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Abstract
Dynamic maps which support panning, rotating and zooming are available on every smartphone
today. To label geographic features on these maps such that the user is presented with a consistent
map view even on map interaction is a challenge. We are presenting a map labeling scheme,
which allows to label maps at an interactive speed. For any possible map rotation the computed
labeling remains free of intersections between labels. It is not required to remove labels from the
map view to ensure this. The labeling scheme supports map panning and continuous zooming.
During zooming a label appears and disappears only once. When zooming out of the map a
label disappears only if it may overlap an equally or more important label in an arbitrary map
rotation. This guarantees that more important labels are preferred to less important labels on
small scale maps. We are presenting some extensions to the labeling that could be used for more
sophisticated labeling features such as area labels turning into point labels at smaller map scales.

The proposed labeling scheme relies on a preprocessing phase. In this phase for each label
the map scale where it is removed from the map view is computed. During the phase of map
presentation the precomputed label set must only be filtered, what can be done very fast. We are
presenting some hints that allow to efficiently compute the labeling in the preprocessing phase.
Using these a labeling of about 11 million labels can be computed in less than 20 minutes. We are
also presenting a datastructure to efficiently filter the precomputed label set in the interaction
phase.
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1 Introduction

If today someone wants to explore a place anywhere on earth, he uses map services like
Google Maps, Here Maps or others. In addition to a classical map these services allow not
only to view a static map but to interactively explore the map via zooming and panning of
the displayed region. This interactive approach allows to show a rough overview as well as a
detailed view of the interesting places on demand. In contrast to former static maps it is not
possible to label interactive maps by hand unless zooming is restricted to a set of fixed zoom
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8:2 Labeling Maps with Label Disks

Figure 1 Germany labeled in 3 different levels of detail at a coarse, medium and high level of
detail (© OpenStreetMap contributors).

levels. But even in this case it’s a lot of work to develop an appropriate labeling for the map
on each of the fixed map scales. So people started working on algorithms to automatically
perform the label selection and placement. In figure 1 you see a map of Germany in three
distinct levels of detail from coarse (in the top third) to detailed in the bottom third, labeled
with the proposed labeling scheme

In order to help the user to track the labeled features while continuously zooming or
panning the map some best practices were presented (e.g. [9, 3]). An essential one is that
two labels should not overlap each other to ensure readability of the presented map. Of
course each label should be placed close to the feature it labels. During map interaction
a well-known requirement is that a feature which is labeled on a specific scale should not
vanish except for moving out of the viewing range. When it comes to zooming, the label of a
less important feature, e.g. a street, should disappear before the label of a more important
feature, e.g. the town the street is located in. All of these requirements need to be considered
if a map is labeled, may it be by hand or automatically.

In navigation systems the panning and zooming of the map is often done by the system
itself. So the most appropriate view is presented to the user, e.g. a car driver. If the
driver needs to change roads, a detailed view is presented to him. He is presented with a
coarse map view if he travels long distances on a highway. What is special to the navigation
system setting is that the presented map often is not north oriented but oriented in the
current direction of travel. This leads to a special demand for the map labeling. Imagine
you are sitting in your car focused on traversing a road junction. When you looked at your
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navigation system most recently you saw some nearby towns labeled with their names. After
having passed the junction you look at the presented map again that has been rotated in the
meantime. Unfortunately you are now presented with a completely different set of labels.
This is because some of the former labels would intersect in the current orientation. Some
labels, which were overlapping before, can now be presented without overlapping. These
modifications in the presented labeling make it difficult for you to regain orientation again.

The scenario shows that a labeling in case of rotating maps especially in navigation
systems need to fulfill an additional requirement. A label that is presented to the user at a
specific rotation angle should not overlap with another label in any rotation angle. Of course
the requirements we described above for interactive maps also need to be fulfilled in this
particular use case.

In this paper we will present a new labeling scheme, which allows to compute labelings for
arbitrary map scales at interactive speed. The consistency requirements, our labeling scheme
guarantees to be fulfilled, are described in section 2. The scheme is based on a preprocessing
phase and a filtering step during run-time. It is described below in section 3. In section 4
we describe some extensions to the model, which allow to add more sophisticated labeling
features. We implemented the approach and extended the well-known OpenLayers web based
map visualization framework. Some details and practical considerations are presented in
section 5. Section 6 concludes the paper and sketches some further research topics.

Let us shortly create a common understanding of the basic terms we are using in the
context of map interaction before describing some related work. A map may show a specific
geographic region, for example Germany, Europe or the whole planet. If the map shows only
the most important details, we are talking about a coarse or low level of detail. In contrast
a fine grained map shows a lot of smaller features, i.e. a high level of detail (see figure 1
for an example). In practice the level of detail is interrelated to the map scale of the map
visualization. So a map of a high scale (e.g. 1:1,000) shows a higher level of detail than a
map of small scale, e.g. 1:1,000,000). Given an interactive map at a small scale, showing
Germany for example, we may zoom into the map, i.e. increase the map scale while shrinking
the view area, to get a more detailed view of our capital Berlin.

1.1 Related Work
Some of the first and well-known approaches to systematically describe general principles
of static map labeling were done by Eduard Imhof in the 1980s [9]. He distinguishes three
general types of features that can be labeled on a map: area, line and point features. For
these features he describes best practices for the placement of associated labels to gain best
visibility and readability of a map. His observation are the basis of the work at hand.

In the 1990s the problem to automatically label dynamic maps at an interactive speed
arose. Kreveld et al. in 1997 published some models about how to select a suitable subset of
settlements for interactive display [10]. In particular their approach of computing a ranking
of the settlements that allows to efficiently obtain a solution using filtering can be found in
the labeling scheme we are presenting here.

In 2006 Been et al. proposed some general consistency desiderata for dynamic map
labelings [3]. Those criteria can be considered almost standard in the field of automatic
labeling of dynamic maps. They also describe a framework to automatically derive map
labelings fulfilling these criteria at interactive speed for map interactions like panning and
zooming. Their approach can be considered a direct parent of the approach we are describing
in the paper at hand. In the cited paper Been et al. also provide a nice overview of the
research on this topic before 2006.
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While Been at al. only consider zooming and panning interaction, Gemsa et al. [7, 8]
are considering map rotation. Starting with a given map labeling they defined a model to
efficiently derive a subset of labels that can be visible at a specific rotation angle without
overlapping each other. Their approach covers map rotation only in particular they do not
target the problem of presenting a consistent labeling at several levels of details.

From the algorithmic side there is some previous works of our working group targeting the
efficient computation of the so called elimination sequences of growing disks [5, 2, 6]. Given a
set of points pi ∈ R2 (or Rd) with associated radii ri. Each of the points induces a disk (or a
hyperball) with radius ri · t. Starting at t = 0, t increases continuously and the less prioritized
disk is eliminated if two disks touch. The goal is to efficiently compute the elimination
sequence and the elimination times for each of the disks. In these two papers a total order
for the growing disks is assumed but the results (algorithms and complexity analysis) nicely
transfer to other priority functions which only have constant evaluation time. Ahn et al.
in 2017 introduced another algorithmic approach that further decreases the computational
complexity in [1]. If no order on the disks is given, the problem of computing optimal
elimination sequences is NP-hard [3]. Some used mixed-integer programming to compute
optimal solutions for these cases [4, 15]. But because of the computational complexity of the
problem, in practice they were able to compute solutions only for instances of a few hundred
points.

1.2 Contribution

We propose a labeling scheme for dynamic maps, which allows panning, rotating and zooming
interaction. It provides consistent labelings at an interactive speed using a computationally
challenging preprocessing phase that allows to use efficient and fast filtering techniques during
the interaction phase. The scheme is based on the described works of Kreveld et al. and Been
at al. . We go beyond the work of Kreveld et al. by additionally taking into account some
consistency requirements during zooming operations. Those criteria are inspired by the ones
proposed by Been at al. but are exceeding their work by respecting some sort of hierarchy
of the geographic objects. In contrast to the work of Been at al. we are also considering
rotation as a possible map interaction.

Our results can be extended to some more sophisticated labeling scenarios like area or
line labels that turn to point labels while zooming out of the map. This idea is based on an
observation of Imhof in [9], namely that area and line labels turn into point labels on smaller
map scales.

The labeling scheme incorporates a preprocessing step and allows to use simple filtering
and spatial search during the interaction phase to compute a consistent labeling at an adequate
speed. The preprocessing of the data can be done efficiently by a proposed algorithm with a
running time of O(∆2n(log n + ∆2)) where ∆ is the maximum ratio between two distinct
label radii (see [2]). To get an appropriate subset of labels out of the precomputed label
ranking we use a priority search tree in combination with a 2-dimensional kd-tree. The
implementation is open source and can be found on GitHub [11].

In an associated student project, we extended the well-known OpenLayers web framework
[13] to present the capability of our new approach in practice. The so called Tile Rotating
Universal Map Projection Presentation is open source and available online [14].
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2 Consistency requirements

Based on the consistency desiderata defined by Been at al. in [3] we define the following
requirements for interactive maps which allow panning, rotating and zooming of the map
view:

(D1) During monotonous zooming labels should not appear and disappear more than once.
This requirement covers the user expectation that during zooming an object is visible
until it is no longer important enough (when zooming out). When zooming in it ensures
that a label can vanish if the labeled object covers the whole view or the labeled point
for example got replaced by an area or line feature label at larger scales.

(D2) Labels should not change position or size abruptly on map interaction. This is because
abrupt label changes during map interaction may distract the user and make it difficult
to track the position of the labeled objects.

(D3) During panning and rotation labels are not allowed to appear or disappear except for
moving in and out of the view area. This implies that labels might be partly visible if the
label disk is is not fully contained in the view area. Especially in navigation systems the
map rotation changes automatically, for example when it is linked to a driving direction.
The requirement ensures that always the same set of labels is visible even if the map
rotation changed since the last time the user looked at the map. This allows the user to
keep orientation with a low cognitive load.

(D4) The label placement and selection is a function of scale and the view area. It does not
depend on the interaction history. Given this requirement, the map at a specific map
setting looks like a static map labeling. So users might directly recognize the places if
they look at the map.

Based on the work of Kreveld et al. [10] we add another constraint targeting the fact
that there is some inherent order of precedence for geographic features to be labeled.

(D5) During zooming a label disappears only if it is in conflict with an equally or more
important label. For example a megacity label is preferred to a label of a small rural
settlement. So if those two labels are in conflict, the megacity label should be shown
instead of the settlement label. Also on small map scales a street name is less important
than the label of the city in which the street is located. During the label selection process
these precedences need to be taken into account. Our label selection process additionally
respects what Kreveld et al. called the relative importance of an object. For example a
town might have a high relative importance if it is in the middle of nowhere compared to
a city that is located directly beside a megacity with millions of inhabitants. The relative
importance manifests itself in the fact that the label of the town is shown longer than
the city label while zooming out of the map.

Now that we have defined the consistency requirements we want our labeling to fulfill, we
will continue describing our model in the following section.

3 The Framework

Formally we are considering a set of point of interest locations P = {p1, . . . , pn}. For each
point pi we are considering its label li that may be a label string, an icon or the like. We
also assume to have a priority function that decides for two points p and q if p is prioritized
over q or vice versa or none of both. The problem we are faced with is the following: Given a
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Label string
Label

(multiline)

Figure 2 Example of point of interest labels with label strings (left) centered above the labeled
feature and icons centered at the labeled feature and centered above the labeled feature (right -
[16]). The associated label disks are depicted by the surrounding dashed circle.

specific view area, scale and rotation angle select a subset of points such that a visualization
of the corresponding labels fulfills the requirements as defined in section 2. In the following
we will describe a labeling model at first and a label selection process that allows to efficiently
retrieve such a point set. In our case efficiently means that the label selection process can
be subdivided into two phases. In a first phase the label set is preprocessed such that in
a second interaction phase the actual label selection reduces to a simple and fast filtering.
This allows to efficiently query the data set for a consistent labeling during the interactive
visualization phase.

3.1 The label model
In order to fulfill the consistency criteria as defined in section 2 we define a label disk for each
of the points to be labeled. The label disk is centered at the corresponding point location
and has a specific radius r depending on the label size, i.e. the label length, the font and font
size or the icon and icon size. We require a point label to be completely contained within the
corresponding label disk in each rotation angle but we do not care about its actual placement.
In order to fulfill requirement (D2) and (D4) the label placement must be a function of
scale and rotation angle. It must ensure that the label does not change its position and size
abruptly during map interaction. Except for these restrictions, the concrete label placement
within the label disk is unconstrained. A fairly simple example for such a placement function,
which fits the idea of the model well, is depicted in figure 2. There you see a point label that
is horizontally aligned and centered above the labeled feature. During rotation the label
remains horizontally aligned and keeps its absolute size on zooming. Icons can be placed
e.g. centered at their location or centered above the location like in case of the text label as
described before. Of course many other placements are also possible.

Using these label disks, we define a consistent labeling to be a subset of the labels such
that the corresponding label disks are non-overlapping. Because each label is completely
contained within its corresponding label disk by definition, this ensures that none of the labels
are overlapping in any rotation of the map view. So we ensured that during rotation none of
the labels need to disappear to avoid label overlap. In figure 3 you can see a visualization of
Germany labeled with our scheme in two different rotation angles.

To ensure consistency during panning we come back to a concept Been et al. called an
“inverted sequence” in their approach in [3]. The intuitive label selection and placement
method is to first select the subset of labels in the view area and placing the corresponding
labels afterwards. As Been et al. argued in their paper it is hard to achieve interactive
speed and consistency with this approach. What we suggest here is to first pick a consistent
labeling globally. From this restricted label set we finally display the labels intersecting our
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Figure 3 A labeling of Germany in two different orientations (© OpenStreetMap contributors).
The basic label set contains all human settlements extracted from the OpenStreetMap dataset [12].

view area. This selection process ensures that the only way labels appear or disappear on
panning is by moving in and out of the view area.

In summary until now our label model requirement (D3) is fulfilled, i.e. labels only
appear and disappear by moving in and out of the view area. The requirements (D2) and
(partially) (D4) are fulfilled by an appropriate label placement function. For the latter we
did not yet define the dependency to the map scale but we are going to make up for it right
now.

The map interaction we haven’t considered yet is zooming. Zooming out of the map by
decreasing the map scale naturally leads to decreasing the level of detail of the map, i.e. less
details get visible and labeled on the map. To support this we define the label disk radii
to be dependent on the map scale. Instead of the label radius ri we define the disk radius
of pi to be ri · 1

s where s is the current map scale. You see that decreasing the map scale
s enlarges the label disks so a consistent labeling contains less labels – the level of detail
decreases. By using these scale dependent label disks, the selection of a consistent labeling
gets a function of scale as required in (D4).

The defined label model now allows to have a consistent map view for map interactions at
arbitrary map scales. What we have not yet taken into account are the consistency criteria
concerning the zooming process itself. As defined in the consistency requirements (D1) and
(D5) for the zooming we have some requirements telling us that labels should not appear
and disappear more than once during monotonous zooming. Additionally we require a label
to be removed from the view only if it conflicts with a more or equally prioritized label. We
will target this in the following section.

3.2 The label selection
In the previous section we defined a labeling model that ensured some requirements to
be fulfilled when panning and rotating on an arbitrary map scale. We now want to focus
on the process of selecting consistent labelings such that the remaining requirements are
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Figure 4 Label cones and two planes (brown, light green) that correspond to label selections at
different map scales.

fulfilled. These are concerning the process of zooming in and out of the map, i.e. increasing
or decreasing the map scale. There are two requirements left: (D1): ’During monotonous
zooming a label should not appear and disappear more than once’ and (D5): ’During
zooming a label disappears only if it is occluded by an equally or more important point label’

For the sake of simplicity we only consider the process of zooming out of the map, i.e.
decreasing the map scale. It is straightforward to transfer the following observations to the
process of zooming in. Furthermore we will look at the label disks only and not rely on the
actual label placement but assume that this is done in a suitable way as described in the
previous section.

In order to find a proper consistent labeling for a target map scale S we use the following
process: Starting with a sufficient large s we know that all the corresponding label disks are
free of intersections. We continuously decrease s until two of the label disks touch. Now
the priority function comes into play. If one of the corresponding points is prioritized over
the other, we remove the less prioritized one. Otherwise we remove one of the two. We
continue with the process until s = S, i.e. our target scale is reached. In the case that we
are free to decide which of two equally important point labels to remove, the decision we
make influences the further process and so the quality of the labeling. We will come back to
this point in the conclusion and further research section.

The process immediately ensures requirement (D5) to be fulfilled as a label is removed
only if its label disk is in conflict with a label disk of an equally or more important label.
Requirement (D1) is also fulfilled by design of the label selection as a label never reenters
the process after being removed once.

As you can see the label selection process always leads to the same label “elimination
sequence” if we assume the label set to be unchanging and the breaking of the ties to happen
deterministically. Each label can be assigned a specific map scale where it is removed from
the label set during the process. This opens space for our promised precomputation phase.
Because the label elimination sequence and the elimination scales for the labels do not change,
we can compute them separately in advance. Having computed them for a set of labels we
can derive a consistent labeling as follows. For a given map scale S we choose the subset
of labels having an associated elimination scale smaller than S and restrict the subset to
those labels intersecting the view area. This allows to retrieve a consistent labeling at an
interactive speed.
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Figure 5 Labeling of a map using a map labeling with popup scales at a larger (left) and smaller
map scale (right) where the “Berlin” label popped up (© OpenStreetMap contributors).

Looking at the process from a more abstract point of view we are presented with the
following so called space-scale cube: The labels are located in a 2-dimensional plane for
example when using the Mercator projection. Using 1

s as a third dimension, we see that each
label is associated to a cone (see figure 4). The elimination scale of a label determines the
height of the cone and the label cones do not intersect. In this view a labeling of a map on
a specific scale S corresponds to the intersection of the label cones with the plane at the
height oh 1

S . In the referenced drawing you see two planes corresponding to two different
map scales in brown and bright green. The intersection of a cone with the plane corresponds
to the label disks of the label at the specific map scale.

4 Extending the model

The labeling model we developed in the previous section opens up opportunities to some
extensions. In the following we will discuss some of these.

What we did not take into account yet is the point where a label occurs while zooming
out of the map. In the basic labeling model we described before, all the labels are visible at
the largest map scale A straightforward approach to extend the labeling model is to introduce
a “popup scale” for a label. It means that the label becomes visible at this specific map scale.
At larger map scales the label does not exist and also does not occlude any of the existing
labels. This concept for example allows to add a label of a city on coarser map views only
such that the label does not occlude details of the city while being in a zoomed in map view.
This extension does not violate the requirement (D1) as the label only appears once during
a monotonous zooming operation. An example of a labeling of Berlin is depicted in figure 5.

Having in mind the concept of popup scales as described above, we introduce another
extension. As Imhof pointed out in [9] line or area feature labels turn into point labels on
smaller map scales. For example a church might be displayed as an area on larger map scales
but on a coarser map view its area degenerates to a single point. Analogously the label needs
to turn from an area label to a simple point feature label. In figure 6 you see a map in two
different map scales where the area of Berlin is labeled as an area on the left hand side while
it is labeled as a point object on a smaller map scale (right). The same can be applied to line
segment labels. By using the concept of popup times we are able to include this fact into our
point labeling scheme. Simply setting the popup time for the point label to the map scale
where the area turns into a point in the visualization allows us to support this visualization
feature.

Obviously the labeling scheme is not focused on maximizing the number of labels visible
but on visibility and readability of the map with low cognitive load. For example for simple
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Figure 6 Labeling of an area using an area label (left) and a point label at smaller map scale
(right)(© OpenStreetMap contributors).

horizontally aligned labels a lot of the available disk space remains unused. To further
increase the number of labeled objects one can think of a multilayer approach as follows.
Each label which is removed while zooming out is moved to a second label layer, which is
overlayed by the main labeling layer. In this second layer labels might use another font type,
color or opacity to make clear it is a background layer. Technically the second layer uses the
same labeling model, i.e. none of the disks of labels in the second layer overlap. For each
label the elimination scale in the first layer is the popup scale in the second layer. So for
each of the layers the consistency requirements are fulfilled but the labels of the different
layers might overlap in the visualization. In figure 7 you see an example of a labeling with
two layers.

Now that we described the labeling scheme from theoretical point of view and discussed
some extensions to the model, we will briefly have a look at the practical details of our work.

5 Computing labelings in practice

As described in the previous section the labeling computation subdivides into two phases. In
a preprocessing phase an elimination order or label ranking is computed. The general process
and some optimizations to do the precompution more efficiently are discussed in the following
section 5.1. When it comes to the visualization and interaction phase the precomputed
elimination order needs to be filtered efficiently. Section 5.2 describes an approach to do
this by using a combination of a priority search tree and a 2-dimensional kd-tree. To finally
visualize the label set we extended the OpenLayers visualization framework. The changes we
made are described in section 5.3.

5.1 Preprocessing
A basic algorithm to compute the elimination order is given in the following bottom up
approach. For each label pi we compute the next upcoming label disk collision, i.e. the
collision at the largest scale si. For the collision at the largest scale we decide which label to
remove and start over again with the shrinked label set until only one label is left. This basic
algorithm has a computation complexity of O(n3) as we need for each label to check the
remaining labels for conflicts in a total of n− 1 iterations. The crucial observation is that
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Figure 7 Labeling of Stuttgart that uses a second label layer (filled gray font) to increase the
number of labeled points. In this particular rotation the labels “Stuttgart” and “Stuttgart-Ost”
in the first layer are occluding the label of “Uhlandshöhe“ in the second layer (© OpenStreetMap
contributors).

a label may collide with the most far away label if the disk radii are suitable chosen. This
observation forces us to really check each other label when checking for the next collision.

In the following we describe some observations which allow to speed up the algorithm.
This is a brief sketch of two of our previous results published in [5] and [2].

A first observation allowing us to reduce the computational complexity is that in each
iteration we only need to enforce that the globally next collision needs to be correct. All
other computed next collisions might not be correct but the overall sequence of eliminations
nevertheless is computed correctly. We see that a collision may be computed twice from
each of the two colliding labels. In fact it is sufficient if only the label with the larger radius
correctly computes a collision. A second observation guiding to a more efficient algorithm
affects two subsequent iterations. Consider an iteration at scale s and a label disk which
cover less than half the distance to the nearest neighbor of the associated label. We can
argue that we do not need to search for the next collision of this labels until its label disk
covers half the distance to the corresponding nearest neighbor. In the meantime some labels
might be removed from the label set shrinking the set of labels we need to check for possible
conflicts. These two observations allow us to conclude the following: When searching for a
next collision of a label we only have to consider a subset of the labels. The maximum size
of this particular subset depends on ∆ = rmax

rmin
, i.e. the ratio between the largest and the

smallest of all radii r in the instance.
Furthermore we observe that many predicted collisions remain the same in two subsequent

iterations. So we only need to compute them once. We proved that it is sufficient to maintain
the computed collisions in a priority queue. When removing a label we only need to recompute
the next collision for a subset of direct neighbors of this label.

The described improvements heavily depend on efficient implementations of two spatial
operations: “Finding the nearest neighbor in a point set for a query point” and “Finding all
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Table 1 Peak memory consumption (space) and execution times (time) for the precomputation
of real-world data sets from the OpenStreetMap project [12].

#items time space
Dataset [103] [mm:ss] [MB]
Germany 1, 308 2 : 05 1, 715
Europe 6, 468 12 : 23 7, 947
Planet 11, 006 19 : 33 13, 852

points within a distance of d around a query point”.
We implemented the preprocessing algorithm with its various optimizations for point

sets with a total order. This allows us to decide the priority function in constant time. In
our implementation we used Delaunay triangulations to implement the spatial queries. Our
implementation allowed us to compute label rankings for millions of labels in a reasonable
time (see table 1). These fast computation times enabled us to recompute labelings for
quickly changing point sets, which for example are containing live traffic information.

5.2 Label Selection
In the interaction phase we are provided with a set of labels and the corresponding elimination
scales, i.e. a location, a scale value and the label information. For a given query consisting of
a range given in maximum and minimum latitude and longitude coordinate and a map scale
we need to report all label points located in the region with an elimination scale smaller than
the requested scale. To efficiently answer such queries we use an approach that combines
a priority search tree with a 2-dimensional kd-tree. The data structure is a 2-dimensional
search tree of the label positions. The tree fulfills the min heap property on the associated
elimination map scales.

The root node of the tree contains the label with minimum elimination scale. The
remaining labels are split into two equally sized subsets according to their longitude coordinate.
For each of the subsets a subtree is constructed rooted at the label with the minimum
elimination scale and the remaining labels are split according to their latitude coordinate.
The left subtree contains all the labels with smaller coordinate and the right subtree all the
labels with larger coordinate. In the third layer the labels are again split according to their
longitude coordinate and so forth. To each of the tree nodes we also append the value of the
coordinate value, which separates the labels in the two subtrees.

Now at query time we traverse the data structure starting at the root node. If the current
node has an elimination scale which is less or equal to the requested map scale we need to
further explore the subtree. If the current node is contained within the query rectangle the
label is to be reported. We need to further explore the left subtree only if the split value
of the node is larger than the corresponding minimum value of the requested range. If the
maximum of the corresponding query dimension is larger than the split value, we need to
explore the right subtree.

5.3 Visualization
To evaluate the labeling result and to provide them to the public there was a student project
associated with the research project. An extension to the well-known OpenLayers framework
for web based map visualization [13] was developed. Screenshots of the testing instance can
be seen in the figures 1 and 3. We created a REST based web service that allows to query a
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precomputed label set for the active labels in the given display setting, i.e. displayed map
range and the current map scale. On the client side the modified OpenLayers framework uses
map tiles without point of interest labels and adds a layer displaying our label set on top of
it. The labels are placed centered at the label position and remain horizontally aligned when
the map is rotated by the user. One of the harder parts in implementing the framework
extensions was to present the continuous zooming capability of our approach. Therefore we
needed to modify some parts of the original framework. First we needed to interpolate the
map scale between the fix zoom levels, which are provided by the framework itself, in order
to visualize the correct subset of labels. Second we had to adopt the framework such that
during the zooming between the levels a refresh of the label layer was triggered.

We also implemented a caching mechanism for the labeling data that allowed to reduce
the number of required server requests. This mechanism shows an important property of our
labeling scheme. When requesting the labeling for a specific map setting, we in fact enlarge
the requested query range and increase the requested map scale. The provided labeling
now contains additional labels that do not need to be displayed in the current setting. But
the required labeling is a subset of the provided one and we can filter out the additional
labels by simply skipping elements with a larger elimination scale or those which are not
contained within the displayed region. The crucial point is that provided label set allows
us to directly handle small zooming or panning interactions locally without the need to
immediately request new data from the server.

6 Conclusion

We introduced a new model for labeling interactive maps, which allows panning, zooming
as well as rotating the map. The labeling ensures some consistency criteria to be fulfilled.
During continuous zooming a label appears and disappears at most once. If a label disappears
while zooming out, it is because there exists a map rotation where it overlaps a label of equal
or higher importance. When panning or rotating a map a label only appears or disappears if
moving out of the view area.

The labeling model depends on a precomputation phase that allows to efficiently derive
labelings for arbitrary map scales in an interaction phase using filtering. The precomputation
can be done in less than 20 minutes for labelings with around 10 million labels on a standard
desktop computer if a total order on the labels is given. This allows to quickly recompute
labelings for example to add traffic information labels.

In an interactive visualization phase the labeling computation is a filtering step only. An
algorithm to efficiently do that even for large datasets was introduced. The resulting label
set has some nice property namely that a labeling for smaller map scales is a subset of the
current label set. So labelings for smaller map scales can be derived by filtering the current
label set. This idea was also sketched in the paper at hand.

Further research should target the computation of labelings for point sets which do not
have a total order but some kind of hierarchy levels the points of interest are belonging to. A
top level might for example contain all the megacities. The next levels of decreasing priority
might contain other city, town, street and point of interest labels and so forth. In such
instances heuristics might be used to solve conflicts between labels of the same hierarchy
level. The outcome of such heuristics could be compared with optimal results, e.g. computed
by a linear program solver.

Regarding the quality of the computed labeling it is of interest to compare the computed
labeling with a maximum subset of labels whose associated disks are free of intersections at
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this particular scale. This would be suitable to show the influence of the zooming consistency
requirement to the quality of the labeling, i.e. the number of labels.

Further development of our visualization might contain the labeling of area and line
features that turn into point labels on smaller map scales. An initial approach how to do
that was sketched in the section about extensions to the label model.

References
1 Hee-Kap Ahn, Sang Won Bae, Jongmin Choi, Matias Korman, Wolfgang Mulzer, Eunjin

Oh, Ji-won Park, André van Renssen, and Antoine Vigneron. Faster Algorithms for Grow-
ing Prioritized Disks and Rectangles. arXiv:1704.07580 [cs], 2017. arXiv: 1704.07580.
URL: http://arxiv.org/abs/1704.07580.

2 D. Bahrdt, M. Becher, S. Funke, F. Krumpe, A. Nusser, M. Seybold, and S. Storandt.
Growing balls in Rd. In 2017 Proceedings of the Ninteenth Workshop on Algorithm En-
gineering and Experiments (ALENEX), Proceedings, pages 247–258. Society for Indus-
trial and Applied Mathematics, 2017. DOI: 10.1137/1.9781611974768.20. URL: http:
//epubs.siam.org/doi/abs/10.1137/1.9781611974768.20.

3 K. Been, E. Daiches, and C. Yap. Dynamic Map Labeling. IEEE Transactions on Visual-
ization and Computer Graphics, 12(5):773–780, 2006. doi:10.1109/TVCG.2006.136.

4 Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff. Optimizing active
ranges for consistent dynamic map labeling. Computational Geometry, 43(3):312–328, apr
2010. doi:10.1016/j.comgeo.2009.03.006.

5 Stefan Funke, Filip Krumpe, and Sabine Storandt. Crushing Disks Efficiently. In Combina-
torial Algorithms, Lecture Notes in Computer Science, pages 43–54. Springer, Cham, 2016.
doi:10.1007/978-3-319-44543-4_4.

6 Stefan Funke and Sabine Storandt. Parametrized runtimes for ball tournaments. In Proc.
33rd European Workshop Comput. Geom.(EWCG), pages 221–224, 2017.

7 Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Consistent Labeling of Rotating
Maps. arXiv:1104.5634 [cs], apr 2011. arXiv: 1104.5634. URL: http://arxiv.org/abs/
1104.5634.

8 Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Evaluation of Labeling Strategies
for Rotating Maps. J. Exp. Algorithmics, 21:1.4:1–1.4:21, apr 2016. doi:10.1145/2851493.

9 Eduard Imhof. Positioning Names on Maps. The American Cartographer, 2(2):128–144,
jan 1975. doi:10.1559/152304075784313304.

10 Marc Van Kreveld, Rene Van Oostrum, and Jack Snoeyink. Efficient settlement selection
for interactive display. In In Proc. Auto-Carto 13: ACSM/ASPRS Annual Convention
Technical Papers, pages 287–296, 1997.

11 Filip Krumpe. Runtime datastructure project, 2017. [Online; accessed 10-February-2018].
URL: https://github.com/krumpefp/runtime_datastructure.

12 OpenStreetMap. Openstreetmap project, 2017. [Online; accessed 4-February-2018]. URL:
https://www.openstreetmap.org.

13 OpenLayers Project. Openlayers project page, 2017. [Online; accessed 10-February-2018].
URL: http://openlayers.org/.

14 TRUMP Project. Tile rotating universal map projection project, 2017. [Online; accessed
10-February-2018]. URL: https://trump-fmi.github.io/#/.

15 Nadine Schwartges, Dennis Allerkamp, Jan-Henrik Haunert, and Alexander Wolff. Opti-
mizing Active Ranges for Point Selection in Dynamic Maps. In Proceedings of the 16th ICA
Generalisation Workshop (ICA’13), 2013.

16 OpenStreetMap Wiki. Map icons/proposed icons — openstreetmap wiki, 2017. [Online; ac-
cessed 4-February-2018]. URL: http://wiki.openstreetmap.org/w/index.php?title=
Map_Icons/Proposed_Icons&oldid=1463667.

http://arxiv.org/abs/1704.07580
http://epubs.siam.org/doi/abs/10.1137/1.9781611974768.20
http://epubs.siam.org/doi/abs/10.1137/1.9781611974768.20
http://dx.doi.org/10.1109/TVCG.2006.136
http://dx.doi.org/10.1016/j.comgeo.2009.03.006
http://dx.doi.org/10.1007/978-3-319-44543-4_4
http://arxiv.org/abs/1104.5634
http://arxiv.org/abs/1104.5634
http://dx.doi.org/10.1145/2851493
http://dx.doi.org/10.1559/152304075784313304
https://github.com/krumpefp/runtime_datastructure
https://www.openstreetmap.org
http://openlayers.org/
https://trump-fmi.github.io/#/
http://wiki.openstreetmap.org/w/index.php?title=Map_Icons/Proposed_Icons&oldid=1463667
http://wiki.openstreetmap.org/w/index.php?title=Map_Icons/Proposed_Icons&oldid=1463667

	Introduction
	Related Work
	Contribution

	Consistency requirements
	The Framework
	The label model
	The label selection

	Extending the model
	Computing labelings in practice
	Preprocessing
	Label Selection
	Visualization

	Conclusion

