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Abstract
When two species hybridize, one outcome is the integration of genetic material from one spe-
cies into the genome of the other, a process known as introgression. Detecting introgression in
genomic data is a very important question in evolutionary biology. However, given that hybrid-
ization occurs between closely related species, a complicating factor for introgression detection
is the presence of incomplete lineage sorting, or ILS. The D-statistic, famously referred to as
the “ABBA-BABA” test, was proposed for introgression detection in the presence of ILS in data
sets that consist of four genomes. More recently, DFOIL – a set of statistics – was introduced to
extend the D-statistic to data sets of five genomes.

The major contribution of this paper is demonstrating that the invariants underlying both the
D-statistic and DFOIL can be derived automatically from the probability mass functions of gene
tree topologies under the null species tree model and alternative phylogenetic network model.
Computational requirements aside, this automatic derivation provides a way to generalize these
statistics to data sets of any size and with any scenarios of introgression. We demonstrate the
accuracy of the general statistic, which we call DGEN, on simulated data sets with varying rates
of introgression, and apply it to an empirical data set of mosquito genomes.

We have implemented DGEN and made it available, both as a graphical user interface tool
and as a command-line tool, as part of the freely available, open-source software package ALPHA
(https://github.com/chilleo/ALPHA).
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19:2 A Test Statistic for General Introgression Detection

A B C
Figure 1 Hybridization and introgression. (Left) A phylogenetic network modeling the

evolutionary history of three species (or, populations) A, B, and C. Species C split from the most
recent common ancestor of A and B, and hybridization between (an ancestor of) C and (an ancestor
of) B occurred. (Right) Due to hybridization and backcrossing, the genome of an individual in
species B is a mosaic with different genomic segments having different genealogies. In particular,
the genealogy of the middle segment involves incomplete lineage sorting.

1 Introduction

Hybridization – the interbreeding of individuals from two “different” species, or populations –
has been recognized as an important evolutionary process underlying genomic diversification
and species adaptation [1, 2, 22, 14, 15, 21, 8, 19, 16, 26]. Immediately upon interbreeding,
each chromosome in the hybrid individual has a single source – the genome of one of the
two parents. However, after multiple generations of backcrossing and recombination, the
genomes of descendants of the hybrid individual turn into mosaics of genomic segments, each
having a genealogy that could potentially differ from that of other segments (Fig. 1). The
integration of genetic material from two different species into the genome of an individual is
called introgression.

The discordance among the genealogies of different genomic segments could be used as
a signal to detect introgression. For example, in the case of Fig. 1, the presence of some
genealogies that place B closer to A than to C and others that place B closer to C than to A
could indicate a potential hybridization event between B and C. However, a complicating
factor in introgression detection is that incomplete lineage sorting, or ILS, could also be
at play in cases where hybridization has occurred. ILS occurs when lineages from related
populations fail to coalesce within the ancestral population, giving rise to the possibility that
some lineages coalesce with others from farther populations. Mathematically, this process is
often modeled by the multispecies coalescent [10, 24, 17, 5].

One class of methods for detecting hybridization and introgression, including in the
presence of ILS, is to infer phylogenetic networks from the data of multiple unlinked loci
sampled across the genomes. Indeed, several methods were introduced recently for this
task [31, 29, 27, 23, 25, 32, 34, 33]. While providing accurate results, these methods are
computationally very demanding.

A different approach is to use the so-called D-statistic [9, 6], which infers the presence of
introgression based on significant deviation from equality between the frequencies of two site
patterns in a 3-taxon (plus an outgroup) data set (details below). More recently, Pease and
Hahn [18] introduced DFOIL, which extends the D-statistic to detect introgression in a 5-taxon
scenario (4 taxa plus an outgroup). The extension from three to four taxa involved a detailed
analysis of site patterns and resulted in a set of statistics that, when combined, would aid in
the detection of introgression. However, as stated, that work of Pease and Hahn extended
the D-statistic from three to four taxa. Both the D-statistic and DFOIL are examples of
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Figure 2 Illustration of the D-statistic. (Left) The demographic structure of three popu-
lations, P1, P2, and P3, along with an outgroup O, is shown. Patterns of the three parsimony-
informative mutations (A→B) are shown for bi-allelic sites with states A and B, each mapped onto
a different genealogy. The three genealogies give rise to patterns BBAA, BABA, and ABBA for the
four taxa, respectively, when the taxa are listed in the order P1-P2-P3-O. The dark green arrow
indicated gene flow from P3 to P2, which would result in excess of pattern ABBA. (Right) The
phylogenetic network modeling the evolutionary history of the populations in the presence of gene
flow from P3 to P2, where the gene flow is modeled as an instantaneous unidirectional event.

the use of phylogenetic invariants to detect deviation from the expected frequencies of site
patterns under a neutral coalescent model with no gene flow. Similarly, the HyDe software
package [3] implements an invariants-based method for identifying hybridization [13].

A major question is: Can one devise a statistic that is general enough to apply (the
computational complexity issue aside) to data sets with any number of genomes and any set
of postulated hybridization events?

In this paper, we address this question by showing that the phylogenetic invariants
underlying both the D-statistic and DFOIL could be generated automatically by contrasting
gene tree distributions under the null multispecies coalescent [5] and the alternative multis-
pecies network coalescent [30, 31]. Based on this observation, we devise an algorithm that
automatically generates a statistic for detecting introgression in any evolutionary scenario.
It is important to note, though, that as the number of genomes and number of postu-
lated hybridization events increase, computing the statistic becomes computationally very
demanding.

Our method, which we call DGEN, is implemented in the publicly available, open-source
software package ALPHA [7]. We demonstrate the accuracy of the method on simulated
data sets, as well as its applicability to an empirical data set of mosquito genomes.

2 Methods

2.1 The D-statistic
Consider the species tree (((P1,P2),P3),O) in Fig. 2, which shows the evolutionary history
of three species, or populations, P1, P2, and P3, along with an outgroup O. The significance
of an outgroup in this scenario is that for any genomic site, the state that the outgroup has
for that site is assumed to be the ancestral state of all three species P1, P2, and P3. We
denote by A the ancestral state and by B the derived state.

Assuming all lineages from P1, P2, and P3 coalesce before any of them could coalesce with
a lineage from O, there are three possible gene trees topologies, which are shown inside the
branches of the species tree in Fig. 2, and are given by (((P1,P2),P3),O), (((P1,P3),P2),O),
and (((P2,P3),P1),O). The probabilities of these three gene tree topologies when gene flow is
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excluded (but incomplete lineage sorting is accounted for) are, respectively, 1 − (2/3)e−t,
(1/3)e−t, and (1/3)e−t, where t is the length, in coalescent units, of the branch that separates
the splitting of P3 from the ancestor of P1 and P2 [4]. Clearly, the latter two gene tree
topologies (those that are discordant with the species tree) have equal probabilities. Taking
the two patterns BABA and ABBA to correspond to gene trees (((P1,P3),P2),O) and
(((P2,P3),P1),O), then their expected frequencies in the absence of gene flow are equal.

However, when gene flow from P3 to P2 occurs and is modeled as an instantaneous
event with probability γ (γ here is taken to represent the fraction of genomes in P2 that
originated from P3 through gene flow), then the probabilities of the three gene tree topologies
(((P1,P2),P3),O), (((P1,P3),P2),O), and (((P2,P3),P1),O) become, as derived in [28], (1−
γ)(1− (2/3)e−t1) + (1/3)γe−t2 , (1/3)(1− γ)e−t1 + γ(1− (2/3)e−t2), and (1/3)(1− γ)e−t1 +
(1/3)γe−t2 , respectively, where t1 and t2 are the branch lengths, in coalescent units, in the
phylogenetic network of Fig. 2. Now, with gene flow accounted for, when γ 6= 0 (and t2 > 0),
the expected frequencies of the two patterns BABA and ABBA are no longer equal. Thus,
denoting by NX the number of times site pattern X appears in a genomic data set, the
D-statistic was defined as [6]

D = NABBA −NBABA

NABBA +NBABA
, (1)

and the significance of the deviation of D from 0 is assessed. Under no gene flow, we expect
D ≈ 0 (we do not write D = 0 since the counts in Eq. (1) are estimated from actual data and
might not match the theoretical expectations exactly), and in the presence of gene flow, we
expect D to deviate significantly from 0. Furthermore, when D > 0, it indicates introgression
between P2 and P3 (in either or both directions), and when D < 0, it indicates introgression
between P1 and P3.

To extend the D-statistic from the scenario depicted in Fig. 2 to the case of five taxa
(four populations and an outgroup), Pease and Hahn [18] identified sets of site patterns that
are expected to have equal frequencies under a no gene flow scenario but different frequencies
when gene flow occurs. Next we show how to derive a general D-statistic that applies to
a species phylogeny and any set of gene flow events, thus overcoming the need to derive a
specialized D-statistic for individual evolutionary histories.

2.2 Towards the General Case
Let X be a set of taxa X1, X2, . . . , Xn, where Xn is assumed to be an outgroup whose state
A for a given bi-allelic marker is assumed to be the ancestral state. Then, for a given marker,
a site pattern s is a sequence of length n where si (1 ≤ i < n), the state of the site in the
genome of Xi, is either A or B.

Let G be the set of all rooted, binary gene trees on the n taxa X1, . . . , Xn. For a site
pattern s, there might be multiple trees in G that are compatible with s; that is, trees on
which the pattern s could have arisen in the presence of a single mutation (the infinite-sites
assumption). We denote by G(s) the set of all trees in G that are compatible with pattern
s. While the size of G only depends on the number of taxa n, the size of G(s) for a given s
also depends on the number of ancestral versus derived alleles represented in s. For a given
s with n total taxa and β taxa having the derived state (a ’B’ instead of a ’A’ in the site
pattern), the size of G(s) will be the number of rooted, binary trees on β taxa times the
number of rooted, binary trees on n− β + 1 taxa. Given a species phylogeny Ψ, we have

P (s|Ψ) =
∑

g∈G(s)

P (g|Ψ) (2)
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where P (g|Ψ) is the probability mass function (pmf) of [4] when Ψ is a species tree and the
pmf of [28] when Ψ is a phylogenetic network.

Assuming independence among sites, the expected number of occurrences of site pattern
s in a genomic data set given species phylogeny Ψ, denoted by E(n(s)), is given by n ·P (s|Ψ).
Using this notation, a general statistic for detecting introgression proceeds as follows. Let Ψ
be the species tree that corresponds to the evolutionary scenario of no gene flow. Let Ψ′ be
the phylogenetic network that is obtained by adding to Ψ the gene flow events (instantaneous
events represented by horizontal edges) to be tested on Ψ. For example, the phylogenetic
network in Fig. 2 is obtained by adding the gene flow event from P3 to P2. A general
D-statistic, DGEN, is then computed as follows:
1. Let S be the set of all distinct parsimony-informative site patterns.
2. Parameterize Ψ and Ψ′ so that they define probability distributions on gene tree topologies.
3. For every site pattern s ∈ S, compute P (s|Ψ) and P (s|Ψ′).
4. Let Ptree(S) be the partition of set S induced by the equivalence relations {(s1, s2) :

P (s1|Ψ) = P (s2|Ψ)}.
5. Let Pnetwork(S) be the partition of set S induced by the equivalence relations {(s1, s2) :

P (s1|Ψ′) = P (s2|Ψ′)}.
6. Let S′ ⊆ Ptree(S) where Y ∈ S′ if and only if Y 6⊆ Z for any Z ∈ Pnetwork(S). In other

words, Y is an element of S′ if it consists of a set of site patterns that all have equal
probabilities under Ψ but not equal probabilities under Ψ′.

7. Let U = {(TY , BY ,MY ) : Y ∈ S′, TY = argmax{Y ∩Z:Z∈Pnetwork(S),Y ∩Z 6=∅}P (s|Ψ′) and
BY = argmin{Y ∩Z:Z∈Pnetwork(S),Y ∩Z 6=∅}P (s|Ψ′)} where s is an arbitrary element of Y ∩Z,
and MY = Y − (TY ∪ BY ). Put simply, site pattern probabilities that were previously
equal in the tree case become totally ordered in the network case and can be divided into
sets based on their new relation to one another. In other words, as an equivalence class
Y ∈ S′ is refined by the elements of Pnetwork(S), TY and BY are the two subsets of site
patterns in Y with the highest and lowest probabilities, respectively, and MY is the set of
remaining site patterns.

8. DGEN =
(∑

(T,B,M)∈U NT −NB

)
/
(∑

(T,B,M)∈U NT +NB + 2NM

)
where, as above,

NT is the number of times site patterns in T appear in the genomic data set (and similarly
for NB and NM ).

9. Similar to [18], calculate the χ2 goodness of fit (df=1) using

χ2 =

 ∑
(T,B,M)∈U

NT −NB

2/ ∑
(T,B,M)∈U

NT +NB + 2NM

 .

Applying this algorithm to the case illustrated in Fig. 2, we have
Ptree(S) = {{BBAA}, {BABA,ABBA}}.
Pnetwork(S) = {{BBAA}, {BABA}, {ABBA}}.
Step (6) returns S′ = {{BABA,ABBA}}.
Step (7) returns U = {({BABA}, {ABBA})} which, indeed, is the D-statistic in the case
of three taxa.

In Step (2) of the algorithm, we parameterize Ψ (and Ψ′) by trying branch lengths
(in coalescent units) in the set of values {0.5, 1.0, 2.0, 4.0} and the set S′ (in Step (6)) is
determined based on the sets of site patterns whose equality does not break across the
different settings of branch lengths. For the inheritance probability, we set it to 0.9.

In Step (7), if for an element (T,B,M) of U , we have |T | 6= |B|, we remove (arbitrarily)
elements from the larger of the two sets to make them of equal size. Here, |T | is distinguished
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from NT as |T | represents how many site patterns are contained in set T (the cardinality of
set T), whereas NT represents the occurrence of the site patterns in T in an actual multiple
sequence alignment.

For the χ2 test, we used a threshold of 0.01 on the p-value to determine significance. That
is, if the p-value is smaller than 0.01 we considered support for introgression to be statistically
significant; otherwise, it is not. Given that our formulation bases its determination of whether
introgression is present or not off of significant deviations of DGEN away from zero, sign
changes are treated equivalently and thus one could equivalently choose to take the absolute
value of DGEN. In our implementation of DGEN we have chosen to leave the sign. More
information on this is given in the discussion section.

Why not contrast the site pattern distribution to the known distribution of gene trees?
One question that might arise is: Why do we not use a χ2 test to compare the two distributions
– the empirical one and the theoretical one; that is,

χ2 =
∑

s

(Ns − ns)2

ns
,

where the sum is taken over all distinct site patterns s, Ns is the observed count of site pattern
s, and ns = n · P (G(s)|Ψ). The problem with this approach is that to compute ns, we need
knowledge of the parameters (branch lengths) of the species phylogeny, which are unknown
in this case. One potential remedy to this limitation is to first estimate the species tree
parameters from the data, say under maximum likelihood, and then use this parameterized
model to compute the ns frequencies. However, it is unknown how the estimated parameters
compare to the (unknown) true values when gene flow had occurred but the assumed topology
in the estimation is a tree. In our solution above, this problem is remedied by not focusing
on the parameter values in an absolute sense, but rather use arbitrary settings to find the
site patterns whose relative frequencies change between a model of no gene flow and another
with gene flow.

3 Results

3.1 Simulations
We first studied the performance of our method on the five-taxon scenario studied in [18] and
given by species tree Ψ1 in Fig. 3. All simulations share the same values for several parameters.
As in [18], we have a constant fixed population size of Ne = 106 and recombination rate of
r = 10−8. We also use a fixed mutation rate of µ = 7× 10−9. In our simulation pipeline, we
first generate gene trees for a 50kbp multiple sequence alignment using ms [11], followed by
simulating the sequences under the Jukes-Cantor model of evolution [12] using seq-gen [20].
In other words, the sequences are evolved under a finite-sites model. The parameter values
were chosen primarily to accomplish the two goals of being similar to relevant past work as
well as being biologically relevant. An example of the full commands for this pipeline, before
adding any reticulations is as follows:

ms 5 1 -t 14000 -T -r 2000 50000 -I 5 1 1 1 1 1 -ej 1.0 2 1 -ej 1.0 4 3
-ej 1.2 3 1 -ej 1.5 5 1 | tail +4 | grep -v // > treefile
seq-gen -mHKY -l 50000 -s .028 -p 50000 < treefile > seqfile

We then added a migration event between P1 and P3 at time 0.5, with varying migration
rates, and calculated our DGEN statistic on the resulting genomic data sets; results are shown
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Figure 3 5-taxon simulation results. (Left) A 5-taxon species tree. The two most recent
divergence events are set at 1.0 coalescent units, the divergence time of the ancestor of all in-group
taxa (P1–P4) is set to 1.2 coalescent units, and the time of the root node is set to 1.5 coalescent
units. A migration event between P1 and P3 at time 0.5 was added to species tree. (Right) Values
of DGEN on data sets with varying migration rates. Each point corresponds to a DGEN value whose
p-value was lower than 0.01 obtained from a different data set simulated under the same settings.
The dark dots correspond to the mean and the lines correspond to 1 standard deviation around the
mean.

in Fig. 3. As the results show, DGEN performs very well at determining the presence of
introgression in data sets. In particular, when the data evolved with no migration (migration
rate 0), the DGEN values hardly deviate from 0, and when the migration rate is non-zero, the
method detects the presence of introgression with a strong deviation from 0. These results
are consistent with the performance of DFOIL [18].

Next, we considered cases beyond that of five taxa (i.e., cases not possible with either the
D-statistic or DFOIL). We conducted simulations that show the effect of migration rate and
time of the migration event on the performance of DGEN, as shown in Fig. 4.

As the results show, the DGEN statistic performs very well at detecting introgression in
this case as well. In particular, as the migration rate increases, so does the accuracy of the
method. For a migration rate of 10−6 or higher, the method detects, with high significance,
the presence of introgression. In the cases of extremely low migration rates (10−7 and 10−8),
the method tends to indicate slight deviation from a no-introgression scenario.

As for varying the time of the migration event, the accuracy of the method is what one
would expect. As the time between the migration event and the divergence event increases
(the time of the migration event decreases), the power to detect introgression is much higher.
That power starts decreasing as the migration event becomes more ancient and, as a result,
less signal is present for its detection.

3.1.1 Multiple Reticulations
The question we set out to investigate next is: Given that the D-statistic is designed to work
under the assumption of a single gene flow event, how does it perform when there is more
than one event? Fig. 5 shows a typical scenario for the D-Statistic, Scenario S1, in which
the standard 4-taxon backbone tree has a single reticulation from P3 to P2.

The following four scenarios add an extra reticulation with a high migration rate. The
effect of adding these reticulations on the value of the D-Statistic are shown in Fig. 6.

As expected, the S1 case yields the best results, followed by the S2 case with a weaker
D value. All other statistic values demonstrate that even in the presence of a significant
migration with introgression from P3 to P2, multiple introgressions can cause that information
to be lost from inference. These results show that it is important to account for multiple
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Figure 4 Simulation results on 6-taxon scenarios. (a) The network used for analyzing the
effects of varying migration rate of a reticulation. The results of the corresponding DG values and
the number of data sets where the DGEN values were significant (p-value smaller than 0.01) are
shown in (b) and (c), respectively. (d) The network used for analyzing the effects of varying the
time of the migration event. The results of the corresponding DG values and the number of data
sets where the DGEN values were significant (p-value smaller than 0.01) are shown in (e) and (f),
respectively.
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Figure 5 The standard D-Statistic scenario followed by four scenarios where an additional
reticulation is added. S1 adds the first reticulation which is held constant throughout all scenarios
and has M=0.1. The added reticulations in S2 through S5 have M=0.5.
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Figure 6 D-Statistic values for scenarios with a “hidden" reticulation. The scenarios
S1–S5 are shown in Fig. 5.

reticulations simultaneously, which our DGEN statistic allows for given that by its design it
is not restricted to any specific number of reticulations.

3.1.2 D-Statistic Subsetting
When data sets with more than four taxa are to be analyzed by the D-statistic, a workaround
is to subset the set of taxa into groups of four genomes (one outgroup and three in-group
taxa) and conduct D-statistic analyses on each subset independently. Our method, being
general, allows for analyzing the data set without any subsetting. The question we set out
to investigate here is: Does subsetting and running the D-statistic on individual 4-taxon
subsets equate to running DGEN on the full data set? To answer this question, we considered
the evolutionary scenario of Fig. 7.

In the case of the D-statistic, only two out of the ten simulations recovered a significant
non-zero D value, whereas DGEN inferred significant D values for all runs. This further
demonstrates the need for and significance of a method that works directly on a full data set
and accounting for multiple migration events.

3.2 Analysis Of a Mosquito Genomic Data Set
Finally, we present results from a real biological data set with six taxa. In both [8] and [26],
the evolutionary history of the Anopheles gambiae species complex was found to be reticulate.
Both studies found particularly strong signals of introgression in the 3L chromosome in an
area known as the 3La inversion. This reticulation between Anopheles quadriannulatus (Q)
and Anopheles merus (R) is shown in the network of Fig. 8(a) with the other species of An.
coluzzii (C), An. arabiensis (A), An. melas (L), and An. christyi (O).
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Figure 7 The effect of subsetting on the detectability of introgression. (Left) A 6-taxon
evolutionary history with two migration events. (Right) The values of the D-statistic on subsets of
four taxa, and DGEN on the full data set.
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Figure 8 DGEN values for the 3L mosquito chromosome. (a) Evolutionary history of six
mosquito genomes. (b) DGEN analysis of the 3L chromosome with window length set to 500kbp and
with a 100kbp offset between windows.

The results from Fig. 8 (b) show that DGEN does recover the introgressed region around
the 3La inversion in comparison to the rest of the 3L chromosome, consistent with previous
studies. Fig. 8(b) is an example of a figure that can be generated directly through the
graphical user interface of the ALPHA toolkit [7] and is presented as generated directly from
ALPHA. The figures output by ALPHA can be run on the full genome or on variable sized
windows with variable sized offsets between windows. Here the window size used was 500kbp
with a 100kbp offset between windows. The software can also vary the significance cutoff
with which to display values as significant (green) or not significant (red). Here a significance
cutoff value of 0.01 was used, as is used throughout the paper.

4 Discussion and Conclusions

In this paper, we extended the popular D-statistic to general cases of evolutionary histories
of any number of taxa and any number and placement of migration events. What enabled
this extension is the observation that the “ABBA-BABA” phylogenetic invariant underlying
the D-statistic can be derived automatically by making use of the probability mass function
of gene tree topologies under the multispecies coalescent and multispecies network coalescent
models.
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Our simulation results show that the new statistic DGEN and method for deriving and
computing it are very powerful for detecting introgression in various settings. In particular,
we demonstrated that hidden migration events could negatively affect the performance of the
D-statistic, which operates under the assumption of a single migration event. Furthermore,
subsetting a data set of more than four taxa into data sets with four taxa is problematic.
Our DGEN statistic addresses these two issues by enabling the analysis of data sets with
more than four taxa and more than a single migration event. While analyses in the style of
the D-statistic make major assumptions, such as assuming the infinite sites model as well as
ignoring dependence between sites, they are resilient to violations in these assumptions. Our
results further support this given that our simulations violate both of these assumptions,
having been performed under the full coalescent with recombination model with a mutation
model allowing for recurrent mutation.

It is important to note that the D-statistic provides values that could be positive or
negative. The sign of these values give an indication on the directionality of the migration in
the case of four taxa. However, in the case of larger data sets, the sign of the DGEN values is
not easily interpretable in terms of directionality. It is also important to note that the actual
D value is not the quantity of interest; rather, it is the statistical significance of its deviation
from 0. There is of course, however, a strong correlation between the two.

As stated above, the method has been implemented in the ALPHA toolkit, which allows
for conducting DGEN analyses on the command-line as well as through a graphical user
interface.

Finally, while we present the DGEN statistic and its computation as a way of analyzing
introgression under general evolutionary scenarios, computational complexity will become
prohibitive for increasingly large, complex data sets. In particular, Step (3) in the algorithm
above for computing DGEN entails computing the probabilities of all gene tree topologies
under a species tree and a phylogenetic network model. This calculation is very demanding,
especially in the case of the phylogenetic network. For example, while generating DGEN
for four or five taxa takes approximately ten and forty seconds, respectively, generating
it for six taxa takes thirteen minutes and for seven taxa thirty-eight hours. Fortunately,
our implementation allows a DGEN statistic to only ever need to be generated once for a
particular evolutionary scenario, as the statistic itself is saved to a file that can be used on all
current and future data sets for that scenario. This process of running a previously generated
statistic on a new data set is, of course, computationally trivial. It will be important future
work, however, to address the computational limits of DGEN when going to arbitrarily large
numbers of taxa.

References

1 M.L. Arnold. Natural Hybridization and Evolution. Oxford U. Press, 1997.
2 N.H. Barton. The role of hybridization in evolution. Molecular Ecology, 10(3):551–568,

2001.
3 P.D. Blischak, J. Chifman, A.D. Wolfe, and L.S. Kubatko. HyDe: a Python package for

genome-scale hybridization detection. Systematic Biology, 2018.
4 J. H. Degnan and L. A. Salter. Gene tree distributions under the coalescent process. Evol-

ution, 59:24–37, 2005.
5 J.H. Degnan and N.A. Rosenberg. Gene tree discordance, phylogenetic inference and the

multispecies coalescent. Trends in Ecology and Evolution, 24(6):332–340, 2009.

WABI 2018



19:12 A Test Statistic for General Introgression Detection

6 Eric Y. Durand, Nick Patterson, David Reich, and Montgomery Slatkin. Testing for an-
cient admixture between closely related populations. Molecular Biology and Evolution,
28(8):2239–2252, 2011.

7 RA Leo Elworth, Chabrielle Allen, Travis Benedict, Peter Dulworth, and Luay Nakhleh.
ALPHA: A toolkit for automated local phylogenomic analyses. Bioinformatics, 1:3, 2018.

8 Michael C Fontaine, James B Pease, Aaron Steele, Robert MWaterhouse, Daniel E Neafsey,
Igor V Sharakhov, Xiaofang Jiang, Andrew B Hall, Flaminia Catteruccia, Evdoxia Kakani,
Sara N. Mitchell, Yi-Chieh Wu, Hilary A. Smith, R. Rebecca Love, Mara K. Lawniczak,
Michel A. Slotman, Scott J. Emrich, Matthew W. Hahn, and Nora J. Besansky. Extensive
introgression in a malaria vector species complex revealed by phylogenomics. Science,
347(6217):1258524, 2015.

9 Richard E. Green, Johannes Krause, Adrian W. Briggs, Tomislav Maricic, Udo Stenzel,
Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-Yang Fritz, Nancy F.
Hansen, Eric Y. Durand, Anna-Sapfo Malaspinas, Jeffrey D. Jensen, Tomas Marques-Bonet,
Can Alkan, Kay Prafer, Matthias Meyer, Hern A. Burbano, Jeffrey M. Good, Rigo Schultz,
Ayinuer Aximu-Petri, Anne Butthof, Barbara Hober, Barbara Hoffner, Madlen Siegemund,
Antje Weihmann, Chad Nusbaum, Eric S. Lander, Carsten Russ, Nathaniel Novod, Jason
Affourtit, Michael Egholm, Christine Verna, Pavao Rudan, Dejana Brajkovic, Oeljko Kucan,
Ivan Guic, Vladimir B. Doronichev, Liubov V. Golovanova, Carles Lalueza-Fox, Marco de la
Rasilla, Javier Fortea, Antonio Rosas, Ralf W. Schmitz, Philip L. F. Johnson, Evan E.
Eichler, Daniel Falush, Ewan Birney, James C. Mullikin, Montgomery Slatkin, Rasmus
Nielsen, Janet Kelso, Michael Lachmann, David Reich, and Svante Paabo. A draft sequence
of the Neandertal genome. Science, 328(5979):710–722, 2010.

10 R. R. Hudson. Testing the constant-rate neutral allele model with protein sequence data.
Evolution, 37:203–217, 1983.

11 Richard R Hudson. Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18(2):337–338, 2002.

12 T. Jukes and C. Cantor. Evolution of protein molecules. In H.N. Munro, editor, Mammalian
Protein Metabolism, pages 21–132. Academic Press, NY, 1969.

13 Laura Kubatko and Julia Chifman. An invariants-based method for efficient identification
of hybrid species from large-scale genomic data. bioRxiv, page 034348, 2015.

14 J. Mallet. Hybridization as an invasion of the genome. TREE, 20(5):229–237, 2005.
15 J. Mallet. Hybrid speciation. Nature, 446:279–283, 2007.
16 J. Mallet, N. Besansky, and M.W. Hahn. How reticulated are species? BioEssays,

38(2):140–149, 2016.
17 P. Pamilo and M. Nei. Relationship between gene trees and species trees. Mol. Bio. Evol.,

5:568–583, 1998.
18 James B Pease and Matthew W Hahn. Detection and polarization of introgression in a

five-taxon phylogeny. Systematic biology, 64(4):651–662, 2015.
19 Fernando Racimo, Sriram Sankararaman, Rasmus Nielsen, and Emilia Huerta-Sánchez.

Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics, 16(6):359–
371, 2015.

20 Andrew Rambaut and Nicholas C Grass. Seq-gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in
the Biosciences, 13(3):235–238, 1997.

21 L. H. Rieseberg. Hybrid origins of plant species. Annual Review of Ecology and Systematics,
28:359–389, 1997.

22 Loren H Rieseberg, Olivier Raymond, David M Rosenthal, Zhao Lai, Kevin Livingstone,
Takuya Nakazato, Jennifer L Durphy, Andrea E Schwarzbach, Lisa A Donovan, and Chris-



R.A. L. Elworth, C. Allen, T. Benedict, P. Dulworth, and L. Nakhleh 19:13

tian Lexer. Major ecological transitions in wild sunflowers facilitated by hybridization.
Science, 301(5637):1211–1216, 2003.

23 Claudia Solís-Lemus and Cécile Ané. Inferring phylogenetic networks with maximum
pseudolikelihood under incomplete lineage sorting. PLoS Genet, 12(3):e1005896, 2016.

24 N. Takahata. Gene genealogy in three related populations: Consistency probability between
gene and population trees. Genetics, 122:957–966, 1989.

25 Dingqiao Wen and Luay Nakhleh. Co-estimating reticulate phylogenies and gene trees from
multi-locus sequence data. Systematic Biology, 67(3):439–457, 2018.

26 Dingqiao Wen, Yun Yu, Matthew W Hahn, and Luay Nakhleh. Reticulate evolutionary
history and extensive introgression in mosquito species revealed by phylogenetic network
analysis. Molecular Ecology, 25(11):2361–2372, 2016.

27 Dingqiao Wen, Yun Yu, and Luay Nakhleh. Bayesian inference of reticulate phylogenies
under the multispecies network coalescent. PLoS Genetics, 12(5):e1006006, 2016.

28 Y. Yu, J.H. Degnan, and L. Nakhleh. The probability of a gene tree topology within a phylo-
genetic network with applications to hybridization detection. PLoS Genetics, 8:e1002660,
2012.

29 Y. Yu and L. Nakhleh. A maximum pseudo-likelihood approach for phylogenetic networks.
BMC Genomics, 16:S10, 2015.

30 Yun Yu, James H Degnan, and Luay Nakhleh. The probability of a gene tree topology
within a phylogenetic network with applications to hybridization detection. PLoS Genet,
8(4):e1002660, 2012.

31 Yun Yu, Jianrong Dong, Kevin J Liu, and Luay Nakhleh. Maximum likelihood infer-
ence of reticulate evolutionary histories. Proceedings of the National Academy of Sciences,
111(46):16448–16453, 2014.

32 Chi Zhang, Huw A Ogilvie, Alexei J Drummond, and Tanja Stadler. Bayesian inference of
species networks from multilocus sequence data. Molecular biology and evolution, 35(2):504–
517, 2018.

33 Jiafan Zhu and Luay Nakhleh. Inference of species phylogenies from bi-allelic markers using
pseudo-likelihood. Bioinformatics, 2018. (to appear).

34 Jiafan Zhu, Dingqiao Wen, Yun Yu, Heidi M Meudt, and Luay Nakhleh. Bayesian inference
of phylogenetic networks from bi-allelic genetic markers. PLoS Computational Biology,
14(1):e1005932, 2018.

WABI 2018


	Introduction
	Methods
	The D-statistic
	Towards the General Case

	Results
	Simulations
	Multiple Reticulations
	D-Statistic Subsetting

	Analysis Of a Mosquito Genomic Data Set

	Discussion and Conclusions

