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Abstract
Hidden Markov models of haplotype inheritance such as the Li and Stephens model allow for
computationally tractable probability calculations using the forward algorithms as long as the
representative reference panel used in the model is sufficiently small. Specifically, the monoploid
Li and Stephens model and its variants are linear in reference panel size unless heuristic approx-
imations are used. However, sequencing projects numbering in the thousands to hundreds of
thousands of individuals are underway, and others numbering in the millions are anticipated.

To make the Li and Stephens forward algorithm for these datasets computationally tractable,
we have created a numerically exact version of the algorithm with observed average case O(nk0.35)
runtime in number of genetic sites n and reference panel size k. This avoids any tradeoff between
runtime and model complexity. We demonstrate that our approach also provides a succinct
data structure for general purpose haplotype data storage. We discuss generalizations of our
algorithmic techniques to other hidden Markov models.
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1 Introduction

Probabilistic models of haplotypes describe how variation is shared in a population. One
application of these models is to calculate the probability P (o|H) of a haplotype o given the
assumption that it is a member of a population represented by a reference panel of haplotypes
H. This computation has been used in estimating recombination rates [8], a problem of
interest in genetics and in medicine. It may also be used to detect errors in genotype calls.

Early approaches to haplotype modeling used coalescent [7] models which were accurate
but computationally complex, especially when including recombination. Li and Stephens
wrote the foundational computationally tractable haplotype model [8] with recombination.
Under their model, the probability P (o|H) can be calculated using the forward algorithm
for hidden Markov models. Generalizations of their model have been used for haplotype
phasing and genotype imputation. Most of these algorithms [10, 1, 14, 3, 12] use the forward
probabilities calculated as intermediate values in the forward algorithm.

1.1 The Li and Stephens model
Consider a reference panel H of k haplotypes sampled from some population. Each haplotype
hj ∈ H is a sequence (hj,1, . . . , hj,n) of alleles at a contiguous sequence 1, . . . , n of genetic
sites. Classically [8], the sites are biallelic, but the model extends to multiallelic sites. [11]

Consider an observed sequence of alleles o = (o1, . . . , on) representing another haplotype.
The monoploid Li and Stephens model (LS) [8] specifies a probability that o is descended
from the population represented by H. LS can be written as a hidden Markov model
wherein the haplotype o is assembled by copying (with possible error) consecutive contiguous
subsequences of haplotypes hj ∈ H.

I Definition 1 (Li and Stephens HMM). Define xj,i as the event that the allele oi at site i of
the haplotype o was copied from the allele hj,i of haplotype hj ∈ H. Take parameters

ρ∗i−1→i the probability of any recombination between sites i− 1 and i (1)
µi the probability of a mutation from one allele to another at site i (2)

and from them define the transition and recombination probabilities

p(xj,i|xj′,i−1) =
{

1− (k − 1)ρi if j = j′

ρi if j 6= j′
where ρi =

ρ∗i−1→i
k − 1 (3)

p(oi|xj,i) =
{

1− (A− 1)µi if oi = hj,i

µi if oi 6= hj,i
where A = number of alleles (4)

We will write µi(j) as shorthand for p(oi|xj,i). We will also define the values of the initial
probabilities p(xj,1, o1|H) = µ1(j)

k .
Let P (o|H) be the probability that haplotype o was produced from population H. The

forward algorithm for hidden Markov models allows calculation of this probability in O(nk2)
time using an n× k dynamic programming matrix of forward states

pi[j] = P (xj,i, o1, . . . , oi|H) (5)

In practice, the Li and Stephens forward algorithm is O(nk). (See §3)
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1.1.1 Li and Stephens like algorithms for large populations
The O(nk) time complexity of the forward algorithm is intractable for reference panels with
large size k. The UK Biobank has amassed k = 500, 000 array samples. Whole genome
sequencing projects, with a denser distribution of sites, are catching up. Major sequencing
projects with k = 100, 000 or more samples are nearing completion. Others numbering k in
the millions have been announced. These large population datasets have significant potential
benefits: They are statistically likely to more accurately represent population frequencies
and those employing genome sequencing can provide phasing information for rare variants.

In order to handle datasets with size k even fractions of these sizes, modern haplotype
inference algorithms depend on models which are simpler than the Li and Stephens model or
which sample subsets of the data. For example, the common tools Eagle-2, Beagle, HAPI-UR
and Shapeit-2 and -3 [10, 1, 14, 3, 12] either restrict where recombination can occur, fail to
model mutation, model long-range phasing approximately or sample subsets of the reference
panel.

Lunter’s “fastLS” algorithm [11] demonstrated that haplotypes models which include all
k reference panel haplotype could find the Viterbi maximum likelihood path in time sublinear
in k, using preprocessing to reduce redundant information in the algorithm’s input. However,
his techniques do not extend to the forward and forward-backward algorithms.

1.2 Our contributions
We have developed an arithmetically exact forward algorithm whose expected time complexity
is a function of the expected allele distribution of the reference panel. This expected time
complexity proves to be O(k0.35) in reference panel size. We have also developed a technique
for succinctly representing large panels of haplotypes whose size also scales as a sublinear
function of the expected allele distribution.

Our forward algorithm contains three optimizations, all of which might be generalized to
other bioinformatics algorithms. In (§2), we rewrite the reference panel as a sparse matrix
containing the minimum information necessary to directly infer all allele values. In (§3), we
define recurrence relations which are numerically equivalent to the forward algorithm but use
minimal arithmetic operations. In (§4), we delay computation of forward states using a lazy
evaluation algorithm which benefits from blocks of common sequence. Our methods apply to
other models which share certain properties with the monoploid Li and Stephens model.

2 Sparse representation of haplotypes

The forward algorithm to calculate the probability P (o|H) takes as input a length n vector
o and a k × n matrix of haplotypes H. Therefore time complexity better than O(nk) is
impossible unless there is preprocessing of its input. However, such preprocessing can be
amortized over many queries o.

2.1 Information content of a reference panel
Recall that (oi)ni=1 is the allele sequence of the emitted haplotype o. (§3) will show that
φi(oi), 1 ≤ i ≤ n defined below are sufficient data to calculate P (o|H).

I Definition 2. The information content φ of H for allele a at site i is defined as

φi(a) =
{
Matchi(a) :=

{
hj | hj,i = a

}
if |Matchi(a)| ≤ |NonMatchi(a)|

NonMatchi(a) :=
{
hj | hj,i 6= a

}
if |NonMatchi(a)| < |Matchi(a)|

(6)

WABI 2018
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Figure 1 i) Reference panel {h1, . . . , h5} with mismatches to haplotype o shown in yellow. ii)
Alleles at site i of elements of φi(oi) in black. iii) Vectors to encode φi(oi) at each site.

We will often abuse notation and refer to the hj ∈ φi(a) by their indices j alone.

2.2 Relation of information content to allele frequency spectrum
Our sparse representation of the haplotype reference panel benefits from the recent finding [6]
that the distribution over sites of minor allele frequencies is biased towards low frequencies2.

We will compute the expected time sum of the information content over all sites assuming
first that all sites are biallelic3. In the biallelic case φi(·) is always the set of haplotypes
displaying the minor allele at site i and the distribution of φi(a) is the allele frequency
spectrum.

I Lemma 3. Let E[f ](k) be the expected mean minor allele frequency for k genotypes. Then

E
[

1
n

n∑
i=1

∣∣φi(a)
∣∣] = E[f ](k) (7)

I Corollary 4. If O(E[f ]) < O(k), then O(
∑
i

∣∣φi(a)
∣∣) < O(nk) in expected value.

2.3 Implementation
For biallelic sites, we store our φi’s using a length-n vector of length |φi| vectors containing
the indices j of the haplotypes hj ∈ φi and a length-n vector listing the major allele at each
site. (See Figure 1 panel iii) Random access by key i to iterators to the first elements of sets
φi(a) is O(1) and iteration across these φi(a) is linear in the size of φi(a). For multiallelic
sites, the data structure uses slightly more space but has the same speed guarantees.

Generating these data structures takes O(nk) time but is embarrassingly parallel in n.
Our “*.slls” data structure doubles as a succinct haplotype index which could be distributed
instead of a large vcf record. A vcf → slls conversion tool is found in our github repository.

Adding or rewriting a haplotype is constant time per site per haplotype unless this edit
changes which allele is the most frequent. This allows our algorithm to extend to uses of the
Li and Stephens model where one might want to dynamically edit the reference panel.

3 Efficient dynamic programming

We begin with the recurrence relation of the O(nk) Li and Stephens forward algorithm [8].
To establish our notation, recall that pi[j] = P (xj,i, o1, . . . , oi|H), that we write µi(j) as

2 We confirm these results in section 5.2
3 The generalization is trivial
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shorthand for p(oi|xj,i) and that we have initialized p1[j] = p(xj,1, o1|H) = µ1(j)
k . For i > 1,

we may then write:

pi[j] = µi(j)
(
(1− kρi)pi−1[j] + ρiSi−1

)
(8)

Si =
k∑
j=1

pi[j] (9)

We will reduce the number of summands in (9) and reduce the number indices j for which
(8) is evaluated. This will use the information content defined in (§2.1).

I Lemma 5. The summation (9) is calculable using strictly fewer than k summands.

Proof. Suppose first that µi(j) = µi for all j. Then

Si =
k∑
j=1

pi[j] = µi

k∑
j=1

(
(1− kρi)pi−1[j] + ρiSi−1

)
(10)

= µi
(
(1− kρi)Si−1 + kρiSi−1

)
= µiSi−1 (11)

Now suppose that µi(j) = 1− µi for some set of j. We must then correct for these j. This
gives us

Si = µiSi−1 + 1− µi − µi
1− µi

∑
j where µi(j) 6=µi

pi[j] (12)

The same argument holds when we reverse the roles of µi and 1− µi. Therefore we can
choose which calculation to perform according to which involves a sum with fewer summands.
This gives us the following formula:

Si = αSi−1 + β
∑

j∈φi(oi)

pi[j] (13)

where

α = µi β = 1− 2µi
1− µi

if φi(a) = Matchi(a) (14)

α = 1− µi β = 2µi − 1
µi

if φi(a) = NonMatchi(a) (15)

J

I Lemma 6. If j /∈ φi(oi) and j /∈ φi−1(oi−1), then Si can be calculated without knowing
pi−1[j] and pi[j], as can pi[j′] for j′ 6= j.

Proof. By inspection of equation (13). J

I Corollary 7. The recurrences (9) and the minimum set of recurrences (8) needed to compute
(9) can be evaluated in O(|φ|) time, assuming that pi−1[j] have been computed ∀j ∈ φi(oi).

We address the assumption on prior calculation of the necessary pi−1[j]’s in section 4.

3.1 Time complexity
Recall that we defined E[f ](k) as the expected mean minor allele frequency in a sample of
size k. By Corollary 7 the procedure in eq. (13) has expected time complexity O

(
nE[f ](k)

)
.

WABI 2018
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i)
pi - 1 [1]
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Figure 2 Using the example that at site i, φi(oi) = {h3}, we illustrate the number of arithmetic
operations used in i) the conventional O(nk) Li and Stephens HMM recurrence relations ii) Our
procedure specified in equation (13). Black lines correspond to arithmetic operations; operations
which cannot be parallelized over j are colored yellow.

4 Lazy evaluation of dynamic programming rows

Corollary 7 was conditioned on the assumption that specific forward probabilities had already
been evaluated. We will describe a second algorithm which performs this task efficiently by
avoiding arithmetic which will prove unnecessary at future steps.4

4.1 Eliminating redundant recurrence evaluations
The recurrence relations (8) are linear maps ri[j] : R→ R of the form

ri[j] : xj 7−→ αixj + βi (16)

Let us formalize this notion of recurrence relation as linear map:

I Definition 8. For any i1 < i2, define the update map ri1→i2 [j] = ri2 [j]◦ri2−1[j]◦· · ·◦ri1+1[j]

This update map is defined such that ri1→i2 [j](pi1 [j]) = pi2 [j].

I Lemma 9. At each i there exist only two unique maps among the ri[j].

Proof. Assume, without loss of generality, that φi(a) = Matchi(a). Then define µ◦i = µi
and µ•i = 1− µi. Then

r◦i (x) = µ◦i
(
(1− kρ)x+ ρSi) (17)

r•i (x) = µ•i
(
(1− kρ)x+ ρSi) = µ•i

µ◦i
r◦i (18)

J

If φi(a) 6= Matchi(a) then the same is true with the definitions of µ◦i and µ•i switched. This
lemma allows us to rewrite each ri1→i2 [j] as a binary vector of the form (◦, ◦, •, . . . , ◦, •, ◦).

We start with a sketch of the general concept of our algorithm
When Algorithm 1 is applied independently to all hj , the aggregate algorithm has O(nk)

time complexity, so we will share work between haplotypes j using equivalence classes
segregated by runs of homology.

4 This approach is known as lazy evaluation.
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Algorithm 1: General approach to evaluating p(·)[j] for a given haplotype j.
Calculate p1[j] and set `← 1
for all sites i > 1 do

if r`→i[j] = (◦, ◦, . . . , ◦) then Do nothing
if r`→i[j] = (◦, ◦, . . . , •) then Evaluate pi[j] = r`→i(p`[j]) and set `← i

4.2 Equivalence classes of update map prefixes
Consider two different instances of the for loop in Algorithm 1, where the first is to evaluate
p(·)[j1] and the second to evaluate p(·)[j2]. Suppose that both are halted at the same step i,
and suppose that at this step, the marker variable ` is the same for both of them. Then the
sequences of hj1 and hj2 are identical between ` and i, and therefore

r`→i[j1] = r`→i[j2] = (◦, ◦, . . . , ◦)︸ ︷︷ ︸
i−`

(19)

Therefore at each step i, we can divide the haplotype indices j into equivalence classes J [`]
for which
1. The current marker variable ` is the same for all j in this equivalence class
2. The map r`→i[j] is the same for all j in this equivalence class
And so we only need to calculate r`→i[j] at most once per nonempty equivalence class J [`],
and for this map we write r`→i. The following lemma allows us to be even more efficient.

I Lemma 10. If i1 < i2 < i, then ri1→i = ri2→i ◦ ri1→i2

Lemma 10 allows us to calculate intermediate prefixes of the maps r`→i and extend them
at a later time. To make this concrete, suppose that we have an index π` (“prefix”) where
` < π` < i. Then we can evaluate the prefix r`→π`

of r`→i knowing that r`→i = rπ`→i ◦ r`→π`

can be evaluated at a later time.

4.3 The lazy evaluation algorithm
Our full lazy evaluation algorithm stores the following state data at each step. The algorithm
initialization is described in Algorithm 2 and the recurrence in Algorithm 3.

The maps j 7→ J [`] from haplotype to its equivalence class; ` defined as the index at
which p(·)[j] was most recently calculated
The maps ` 7→ π` mapping ` to the index π` for which a prefix r`→π`

of r`→i which was
most recently calculated
The maps ` 7→ r`→π`

mapping ` to the the prefix r`→π`
of r`→i which was most recently

calculated
The maps r◦1 , r◦2 , . . . , r◦i from which all maps r(·)→(·) are formed

Calculating a closed form expression for the time complexity of the lazy evaluation
algorithm 3 is not straightforward. It is easy to show that it bounded by O(nk), since
the first loop is worst-case O(k). However, we find experimentally, this lazy evaluation
component does not contribute to overall computational complexity. (See Fig. 6)

WABI 2018
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Algorithm 2: Lazy evaluation initialization.
Input: reference panel size k and active rows φ1(o1)
All j /∈ φ1(o1) are assigned to equivalence class J [0]
r0→π0 ← r◦1 and π0 ← 1
All j ∈ φ1(o1) are assigned to equivalence class J [1]
r1→π1 ← identity and π1 ← 1

Algorithm 3: Lazy evaluation recurrence.
Input: active rows φi(oi) and previous lazy evaluation state

Jactive ← subset of
{
J [`]

}
`≤i consisting of equivalence classes containing at least one

index from the set of active indices φi(oi)
`min ← smallest ` such that J [`] ∈ Jactive
σi→i ← r◦i
for λ = i− 1 to `min do

σλ→i ← σλ+1→i ◦ r◦λ
For one ` with π` = λ, Jactive ← Jactive ∪ J [`]

for J [`] ∈ Jactive with π` 6= i do
r`→π`

← σπ`+1→i ◦ r`→π`
and π` ← i

for j ∈ φi do
`← index for which j ∈ J [`]
Evaluate pi[j] = r`→π`

(p`[j]) and reassign j to the new class J [i]
ri→πi

← identity and πi ← i

5 Results

5.1 Implementation
Our algorithm was implemented as a C++ library located at https://github.com/yoheirosen/
sublinear-Li-Stephens Details of Algorithm 3 will be found there.

We also implemented the linear time monoploid Li and Stephens forward algorithm in
C++ as to evaluate it on identical footing. Profiling was performed using a single Intel Xeon
X7560 core running at 2.3 GHz on a shared memory machine. Our reference panels H were
the phased haplotypes from the 1000 Genomes [2] phase 3 vcf records for chromosome 22
and subsamples thereof. Haplotypes o were randomly generated simulated descendants.

5.2 Minor allele frequency distribution for the 1000 Genomes dataset
We simulated haplotypes o of 1, 000, 000 bp length on chromosome 22 and recorded the sizes
of the sets φi(oi) for k = 5008. These data produced a mean |φi(oi)| of 59.9, which is 1.2%
of the size of k. We have plotted the distribution of |φi(oi)| which we observed from this
experiment in (Fig. 4). It is skewed toward low frequencies; the minor allele is unique at
71% of sites, and it is below 1% frequency at 92% of sites.

5.3 Comparison of our algorithm with the linear time forward algorithm
In order to compare the dependence of our algorithm’s runtime on haplotype panel size k
against that of the standard linear LS forward algorithm, we measured the CPU time per

https://github.com/yoheirosen/sublinear-Li-Stephens
https://github.com/yoheirosen/sublinear-Li-Stephens
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Legend π ℓ   last partial update map calculation time

rℓ → π ℓ    current partial update map, initialized to identity

       equivalence class J[ℓ] containing index jpℓ[j]
σ

π ℓ + 1 → i    suffix to update rℓ → π ℓ to rℓ → i

i) State before update

ii) Update for evaluation
    of pi [2] and pi [3]

ℓ = i - 4

ℓ = i - 3 : active

ℓ = i - 2 : active

ℓ = i - 1 pi - 1 [5]

π ℓ = i

pi - 2 [3]

pi - 3 [2]

pi - 3 [4] 

pi - 4 [1]

σ
π ℓ + 1 → i 

       = r◦

i - 1 ◦ r◦

i

σ = r◦

i

: rℓ → π ℓ 

        = r◦

i - 2

also updated

ℓ = i - 4

ℓ = i - 3

ℓ = i - 1

ℓ = i 

pi - 4 [1]

ℓ = i - 2 empty
pi - 1 [5]

pi - 3 [2] : rℓ → π ℓ = r◦

i - 2 ◦ r◦

i - 1 ◦ r◦

i
: rℓ → π ℓ = r◦

i
pi [3]

pi [4]

iii) State after update

ℓ = i - 4

ℓ = i - 3

ℓ = i - 2

ℓ = i - 1 pi - 1 [5]

pi - 2 [3]

pi - 3 [2]

pi - 3 [4] 

π ℓ = i - 4

pi - 4 [1]

: rℓ → π ℓ = id

: rℓ → π ℓ = id

π ℓ = i - 2 π ℓ = i - 1

: rℓ → π ℓ 
= id
: rℓ → π ℓ 

        = r◦

i - 2

Figure 3 An illustration of the lazy evaluation states defined above as well as the steps of
Algorithm 3. In this case, we have a lazy evaluation state at i = 5, which is updated with
φi(oi) = {2, 4}. j = 3 is updated as well as specified by the first loop in the algorithm.

genetic site of both across a range of haplotype panel sizes from 30 to 5008. Figure 5 shows
this comparison. Observed time complexity of our algorithm was O(k0.35) as calculated from
the slope of the line of best fit to a log-log plot of time per site versus haplotype panel size.

For data points where we used all 1000 Genomes project haplotypes (k = 5008), on
average, time per site is 37 µs for our algorithm and 1308 µs for the linear LS algorithm.
For the forthcoming 100,000 Genomes Project, these numbers can be extrapolated to 251 µs
for our algorithm and 260,760 µs for the linear LS algorithm.

5.3.1 Lazy evaluation of dynamic programming rows

We also measured the time which our algorithm spent within its lazy evaluation subalgorithm.
In the average case, the time complexity of our lazy evaluation subalgorithm does not
contribute to the overall algebraic time complexity of the algorithm. (Fig. 6, right) The lazy
evaluation runtime also contributes minimally to the total actual runtime of our algorithm.
(Fig. 6, left)

WABI 2018
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Figure 4 Biallelic site minor allele frequency distribution from 1000 Genomes chromosome 22.

Figure 5 Runtime per site as a function of haplotype reference panel size k for our algorithm
(blue) as compared to the classical linear time algorithm (black).

5.4 Sparse haplotype encoding

5.4.1 Generating our sparse vectors

We generated the haplotype panel data structures from (§2) using the vcf-encoding tool
vcf2slls which we provide. We built indices with multiallelic sites, which increases their
time and memory profile relative to the results in (§5.2) but allows direct comparison to vcf
records. Encoding of chromosome 22 was completed in 38 minutes on a single CPU core.
Use of M CPU cores will reduce runtime proportional to M .

5.4.2 Size of sparse haplotype index

In uncompressed form, our whole genome *.slls index for chromosome 22 of the 1000
genomes dataset was 285 MB in size versus 11 GB for the vcf record using uint16_t’s to
encode haplotype ranks. When compressed with gzip, the same index was 67 MB in size
versus 205 MB for the vcf record.

In the interest of speed (both for our algorithm and the O(nk) algorithm) our experiments
loaded entire chromosome sparse matrices into memory and stored haplotype indices as
uint64_t’s. This requires on the order of 1 GB memory for chromosome 22. For long
chromosomes or larger reference panels on low memory machines, algorithm can operate on
sequential chunks of the reference panel.



Y. M. Rosen and B. J. Paten 9:11

Figure 6 Time per site for the lazy evaluation subalgorithm (yellow) vs. the full algorithm (blue).

6 Discussion and significance

To the best of our knowledge, ours is the first forward algorithm for any haplotype model to
attain sublinear time complexity with respect to reference panel size. Our algorithms could
be incorporated into haplotype inference strategies by interfacing with our C++ library.
This opens the potential for tools which are tractable on haplotype reference panels at the
scale of current 100,000 to 1,000,000+ sample sequencing projects.

6.1 Applications which use individual forward probabilities
Our algorithm attains its runtime specifically for the problem of calculating the single overall
probability P (o|H, ρ, µ) and does not compute all nk forward probabilities. We can prove
that if m many specific forward probabilities are also required as output, and if the time
complexity of our algorithm is O(

∑
i

∣∣φi∣∣), then the time complexity of the algorithm which
also returns the m forward probabilities is O(

∑
i

∣∣φi∣∣+m).
In general, haplotype phasing or genotype imputation tools use stochastic traceback or

other similar sampling algorithms. The standard algorithm for stochastic traceback samples
states from the full posterior distribution and therefore requires all forward probabilities.
The algorithm output and lower bound of its speed is therefore O(nk). The same is true for
many applications of the forward-backward algorithm.

There are two possible approaches which might allow runtime sublinear in k for these
applications. Using stochastic traceback as an example, first is to devise an O(f(m)) sampling
algorithm which uses m = g(k) forward probabilities such that O(f ◦ g(k)) < O(k). The
second is to succinctly represent forward probabilities such that nested sums of the nk
forward probabilities can be queried from O(φ) < O(nk) data. This should be possible,
perhaps using the positional Burrows-Wheeler transform [5] as in [11], since we have already
devised a forward algorithm with this property for a different model in [13].

6.2 Generalizability of algorithm
The optimizations which we have made are not strictly specific to the monoploid Li and
Stephens algorithm. Necessary conditions for our reduction in the time complexity of the
recurrence relations are

I Condition 1. The number of distinct transition probabilities is bounded.

I Condition 2. The number of distinct emission probabilities is bounded.
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Favourable conditions for efficient time complexity of the lazy evaluation algorithm are

I Condition 1. The number of unique update maps added per step is bounded.

I Condition 2. The update map extension operation is composition of matrices of bounded
size. This can be generalized to a broad algebraic class5 of update operations provided that
they have bounded runtime.

The reduction in time complexity of the recurrence relations depends on the Markov property,
however we hypothesize that the delayed evaluation needs only the semi-Markov property.

6.2.1 Other haplotype forward algorithms
Our optimizations are of immediate interest for other haplotype copying models. The
following related algorithms have been explored without implementation.

I Example (Diploid Li and Stephens). We have yet to implement this model but expect average
runtime at least subquadratic in reference panel size k. We build on the statement of the
model and its optimizations in [9]. We have found the following recurrences which we believe
will work when combined with a system of lazy evaluation algorithms:

I Lemma 11. The diploid Li and Stephens HMM may be expressed using recurrences of the
form

pi[j1, j2] = αppi−1[j1, j2] + βp(Si−1(j1) + Si−1(j2)) + γpS (20)

which use on the intermediate sums

Si := αcSi−1 + βc
∑
j∈φi

Si−1(j) + γc
∑

(j1,j2)∈φ2
i

pi−1[j1, j2] O(|φi|2) (21)

Si(j) := αcSi−1 + βcSi−1(j) + γc
∑
j2∈φi

pi−1[j, j2] O(|φi|2) (22)

where α(·), β(·), γ(·) depend only on the diploid genotype oi.

Implementing and verifying this extension of our algorithm will be among our next steps.

I Example (Multipopulation Li and Stephens). [4] We maintain separate sparse haplotype
panel representations φAi (oi) and φBi (oi) and separate lazy evaluation mechanisms for the
two populations A and B. Expected runtime guarantees are similar.

This model, and versions for > 2 populations, will be important in large sequencing
cohorts (such as NHLBI TOPMed) where assuming a single related population is unrealistic.

I Example (More detailed mutation model). It may also be desirable to model distinct mutation
probabilities for different pairs of alleles at multiallelic sites. Runtime is worse than the
biallelic model but remains average case sublinear.

I Example (Sequence graph Li and Stephens analogue). In [13] we described a hidden Markov
model for a haplotype-copying with recombination but not mutation in the context of sequence
graphs. Assuming we can decompose our graph into nested sites then we can achieve a fast
forward algorithm with mutation.

I Example (Semi-Markovian recombination model). The lazy evaluation algorithm 3 may
efficiently allow time-since-recombination dependent transition probabilities.

5 Specifically, any collection of operations forming a category in the sense of category theory
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