
Minimum Segmentation for Pan-genomic
Founder Reconstruction in Linear Time
Tuukka Norri
Department of Computer Science, University of Helsinki, Helsinki, Finland
tuukka.norri@helsinki.fi

https://orcid.org/0000-0002-8276-0585

Bastien Cazaux
Department of Computer Science, University of Helsinki, Helsinki, Finland
bastien.cazaux@helsinki.fi

https://orcid.org/0000-0002-1761-4354

Dmitry Kosolobov
Department of Computer Science, University of Helsinki, Helsinki, Finland
dkosolobov@mail.ru

https://orcid.org/0000-0002-2909-2952

Veli Mäkinen
Department of Computer Science, University of Helsinki, Helsinki, Finland
veli.makinen@helsinki.fi

https://orcid.org/0000-0003-4454-1493

Abstract
Given a threshold L and a set R = {R1, . . . , Rm} of m strings (haplotype sequences), each
having length n, the minimum segmentation problem for founder reconstruction is to partition
[1, n] into set P of disjoint segments such that each segment [a, b] ∈ P has length at least L
and the number d(a, b) = |{Ri[a, b] : 1 ≤ i ≤ m}| of distinct substrings at segment [a, b] is
minimized over [a, b] ∈ P . The distinct substrings in the segments represent founder blocks that
can be concatenated to form max{d(a, b) : [a, b] ∈ P} founder sequences representing the original
R such that crossovers happen only at segment boundaries. We give an optimal O(mn) time
algorithm to solve the problem, improving over earlier O(mn2). This improvement enables to
exploit the algorithm on a pan-genomic setting of input strings being aligned haplotype sequences
of complete human chromosomes, with a goal of finding a representative set of references that
can be indexed for read alignment and variant calling. We implemented the new algorithm and
give some experimental evidence on the practicality of the approach on this pan-genomic setting.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Applied computing → Bioinformatics

Keywords and phrases Pan-genome indexing, founder reconstruction, dynamic programming,
positional Burrows–Wheeler transform, range minimum query

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.15

Funding This work is partially supported by the Academy of Finland (grant 309048).

1 Introduction

A key problem in pan-genomics is to develop a sufficiently small, efficiently queriable, but
still descriptive representation of the variation common to the subject under study [1]. For
example, when studying human population, one would like to take all publicly available

© Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160150504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tuukka.norri@helsinki.fi
https://orcid.org/0000-0002-8276-0585
mailto:bastien.cazaux@helsinki.fi
https://orcid.org/0000-0002-1761-4354
mailto:dkosolobov@mail.ru
https://orcid.org/0000-0002-2909-2952
mailto:veli.makinen@helsinki.fi
https://orcid.org/0000-0003-4454-1493
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

variation datasets (e.g. [19, 4, 20]) into account. Many approaches encode the variation as
a graph [16, 9, 18, 2, 10, 8] and then one can encode the different haplotypes as paths in
this graph [13, 17]. An alternative was proposed in [22], based on a compressed indexing
scheme for a multiple alignment of all the haplotypes [11, 14, 23, 5, 7]. In either approach,
scalability is hampered by the encoding of all the haplotypes.

We suggest to look for a smaller set of representative haplotype sequences to make the
above pan-genomic representations scalable.

Finding such set of representative haplotype sequences that retain the original contiguities
as well as possible, is known as the founder sequence reconstruction problem [21]. In this
problem, one seeks a set of d founders such that the original m haplotypes can be mapped
with minimum amount of crossovers to the founders. Here a crossover means a position
where one needs to jump from one founder to another to continue matching the content of
the haplotype in question. Unfortunately, this problem in NP-hard even to approximate
within a constant factor [15].

For founder reconstruction to be scalable to the pan-genomic setting, one would need an
algorithm to be nearly linear to the input size. With this is mind, we study a relaxation of
founder reconstruction that is known to be polynomial time solvable: Namely, when limiting
all the crossovers to happen at the same locations, one obtains a minimum segmentation
problem specific to founder reconstruction [21]. A dynamic programming algorithm given
in [21] has complexity O(n2m), where m is the number of haplotypes and n is the length of
each of them.

In this paper, we improve the running time of solving the minimum segmentation problem
of founder reconstruction to the optimal O(mn) (linear in the input size).

We also implement the new algorithm, as well as a further heuristic that aims to minimize
crossovers over the segment boundaries (yielded by the optimal solution to the minimum
segmentation problem). In our experiments, we show that the approach is practical on
human genome scale setting. Namely, we apply the implementation on a multiple alignment
representing 5009 haplotypes of human chromosome 6, and the result is 130 founder sequences
with the average distance of two crossovers being 9358 bases. Preserving such long contiguities
in just 2.5% of the original input space is promising for the accuracy and scalability of the
short read alignment and variant calling motivating our study.

The main technique behind the improvement is the use of positional Burrows–Wheeler
transform (pBWT) [3], and more specifically its extension to larger alphabets [12]. While
the original dynamic programming solution uses O(nm) time to look for the best preceding
segment boundary for each column of the input, we observe that at most m values in
pBWT determine segment boundaries where the number of distinct founder substrings
change. Minimums on the already computed dynamic programming values between each
such interesting consecutive segment boundaries give the requested result. However, it turns
out that we can maintain the minimums directly in pBWT internal structures (with some
modifications) and have to store only the last L computed dynamic programming values,
thus spending only O(m+ L) additional space, where L is the input threshold on the length
of each segment. The segmentation is then reconstructed by standard backtracking approach
in O(n) time using an array of length n.

2 Notation and Problem Statement

For a string s = c1c2 · · · cn, denote by |s| its length n. We write s[i] for the letter ci of s
and s[i, j] for the substring cici+1 · · · cj . An analogous notation is used for arrays. For any
numbers i and j, the set of integers {x ∈ Z : i ≤ x ≤ j} (possibly empty) is denoted by [i, j].

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:3

The input for our problem is the set R = {R1, . . . , Rm} of strings of length n, called
recombinants. A set F = {F1, . . . , Fd} of strings of length n is called a founder set of R if for
each string Ri ∈ R, there exists a partition Pi of the segment [1, n] into disjoint subsegments
such that, for each [a, b] ∈ Pi, the string Ri[a, b] is equal to Fj [a, b] for some j ∈ [1, d]. The
partition Pi together with the mapping of the segments [a, b] ∈ Pi to substrings Fj [a, b] is
called a parse of Ri in terms of F , and a set of parses for all Ri ∈ R is called a parse of R
in terms of F . The integers a and b+ 1, for [a, b] ∈ Pi, are called crossover points; thus, in
particular, 1 and n+ 1 are always crossover points.

It follows from the definition that, in practice, it makes sense to consider founder sets
only for pre-aligned recombinants. Throughout the paper we implicitly assume that this
is the case, although all our algorithms, clearly, work in the unaligned setting too but the
produce results may hardly make any sense.

We consider the problem of finding a “good” founder set F and a “good” corresponding
parse of R according to a reasonable measure of goodness. Ukkonen [21] pointed out that
such measures may contradict each other: for instance, a minimum founder set obviously
has size d = maxj∈[1,n] |{R1[j], . . . , Rm[j]}|, but parses corresponding to such set may have
unnaturally many crossover points; conversely, R is a founder set of itself and the only
crossover points of its trivial parse are 1 and n + 1, but the size m of this founder set is
in most cases unacceptably large. Following Ukkonen’s approach, we consider compromise
parameterized solutions. The minimum founder set problem is, given a bound L and a set of
recombinants R, to find a smallest founder set F of R such that there exists a parse of R in
terms of F in which the distance between any two crossover points is at least L (the crossover
points may belong to parses of different recombinants, i.e., for [a, b] ∈ Pi and [a′, b′] ∈ Pj ,
where Pi and Pj are parses of Ri and Rj , we have either a = a′ or |a− a′| ≥ L).

It is convenient to reformulate the problem in terms of segmentations of R. A segment of
R = {R1, . . . , Rm} is a set R[j, k] = {Ri[j, k] : Ri ∈ R}. A segmentation of R is a collection
S of disjoint segments that covers the whole R, i.e., for any distinct R[j, k] and R[j′, k′]
from S, [j, k] and [j′, k′] do not intersect and, for each x ∈ [1, n], there is R[j, k] from S

such that x ∈ [j, k]. The minimum segmentation problem [21] is, given a bound L and a set
of recombinants R, to find a segmentation S of R such that max{|R[j, k]| : R[j, k] ∈ S} is
minimized and the length of each segment from S is at least L; in other words, the problem
is to compute

min
S∈SL

max{|R[j, k]| : R[j, k] ∈ S}, (1)

where SL is the set of all segmentations in which all segments have length at least L.
The minimum founder set problem and the minimum segmentation problem are, in a sense,

equivalent: any segmentation S with segments of length at least L induces in an obvious way
a founder set of size max{|R[j, k]| : R[j, k] ∈ S} and a parse in which all crossover points
are located at segment boundaries (and, hence, at distance at least L from each other);
conversely, if F is a founder set of R and {j1, . . . , jp} is the sorted set of all crossover points
in a parse of R such that jq− jq−1 ≥ L for q ∈ [2, p], then S = {R[jq−1, jq−1] : q ∈ [2, p]} is a
segmentation of R with segments of length at least L and max{|R[j, k]| : R[j, k] ∈ S} ≤ |F|.

Our main result is an algorithm that solves the minimum segmentation problem in the
optimal O(mn) time. The solution normally does not uniquely define a founder set ofR: for in-
stance, if the built segmentation ofR = {baaaa, baaab, babab} is S = {R[1, 1],R[2, 3],R[4, 5]},
then the possible founder sets induced by S are F1 = {baaab, babaa} and F2 = {baaaa, babab}.
In other words, to construct a founder set, one concatenates fragments of recombinants
corresponding to the found segments in a certain order. We return to this ordering problem
in Sect. 4 and now focus on the details of the segmentation problem.

WABI 2018

15:4 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

Hereafter, we assume that the input alphabet Σ is the set [0, |Σ|−1] of size O(m), which
is a natural assumption considering that the typical alphabet size is 4 in our problem. It
is sometimes convenient to view the set R = {R1, . . . , Rm} as a matrix with m rows and n
columns. We say that an algorithm processing the recombinants R is streaming if it reads
the input from left to right “columnwise”, for each k from 1 to n, and outputs an answer
for each set of recombinants {R1[1, k], . . . , Rm[1, k]} immediately after reading the “column”
{R1[k], . . . , Rm[k]}. The main result of the paper is the following theorem.

I Theorem 1. Given a bound L and recombinants R = {R1, . . . , Rm}, each having length
n, there is an algorithm that computes (1) in a streaming fashion in the optimal O(mn) time
and O(m+ L) space. Using an additional array of length n, one can also find in O(n) time
a segmentation on which (1) is attained, thus solving the minimum segmentation problem.

3 Minimum Segmentation Problem

Given a bound L and a set of recombinants R = {R1, . . . , Rm} each of which has length n,
Ukkonen [21] proposed a dynamic programming algorithm that solves the minimum segment-
ation problem in O(mn2) time based on the following recurrence relation:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

0≤j≤k−L
max{M(j), |R[j + 1, k]|} if k ≥ 2L.

(2)

It is obvious that M(n) is equal to the solution (1); the segmentation itself can be recon-
structed by “backtracking” in a standard way (see [21]). We build on the same approach.

For a given k ∈ [1, n], denote by jk,1, . . . , jk,rk
the sequence of all positions j ∈ [1, k − L]

in which the value of |R[j, k]| changes, i.e., 1 ≤ jk,1 < · · · < jk,rk
≤ k − L and |R[jk,h, k]| 6=

|R[jk,h+1, k]| for h ∈ [1, rk]. We complement this sequence with jk,0 = 0 and jk,rk+1 = k−L+
1, so that jk,0, . . . , jk,rk+1 can be interpreted as a splitting of the range [0, k−L] into segments
in which the value |R[j + 1, k]| stays the same: namely, for h ∈ [0, rk], one has |R[j + 1, k]| =
|R[jk,h+1, k]| provided jk,h ≤ j < jk,h+1. Hence, min

jk,h≤j<jk,h+1
max{M(j), |R[j + 1, k]|} =

max{|R[jk,h+1, k]|, min
jk,h≤j<jk,h+1

M(j)} and, therefore, (2) can be rewritten as follows:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

0≤h≤rk

max{|R[jk,h+1, k]|, min
jk,h≤j<jk,h+1

M(j)} if k ≥ 2L.
(3)

Our crucial observation is that, for k ∈ [1, n] and j ∈ [1, k], one has |R[j + 1, k]| ≤
|R[j, k]| ≤ m. Therefore, m ≥ |R[jk,1, k]| > · · · > |R[jk,rk+1, k]| ≥ 1 and rk < m. Hence,
M(k) can be computed in O(m) time using (3), provided one has the following components:
(i) the numbers |R[jk,h+1, k]|, for h ∈ [0, rk];
(ii) the values min{M(j) : jk,h ≤ j < jk,h+1}, for h ∈ [0, rk].

In the remaining part of the section, we describe a streaming algorithm that reads the strings
{R1, . . . , Rm} “columnwise” from left to right and computes the components (i) and (ii)
immediately after reading each “column” {R1[k], . . . , Rm[k]}, for k ∈ [1, n], and all in O(mn)
total time and O(m+ L) space.

To reconstruct a segmentation corresponding to the found solution M(n), we build along
with the values M(k) an array of size n whose kth element, for each k ∈ [1, n], stores 0 if
M(k) = |R[1, k]|, and stores a number j ∈ [1, k−L] such thatM(k) = max{M(j), |R[j+1, k]|}

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:5

R1 = tttccat

R2 = accatta

R3 = actacct

R4 = actccat

R5 = cttacct

R6 = atcacat

i 1 2 3 4 5 6

ak[i] 2 6 4 1 3 5
dk[i] 8 8 5 3 7 3

i 1 2 3 4 5 6 7

|R[i, k]| 6 6 4 4 3 3 2 ak[6] = 5
ak[5] = 3
ak[4] = 1
ak[3] = 4
ak[2] = 6
ak[1] = 2

c t

a c t a c c

t t t c c a t

a c

a t c a

a c c a t t a

Figure 1 The pBWT for a set of recombinantsR = {R1, . . . , R6} with k = 7 and the corresponding
trie containing the reversed strings R1[1, k], . . . , R6[1, k] in lexicographic order.

otherwise; then, the segmentation can be reconstructed from the array in an obvious way in
O(n) time. In order to maintain the array, our algorithm computes, for each k ∈ [1, n], along
with the values min{M(j) : jk,h ≤ j < jk,h+1}, for h ∈ [0, rk], positions j on which these
minima are attained (see below). Further details are straightforward and, thence, omitted.

3.1 Positional Burrows–Wheeler Transform
Let us fix k ∈ [1, n]. Throughout this subsection, the string Ri[k]Ri[k − 1] · · ·Ri[1], which
is the reversal of Ri[1, k], is denoted by R′i,k, for i ∈ [1,m]. Given a set of recombinants
R = {R1, . . . , Rm} each of which has length n, a positional Burrows–Wheeler transform
(pBWT), as defined by Durbin [3], is a pair of integer arrays ak[1,m] and dk[1,m] such that:
1. ak[1,m] is a permutation of [1,m] such that R′ak[1],k ≤ · · · ≤ R

′
ak[m],k lexicographically;

2. dk[i], for i ∈ [1,m], is an integer such that Rak[i][dk[i], k] is the longest common suffix of
Rak[i][1, k] and Rak[i−1][1, k], and dk[i] = k + 1 if either this suffix is empty or i = 1.

I Example 2. Consider the following example, where m = 6, k = 7, and Σ = {a, c, t}. It is
easy to see that the pBWT implicitly encodes the trie depicted in the right part of Figure 1,
and such interpretation drives the intuition behind this structure: The trie represents the
reversed sequences R1[1, k], . . . , R6[1, k] (i.e., read from right to left) in lexicographic order.
Leaves (values ak) store the corresponding input indices. The branches correspond to values
dk (the distance from the root subtracted from k + 1). Our main algorithm in this paper
makes implicitly a sweep-line over the trie stopping at the branching positions.

Durbin [3] showed that ak and dk can be computed from ak−1 and dk−1 in O(m) time
on the binary alphabet. Mäkinen and Norri [12] further generalized the construction for
integer alphabets of size O(m), as in our case. For the sake of completeness, we describe in
this subsection the solution from [12] (see Figure 2a), which serves then as a basis for our
main algorithm. We also present a modification of this solution (see Figure 2b), which, albeit
seems to be slightly inferior in theory (we could prove only O(m log |Σ|) time upper bound),
showed better performance in practice and thus, as we believe, is interesting by itself.

I Lemma 3. The arrays ak[1,m] and dk[1,m] can be computed from ak−1[1,m] and
dk−1[1,m] in O(m) time, assuming the input alphabet is [0, |Σ|−1] with |Σ| = O(m).

Proof. Given ak−1 and dk−1, we are to show that the algorithm from Figure 2a correctly
computes ak and dk. Since, for any i, j ∈ [1,m], we have R′i,k ≤ R′j,k iff either Ri[k] < Rj [k],
or Ri[k] = Rj [k] and R′i,k−1 ≤ R′j,k−1 lexicographically, it is easy to see that the array ak can
be deduced from ak−1 by radix sorting the sequence of pairs {(Rak−1[i][k], R′ak−1[i],k−1)}m

i=1.
Further, since, by definition of ak−1, the second components of the pairs are already in a
sorted order, it remains to sort the first components by the counting sort. Accordingly, in

WABI 2018

15:6 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

zero initialize C[0, |Σ|] and P [0, |Σ| − 1]
for i← 1 to m do

C[Ri[k] + 1]← C[Ri[k] + 1] + 1;
for i← 1 to |Σ|−1 do C[i]← C[i] + C[i−1];
for i← 1 to m do

b← Rak−1[i][k];
C[b]← C[b] + 1;
ak[C[b]]← ak−1[i];
if P [b] = 0 then dk[C[b]]← k + 1;
else dk[C[b]]← max{dk−1[`] : P [b]<`≤i};
P [b]← i;

(a) The basic pBWT algorithm computing
ak and dk from ak−1 and dk−1.

zero initialize C[0, |Σ|] and P [0, |Σ| − 1]
for i← 1 to m do

C[Ri[k] + 1]← C[Ri[k] + 1] + 1;
for i← 1 to |Σ| − 1 do C[i]← C[i] + C[i− 1];
for i← 1 to m do

b← Rak−1[i][k];
C[b]← C[b] + 1;
ak[C[b]]← ak−1[i];
ak−1[i]← i + 1; . erase ak−1[i]
if P [b] = 0 then dk[C[b]]← k + 1;
else dk[C[b]]← maxd(P [b] + 1, i);
P [b]← i;

function maxd(j, i)
if j 6= i then

dk−1[j]←max{dk−1[j], maxd(ak−1[j], i)};
ak−1[j]← i + 1;

return dk−1[j];

(b) The algorithm with simple RMQ; ak−1 and dk−1
are used as auxiliary arrays (and corrupted).

Figure 2 The computation of ak and dk from ak−1 and dk−1 in the pBWT.

Figure 2a, the first loop counts occurrences of letters in the sequence {Ri[k]}m
i=1 using an

auxiliary array C[0, |Σ|]; as is standard in the counting sort, the second loop modifies the
array C so that, for each letter b ∈ [0, |Σ|−1], C[b] + 1 is the first index of the “bucket”
that will contain all ak−1[i] such that Rak−1[i][k] = b; finally, the third loop fills the buckets
incrementing the indices C[b]← C[b] + 1, for b = Rak−1[i][k], and performing the assignments
ak[C[b]]← ak−1[i], for i = 1, . . . ,m. Thus, the array ak is computed correctly. All is done in
O(m+ |Σ|) time, which is O(m) since the input alphabet is [0, |Σ|−1] and |Σ| = O(m).

The last three lines of the algorithm are responsible for computing dk. Denote the length of
the longest common prefix of any strings s1 and s2 by LCP(s1, s2). The computation of dk relies
on the following well-known fact: given a sequence of strings s1, . . . , sr such that s1 ≤ · · · ≤ sr

lexicographically, one has LCP(s1, sr) = min{LCP(si−1, si) : 1 < i ≤ r}. Suppose that the last
loop of the algorithm, which iterates through all i from 1 to m, assigns ak[i′]← ak−1[i], for
a given i ∈ [1,m] and some i′ = C[b]. Let j be the maximum integer such that j < i and
Rak−1[j][k] = Rak−1[i][k] (if any). The definition of ak implies that ak[i′−1] = ak−1[j] if such j
exists. Hence, LCP(R′ak[i′−1],k, R

′
ak[i′],k) = 1 + min{LCP(R′ak−1[`−1],k−1, R

′
ak−1[`],k−1) : j<`≤i}

if such number j does exist, and LCP(R′ak[i′−1],k, R
′
ak[i′],k) = 0 otherwise. Therefore, since

dk[i′] equals k+1−LCP(R′ak[i′],k, R
′
ak[i′−1],k), we have either dk[i′] = max{dk−1[`] : j < ` ≤ i}

or dk[i′] = k+ 1 according to whether the required j exists. To find j, we simply maintain an
auxiliary array P [0, |Σ|−1] such that on the ith loop iteration, for any letter b ∈ [0, |Σ|−1], P [b]
stores the position of the last seen b in the sequence Rak−1[1][k], Rak−1[2][k], . . . , Rak−1[i−1][k],
or P [b] = 0 if b occurs for the first time. Thus, dk is computed correctly.

In order to calculate the maximums max{dk−1[`] : P [b] ≤ ` ≤ i} in O(1) time, we build a
range maximum query (RMQ) data structure on the array dk−1[1,m] in O(m) time (e.g.,
see [6]). Therefore, the running time of the algorithm from Figure 2a is O(m). J

In practice the bottleneck of the algorithm is the RMQ data structure, which, although
answers queries in O(1) time, has a sensible constant under the big-O in the construction
time. We could naively compute the maximums by scanning the ranges dk−1[P [b]+1, i] from

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:7

left to right but such algorithm works in quadratic time since same ranges of dk−1 might be
processed many times in the worst case. Our key idea is to store the work done by a simple
scanning algorithm to reuse it in future queries. We store this information right in the arrays
ak−1 and dk−1 rewriting them; in particular, since ak−1 is accessed sequentially from left to
right in the last loop, the range ak−1[1, i] is free to use after the ith iteration.

More precisely, after the ith iteration of the last loop, the subarrays ak−1[1, i] and dk−1[1, i]
are modified so that the following invariant holds: for any j ∈ [1, i], j < ak−1[j] ≤ i + 1
and dk−1[j] = max{d′k−1[`] : j ≤ ` < ak−1[j]}, where d′k−1 denotes the original array dk−1
before modifications; note that the invariant holds if one simply puts ak−1[j] = j + 1 without
altering dk−1[j]. Then, to compute max{d′k−1[`] : j ≤ ` ≤ i}, we do not have to scan all
elements but can “jump” through the chain j, ak−1[j], ak−1[ak−1[j]], . . . , i and use maximums
precomputed in dk−1[j], dk−1[ak−1[j]], dk−1[ak−1[ak−1[j]]], . . . , dk−1[i]; after this, we redirect
the “jump pointers” in ak−1 to i+ 1 and update the maximums in dk−1 accordingly. This
idea is implemented in Figure 2b. Notice the new line ak−1[i]← i+ 1 in the main loop (it is
commented), which erases ak−1[i] and makes it a part of the “jump table”. The correctness of
the algorithm is clear. But it is not immediate even that the algorithm works in O(m logm)
time. The next lemma states that the bound is actually even better, O(m log |Σ|). The proof
of the lemma is given in Appendix.

I Lemma 4. The algorithm from Figure 2b computes the arrays ak[1,m] and dk[1,m] from
ak−1[1,m] and dk−1[1,m] in O(m log |Σ|) time, assuming the input alphabet is [0, |Σ|−1] with
|Σ| = O(m).

3.2 Modification of the pBWT
We are to modify the basic pBWT construction algorithm in order to compute the sequence
jk,1, . . . , jk,rk

of all positions j ∈ [1, k − L] in which |R[j, k]| 6= |R[j + 1, k]|, and to calculate
the numbers |R[jk,h+1, k]| and min{M(j) : jk,h ≤ j < jk,h+1}, for h ∈ [0, rk] (assuming
jk,0 = 0 and jk,rk+1 = k − L+ 1); see the beginning of the section. As it follows from (3),
these numbers are sufficient to calculate M(k), as defined in (2) and (3), in O(m) time. The
following lemma reveals relations between the sequence jk,1, . . . , jk,rk

and the array dk.

I Lemma 5. Consider recombinants R = {R1, . . . , Rm}, each having length n. For k ∈ [1, n]
and j ∈ [1, k − 1], one has |R[j, k]| 6= |R[j + 1, k]| iff j = dk[i]− 1 for some i ∈ [1,m].

Proof. Suppose that |R[j, k]| 6= |R[j + 1, k]|. It is easy to see that |R[j, k]| > |R[j + 1, k]|,
which implies that there are two indices h and h′ such that Rh[j + 1, k] = Rh′ [j + 1, k]
and Rh[j] 6= Rh′ [j]. Denote by a−1

k [h] the number x such that ak[x] = h. Without loss of
generality, assume that a−1

k [h] < a−1
k [h′]. Then, there exists i ∈ [a−1

k [h] + 1, a−1
k [h′]] such

that Rak[i−1][j + 1, k] = Rak[i][j + 1, k] and Rak[i−1][j] 6= Rak[i][j]. Hence, dk[i] = j + 1.
Suppose now that j ∈ [1, k − 1] and j = dk[i]− 1, for some i ∈ [1,m]. Since j < k and

dk[1] = k+ 1, we have i > 1. Then, by definition of dk, Rak[i−1][j+ 1, k] = Rak[i][j+ 1, k] and
Rak[i−1][j] 6= Rak[i][j], i.e., Rak[i][j + 1, k] can be “extended” to the left in two different ways,
thus producing two distinct strings in the set R[j, k]. Therefore, |R[j, k]| > |R[j + 1, k]|. J

Denote by r the number of distinct integers in the array dk. Clearly, r may vary from 1
to m. For integer `, define M ′(`) = M(`) if 1 ≤ ` ≤ k − L, and M ′(`) = +∞ otherwise (M ′
is introduced for purely technical reasons). Our modified algorithm does not store dk but
stores the following four arrays (but we still often refer to dk for the sake of analysis):

sk[1, r] contains all distinct elements from dk[1,m] in the increasing sorted order;
ek[1,m]: for j ∈ [1, r], ek[j] is equal to the unique index such that sk[ek[j]] = dk[j];

WABI 2018

15:8 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

tk[1, r]: for j ∈ [1, r], tk[j] is equal to the number of times sk[j] occurs in dk[1,m];
uk[1, r]: for j ∈ [1, r], uk[j] = min{M ′(`) : sk[j−1]−1 ≤ ` < sk[j]−1}, assuming sk[0] = 1.

I Example 6. In Example 2, where m = 6, k = 7, and Σ = {a, c, t}, we have r = 4,
sk = [3, 5, 7, 8], tk = [2, 1, 1, 2], ek = [4, 4, 2, 1, 3, 1]. It is easy to see that the array sk marks
positions of the branching nodes in the trie from Figure 1 in the increasing order (in the
special case sk[1] = 1, sk[1] does not mark any such node). The arrays sk and ek together
emulate dk. The array tk will be used below to calculate some numbers |R[j, k]| required
to compute M(k). Further, suppose that L = 3, so that k − L = 4. Then, uk[1] = M(1),
uk[2] = min{M(2),M(3)}, uk[3] = min{M(4),M ′(5)} = M(4) since M ′(5) = +∞, and
uk[4] = M ′(6) = +∞. The use of uk is discussed in the sequel.

For convenience, let us recall Equation (3) defined in the beginning of this section:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

0≤h≤rk

max{|R[jk,h+1, k]|, min
jk,h≤j<jk,h+1

M(j)} if k ≥ 2L,
(3 revisited)

where jk,0 = 0, jk,rk+1 = k−L+1, and jk,1, . . . , jk,rk
is the increasing sequence of all positions

j ∈ [1, k−L] in which |R[j, k]| 6= |R[j+ 1, k]|. In order to compute M(k), one has to find the
minima min

jk,h≤j<jk,h+1
M(j) and calculate |R[jk,h+1, k]|. As it follows from Lemma 5 and the

definition of sk, all positions j ∈ [1, k− 1] in which |R[j, k]| 6= |R[j + 1, k]| are represented by
the numbers sk[i]− 1 such that 1 < sk[i] ≤ k (in the increasing order); hence, the sequence
jk,1, . . . , jk,rk

corresponds to either sk[1]− 1, . . . , sk[rk]− 1 or sk[2]− 1, . . . , sk[rk + 1]− 1,
depending on whether sk[1] 6= 1. Then, the minima min

jk,h≤j<jk,h+1
M(j) are stored in the

corresponding elements of uk (assuming sk[0] = 1): uk[i] = min{M ′(`) : sk[i−1]−1 ≤ ` <

sk[i]−1} = min{M(`) : sk[i−1]−1 ≤ ` < min{sk[i]−1, k − L + 1}} = min
jk,h≤j<jk,h+1

M(j),

provided sk[i − 1] − 1 = jk,h. It is clear that uk[i] 6= +∞ only if the segment [sk[i − 1] −
1, sk[i]−2] intersects the range [1, k−L] and, thus, corresponds to a segment [jk,h, jk,h+1−1],
for h ∈ [0, rk]. Therefore, since M ′(`) = +∞ for ` < 1 and ` > k − L and, thus, such values
M ′(`) do not affect, in a sense, the minima stored in uk, one can rewrite (3) as follows:

M(k) =

+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,
min

1≤j≤|uk|
max{|R[sk[j]− 1, k]|, uk[j]} if k ≥ 2L.

(4)

It remains to compute the numbers |R[sk[j]− 1, k]|, for j ∈ [1, |sk|].

I Lemma 7. Consider a set of recombinants R = {R1, . . . , Rm}, each of which has length n.
For k ∈ [1, n] and j ∈ [1, |sk|], one has |R[sk[j]− 1, k]| = tk[j] + tk[j + 1] + · · ·+ tk[|tk|].

Proof. Denote ` = k−sk[j]+1, so that R[sk[j]−1, k] = R[k−`, k]. Suppose that ` = 0. Note
that Rak[1][k] ≤ · · · ≤ Rak[m][k]. Since dk[i] = k + 1 iff either i = 1 or Rak[i−1][k] 6= Rak[i][k],
it is easy to see that |R[k, k]|, the number of distinct letters Ri[k], is equal to the number of
time k + 1 = sk[|sk|] occurs in dk, i.e., tk[|tk|].

Suppose that ` > 0. It suffices to show that |R[k − `, k]| − |R[k − `+ 1, k]| = tk[j]. For
i ∈ [1,m], denote by R′i the string Ri[k]Ri[k− 1] · · ·Ri[k− `]. Fix w ∈ R[k− `+ 1, k]. Since
R′ak[1] ≤ · · · ≤ R

′
ak[m] lexicographically, there are numbers h and h′ such that Rak[i][k − `+

1, k] = w iff i ∈ [h, h′]. Further, we have Rak[h][k− `] ≤ Rak[h+1][k− `] ≤ · · · ≤ Rak[h′][k− `].

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:9

Algorithm 1 Computing ek, sk, tk, uk, ak from ek−1, sk−1, tk−1, uk−1, ak−1.
1: copy sk−1 into sk and add the element k + 1 to the end of sk, thus incrementing |sk|;
2: copy uk−1 into uk and add the element M ′(k − 1) to the end of uk, thus incrementing |uk|;
3: zero initialize C[0, |Σ|], P [0, |Σ| − 1], and tk[1, |sk|];
4: for i← 1 to m do C[Ri[k] + 1]← C[Ri[k] + 1] + 1;
5: for i← 1 to |Σ| − 1 do C[i]← C[i] + C[i− 1];
6: for i← 1 to m do
7: b← Rak−1[i][k];
8: C[b]← C[b] + 1;
9: ak[C[b]]← ak−1[i];

10: if P [b] = 0 then ek[C[b]]← |sk|;
11: else ek[C[b]]← max{ek−1[`] : P [b] < ` ≤ i}
12: P [b]← i;
13: for i← 1 to m do tk[ek[i]]← tk[ek[i]] + 1;
14: j ← 1;
15: add a new “dummy” element +∞ to the end of uk and uk−1;
16: for i← 1 to |sk| do
17: uk[j]← min{uk[j], uk−1[i]};
18: if tk[i] 6= 0 then
19: tmp[i]← j;
20: sk[j]← sk[i], tk[j]← tk[i], uk[j + 1]← uk−1[i + 1];
21: if sk[j]−1 > k−L and (j = 1 or sk[j−1]−1 ≤ k−L) then uk[j]← min{uk[j], M(k−L)};
22: j ← j + 1;
23: shrink sk, tk, and uk to j − 1 elements, so that |sk| = |tk| = |uk| = j − 1;
24: for i← 1 to m do ek[i]← tmp[ek[i]];

Thus, by definition of dk, for i ∈ [h + 1, h′], we have Rak[i−1][k − `] 6= Rak[i][k − `] iff
dk[i] = k − ` + 1 = sk[j]. Note that dk[h] > sk[j]. Therefore, the number of strings
Ri[k − `, k] from R[k − `, k] having suffix w is equal to one plus the number of integers sk[j]
in the range dk[h, h′], which implies |R[k − `, k]| − |R[k − `+ 1, k]| = tk[j]. J

By (4) and Lemma 7, one can calculate M(k) in O(m) time using the arrays tk and uk.
It remains to describe how we maintain ak, ek, sk, tk, uk.

I Lemma 8. The arrays ak, ek, sk, tk, uk can be computed from ak−1, ek−1, sk−1, tk−1, uk−1
and from the numbers M(k − L) and M(k − 1) in O(m) time, assuming the input alphabet
is [0, |Σ|−1] with |Σ| = O(m).

Proof. Let us analyze Algorithm 1 that computes ak, ek, sk, tk, uk. By definition, dk−1[i] =
sk−1[ek−1[i]] for i ∈ [1,m]. The first line of the algorithm initializes sk so that dk−1[i] =
sk[ek−1[i]], for i ∈ [1,m], and sk[|sk|] = k+1. Since after this initialization sk, obviously, is in
the sorted order, one has, for i, j ∈ [1,m], ek−1[i] ≤ ek−1[j] iff dk−1[i] ≤ dk−1[j] and, therefore,
for ` ∈ [i, j], one has dk−1[`] = max{dk−1[`′] : i ≤ `′ ≤ j} iff ek−1[`] = max{ek−1[`′] : i ≤ `′ ≤
j}. Based on this observation, we fill ek in lines 3–12 so that dk[i] = sk[ek[i]], for i ∈ [1,m],
using exactly the same algorithm as in Figure 2a, where dk is computed, but instead of the
assignment dk[C[b]] ← k + 1, we have ek[C[b]] ← |sk| since sk[|sk|] = k + 1. Here we also
compute ak in the same way as in Figure 2a.

The loop in line 13 fills tk so that, for i ∈ [1, |sk|], tk[i] is the number of occurrences of the
integer i in ek (tk was zero initialized in line 3). Since, for i ∈ [1,m], we have dk[i] = sk[ek[i]]
at this point, tk[i] is also the number of occurrences of the integer sk[i] in dk[1,m].

WABI 2018

15:10 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

By definition, sk must contain only elements from dk, but this is not necessarily the
case in line 14. In order to fix sk and tk, we simply have to remove all elements sk[i] for
which tk[i] = 0, moving all remaining elements of sk and non-zero elements of tk to the left
accordingly. Suppose that, for some h and i, we have ek[h] = i and the number sk[i] is moved
to sk[j], for some j < i, as we fix sk. Then, ek[h] must become j. We utilize an additional
temporary array tmp[1, |sk|] to fix ek. The loop in lines 16–22 fixes sk and tk in an obvious
way; once sk[i] is moved to sk[j] during this process, we assign tmp[i] = j. Then, sk, tk, uk

(uk is discussed below) are resized in line 23, and the loop in line 24 fixes ek using tmp.
Recall that [sk[j − 1] − 1, sk[j] − 2], for j ∈ [1, |sk|], is a system of disjoint segments

covering [0, k−1] (assuming sk[0] = 1). It is now easy to see that this system is obtained from
the system [sk−1[j−1]−1, sk−1[j]−2], with j ∈ [1, |sk−1|] (assuming sk−1[0] = 1), by adding
the new segment [k − 1, k − 1] and joining some segments together. The second line of the
algorithm copies uk−1 into uk and adds M ′(k−1) to the end of uk, so that, for j ∈ [1, |uk−1|],
uk[j] is equal to the minimum of M ′(`) for all ` from the segment [sk−1[j−1]−1, sk−1[j]−2]
and uk[|uk−1|+1] = M ′(k − 1) is the minimum in the segment [k − 1, k − 1]. (This is not
completely correct since M ′ has changed as k was increased; namely, M ′(k−L) was equal to
+∞ but now is equal to M(k−L).) As we join segments removing some elements from sk in
the loop 16–22, the array uk must be fixed accordingly: if [sk[j−1]−1, sk[j]−2] is obtained by
joining [sk−1[h−1]−1, sk−1[h]−2], for j′ ≤ h ≤ j′′, then uk[j] = min{uk−1[h] : j′ ≤ h ≤ j′′}.
We perform such fixes in line 17, accumulating the latter minimum. We start accumulating
a new minimum in line 20, assigning uk[j + 1] ← uk−1[i + 1]. If at this point the ready
minimum accumulated in uk[j] corresponds to a segment containing the position k − L,
we have to fix uk taking into account the new value M ′(k − L) = M(k − L); we do this
in line 21. To avoid accessing out of range elements in uk and uk−1 in line 20, we add a
“dummy” element in, respectively, uk and uk−1 in line 15. J

Besides all the arrays of length m, the algorithm from Lemma 8 also requires access to
M(k − L) and, possibly, to M(k − 1). During the computation of M(k) for k ∈ [1, n], we
maintain the last L calculated numbers M(k− 1),M(k− 2), . . . ,M(k−L) in a circular array,
so that the overall required space is O(m+ L); when k is incremented, the array is modified
in O(1) time in an obvious way. Thus, Lemma 8 implies Theorem 1

If, as in our case, one does not need sk, tk, uk for all k, the arrays sk, tk, uk can be
modified in-place, i.e., sk, tk, uk can be considered as aliases for sk−1, tk−1, uk−1, and yet
the algorithm remains correct. Thus, we really need only 7 arrays in total: ak, ak−1, ek,
ek−1, s, t, u, where s, t, u serve as sk, tk, uk and the array tmp can be organized in place of
ak−1 or ek−1. It is easy to maintain along with each value uk[j] a corresponding position `
such that uk[j] = M ′(`); these positions can be used then to restore the found segmentation
of R using backtracking (see the beginning of the section). To compute ek, instead of using
an RMQ data structure, one can adapt in an obvious way the algorithm from Figure 2b
rewriting the arrays ak−1 and ek−1 during the computation, which is faster in practice but
theoretically takes O(m log σ) time by Lemma 4. We do not discuss further details as they
are straightforward.

4 Implementation

We implemented the segmentation algorithm using Lemma 4 to build the data structures,
and thus the overall time complexity of the implemented approach is O(mn log σ). The
implementation outputs for each segment the distinct founder sequence fragments, and
associates to each fragment the set of haplotypes containing that fragment as a substring

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:11

at that location (these are easily deduced given the segmentation and the positional BWT
structures). As discussed earlier, to obtain full founder sequences, one needs to concatenate
these fragments in some order. If each segment has exactly the same amount of fragments,
there is a way of finding an optimal concatenation minimizing the number of crossovers
[21]: For any two consecutive segments, form a bipartite graph with fragments as nodes
and edges corresponding to plausible concatenations. The cost of an edge is the symmetric
difference of the sets associated with the fragments. Minimum cost perfect matching then
gives an optimal concatenation order. Each consecutive pair can be solved independently, and
founder sequences can be extracted through the paths formed by matches edges. However,
not all segments may contain the maximum amount of distinct fragments; we conjecture
the ordering problem becomes hard in this case (due to the local matchings being no longer
independent). There are many possible heuristic ways to alleviate this issue, among which we
opted to preprocess the segments to have the same amount of fragments; we duplicated the
fragments greedily according to the sizes of the associated sets. Then we used the matching
approach described above. In the upcoming extended version of this paper, we plan to study
an alternative approach that provides an approximation guarantee.

To test the implementation of our algorithm, we generated a multiple alignment of
haplotype sequences from chromosome 6 variants from the phase 3 data of the 1000 Genomes
Project [19]. This resulted in 5009 haplotype sequences of equal length (including the
reference sequence) of approximately 171 million characters. We then discarded columns of
identical characters, which reduced each sequence to approximately 5.38 million characters.
We used an increasing number of these sequences as an input to our tool to verify its usability.
The tests were run on a Ubuntu Linux 16.04 server. The server had 96 Intel Xeon E7-4830 v3
CPUs running at 2.10GHz and 1.4 TB of memory. Results on varying input sizes are shown
in Fig. 3a. From this experiment it is conceivable that processing of thousands of complete
human genomes takes only few CPU days. Figure 3b plots the number of founders against
the number of segments. These look very promising, as using 130 founders instead of 5009
haplotypes as the input to pan-genome indexing of [22] will result into significant saving of
resources; this solves the space bottleneck, and the preprocessing of founder reconstruction
also saves time in the heavy indexing steps. The average segment length of some 1926 bases
(171 million divided by 88778 segments) is also likely to be high enough not to break too
badly the contiguity required for successful read alignment. To better see the contiguity
of the resulting founder set, we mapped the haplotypes to the founders minimizing the
number of jumps (simple greedy algorithm is optimal [15]). The result is shown in Fig. 3c.
Since identical columns do not cause any jumps, we can now divide 171 million with 18274
jumps. This gives average distance between two jumps being 9358 bases. The heuristic part
of optimizing the concatenation of founder blocks yields almost 5-fold improvement in the
contiguity, compared to the worst case of each segment boundary yielding a discontinuity for
each input sequence (which should be close to what a random concatenation order would
produce).

Our intention was to compare our tool to an implementation of Ukkonen’s algorithm [15].
However, initial testing with four input sequences showed that the latter implementation is
not practical with a data set of this size.

Our implementation is open source and available at the URL https://github.com/
tsnorri/founder-sequences.

WABI 2018

https://github.com/tsnorri/founder-sequences
https://github.com/tsnorri/founder-sequences

15:12 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

●

●

●

●

●

●

●

●

(a) The running time of our implementation
plotted against the number of input sequences
with L = 10. The data points have been fitted
with a least-squares linear model, and the grey
band shows the 95% confidence interval.

●

●

●

●

●

●

●

●

●

(b) The founder and segment counts as pro-
duced by our implementation plotted against
the number of input sequences with L = 10.

●

●

●

●

●

●

●

●

●

(c) The average and median numbers of jumps,
i.e. counts of positions where one needs to
change from one founder sequence to another to
read an original sequence, plotted against the
number of input sequences with L = 10.

Figure 3 Evaluation of founder reconstruction on a pan-genomic setting.

5 Discussion

With 5009 haplotypes reducing down to 130 founders with the average distance of two
crossovers being 9358 bases, one can expect short read alignment and variant calling to
become practical on such pan-genomic setting. We are investigating this on our tool PanVC
[22], where one can simply replace its input multiple alignment with the one made of the
founder sequences. With graph-based approaches, slightly more effort is required: Input
variations are encoded with respect to the reference, so one first needs to convert variants
into a multiple alignment, apply the founder reconstruction algorithm, and finally convert

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:13

the multiple alignment of founder sequences into a directed acyclic graph. PanVC toolbox
provides the required conversions. Alternatively, one can construct the pan-genome graph
using other methods, and map the founder sequences afterwards to the paths of the graph:
If original haplotype sequences are already spelled as paths, each founder sequence is a
concatenation of existing subpaths, and can hence be mapped to a continuous path without
alignment (possibly requiring adding a few missing edges).

Finally, it will be interesting to see how much the contiguity of the founder sequences
can still be improved with different strategies for the concatenation order and with different
formulations of the segmentation problem. For the former, we are investigating an approach
with approximation guarantee. For the latter, we consider a variant with the number of
founder sequenced fixed.

References
1 Computational Pan-Genomics Consortium et al. Computational pan-genomics: status,

promises and challenges. Briefings in Bioinformatics, page bbw089, 2016.
2 Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nelson, and Gil McVean. Im-

proved genome inference in the MHC using a population reference graph. Nature Genetics,
47:682–688, 2015.

3 Richard Durbin. Efficient haplotype matching and storage using the positional Burrows-
Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

4 Exome Aggregation Consortium. Analysis of protein-coding genetic variation in 60,706
humans. Nature, 536(7616):285–291, 2016.

5 Héctor Ferrada, Travis Gagie, Tommi Hirvola, and Simon J. Puglisi. Hybrid indexes for
repetitive datasets. Philosophical Transactions of the Royal Society A, 372, 2014.

6 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In CPM 2006, volume 4009 of LNCS, pages
36–48. Springer, 2006. doi:10.1007/11780441_5.

7 Travis Gagie and Simon J. Puglisi. Searching and indexing genomic databases via kernel-
ization. Frontiers in Bioengineering and Biotechnology, 3(12), 2015.

8 Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T
Dawson, William Jones, Michael F Lin, Benedict Paten, and Richard Durbin. Sequence vari-
ation aware genome references and read mapping with the variation graph toolkit. bioRxiv,
2017. doi:10.1101/234856.

9 Lin Huang, Victoria Popic, and Serafim Batzoglou. Short read alignment with populations
of genomes. Bioinformatics, 29(13):361–370, 2013.

10 Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal. A natural encoding of
genetic variation in a Burrows-Wheeler transform to enable mapping and genome inference.
In Algorithms in Bioinformatics - 16th International Workshop, WABI 2016, Aarhus, Den-
mark, August 22-24, 2016. Proceedings, volume 9838 of Lecture Notes in Computer Science,
pages 222–233. Springer, 2016.

11 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308,
2010.

12 Veli Mäkinen and Tuukka Norri. Applying the positional Burrows–Wheeler transform to
all-pairs hamming distance. Submitted manuscript, 2018.

13 Tom O Mokveld, Jasper Linthorst, Zaid Al-Ars, and Marcel Reinders. Chop: Haplotype-
aware path indexing in population graphs. bioRxiv, 2018. doi:10.1101/305268.

14 Gonzalo Navarro. Indexing highly repetitive collections. In Proc. 23rd International Work-
shop on Combinatorial Algorithms (IWOCA), LNCS 7643, pages 274–279, 2012.

WABI 2018

http://dx.doi.org/10.1007/11780441_5
http://dx.doi.org/10.1101/234856
http://dx.doi.org/10.1101/305268

15:14 Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

15 Pasi Rastas and Esko Ukkonen. Haplotype inference via hierarchical genotype parsing. In
Algorithms in Bioinformatics, 7th International Workshop, WABI 2007, Philadelphia, PA,
USA, September 8-9, 2007, Proceedings, pages 85–97, 2007.

16 Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman Warthmann, Sandra
Gesing, Oliver Kohlbacher, and Detlef Weigel. Simultaneous alignment of short reads
against multiple genomes. Genome Biology, 10:R98, 2009.

17 Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict Paten, and Richard Durbin.
Haplotype-aware graph indexes. arXiv preprint arXiv:1805.03834, 2018.

18 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, 2014.

19 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526(7571):68–74, sep 2015.

20 The UK10K Consortium. The UK10K project identifies rare variants in health and disease.
Nature, 526(7571):82–90, 2015.

21 Esko Ukkonen. Finding founder sequences from a set of recombinants. In Algorithms
in Bioinformatics, Second International Workshop, WABI 2002, Rome, Italy, September
17-21, 2002, Proceedings, pages 277–286, 2002.

22 Daniel Valenzuela, Tuukka Norri, Välimäki Niko, Esa Pitkänen, and Veli Mäkinen. Towards
pan-genome read alignment to improve variation calling. BMC Genomics, 19(Suppl 2):87,
2018. doi:10.1186/s12864-018-4465-8.

23 Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser. Rcsi: Scalable similarity
search in thousand(s) of genomes. PVLDB, 6(13):1534–1545, 2013.

http://dx.doi.org/10.1186/s12864-018-4465-8

T. Norri, B. Cazaux, D. Kosolobov, and V. Mäkinen 15:15

A Proof of Lemma 4

Proof. Fix i ∈ [1,m]. The ith iteration of the last loop in the algorithm computes the
maximum in a range d′k−1[i′, i], where d′k−1 is the original array dk−1 before modifications
and i′ = P [b] + 1 for some b and P . Let `i = i − i′. Denote ˜̀ = 1

m

∑m
i=1 `i, the “average

query length”. We are to prove that the running time of the algorithm is O(m log ˜̀), which
implies the result since m˜̀=

∑m
i=1 `i and, obviously,

∑m
i=1 `i ≤ σm.

We say that a position j is touched if the function maxd is called with its first argument
equal to j. Clearly, it suffices to prove that the total number of touches is O(m log ˜̀).
While processing the query maxd(i−`i, i), we may have touched many positions. Denote the
sequence of all such position, for the given i, by i1, . . . , ir; in other words, at the time of the
query maxd(i−`i, i), we have i1 = i− `i, ij = ak−1[ij−1] for j ∈ [2, r], and ir = i. Obviously,
i1 < · · · < ir. We say that, for j ∈ [1, r−1], the touch of ij in the query maxd(i−`i, i) is
scaling if there exists an integer r such that i− ij > 2r and i− ij+1 ≤ 2r (see Figure 4). We
count separately the total number of scaling and non-scaling touches in all i.

`i

i−2r i−2r−1 i−2r−2. . .

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

Figure 4 RMQ query on a range [i− `i, i]; scaling touches are red.

For position j, denote by p(j) the number of non-scaling touches of j. We are to prove that
P =

∑m
j=1 p(j) ≤ 2m log ˜̀. Let qh(j) denote the value of ak−1[j]− j in the hth non-scaling

touch of j, for h ∈ [1, p(j)]. Suppose that this hth touch happens during the processing of a
query maxd(i−`i, i). By the definition, j+qh(j) follows j in the sequence of touched positions.
Since the touch of j is non-scaling, we have i−j > j+qh(j) > 2r, where r is the largest integer
such that i− j > 2r, and hence, qh(j) < 2r. Since maxd(i− `i, i) assigns ak−1[j]← i+ 1, we
have ak−1[j]− j > i− j > 2r after the query. In other words, we had ak−1[j]− j = qh(j) < 2r

before the query and have ak−1[j]−j > 2r after. This immediately implies that qh(j) ≥ 2h−1,
for h ∈ [1, p(j)], and, therefore, every position can be touched in the non-scaling way at most
O(logm) times, implying P = O(m logm). But we can deduce a stronger bound. Since the
sum of all values j − ak−1[j] for all positions j touched in a query maxd(i − `i, i) is equal
to `i, it is obvious that

∑m
j=1

∑p(j)
h=1 qh(j) ≤

∑m
i=1 `i = m˜̀. On the other hand, we have∑m

j=1
∑p(j)

h=1 qh(j) ≥
∑m

j=1
∑p(j)

h=1 2h−1 =
∑m

j=1 2p(j) −m. The well-known property of the
convexity of the exponent is that the sum

∑m
j=1 2p(j) is minimized whenever all p(j) are

equal and maximal, i.e.,
∑m

j=1 2p(j) ≥
∑m

j=1 2P/m. Hence, once P > 2m log ˜̀, we obtain∑m
j=1

∑p(j)
h=1 qh(j) ≥

∑m
j=1 2P/m −m > m˜̀2 −m, which is larger than m˜̀ for ˜̀≥ 2 (the case

˜̀< 2 is trivial), contradicting
∑m

j=1
∑p(j)

h=1 qh(j) ≤ m˜̀. Thus, P =
∑m

j=1 p(j) ≤ 2m log ˜̀.
It remains to consider scaling touches. The definition implies that each query maxd(i−`i, i)

performs at most log `i scaling touches. Thus, it suffices to upperbound
∑m

i=1 log `i. Since
the function log is concave, the sum

∑m
i=1 log `i is maximized whenever all `i are equal and

maximal, i.e.,
∑m

i=1 log `i ≤
∑m

i=1 log(1
m

∑m
j=1 `j) = m log ˜̀, hence the result follows. J

WABI 2018

	Introduction
	Notation and Problem Statement
	Minimum Segmentation Problem
	Positional Burrows–Wheeler Transform
	Modification of the pBWT

	Implementation
	Discussion
	Proof of Lemma 4

