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Abstract
A key factor in computational drug design is the consistency and reliability with which inter-
molecular interactions between a wide variety of molecules can be described. Here we present a
procedure to efficiently, reliably and automatically assign partial atomic charges to atoms based
on known distributions. We formally introduce the molecular charge assignment problem, where
the task is to select a charge from a set of candidate charges for every atom of a given query
molecule. Charges are accompanied by a score that depends on their observed frequency in simi-
lar neighbourhoods (chemical environments) in a database of previously parameterised molecules.
The aim is to assign the charges such that the total charge equals a known target charge within
a margin of error while maximizing the sum of the charge scores. We show that the problem is a
variant of the well-studied multiple-choice knapsack problem and thus weakly NP-complete. We
propose solutions based on Integer Linear Programming and a pseudo-polynomial time Dynamic
Programming algorithm. We show that the results obtained for novel molecules not included in
the database are comparable to the ones obtained performing explicit charge calculations while
decreasing the time to determine partial charges for a molecule by several orders of magnitude,
that is, from hours or even days to below a second.

Our software is openly available at https://github.com/enitram/charge_assign.
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1 Introduction

Molecule-based computational modelling and simulation studies play a central role in modern
drug design and development. In particular, molecular dynamics (MD) simulations and
free energy calculations are increasingly being used to screen potential ligand molecules in
terms of their interactions with proposed target molecules (e.g. cell surface receptors or
enzymes involved in metabolism) [11, 18]. They are also used to model structural changes in
the target molecule associated with the binding of a given drug in order to understand the
mechanism of action. The accuracy and utility of such modelling studies depends directly
on the fidelity with which intermolecular interactions can be represented [1, 15]. While
ideally one might wish to represent such interactions on the level of quantum mechanics, the
size and complexity of protein/ligand complexes necessitates the use of classical dynamics
in conjunction with empirical potentials. These so-called force fields are parameterised to
reproduce the interactions between atoms in a system of interest (e.g. protein, membrane,
drug) and involve bonds, angles, dihedrals, van der Waals and coulombic interactions.

Of particular importance is the assignment of partial atomic charges to describe the latter
interactions. Partial atomic or point charges are used to represent the electrostatic potential
around a molecule and the coulombic interactions between these point charges dominate the
calculation of inter-molecular interactions. The difficulty is that the effective partial charge
on an atom needed to represent the electrostatic potential surrounding a molecule is heavily
dependent on the local environment in which an atom is found. For small molecules (< 40
atoms) partial atomic charges can be generally inferred de novo from quantum-mechanical
computations [19]. However, when using e.g. commonly applied Density Functional Theory
(DFT) such calculations scale cubic in the number of valence electrons [3], increasing the
computational costs significantly. In addition, as molecules become larger the accuracy with
which charges can be assigned decreases.

The standard approach to address this problem is to manually assign charges to atoms
based on their similarity to atoms (or groups) in a set of reference molecules containing
equivalent chemical moieties. The challenge in making such assignments is twofold: 1) the
charges assigned to equivalent chemical groups in alternative reference molecules may vary
making the choice of a reference molecule difficult and 2) the charges assigned to neighbouring
atoms must be consistent. In particular, the total charge on the molecule must be integer.
In the recent years, a number of machine learning approaches emerged that infer charges
based on a set of reference molecules [4, 13, 16]. However, these approaches often struggle to
deal with the ambiguity of similar groups that have different charges in different molecules
and the requirement that the overall charge must be integer.

http://dx.doi.org/10.4230/LIPIcs.WABI.2018.16
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In this paper, we consider the problem of – given a large set of reference molecules with
known charge distributions – how to efficiently, automatically and optimally assign partial
atomic charges which are consistent with both the neighbouring atoms and the total charge.
As a reference we have used molecules parameterised using the Automated Topology Builder
(ATB) and repository [15]. The ATB contains a large number of molecules (< 50 atoms) for
which partial charges have been assigned de novo. In previous work, we have contributed
to improving the reliability of this repository by ensuring the consistency and utility of the
partial charges assigned to atoms by identifying atoms that could be used to form charge
groups, which can be collectively assigned integer formal charges (. . . ,−1, 0, 1, . . .) [5]. We
have also developed methods to match molecular substructures, taking into account that the
partial charge of an atom is heavily dependent on its neighbours and the nature of its local
chemical environment [7]. This made it possible to study the distribution of charges within
local molecular environments for all molecules in the ATB (≈ 200,000 molecules; 7,800,000
atoms and 5,600,000 bonds) and to find, given a query molecule, all possible matching
fragments (sub-graphs).

Here we build on this previous work and our ability to match sub-fragments of a query
molecule against the available database, to consider how the information contained in already
parameterised molecules can be used best to infer the charges within a novel molecule. The
most direct approach would be to simply use the mean partial charge on individual atoms
identified as equivalent using a given similarity criterion. However, quantum mechanics
dictates that the total charge on a molecule must be integer. Simply attributing to each
atom the value of the mean partial charge from the known distribution fails as it results in
the accumulation of errors and a total charge deviating from the required value.

Instead, we have considered solutions to the molecular charge assignment problem, which
allow charges that deviate from the mean to be selected while their sum is constrained to
lie close to a target total charge. Among the possible set of solutions we prefer those that
maximize a score that depends on the observed frequencies of the chosen charges. We show
that the problem is similar to a multiple-choice knapsack problem (MCKP) [6, 14]. We
introduce ε-MCKP, a variant of the standard MCKP with an error margin ε. We provide an
Integer Linear Programming (ILP) formulation of ε-MCKP and adapt the MCKP pseudo-
polynomial Dynamic Programming (DP) algorithm to ε-MCKP. Finally, we demonstrate the
utility of the ε-MCKP approach for solving the charge assignment problem by comparing the
charges proposed based on this approach to those obtained directly using the ATB. We find
that the charges computed with our novel approach are comparable to the ones obtained
using explicit charge calculations while decreasing the time to determine partial charges for a
molecule by several orders of magnitude, that is, from hours or even days to below a second.

Our code is publicly available at https://github.com/enitram/charge_assign under
the Apache 2.0 open source license.

2 Assigning charges

We consider molecules as graphs. Let G = (V,E, t) be a molecular graph, where vertices
V correspond to atoms, edges E correspond to bonds and t : V → Σ colors vertices with
atom types. A straightforward alphabet of atom types Σ would be the chemical elements.
In this work, we used ATB-assigned GROMOS atom types which provide a more detailed
classification of some chemical elements (N, C, O, S) depending on their hybridization
(number of bonded nodes), and therefore provides a more detailed description of the local
environment.

WABI 2018
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Figure 1 Given a query molecule, our method assigns atomic partial charges based on matching
isomorphic subgraphs (red) with a known partial charge distribution collected from the ATB database
of parameterised molecules.

The partial charge of an atom is heavily dependent on its bonded neighbours and the
nature of its local environment. Formally, we define the k-neighbourhood as:

I Definition 1 (k-neighbourhood). Let N(v) = {u | (u, v) ∈ E} be the neighbourhood of an
atom v. We define the k-neighbourhood recursively as Nk(v) = Nk−1(v) ∪

⋃
u∈Nk−1(v) N(u),

with N0(v) = v.

Informally, the k-neighbourhood of an atom v is the set of all atoms for which a path of
length ≤ k to v exists. Let G[Nk(v)] be the subgraph induced by the k-neighbourhood of v.

To collect all possible partial charge values, we consider all k-neighbourhoods in the set
of previously parameterised molecules. For this we iterate over all atoms v of all molecular
graphs in the ATB and construct a list of subgraphs G[Nk(v)] with associated partial charges
of the corresponding atom v. We construct a database with an entry for each isomorphism
class in the subgraph list. For each isomorphism class we collect the partial charges of its
subgraphs and condense the values to a histogram. Since the point charges assigned by the
ATB are rounded to three digits after the decimal point, we round the partial charge values
accordingly.

Given a query molecule with a known target total charge, the challenge is to assign
the most representative partial charge to each atom while staying close to the target total
charge (Fig. 1). For that purpose, we iterate over all atoms of the query molecular graph
and generate the subgraphs G[Nk(v)]. We match each subgraph to its isomorphism class in
our database of k-neighbourhood subgraphs. If there is no match, we iteratively retry with
G[Nk−1(v)] until k = 0. Now each atom in our query molecule has a histogram of possible
partial charges. The task is now to assign the charges such that we maximize the frequencies
of the assigned charges while the sum of assigned partial charges equals the target charge
with some error margin.

3 Problem Formulation and Complexity

We map each atom i to a set of items j with weights wi,j corresponding to partial charges and
profits pi,j corresponding to their frequency-based scores. The target total charge corresponds
to capacity c. Note that the charge assignment problem is now similar to a multiple-choice
knapsack problem (MCKP). The decision version of MCKP is defined as:



M.S. Engler, B. Caron, L. Veen, D. P. Geerke, A. E. Mark, and G.W. Klau 16:5

I Problem 1 (MCKP). Given a decision variable K ≥ 0, capacity c ≥ 0, m sets N1, . . . , Nm

of items j ∈ Ni with profit pi,j ≥ 0 and weight wi,j ≥ 0, select exactly one item from each set,
such that the sum of weights of the selected items does not exceed c and the sum of profits of
the selected items is equal or larger than K.

MCKP is known to be weakly NP-complete [6, 9, 14]. However, although the problem of
assigning charges is similar to MCKP, there are two differences. First, weights and capacity
can be negative numbers. Second, the sum of weights of selected items must hit the capacity
with some error margin, resulting in an upper and lower capacity limit. We define a variant
of MCKP, which is equivalent to the charge assignment problem as:

I Problem 2 (ε-MCKP). Given a decision variable K ≥ 0, capacity −∞ ≤ c ≤ ∞, error
ε ≥ 0, m sets N1, . . . , Nm of items j ∈ Ni with profit pi,j ≥ 0 and weight −∞ ≤ wi,j ≤ ∞,
select exactly one item from each set, such that the sum of weights of the selected items is in
the range [c− ε, c+ ε] and the sum of profits of the selected items is equal or larger than K.

I Theorem 2. ε-MCKP is weakly NP-complete.

Proof. Showing that ε-MCKP is in NP is straightforward. Given an instance of ε-MCKP
and a candidate solution Ŝ, we can easily check in polynomial time whether c − ε ≤∑

wi,j∈Ŝ wi,j ≤ c+ ε and
∑

pi,j∈Ŝ pi,j ≥ K as well as if Ŝ contains exactly one item from each
set N1, . . . , Nm. We show that ε-MCKP is weakly NP-hard as follows: We reduce MCKP
≤p ε-MCKP. Given an instance of the standard MCKP with capacity c, we transform it to
an ε-MCKP instance with capacity c′ = 1

2c and ε = 1
2c. Then, c′ − ε = 0 and c′ + ε = c,

making both instances equivalent. J

Both problems obviously can be transformed into optimization problems by omitting the
decision variable K and maximizing the sum of profits. The definition of ε-MCKP allows us
to solve the charge assignment problem.

4 Solving ε-MCKP

In this section we present two algorithmic strategies to solve ε-MCKP: the first is based on
an integer linear programming (ILP) formulation, which can be solved by general ILP solvers,
while the second is a purely combinatorial dynamic programming (DP) algorithm.

Formulating ε-MCKP as an ILP is straightforward. Let xi,j be a binary variable with
value 1 if and only if item j in set Ni is selected. We formulate the problem as:

max
m∑

i=1

∑
j∈Ni

xi,jpi,j (1a)

subject to
m∑

i=1

∑
j∈Ni

xi,jwi,j ≥ c− ε (1b)

m∑
i=1

∑
j∈Ni

xi,jwi,j ≤ c+ ε (1c)

∑
j∈Ni

xi,j = 1 for 1 ≤ i ≤ m (1d)

xi,j ∈ {0, 1} for 1 ≤ i ≤ m, j ∈ Ni (1e)

The second algorithm is an adaption of the pseudo-polynomial DP of the standard MCKP
to ε-MCKP. The standard MCKP assumes numbers to be non-negative integers. If a given

WABI 2018
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ε-MCKP instance does not comply with the non-negativity and integrality constraints, we
transform the instance as follows:

First, we convert floating point weights wi,j , capacity c and error ε to integers by
multiplying with an appropriate factor. Since point charges in this work are rounded to
three digits after the decimal point, a factor of 103 is sufficient. Second, we transform the
weights wi,j and capacity c to non-negative numbers. For every set Nj with j = 1, . . . ,m,
we determine the minimum weight w∗i = minj∈Ni

wi,j . We define the new weights as
w̃i,j = wi,j − w∗i . Then, the weights are guaranteed to be non-negative. As we have to select
one item per set, we can define the new capacity as c̃ = c−

∑m
i=1 w

∗
i .

Therefore, we assume in the following (without loss of generality) that weights wi,j ,
capacity c and error ε are non-negative integers. Let P be a two-dimensional DP-table of
size m× (c+ ε). P [k, d] holds the maximum profit that we can achieve with sets 0 to k and
a sum of weights of exactly d:

P [k, d] = max


k∑

i=0

∑
j∈Ni

xi,jpi,j :
k∑

i=0

∑
j∈Ni

xi,jwi,j = d,
∑

j∈Nk

xi,j = 1 for all 0 ≤ i ≤ k

 (2)

We compute P recursively. Let P [k, d] be defined as:

P [k, d] = max
{
P [k − 1, d− wk,j ] + pk,j for j ∈ Ni and d− wk,j ≥ 0
−∞

(3)

P [k, d] is calculated by considering all items of the current set Nk and computing the
maximum profit that can be achieved when adding those profits to possible previous solutions
with k− 1 sets and sum of weights d−wk,j . The profit is −∞ if there is no possible solution
for P [k, d]. Contrary to the standard MCKP DP we initialize P as:

P [0, d] =
{

0 if d = 0
−∞ otherwise

(4)

This ensures that only solutions in which the sum of selected weights equals exactly d
are possible. We find the maximum profit p∗ by:

p∗ = max {P [m, d] : max{c− ε, 0} ≤ d ≤ c+ ε} (5)

The DP can be easily implemented using one dimension, as the recursion only looks
back one step in the dimension k (the number of sets we currently consider). The space
requirement of the DP algorithm is O(c+ ε). The running time complexity is O(n(c+ ε)),
with n being the total number of items.

5 Score

We modeled the charge assignment problem as ε-MCKP, where atoms i are sets of items j
with weight wi,j corresponding to partial charges and profits pi,j corresponding to their scores.
In this section we propose a frequency-based score for the ε-MCKP profit maximization.

Figure 2 shows the distribution of charges over all 3-neighbourhood graphs in a snapshot of
the ATB of roughly 160,000 molecules centered at the sample mean of each 3-neighbourhood
graph. At a first glance, it may seem to be normally distributed, but the Q-Q-plot on the
right hand side of Figure 2 reveals that the distribution is heavy-tailed. Therefore, using
measures that assume normally distributed data such as the z-score is not advisable. We also
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Figure 2 Distribution of charges over all 3-neighbourhood graphs centered at the sample mean
of each 3-neighbourhood graph (left) and Q-Q-plot with the quantiles of the charge distribution over
all 3-neighbourhood graphs on the y-axis and the quantiles of a fitted normal distribution on the
x-axis.

refrain from simply using the logarithm of the frequencies as our score, since the deviation of
the sample mean of the observed charges should also be taken into account. Additionally,
the logarithm will result in negative profits.

We propose a simple score using squared distances. Let fi,j be the observed frequency of
partial charge wi,j and µ̂i the sample mean of all observed charges of atom i. We define the
score pi,j as

pi,j = fi,j

1 + (wi,j − µ̂i)2 . (6)

The score reflects both the observed frequency of a partial charge and its distance to the
observed mean of all partial charges of an atom. If the charge equals the mean wi,j = µ̂i,
then the score equals its observed frequency pi,j = fi,j . The larger the distance of a charge
to the mean is, the smaller the score will be. This serves as a tie-breaker, such that if two
charges have the same observed frequency and are within the capacity limits, ε-MCKP will
prefer the charge closer to the observed mean.

6 Results and Discussion

To evaluate our method, we conducted a leave-one-out-analysis using a snapshot of the ATB
database containing roughly 160,000 molecules. We focus on this set of previously computed
molecules, since the computational effort of large-scale quantum-mechanical calculations is
significant. We created a database of k-neighbourhood subgraphs associated with partial
charge histograms with variable bin widths and a fixed k = 3. Bin widths were determined
according to the Friedman-Diaconis rule [8]. Then, we temporarily removed all charge values
associated with its 3-neighbourhood subgraphs for each molecule and computed the atomic
partial charges using the new, smaller histogram database. We compared the assigned values
to the original atomic partial charges in the ATB database.

All computations were performed on a compute cluster with 16 3.2 GHz Xeon CPUs and
512GB RAM. The ILP was solved using COIN-OR [17]. We recorded the running times
of the ILP and DP algorithm, see Fig. 3. As expected, the running time of the DP scales

WABI 2018
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Figure 3 Running times of the ILP solved with COIN-OR and the DP dependent on the number
of items n, showing that the DP is significantly faster than the ILP (left). The running time of the
DP actually depends on the number of items times the scaled capacity 103 · n · (c̃+ ε) (right).

linearly with 103 · n · (c̃+ ε), where n is the number of items, 103 is the blowup factor and c̃
is the capacity c transformed to non-negativity with c̃ = c−

∑m
i=1 w

∗
i and w∗i = minj∈Ni

wi,j .
The running times of the ILP show more variation and a marginal positive correlation to the
number of items n, which equals the number of variables in the ILP. The DP was always
significantly faster than the ILP in the leave-one-out-evaluation.

In the leave-one-out evaluation, we compared the naive approach of estimating the atomic
partial charges by simply taking the mean and our method of solving an ε-MCKP instance,
see Fig. 4. As expected, while the naive method on average is able to find charges with a
slightly lower distance to the original partial charges, it often results in a total charge far
away from the target total charge (with errors more than 1e in many cases). Our method on
the other hand is able to assign charge values which are only slightly worse than the ones
computed by the naive method while achieving a total charge close to the target total charge.
As can be seen in Fig. 4 the deviation of the total charge from the target charge using the
ε-MCKP approach is so small it is barely visible on the scale used.

As an example of the charges assigned by our method, Fig. 5 shows the two molecules
with the atomic partial charges that are on average closest to and farthest from the original
ATB charges. The computed charges for the molecule with the closest distance fit well to
the original ATB charges. ε-MCKP assigns identical charges to atoms H1, H2 and H3. The
3-neighbourhood graphs of all three atoms have the same isomorphism class. This is an
advantage of our ε-MCKP approach, since quantum-mechanical de novo charge assignment
does not guarantee that similar charges are assigned to equivalent atoms (although in this
case the ATB charges are also identical). For the molecule with the farthest distance there
are some large distances of more than 1e. However, we observe that the large distances are
caused by the original ATB charges being on the outer edges of the charge distributions,
while ε-MCKP on the other hand picks charges close to the largest mode of the distribution,
see bottom side of Fig. 5. Note that Fig. 5 shows the distributions used in the leave-one-out
evaluation without the original ATB charges of the depicted molecule. Additionally, the
charge distributions of atoms with large charge distances have been computed with a low
number of observed charges, resulting in multimodal distributions with several large peaks.
We expect this effect to disappear when more data is available in the constantly growing
ATB repository.
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Figure 4 Results of the leave-one-out experiment with k = 3 showing mean distances in elementary
charge units (left) and violin plots of all distances (right) of original charges found in the ATB to
charges calculated by selecting the mean and solving ε-MCKP. The distances are categorized by
chemical elements. For ε-MCKP, the computed total charges are virtually the same as the target
total charges from the ATB, resulting in mean distances of almost zero.

Fig. 6 shows the chemical structure of a more complex example (ATB ID 25338). For
this molecule, the de novo electrostatic-potential based charge assignment using quantum-
mechanical computations required ∼ 140 days using on one core while solving our ε-MCKP
approach was finished in ∼ 0.12 (ILP) and ∼ 0.06 (DP) seconds.

Most of the outer atoms – especially the hydrogens – showed a narrow unimodal dis-
tribution of ATB charges and ε-MCKP picked charges close to the original ATB charge.
The more buried atoms showed a higher variability. For some atoms, we observed a similar
behavior as in Fig. 5, that ε-MCKP selects a charge closer to the distribution mean than
the original ATB charge was. However, for several atoms we observed the limit of our
data-driven approach. If only a few charge values are available for a certain k-neighbourhood,
then the distributions are multimodal with very similar or equal peak heights, reflecting
the variability of the quantum-mechanically derived charges. Then, ε-MCKP may freely
choose between co-optimal solutions. On the other hand, if only exactly one charge value
is available, ε-MCKP has to choose this value. While the probability of this occurring will
decrease with the addition of more data, in this case (with the current dataset) it would be
advisable to use a smaller k. With choosing an appropriate k, the user may balance the
specificity of large k-neighbourhoods against the robustness of small k-neighbourhoods.

In general, charges on the outer atoms of a molecule can be assigned quite well while
charges of the inner atoms deviate more from the ATB charges. This may be explained
by the higher variability of the inner atoms in the ATB dataset, an artifact of the de novo
electrostatic-potential based charge assignment [2].

7 Conclusions

The ability to accurately calculate the electrostatic interactions between a ligand and its
receptor is a key component of computer-aided drug development. In this paper, we have
investigated the problem of automatically assigning partial charges. The charge assignment
problem is similar to the multiple-choice knapsack problem. We introduced a variant tailored

WABI 2018
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N-(5-Methyl-1,2-oxazol-3-yl)-2-thiophenesulfonamide
Charge distribution
ATB charge
-MCKP charge

C
H
N
O
S

-MCKP: -0.537
  ATB: -0.54

C1

-MCKP: 0.52
  ATB: 0.521

C2

-MCKP: -0.132
  ATB: -0.13

O1
-MCKP: -0.511

  ATB: -0.514

N1

-MCKP: 0.807
  ATB: 0.799

C3
-MCKP: -0.724

  ATB: -0.707

N2

-MCKP: 0.887
  ATB: 0.877

S1

-MCKP: -0.473
  ATB: -0.47

O2

-MCKP: -0.473
  ATB: -0.47

O3

-MCKP: -0.2
  ATB: -0.222

C4 -MCKP: 0.04
  ATB: 0.046

C5

-MCKP: -0.224
  ATB: -0.217

C6

-MCKP: -0.159
  ATB: -0.158

C7

-MCKP: 0.076
  ATB: 0.092

S2

-MCKP: -0.661
  ATB: -0.674

C8

-MCKP: 0.181
  ATB: 0.18

H1

-MCKP: 0.181
  ATB: 0.18

H2

-MCKP: 0.181
  ATB: 0.18

H3

-MCKP: 0.4
  ATB: 0.422

H4

-MCKP: 0.139
  ATB: 0.134

H5

-MCKP: 0.189
  ATB: 0.167

H6

-MCKP: 0.219
  ATB: 0.221

H7

-MCKP: 0.273
  ATB: 0.283

H8

5-Fluoro-2-(1H-1,2,4-triazol-1-ylmethyl)benzonitrile
Charge distribution
ATB charge
-MCKP charge

C
H
N
OTHER

-MCKP: -0.539
  ATB: -0.554

N4

-MCKP: 0.441
  ATB: 0.587

C10

-MCKP: -0.083
  ATB: -0.481

C8

-MCKP: 0.366
  ATB: 1.074

C4

-MCKP: -0.66
  ATB: -2.0

C5

-MCKP: -0.154
  ATB: -0.787

C3

-MCKP: -0.289
  ATB: 0.039

C2

-MCKP: 0.343
  ATB: 0.199

C1

-MCKP: -0.192
  ATB: -0.179

F1

-MCKP: -0.237
  ATB: -0.098

C9

-MCKP: 0.617
  ATB: 1.243

N1

-MCKP: 0.145
  ATB: -0.022

C6-MCKP: -0.486
  ATB: -0.478

N2

-MCKP: -0.697
  ATB: -0.636

C7
-MCKP: -0.543

  ATB: -0.569

N3

-MCKP: 0.172
  ATB: 0.462

H1

-MCKP: 0.172
  ATB: 0.462

H2

-MCKP: 0.129
  ATB: 0.396

H3

-MCKP: 0.188
  ATB: 0.128

H4

-MCKP: 0.194
  ATB: 0.165

H5
-MCKP: 0.112

  ATB: 0.049

H6

Figure 5 Best (top) and worst (bottom) molecules in the leave-one-out evaluation ranked by
average distance of the original ATB charges to the charges computed by ε-MCKP. Atoms (nodes)
are color-coded by their chemical element (red for oxygen, blue for nitrogen, black for carbon, yellow
for sulfur and grey for hydrogen). Atoms are overlayed with the kernel-density estimate of the
histograms of the leave-one-out charges of their respective 3-neighbourhoods. The original ATB
charge and the computed charges are shown by blue and red vertical lines in the histograms.

to the charge assignment problem, the ε-multiple-choice knapsack problem (ε-MCKP). Like
most knapsack problems, ε-MCKP is weakly NP-complete. We presented two algorithmic
solutions to ε-MCKP, an integer linear programming (ILP) formulation and a dynamic
programming (DP) algorithm.

We conducted a leave-one-out evaluation on a snapshot of the ATB database. The
computed atomic partial charges were close to the original ATB charges and the total
charge virtually the same as the target total charge, suggesting that our method provides
consistent parameters for MD simulations, docking studies and other related applications.
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Figure 6 The chemical structure of ATB ID 25338 containing 120 atoms. Note that aliphatic
hydrogens are not shown.

One additional advantage of our approach is that equivalent nodes in the graph will be
assigned similar charges and the charge distribution will therefore mirror the symmetry of
the molecular graph.

The DP algorithm performed faster than the ILP on a set of 160,000 molecules contained
within the ATB. On average, both implementations required only a fraction of a second to
assign charges to molecules containing 50-100 atoms, while quantum-mechanical computations
required many days. This is important when screening large molecular databases. For instance,
ChEMBL [10], a manually curated chemical database of bioactive molecules with drug-like
properties, contains in excess of 1.6 million compounds. The majority of these have more than
50 atoms making quantum-mechanical computations difficult. Other computational drug
design databases are larger again [20]. For example, ZINC, a free database of commercially-
available compounds, contains more than 35 million compounds [12].

Our method builds on a repository of previously computed molecular parameters and
assigns consistent partial atomic charges in a swift manner to facilitate MD simulations and
related applications in drug design.
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