighter bound of d∆(l, po) as
d∆(ls, z) + d∆(z, d)− d∆(po, d)− d∆(ls, l).

In Equation 1, if we can guarantee that (d∆(l, pi) + d∆(pi, d)) is less than or equal to a
tighter bound of (d∆(l, po) + d∆(po, d)), i.e., d∆(ls, z) + d∆(z, d)− d∆(ls, l), then d∆(l, pi) +
d∆(pi, d) ≤ d∆(l, po) + d∆(po, d) is satisfied. Thus, we can redefine OSR∆(ls, pi) as follows:

OSR∆(ls, pi)
= {l|d∆(l, pi) + d∆(pi, d) ≤ d∆(ls, z) + d∆(z, d)− d∆(ls, l)}
= {l|d∆(l, pi) + d∆(ls, l) ≤ d∆(ls, z) + d∆(z, d)− d∆(pi, d)} (2)

Figures 2(b) and 2(c) show OSRs for p1 and p2, respectively for the same example shown
in Figure 2(a). According to Equation 2, if a moving user’s current location lc satisfies
d∆(ls, lc) + d∆(lc, pi) ≤ d∆(ls, z) + d∆(z, d)− d∆(pi, d), then the user is inside the OSR of
pi, OSR∆(ls, pi), and any POI po outside the obstructed known region cannot have a detour
distance smaller than that of pi with respect to lc and d. If the user’s current location lc
is inside the intersection of the OSRs for all (k + x) POIs in the obstructed known region,
i.e.,

⋂k+x
i=1 OSR∆(ls, pi), then it is guaranteed that any POI po outside the obstructed known

region cannot have a detour distance smaller than those for (k + x) POIs in the obstructed
known region with respect to lc and d.

4.2 Obstructed Fixed Rank Region (OFRR)
The OFRR represents an area where the ranking of k obstructed nearest detour POIs in L
does not change. We compute an OFRR using the concept of a dominant region. In [10],

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:7

o2

o4

p2
p3

d

p4

lf p1

o3

o1

o2

o4

p3

d

p4

o3

o1

p2

p1
lf

o2

o4

p2
p3

d

p4

lf
p1

o3

o1

o2

o4

o3
p2

p3

d

p4

p1
lf

o1

(a) βe∆
′(p1, p2). (b) βe∆

′(p2, p3). (c) AOFRR(L). (d) OFRR(L).

Figure 3 (a)-(b) Dominant Regions, (b) Approximate OFRR (c), and (d) OFRR (Shaded Areas).

for a moving obstructed nearest POI query, an obstructed dominant region of POI pi over
POI pj is defined as β∆(pi, pj) = {l|d∆(l, pi) <= d∆(l, pj)}. We modify the definition of a
dominant region for a COkD query as follows:

β∆(pi, pj) = {l|s∆(l, pi, d) <= s∆(l, pj , d)} (3)

For a COkD query, an OFRR for an ordered POI set L can be computed as follows:

OFRR(L) =
|L|−1⋂
i=1

β∆(pi, pi+1) (4)

To reduce the complexity of the computation of OFRRs, we first approximate a dominant
region of POI pi over POI pj as βe∆′(pi, pj) = {l|se∆(l, pi, d) <= se∆(l, pj , d)}.

Using the approximate dominant regions, we compute the approximate OFRR (AOFRR)
for L as follows:

AOFRR(L) =
|L|−1⋂
i=1

βe∆
′(pi, pi+1) (5)

We continue with the same example shown in Figure 2(a). Figures 3(a) and 3(b) show the
approximate dominant region of p1 over p2, βe∆′(p1, p2) and the approximate dominant
region of p2 over p3, βe∆′(p2, p3), respectively.

After computing the AOFRR(L) using Equation 5, we identify the non visible region
inside AOFRR(L) for every POI in L. Let NV Ri be a non visible region for a POI pi and
NV R be the union of non visible regions with respect to all POIs in L. Thus, an OFRR for
an ordered POI set L can be computed from the approximated OFRR as follows:

OFRR(L) = AOFRR(L)−NV R (6)

Figures 3(c) and 3(d) show AOFRR(L) and OFRR(L), respectively, where L = {p1, p2, p3}.
AOFRR(L) (shaded area) in Figure 3(c) is computed as the intersection areas between the
shaded areas, βe∆′(p1, p2) and βe∆′(p2, p3), in Figures 3(a) and 3(b), respectively. OFRR(L)
in Figure 3(d) is computed by removing the nonvisible regions of p1, p2, and p3 from
AOFRR(L), i.e., OFRR(L) ⊆ AOFRR(L).

4.3 Obstructed Integrated Safe Region (OISR)
The obstructed integrated safe region, denoted by OISR, is the area, where a user’s movement
does not change the COkD query answer. It is the intersection of OSR and OFRR. Formally
the OISR can be defined as follows:

OISR(ls, L) = OFRR(L) ∩
k⋂
i=1

OSR∆(ls, pi) (7)

GISc ience 2018

14:8 Continuous Obstructed Detour Queries

o1

o2

o4

o3

p2 p3

d

p4

lf p1 lc

Figure 4 OISR.

o1

o2

o4

o3
d

a bce

ls
p1

p2 p3
p4

Figure 5 Non Visible Region for p1.

The shaded area in Figure 4 shows the OISR for the same example shown in Figure 2(a).
However, computing intersections of safe regions for every POI is expensive. The following
theorem shows that the intersection of OFRR(L) and OSR∆(ls, pk) is enough to generate
OISR(ls, L).

I Theorem 2. Given a set of retrieved ordered POIs L with respect to a moving user’s
locations ls and d, the obstructed safe region OSR∆(ls, pi) for every ith nearest POI pi of
ls in L, the obstructed fixed rank region OFRR(L), then OFRR(L) ∩

⋂k
i=1OSR∆(ls, pi) =

OFRR(L) ∩OSR∆(ls, pk).

Proof. Suppose lc is a location in OFRR(L) ∩
⋂k
i=1OSR∆(ls, pi). Since lc is a location

inside OFRR(L), for i ∈ [1..k − 1], the following equation also holds:

d∆(lc, pi) + d∆(pi, d) ≤ d∆(lc, pk) + d∆(pk, d) (8)

Since lc ∈ OSR∆(ls, pi), from Equation 2, we have

d∆(lc, pi) + d∆(pi, d) ≤ d∆(ls, z) + d∆(z, d)− d∆(ls, lc) (9)

Now if Equation 9 holds for location lc and i = k, then according to Equation 8,
Equation 9 also holds for lc and i ∈ [1..k − 1]. Thus, OFRR(L) ∩

⋂k
i=1OSR∆(ls, pi) =

OFRR(L) ∩OSR∆(ls, pk). J

5 Algorithms

In this section, we present our COkD query processing algorithm (Algorithm 1) using safe
regions computed in Section 4. The input to the algorithms are a current location lc, a
destination d, the number of required nearest detour POIs k, and the number of auxiliary
POIs x. The output of the algorithm is the set of k obstructed nearest detour POIs A. Both
lc of a moving user and A are updated periodically. The algorithm uses a priority queue Qp
and lists L and L′ to process a COkD query. Qp is used to store already accessed R-tree
nodes and POIs. L is a set of ordered k + x obstructed detour POIs with respect to lc and d.
The list L′ includes POIs that are not in L but have been retrieved from the database for
finding k + x obstructed nearest detour POIs.

Algorithm 1 starts with initializing lf and ls as lc, where lf is a moving user’s start location
and ls is a location used to compute the last safe regions. Then the algorithm retrieves k+ x

obstructed nearest detour POIs with respect to lf and d using the function RetrievePOIs in
L (Line 2), adds first k obstructed nearest detour POIs in L to A (Line 3), and sends A to the

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:9

Algorithm 1 COkD_Process.

Input: lc, d, k, x
Output:A

1: lf , ls ← lc
2: L← RetrievePOIs(lf , d, k, x)
3: A← FindAnswer(lc, d, k)
4: Send(A)
5: for every update of lc do
6: flagOISR,L← CheckOISR(ls, lc, d, k, x, L)
7: if flagOISR = 1 then
8: Send(A)
9: else
10: flagOSR← CheckOSRs(ls, lc, d, k, x, L)
11: if flagOSR = 0 then
12: L← RetrieveNextPOIs(lf , lc, d, k, x, L)
13: ls ← lc
14: end if
15: A← FindAnswer(lc, d, k)
16: Send(A)
17: end if
18: end for

user (Line 4). The function RetrievePOIs incrementally retrieves Euclidean nearest detour
POIs with respect to lc and d from the database until k + x obstructed nearest detour POIs
for lc and d have been identified. After every update of the current location lc, the algorithm
checks whether the current location lc is in OISR(ls, L) using the function CheckOISR.
The function returns 1 if lc ∈ OISR, 0 otherwise. The steps of the function CheckOISR
are discussed in Section 5.1.

If the function CheckOISR returns 1 (i.e., lc ∈ OISR), then Algorithm 1 sends A to
the user without any further computation (Lines 7-8). On the other hand, if the function
CheckOISR returns 0 (i.e., lc /∈ OISR), then Algorithm 1 checks whether lc is in the
intersection of OSRs of POIs {p1, p2, . . . , pk} in L using the function CheckOSRs (Line
10). The function checks the condition stated in the last line of Equation in 2 to determine
whether lc ∈ OSR(pi) of a POI pi. If the condition is false for the OSR of any POI in
{p1, p2, . . . , pk}, the function returns 0. If the condition is true for all POIs, then the function
returns 1, i.e., l is in the intersection of OSRs of POIs {p1, p2, . . . , pk} in L.

If flagOSR = 1, then the algorithm does not need to retrieve any new POI. If flagOSR =
0, then the algorithm retrieves k + x nearest detour POIs in L with respect to lc and d

using the function RetrieveNextPOIs (Line 12). For the function RetrieveNextPOIs, we
develop two efficient methods: SPRM (Section 5.2) and MPRM (Section 5.3) with the aim
to minimize the number of the retrieval of POIs for finding k + x nearest detour POIs with
respect to lc and d. After retrieving new POIs using the function RetrieveNextPOIs, ls is
updated as lc (Line 13). Finally, Algorithm 1 adds first k obstructed nearest detour POIs in
L to A from L and sends A to the user (Lines 15-16).

GISc ience 2018

14:10 Continuous Obstructed Detour Queries

Algorithm 2 CheckOISR.

Input: ls, lc, d, k, x, L
Output: flagOISR and L

1: NV R← ComputeNV R(L, ls, d)
2: if lc ∈ NV R then
3: return 0, L
4: end if
5: flag, L← CheckPOIOrder(L, lc, d)
6: if flag = 1 then
7: return 0, L
8: else
9: return lc ∈ OSR(pk), L

10: end if

5.1 Function CheckOISR

The steps of this function is shown in Algorithm 2. The inputs to the algorithm are ls, lc, d,
k, x, and L. The outputs are a flag flagOISR and the L. From Equation 7, we know that
OISR(ls, L) is the intersection of OFRR(L) and OSR(pk). The function first computes non
visible region NV R as the union of non visible regions with respect to all POIs in L (Line 1).
if the direct path between a location and a POI is obstructed then the location is non-visible
from the POI. Thus any location of a non visible region for a POI does not have a direct
path to that POI. Figure 5 shows an example of non visible region (represented with two
lines ab and ce) for POI p1 with respect to obstacle O1 by ignoring the presence of other
obstacles. Non visible regions can be computed using a visibility graph [2, 9]. The vertices
of a visibility graph represent POIs and corner points of the obstacles, and there is an edge
between two vertices if the direct path between those vertices is not obstructed. To reduce
the computational overhead, after computing a non visible region NV Ri for a POI pi, it is
stored and reused in the query evaluation process unless any new obstacle is retrieved.

Since OFRR(L) can be computed as AOFRR(L)−NV R (Equation 6), if lc in NV R then
lc is not in OFRR(L). Again from Equation 7, OISR(ls, L) = OFRR(L) ∩ OSR∆(ls, pk).
Thus, if lc in NV R then lc is also not in OISR(ls, L). In such a scenario, Algorithm 2
returns flagOISR as 0 and L without any modification (Lines 2-4).

Otherwise, using the function CheckPOIOrder, Algorithm 2 computes obstructed detour
distances of POIs in L with respect to lc and d, and sorts the POIs in L, if the order of
POIs based on computed obstructed detour distances changes (Line 5). If the order is
changed, flag is set to 1 and Algorithm 2 returns flagOISR as 0 and updated L (Lines
6-7). Otherwise, Algorithm 2 checks whether lc ∈ OSR(pk) using the condition stated in the
last line of Equation in 2 and returns flagOISR as 1 or 0 and L without any modification,
if the condition stated in the last line of Equation in 2 is satisfied or not, respectively.

5.2 SPRM
POIs are indexed using an R-tree in the database. To identify (k + x) obstructed nearest
detour POIs for lc and d, SPRM incrementally retrieves Euclidean detour POIs with respect
to lf and d, where from lf the user starts to move towards a destination d. A priority queue
Qp stores already accessed R-tree nodes and POIs in order of the minimum Euclidean detour

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:11

Table 2 Experiment Settings.

Parameter Range Default value Parameter Range Default value

k 1-20 10 x 1-20 12
Query Range R 500-3000 units 1500 units |P |/|O| Ratio 50-350 200

distances with respect to lf and d. To avoid the retrieval of the same POIs multiple times
and reduce I/O access, SPRM does not start the search for the POIs from the root node of
the R-tree while incrementally retrieving the POIs with respect to lf and d.

The POI search space that has been already traversed is an ellipse with foci at lf and
d and the major axis having the length equal to the Euclidean detour distance of the last
retrieved POI with respect to lf and d from Qp. SPRM determines the current (k + x)th
smallest obstructed detour distance of lc and d based on the already retrieved POIs. The
ellipse expands with the retrieval of new POIs from Qp. With the retrieval of a new POI,
SPRM updates the current (k + x)th smallest obstructed detour distance of lc and d if it
becomes smaller. The search ends when the minimum Euclidean detour distance of lc and
d from the boundary of the ellipse becomes greater than or equal to the current (k + x)th
smallest obstructed detour distance of lc and d.

5.3 MPRM
Since SPRM expands the POI search space (i.e., ellipse) with respect to fixed locations lf
and d, some retrieved POIs may never become part of the COkD answer with respect to the
updated location lc and d. To avoid the retrieval of those additional POIs, MPRM retrieves
new POIs with respect to lc and d instead of lf and d. Similar to SPRM, MPRM does not
start the search from the root of the POI R-tree node and reuses the already traversed nodes
of the POI R-tree. However, MPRM incurs additional processing overhead for computing
the minimum Euclidean detour distances with respect to lc and d for the nodes/POIs stored
in Qp.

MPRM sorts the already retrieved POIs according to the obstructed detour distance
with respect to lc and d. Then MPRM resorts the elements in Qp based on their Euclidean
detour distances with respect to lc and d. The algorithm continues to retrieve the next
Euclidean nearest detour POI p with respect to lc and d from Qp as long as the Euclidean
detour distance of p with respect to lc and d is smaller than the current (k + x)th smallest
obstructed detour distance of lc and d based on already retrieved POIs.

6 Experiments

We present the performance of our safe region based approach using both SPRM and MPRM
and compare them with a naive approach (NA) that independently finds k obstructed nearest
detour POIs for every location update of a moving user using the OkD algorithm proposed
in [16] (please see Section 3) for details. We use both real and synthetic data sets. The total
space is normalized into 10, 000× 10, 000 square units. The real dataset of Germany consists
of 36334 Minimum Bounding Rectangles (MBRs) of railway lines (rrlines) and 76999 MBRs
of hypsography data (hypos). In this dataset, end points of hypos represent POIs, and rrlines
are the obstacles. Though we use MBRs to represent obstacles, our approach is applicable
for obstacles of any shape. We also use the real datasets of rivers and lakes in Greece as
obstacles, and generate synthetic POIs using uniform random distribution. We denote the
synthetic dataset (Greece dataset) by ‘S’ and Germany dataset by ‘G’.

GISc ience 2018

14:12 Continuous Obstructed Detour Queries

0.0

10.0

20.0

30.0

 4 12 20

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

k

MPRM (G)
SPRM (G)

NA (G)

0.50

1.50

2.50

 4 12 20

I/O
s

(o
bs

) *
 1

04

k

MPRM (G)
SPRM (G)

NA (G)

0.00

1.00

2.00

 4 12 20

I/O
s

(P
O

I)
*

10
4

k

MPRM (G)
SPRM (G)

NA (G)

(a) (b) (c)

0.00

2.00

4.00

6.00

8.00

 4 12 20

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

k

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

0.14

 4 12 20
I/O

s
(o

bs
) *

 1
04

k

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

0.14

 4 12 20

I/O
s

(P
O

I)
*

10
4

k

MPRM (S)
SPRM (S)

NA (S)

(d) (e) (f)

Figure 6 Effect of the number of required POIs k.

We use a 2.4 GHz Intel i5 CPU and 16 GB main memory. Table 2 shows the range and
default values of our experiment parameters. To observe the effect of a parameter in an
experiment, we set other parameters to their default values.

For every experiment, we consider 200 sample COkD queries and takes the average
performance in terms of the computational time and I/O costs for retrieving POIs and
obstacles from the database. For every COkD query sample, we randomly generate lf and d
according to the specified range in the experiment. Then we randomly generate lcs in the
following way: a user moves towards the direction of d but the followed path may not be
the shortest one for arriving at d. Though the distance between two lcs is kept fixed, the
number of lcs may vary for two paths having lf and d in the same query range (e.g., 3000
units). Therefore, we show the average computational time and I/Os required per lc for a
path as the cost of a COkD query sample.

6.1 Effect of the Number of Required POIs k

Figure 6 shows that the required computational time and I/Os are higher for the naive
approach than those for our safe region based approach for varying k. From Figures 6(a)
and 6(d), we observe that the computational time increases rapidly for the naive approach
than our safe region based approach for higher values of k. This is because with the increase
of k, for both SPRM and MPRM, the safe regions become larger and the probability for lc
to remain inside OISR increases, which avoids the re-computation of COkD answer. On the
other hand, the naive approach requires to evaluate the obstructed nearest detour POIs for
every update of lc and the time required for the evaluation increases for the higher values
of k.

Figures 6(b), 6(e), 6(c) and 6(f) show that the I/O cost for both POIs and obstacles
increases with the increase of k, which is expected because the number of POIs and obstacles
retrieved from the database increase with the increase of k.

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:13

0.0

10.0

20.0

 4 12 20

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

x

MPRM (G)
SPRM (G)

NA (G)

0.50

1.50

2.50

 4 12 20

I/O
s

(o
bs

) *
 1

04

x

MPRM (G)
SPRM (G)

NA (G)

0.00

1.00

2.00

 4 12 20

I/O
s

(P
O

I)
*

10
4

x

MPRM (G)
SPRM (G)

NA (G)

(a) (b) (c)

0.00

2.00

4.00

6.00

 4 12 20

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

x

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

0.14

 4 12 20

I/O
s

(o
bs

) *
 1

04

x

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

 4 12 20

I/O
s

(P
O

I)
*

10
4

x

MPRM (S)
SPRM (S)

NA (S)

(d) (e) (f)

Figure 7 Effect of the number of auxiliary POIs x.

6.2 Effect of the Number of Auxiliary POIs x

Figure 7 shows that the computational time and I/O cost for the naive approach is higher
than our approach but remain same irrespective of values of x because the naive approach
does not retrieve auxiliary POIs. On the other hand, we observe that for MPRM the
performance improves with the increase of x upto a certain threshold then again degrades.
The reason is as follows. With the increase of x, the area of safe region becomes larger and
the query processing overhead decreases, but after certain threshold with the increase of x,
the cost for computing the non visible regions diminishes the gain achieved from the large
safe regions. For SPRM, we observe that the performance degrades with the increase of x.
This is because for SPRM, POIs are always retrieved with respect to lf , and the retrieval of
POIs that are not required increases with the increase of x.

6.3 Effect of the Query Range R

In this experiment, we vary R from 500 meter to 3000 meter by considering the typical
travelling distance of a pedestrian. Figure 8 shows that SPRM performs better than MPRM,
which can be explained from the underlying structure of SPRM and MPRM. It is expected
that set of nearest detour POIs remain same for several timestamps, and the number of
POIs and obstacles retrieved with respect to lc and d is small. On the other hand, MPRM
needs to compute obstructed detour distances for every element in Qp with respect to lc.
Therefore, SPRM performs better than MPRM.

The performance of both naive and safe region based approaches degrades with the
increase of R. Since the distance between consecutive lcs increases with the increase of R, the
probability that lc falls outside the safe region also increases and more POIs and obstacles
need to be retrieved from the database.

6.4 Effect of POI-Obstacle Ratio |P |/|O|
Figure 9 shows the comparative performance between the naive approach and the safe region
based approach for varying the ratio of the number of POIs and the number of obstacles
|P |/|O|. Increase of |P |/|O| ratio means that the sample space contains more POIs than

GISc ience 2018

14:14 Continuous Obstructed Detour Queries

0.0

10.0

20.0

 0.5 1.5 2.5

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

R	(units)

MPRM (G)
SPRM (G)

NA (G)

0.50

1.50

2.50

 0.5 1.5 2.5

I/O
s

(o
bs

) *
 1

04

R	(units)

MPRM (G)
SPRM (G)

NA (G)

0.50

1.50

2.50

 0.5 1.5 2.5

I/O
s

(P
O

I)
*

10
4

R	(units)

MPRM (G)
SPRM (G)

NA (G)

(a) (b) (c)

1.00

3.00

5.00

7.00

 0.5 1.5 2.5

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

R	(units)

MPRM (S)
SPRM (S)

NA (S)

0.00

0.04

0.08

0.12

0.16

 0.5 1.5 2.5
I/O

s
(o

bs
) *

 1
04

R	(units)

MPRM (S)
SPRM (S)

NA (S)

0.02

0.06

0.10

0.14

 0.5 1.5 2.5

I/O
s

(P
O

I)
*

10
4

R	(units)

MPRM (S)
SPRM (S)

NA (S)

(d) (e) (f)

Figure 8 Effect of the query range R.

0.0

5.0

10.0

15.0

20.0

 100 200 300

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

|P|/|O|	Ratio

MPRM (G)
SPRM (G)

NA (G)

5

15

25

100 200 300

I/O
s

(P
O

I)
 *

 1
0

3

|P|/ |O| Ratio

MPRM (G)
SPRM (G)

NA (G)

(O
B

S
)

(o
bs

)

0

5

10

15

20

100 200 300

I/O
s

(o
bs

)
*

10
3

|P|/ |O| Ratio

MPRM (G)
SPRM (G)

NA (G)

(P
O

I)

(a) (b) (c)

0.00

2.00

4.00

 100 200 300

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

)

|P|/|O|	Ratio

MPRM (S)
SPRM (S)

NA (S)

0

4

8

12

16

100 200 300

I/O
s

(P
O

I)
 *

 1
0

3

|P|/ |O| Ratio

MPRM (S)
SPRM (S)

NA (S)

(O
B

S
)

(o
bs

)

0

2

4

6

8

100 200 300

I/O
s

(o
bs

)
*

10
3

|P|/ |O| Ratio

MPRM (S)
SPRM (S)

NA (S)

(P
O

I)

(d) (e) (f)

Figure 9 Effect of POI-obstacle ratio [P]/[O].

obstacles. With the increase of |P |/|O|, the I/O cost for POIs increases for both SPRM
and MPRM, which is expected. For SPRM, the I/O cost of obstacles decreases because
less number of obstacles are retrieved with respect to fixed locations lf and d. However, for
MPRM, the I/O cost of obstacles increases because detour obstructed distances of POIs are
computed with respect to different locations.

7 Conclusion

We have introduced and formulated COkD queries. We have proposed the first approach
based on safe regions for efficient processing of COkD queries. We have further improved the
efficiency of our approach by developing two POI retrieval algorithms: SPRM and MPRM.

R. Saha, T. Hashem, T. Shahriar, and L. Kulik 14:15

We have performed experiments using both real and synthetic datasets. The results show
that our approach for COkD queries with SPRM requires on average 67.3% less processing
time, 62% less I/Os for obstacles and 72.6% less I/Os for POIs than the naive approach that
applies the existing OkD query processing algorithm to evaluate for COkD queries. On the
other hand, our approach with MPRM requires on average 69.2% less processing time, 67%
less I/Os for obstacles and 72% less I/Os for POIs than the naive approach.

References
1 Anika Anwar and Tanzima Hashem. Optimal obstructed sequenced route queries in spatial

databases. In EDBT, pages 522–525, 2017.
2 Takao Asano, Tetsuo Asano, Leonidas J. Guibas, John Hershberger, and Hiroshi Imai.

Visibility of disjoint polygons. Algorithmica, 1(1):49–63, 1986.
3 Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi. Efficient continuous

nearest neighbor query in spatial networks using euclidean restriction. In SSTD, pages
25–43, 2009.

4 Yunjun Gao, Jiacheng Yang, Gang Chen, Baihua Zheng, and Chun Chen. On efficient
obstructed reverse nearest neighbor query processing. In SIGSPATIAL GIS, pages 191–
200, 2011.

5 Yunjun Gao and Baihua Zheng. Continuous obstructed nearest neighbor queries in spatial
databases. In SIGMOD, pages 577–590, 2009.

6 Yu Gu, Ge Yu, and Xiaonan Yu. An efficient method for k nearest neighbor searching in
obstructed spatial databases. J. Inf. Sci. Eng., pages 1569–1583, 2014.

7 Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD,
pages 47–57, 1984.

8 Tanzima Hashem, Lars Kulik, and Rui Zhang. Countering overlapping rectangle privacy
attack for moving knn queries. Inf. Syst., 38(3):430–453, 2013.

9 Paul J. Heffernan and Joseph S. B. Mitchell. An optimal algorithm for computing visibility
in the plane. SIAM J. Comput., 24(1):184–201, 1995.

10 Chuanwen Li, Yu Gu, Jianzhong Qi, Rui Zhang, and Ge Yu. A safe region based approach
to moving knn queries in obstructed space. KAIS, 45:417–451, 2015.

11 Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis. Continuous
nearest neighbor monitoring in road networks. In VLDB, pages 43–54, 2006.

12 Sarana Nutanong, Egemen Tanin, Jie Shao, Rui Zhang, and Ramamohanarao Kotagiri.
Continuous detour queries in spatial networks. IEEE TKDE, 24:1201–1215, 2012.

13 Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik. The v*-diagram: a query-
dependent approach to moving KNN queries. PVLDB, 1(1):1095–1106, 2008.

14 Shuo Shang, Ke Deng, and Kexin Xie. Best point detour query in road networks. In
SIGSPATIAL GIS, pages 71–80, 2010.

15 Nusrat Sultana, Tanzima Hashem, and Lars Kulik. Group nearest neighbor queries in the
presence of obstacles. In SIGSPATIAL GIS, pages 481–484, 2014.

16 Nusrat Sultana, Tanzima Hashem, and Lars Kulik. Group meetup in the presence of
obstacles. Inf. Syst., 61:24–39, 2016.

17 Chenyi Xia, David Hsu, and Anthony KH Tung. A fast filter for obstructed nearest neighbor
queries. In BICOD, pages 203–215, 2004.

18 Jin Soung Yoo and Shashi Shekhar. In-route nearest neighbor queries. GeoInformatica,
9(2):117–137, 2005.

19 Jun Zhang, Dimitris Papadias, Kyriakos Mouratidis, and Manli Zhu. Spatial queries in the
presence of obstacles. In EDBT, pages 366–384, 2004.

GISc ience 2018

14:16 Continuous Obstructed Detour Queries

20 Huaijie Zhu, Xiaochun Yang, Bin Wang, and Wang-Chien Lee. Range-based obstructed
nearest neighbor queries. In SIGMOD, pages 2053–2068, 2016.

	Introduction
	Problem Formulation
	Related Work
	Safe Regions
	Obstructed Safe Region (OSR)
	Obstructed Fixed Rank Region (OFRR)
	Obstructed Integrated Safe Region (OISR)

	Algorithms
	Function CheckOISR
	SPRM
	MPRM

	Experiments
	Effect of the Number of Required POIs k
	Effect of the Number of Auxiliary POIs x
	Effect of the Query Range R
	Effect of POI-Obstacle Ratio |P|/|O|

	Conclusion

