
A Dynamic Algorithm for Network Propagation
Barak Sternberg
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
barakolo@gmail.com

https://orcid.org/0000-0002-1803-6437

Roded Sharan1

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
roded@post.tau.ac.il

Abstract
Network propagation is a powerful transformation that amplifies signal-to-noise ratio in biological
and other data. To date, most of its applications in the biological domain employed standard
techniques for its computation that require O(m) time for a network with n vertices and m edges.
When applied in a dynamic setting where the network is constantly modified, the cost of these
computations becomes prohibitive. Here we study, for the first time in the biological context, the
complexity of dynamic algorithms for network propagation. We develop a vertex decremental
algorithm that is motivated by various biological applications and can maintain propagation
scores over general weights at an amortized cost of O(m/n1/4) per update. In application to real
networks, the dynamic algorithm achieves significant, 50- to 100-fold, speedups over conventional
static methods for network propagation, demonstrating its great potential in practice.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Network propagation, Dynamic graph algorithm, protein-protein inter-
action network

Digital Object Identifier 10.4230/LIPIcs.WABI.2018.7

Supplement Material https://github.com/barakolo/dygraph_bio

Funding R. S. was supported a grant from the Ministry of Science, Technology and Space of the
State of Israel and the Helmholtz Centers, Germany.

1 Introduction

Network propagation has become a central technique in biology, as in other domains, to
rank the relevance of genes to a process under investigation [7]. However, its complexity
is becoming a bottleneck in dynamic settings where the network is subjected to multiple
changes. In the biological domain, dynamic computations are essential not only because the
network is updated with time but also because certain applications involve the systematic
evaluation of propagation results under many network modifications. For example, in [12]
the propagation over a network with n nodes is compared to n other propagations that are
performed on modifications of the network where each time a different vertex is removed
(simulating a knockout). Another application of the dynamic setting is when working with
tissue-specific networks. As an example, in [14] multiple tissue-specific networks are formed
from a given protein-protein interaction network by removing vertices with low expression,
and propagation computations are applied to each.

1 Corresponding author

© Barak Sternberg and Roded Sharan;
licensed under Creative Commons License CC-BY

18th International Workshop on Algorithms in Bioinformatics (WABI 2018).
Editors: Laxmi Parida and Esko Ukkonen; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160150496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:barakolo@gmail.com
https://orcid.org/0000-0002-1803-6437
mailto:roded@post.tau.ac.il
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.7
https://github.com/barakolo/dygraph_bio
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 A Dynamic Algorithm for Network Propagation

While the computation of network propagation requires matrix inversion, a common and
more efficient alternative utilizes the power iteration method [6]. This method approximates
the propagation scores to within some additive constant at a cost of O(m). An alternative
local approach for obtaining approximate propagation was also suggested [3], yielding O(m)
time for a single propagation at worst case.

Focusing on a dynamic setting in which vertices are removed one by one [12], the total
complexity of maintaining the propagation vectors after each removal becomes O(mn) for
n vertices when computing each propagation afresh. There is relatively scarce prior work
regarding the computation of network propagation in a dynamic fashion which can be applied
to the above setting. Specifically, Zhang et al. [5] and Ihsaka et al. [10] provide a fully
dynamic propagation algorithm whose expected time per edge update is O(1). However,
both algorithms are limited to unweighted graphs and expected time analysis and might
yield O(mn) time under the settings considered here (of n vertex removals). This is true
also for Yoon et al. [8], who provide a fully dynamic algorithm for network propagation but
may lead to O(mn) time under the settings considered here.

To tackle the dynamic computation challenge, we propose a novel algorithm that can
handle general weights and several normalizations, including a symmetric normalization,
a variant of which has been shown to be powerful in the biological domain [11, 12]. Our
algorithm can handle n vertex removals in O(mn3/4) total time. This yields a speedup of
Ω(n1/4) over previous work. For real biological networks, this leads to a 50-fold to 100− fold
speedup in the computations.

2 Preliminaries

We focus on undirected and weighted networks that represent protein-protein interactions.
For a network G with n vertices and m edges, we denote by w the symmetric weighted
adjacency matrix of the network. For a vertex u, we denote its set of neighbors by N(u)
and their number, i.e., the degree of u, by d(u). The weighted degree w(u) of u is the sum of
weights of its adjacent edges. Two common normalizations of w to form a normalized matrix
W are as follows: (i) normalizing each column of w to sum to 1, henceforth weighted degree
normalization, and (ii) dividing each entry of w by the squared product of the weighted
degrees of the corresponding nodes, i.e., Wij = wij/(

√
w(i)

√
w(j)), henceforth symmetric

normalization as used in [11].
Given a network G, a prior vector p of node relevance values (in [0,1]; typically 0 or 1),

and a parameter 0 < α < 1, the network propagation transformation computes a score s(v)
for every node v that is a linear combination of its prior value and the average score of its
network neighbors, reflecting its network proximity to the a-priori relevant nodes. Formally,

s(v) = αp(v) + (1− α)
∑

u∈N(v)

s(u)Wuv

where 0 ≤ α ≤ 1 controls the tradeoff between prior information and network smoothing [7].
s, the propagation vector, can be computed analytically via matrix inversion or approximated
using the "power iteration" algorithm which works as follows ([1, 9]):
1. Define v0 = p, i = 0.
2. Compute vi+1 = αp+ (1− α)Wvi.
3. While i < log(ε)

log(1−α) increment i and goto (2).

The "power iteration" process is known to converge to the propagation vector (limi→∞ vi =
s), whenever the eigenvalues of W are at most 1 in absolute value, a condition satisfied

B. Sternberg and R. Sharan 7:3

Algorithm 1 ForwardPush for weighted degree normalization.
1: procedure push(v,R, P, α,W)
2: P (v)+ = αR(v)
3: for n ∈ N(v) do
4: R(n)+ = (1− α)R(v)Wvn

5: R(v) = 0
6: procedure ForwardPush(W,α, ε, R, P)
7: while ∃u|R(u)| > εd(u) do
8: push(u,R, P, α,W)
9: return P

by both normalizations presented above [7]. Here ε > 0 is the required approximation
bound on the sum of differences in absolute value (L1 error) between the computed and true
propagation score. ε is typically chosen to be a constant smaller than 0.01. The following
lemma characterizes the resulting propagation vector.

I Lemma 2.1 ([2, 7]). The propagation vector converges to α(I − (1− α)W)−1p.

Our algorithmic approach is motivated by the following lemma:

I Lemma 2.2 ([6]). Consider a random walk from prior distribution p using the weighted-
degree normalized adjacency matrix W , where at each node u the walk stops with probability
α. Then the total probability of the walk to stop at u is s(u).

3 The Forward-Push algorithm

In the following we describe our dynamic algorithms for the case of symmetric and weighted
degree normalization. Our algorithm builds on the Forward-Push algorithm for the static
case [3] which can be viewed as "simulating" random walks, “pushing” walks from one node
to another and taking into account walks that stopped at any node, adding their probability
to the node’s score. The algorithm is run until the residual walks have neglible effects (ε).
For clarity, we fix the prior vector to p. The algorithm maintains two estimates per node u:
the current estimate P (u) of the probability to stop at u and the remaining probability R(u)
of walks that have reached u without stopping. The algorithm is given below and is called by
initializing P = 0n (the zero vector) and R = p. For any nodes s, t we denote by π(s, t) the
score of t when propagating from s. Generalizing it, for any prior vector p and node u we
denote by π(p, u) the score of u when propagating from p. In the symmetric normalization
case, π(s, t) = π(t, s) for any two nodes s, t, while in the weighted degree normalization case
it can be shown that π(s, t)w(s) = π(t, s)w(t) (see, e.g., Lemma 1 in [13]). The following
lemma is key in proving the correctness of the algorithm.

I Lemma 3.1. The following equalities (algorithm’s invariants) are equivalent:
1. P (u) + αR(u) = (1− α)

∑
x∈N(u)

P (x)Wxu + αpu

2. π(p, u) = P (u) +
∑
x∈V

R(x)π(x, u)

Proof. Denote π = α(I − (1 − α)W)−1. Note that (πp)u =
∑
x∈V

π(x, u)px, (πR)u =∑
x∈V

π(x, u)R(x). We can write (2) in vector form as: πp = P + πR. Multiplying both

WABI 2018

7:4 A Dynamic Algorithm for Network Propagation

sides by π−1 from the left we get: p = π−1P +R↔ αp = P − (1−α)WP +αR. Rearranging
terms we get the desired result. J

Using this lemma we can now justify the propagation approximation achieved by the
ForwardPush algorithm.

I Lemma 3.2. The ForwardPush algorithm maintains the invariants in 3.1.

Proof. It suffices to prove that the first invariant holds. On initialization, P = 0n and
R = p, hence the invariant holds. Suppose an arbitrary node u is pushed and denote by
P ′, R′ the updated values of P and R. Since P ′(u) = P (u) + αR(u) and R′(u) = 0, we have
P ′(u) + αR′(u) = P (u) + αR(u). Clearly, the right hand side of invariant (1) did not change
for u as for any x ∈ N(u) only R(x) is changed while pushing u. For any other node x that
is adjacent to u, R′(x) = R(x) + (1− α)R(u)Wxu. Thus, the addition to the left hand side
of the equation is α(1− α)R(u)Wxu which is exactly the addition to the right hand side due
to the update of P (u). J

I Lemma 3.3. For weighted-degree normalization, when ForwardPush() terminates:∑
t∈V
|P (t)− π(p, t)| ≤ 2εm

Proof. Consider any node t and let et be the unit vector with 1 at coordinate t and 0
elsewhere. It follows from lemma 2.2 that for any node u ∈ V ,

∑
t∈V

π(u, t) ≤ 1. By Lemma

3.1 and since |R|∞ ≤ ε upon termination,∑
t∈V
|P (t)− π(p, t)| =

∑
t∈V

∑
u∈V
|R(u)|π(u, t) ≤

∑
t∈V

∑
u∈V

εd(u)π(u, t) =∑
u∈V

εd(u)
∑
t∈V

π(u, t) ≤
∑
u∈V

εd(u) = 2εm

J

Note that the above lemma bounds the overall L1 approximation of the algorithm at 2εm,
hence ε is typically chosen to be smaller than 1/m to guarantee a constant overall error.
After proving the correctness of the algorithm, we turn to bound its complexity:

I Lemma 3.4. Every push of the algorithm, |R|1, the sum of residuals in absolute value,
decreases by at least αεd(v) where v is the node being pushed.

Proof. Let R,R′ denote the residuals before and after the push, respectively. Then∑
u∈V
|R(u)| −

∑
u∈V
|R′(u)| = |R(v)|+

∑
u∈N(v)

|R(u)| − |R′(u)| ≥ (1)

|R(v)| −
∑

u∈N(v)

|R′(u)−R(u)| = |R(v)| − (1− α)|R(v)|
∑

u∈N(v)

|Wvu| ≥ (2)

|R(v)| − (1− α)|R(v)| = |R(v)|(1− (1− α)) = α|R(v)| ≥ αεd(v) (3)

J

I Lemma 3.5. The ForwardPush algorithm with weighted degree normalization takes O(|p|1αε)
time.

B. Sternberg and R. Sharan 7:5

Proof. On initialization
∑
v∈V
|R(v)| = |p|1. Denote by ui the vertex being pushed at step i of

the algorithm. By Lemma 3.4,
∑
v∈V
|R(v)| decreases by at least αεd(ui) at step i, thus the

following holds:
∑
i αεd(ui) ≤ |p|1. Hence,

∑
i d(ui) ≤ |p|1αε . As each push step of a node ui

can be implemented in O(d(ui)) time, the total time is O(|p|1αε). The residuals with absolute
values greater than εd(ui) can be maintained in a linked list and an associated array at the
same cost. J

We can generalize the above algorithm to any similar matrix W = L−1SL where L is an
invertible diagonal matrix, S is a stochastic matrix, i.e: S = wD−1, and D is the diagonal
weighted degree matrix. For example, choosing L = D1/2 yields the symmetric normalization.
Note that such matrices satisfy the convergence condition as their eigenvalues are the same
as those of S. The generalization is based on the following lemma:

I Lemma 3.6. (Stochastic Lemma) Let ψ(W,p, α) be the result of network propagation with
matrix W = L−1SL over prior p. Then ψ(W,p, α) = L−1ψ(S,Lp, α).

Proof. Denote by vn and v′n the propagation vectors on W and S, respectively, after the nth
step of the propagation process. We prove by induction that for every n, vn = L−1v′n. For
the base case v0 = p and v′0 = Lp so the claim trivially holds. Suppose the claim is true for n,
then: vn+1 = αp+ (1−α)Wvn = αp+ (1−α)L−1SL(L−1v′n) = L−1(α(Lp) + (1−α)Sv′n) =
L−1v′n+1. J

4 A dynamic decremental algorithm for vertex removals

Lemma 3.6 naturally suggests an adaptation for the ForwardPush algorithm for any
normalization matrix W which is similar to a stochastic matrix. For concreteness and
clarity, we will present a dynamic decremental algorithm for removing nodes under weighted
symmetric normalization as used in [12]. The main idea is first to maintain a valid propagation
result for weighted-degree normalization, and on deletion, using lemma 3.6, we fix the invariant.
If this leads to high residuals, we will re-push them over the graph locally, to fix the total
scores. In the following we set L = D1/2 for symmetric normalization and p′ = LP . For a
removal of any node v, denote by S′, D′ the resulting matrices, by w′ the updated network
weights and by π′ the updated propagation scores. Further denote by LeafN(v) the set
of neighbors of v of degree 1. W.l.o.g. v has at least one neighbor which is of degree
greater than 1, otherwise the connected component of v will vanish after its removal. The
algorithm is given below (Algorithm 2). ForwardPushSym computes the initial propagation.
FixRemoveEdge handles edge removals and is used as a subroutine by V ertexRemoveProp
which handles the node removals.

The following lemmas, proved in the Appendix, establish the correctness and accuracy of
the algorithm. Denote φ := max

v
{
√
w(v), 1/

√
w(v)}. In all our applications reported below,

for both yeast and human, φ < 36.

I Lemma 4.1. When ForwardPushSym(W,α, ε, p) returns,
∑
t∈V
| P (t)√

w(t)
− π(p, t)| < 2εmφ

where π(p, t) is the propagation score for node t with prior p under symmetric normalization.

I Lemma 4.2. When V ertexRemoveProp(v,R, P,W, ε) returns,
∑
t∈V
| P (t)√

w′(t)
− π′(p, t)| <

2εmφ where π′(p, t) is the propagation score for node t with prior p under symmetric nor-
malization after node v removal.

WABI 2018

7:6 A Dynamic Algorithm for Network Propagation

Algorithm 2 ForwardPush for symmetric normalization.
1: procedure ForwardPushSym(W = D−1/2SD1/2, α, ε, p)
2: R← D1/2p, P ← 0n
3: R,P ← ForwardPush(S,R, P, α, ε)
4: return R,P

5: procedure FixRemoveEdge(u, v,R, P,W = D−1/2SD1/2)
6: w(v), wu(v) :=

∑
x∈V

wxv,
∑

x∈V,x6=u
wxv

7: Fu(v) = w(v)
wu(v)

8: R(v)+ = 1
α (1− 1

Fu(v))P (v)− (1−α)
α P (u)Suv + (

√
wu(v)−

√
w(u))pv

9: P (v)/ = Fu(v)
10: Remove (u, v) from S and normalize v.
11: procedure V ertexRemoveProp(v,R, P,W = D−1/2SD1/2, ε)
12: for u ∈ LeafN(v) do
13: R(u) = 0, P (u) = αpu

14: for u ∈ N(v)\LeafN(v) do
15: FixRemoveEdge(v, u,R, P,W)
16: R(v) = 0, P (v) = αpv
17: ForwardPush(S′, R, P, α, ε)
18: return R,P

Algorithm 3 Multiple-vertex removal
1: procedure RemoveNodes(node_list,W = D−1/2SD1/2, α, ε0, ε1, p)
2: R,P ← ForwardPushSym(W,α, ε0, p)
3: for u ∈ node_list do
4: Backup R,P
5: R,P ← V ertexRemoveProp(u,R, P,W, ε1)
6: res(u)← D−1/2P

7: Restore R,P
8: return res

Given the vertex removal routine, we can perform n removals and corresponding prop-
agations using Algorithm 3. For efficiency, we can choose different accuracies (ε0, ε1 = ε)
for different stages of the propagation with ε0 ≤ ε1. This allows us to invest more time
in the initial propagation in order to reduce the resulting residual sum, leading to time
savings in subsequent computations. In order to bound the complexity of the algorithm we
denote by Ru the vector of residuals after fixing invariants in V ertexRemoveProp (line (16)
completion) and define the total sum in absolute value of residual changes following the
removal of a vertex u:

∆Ru :=
∑
v∈V
|Ru(v)−R(v)|

I Lemma 4.3. The total residual sum being pushed over n vertex removals is bounded by:

T :=
∑
u∈V

(
∑
v∈V
|R(v)|+ ∆Ru)

Proof. The total sum of residuals being pushed when removing a vertex u is bounded by

B. Sternberg and R. Sharan 7:7

∑
v∈V \{u} |Ru(v)|. By the triangle inequality,

∑
v∈V \{u}

|Ru(v)| ≤
∑
v∈V
|R(v)|+ ∆Ru. J

I Corollary 4.4. The removal of n vertices and subsequent propagations take O(T
αε1

) time.

I Lemma 4.5. Let u be a node being removed, and Fu(v) the expression described in
Algorithm (2). Then,

∆Ru ≤ R(u) +
∑

v∈LeafN(u)

R(v) +
∑

v∈N(u)\LeafN(u)

|
√
wu(v)−

√
w(v)|pv+

(1− α
α

)P (u)
∑

v∈N(u)\LeafN(u)

Suv + 1
α

∑
v∈N(u)\LeafN(u)

P (v)(1− 1
Fu(v))

Proof. Note that R(v), P (v) are positive for any v as they represent the initial ForwardPush
result. Assume that u is removed and consider the changes to its neighbors in VertexRemove().
Clearly, for each leaf neighbor v, the change in residuals is R(v). For non-leaf neighbors v,
we can upper bound the residual change by:

1
α

(
1− 1

Fu(v)

)
P (v) + |

√
wu(v)−

√
w(v)|pv + 1− α

α
P (u)Suv

Hence, summing over all of these neighbors and u itself leads to the required result. J

To bound the complexity of the algorithm we need the following notation and auxiliary
lemmas.

I Lemma 4.6. 1− 1
Fu(v) = Suv

Proof. 1− 1
Fu(v) =

∑
x∈V

wxv∑
x∈V

wxv
−

∑
x6=u

wxv∑
x∈V

wxv
= Suv J

I Lemma 4.7. After the initial ForwardPushSym,
∑
v∈V

P (v) ≤ φ

Proof. Initially,
∑
v∈V P (v) = 0 and

∑
v∈V |R(v)| = |p′|1. Anytime we increase P (u) by

αR(u) for some u,
∑
v∈V |R(v)| is reduced by at least α|R(u)| by Lemma 3.4. Therefore,∑

v∈V |R(v)| ≤ |p′|1 throughout, implying that
∑
v∈V

P (v) ≤ |p′|1.

By definition, |D1/2|1 = sup
v 6=0

|D1/2v|1
|v|1 . Hence, |p′|1 = |D1/2p|1 ≤ |D

1/2p|1
|p|1 |p|1 ≤ |D1/2|1|p|1 ≤

φ. J

I Lemma 4.8.
∑

u∈N(v)
|
√
wu(v)−

√
w(v)| ≤

√
w(v)

Proof. First, note that:

|
√
wu(v)−

√
w(v)| =

∣∣ (√wu(v)−
√
w(v))(

√
wu(v) +

√
w(v))√

wu(v) +
√
w(v)

∣∣
= |wu(v)− w(v)|
|
√
wu(v) +

√
w(v)|

≤ wvu√
w(v)

Then, summing over all neighbors of v:∑
u∈N(v)

|
√
wu(v)−

√
w(v)| ≤

∑
u∈N(v)

wvu√
w(v)

=
√
w(v) J

WABI 2018

7:8 A Dynamic Algorithm for Network Propagation

I Lemma 4.9.
∑
u∈V

∆Ru ≤ 5φ
α .

Proof. Let R,P be the updated residuals and the estimates after the initial application of
ForwardPush() in line 2 of the RemoveNodes() algorithm. By Lemma 4.5, the total changes
to the residuals are

part 1︷ ︸︸ ︷∑
u∈V

R(u) +
∑
u∈V

∑
v∈LeafN(u)

R(v) +

part 2︷ ︸︸ ︷∑
u∈V

∑
v∈N(u)\LeafN(u)

|
√
wu(v)−

√
w(v)|pv +

part 3︷ ︸︸ ︷∑
u∈V

(1− α
α

)P (u)
∑

v∈N(u)\LeafN(u)

Suv + 1
α

part 4︷ ︸︸ ︷∑
u∈V

∑
v∈N(u)\LeafN(u)

P (v)(1− 1
Fu(v))

We will bound each part separately.
1. By definition,

∑
u∈V

R(u) ≤ |D1/2p|1. For a leaf v ∈ V , its residual will be summed once

as its degree is 1. Overall, the sum is bounded by 2
∑
u∈V

R(u) ≤ 2|D1/2p|1 ≤ 2φ.

2. By changing the summation order we get∑
u∈V

∑
v∈N(u)\LeafN(u)

|
√
wu(v)−

√
w(v)|pv =

∑
v∈V, not a leaf

pv
∑

u∈N(v)

|
√
wu(v)−

√
w(v)| 4.8

≤∑
v∈V, not a leaf

pv
√
w(v) ≤ |p|1φ = φ

3. we bound this part and get:∑
u∈V

(1− α
α

)P (u)
∑

v∈N(u)

Suv≤
(1− α)
α

∑
u∈V

P (u)4.7≤
(1− α)
α

φ

4. Similar to part (1), by changing the order of summation we get that:

1
α

∑
v∈V, not a leaf

P (v)
∑

u∈N(v)

(1− 1
Fu(v))4.6=

1
α

∑
v∈V, not a leaf

P (v)
∑

u∈N(v)

Suv ≤

1
α

∑
v∈V, not a leaf

P (v) ≤ φ/α

Overall we obtain a bound of 5φ
α . J

We are now ready to state our main result:

I Lemma 4.10. The total complexity of the propagation algorithm with n vertex removals is
(φ
αε0

+ mnε0
αε1

+ φ
ε1

) = O(m
√
nφ)

Proof. The initialization takes O(φ/(αε0)) time. By Lemmas 4.3 and 4.9, the total time for
n vertices removals and subsequent propagations is bounded by:∑
u∈V

(
∑
v∈V
|R(v)|) + ∆Ru

αε1
≤

∑
u∈V

(
∑
v∈V

ε0d(v)) + ∆Ru

αε1
=

∑
u∈V

(2mε0) + ∆Ru

αε1
= 2mnε0

αε1
+

5φ
α

αε1

B. Sternberg and R. Sharan 7:9

Table 1 Tested Networks and their properties.

Graph #Nodes #Edges Maximal Degree Average Degree φ

Human (HIPPIE) [4] 19,796 339,788 2173 17.1 35.67
Yeast (ANAT [15]) 5138 76,467 2040 13.82 19.9
Human (ANAT [15]) 15,517 259,161 2086 15.73 27.75

Table 2 Performance evaluation on a human network (ANAT) upon 1,000 vertex removals.

Algorithm DynamicFP ForwardPush Power Iteration
Time 10.1s 9417.89s 886.54s
#node visits per update 302.24 55,175,737 2,618,256
L1-error 0.00121 0.00119 0.00101

Hence, The complexity is:

O(φ

αε0
+ mnε0

αε1
+ φ

ε1
)
ε0 =

√
φε1
mn

= O(
√
mnφ

ε1
)
ε1 = Θ(1

m)
= O(m

√
nφ)

The first equality follows by finding the minimal solution for ε0, ε1, where ε1 is chosen to be
c/m to bound the overall L1 error by some additive constant. As the edge weights are at
most 1 and at least some positive constant (otherwise, the edges are considered unreliable),
φ ≤
√
n. Hence, the total time is O(mn3/4) and the amortized cost per node knockout is

O(m
n1/4). J

5 Results

We benchmark our algorithm, Dynamic ForwardPushSym (DynamicFP), against a static
implementation of the power iteration method, as well as against the static ForwardPush
algorithm (ForwardPushSym from scratch). We measure the performance of each algorithm
in terms of time (seconds) and the number of nodes it visits throughout its execution. In
order to evaluate the accuracy of the different algorithms we measured their L1 deviation
from the true propagation vector (sum of absolute differences). All tests were done in Intel(R)
Xeon(R) E5410 @ 2.33Ghz, 16GB RAM. We used the latest yeast and human protein-
protein interaction (PPI) networks from ANAT [15] as well as the human PPI network
of [4]. The tested networks and their properties are summarized in Table 1. To perform a
comparative analysis of different propagation algorithms, we fixed the propagation parameters
to α = 0.4 and a prior set size of 100. In order to compute accurate propagation scores
against which we could benchmark the different methods, we applied the power iteration
method with ε′ = ε/n. In the comparison itself, we applied the power iteration method
with the maximal ε that leads to an overall L1 error of at most 10−2. For Forward-Push
we used the maximal ε1 that leads to an overall L1 error of at most 10−2. We also set
ε0 =

√
ε1φ
mn . The results upon making 1,000 vertex removals, where each vertex is removed

separately from the original network, are summarized in Tables 2 and 3. Next, we compared
our performance to the previous approach LazyFwdUpdate of [5]. To this end, we used
a larger human PPI network from [4] and observed the performance of the two methods
upon knockouts of all (non-prior) vertices, simulating a real application of these methods.
Since LazyFwdUpdate handles only unweighted networks with degree-based normalization,

WABI 2018

7:10 A Dynamic Algorithm for Network Propagation

Table 3 Performance evaluation on a yeast network (ANAT) upon 1,000 vertex removals.

Algorithm DynamicFP ForwardPush Power Iteration
Time 2.44s 2132.2s 102.91s
#node visits per update 1443.904 22,103,498 765,310
L1-error 0.0013 0.00121 0.0017

Table 4 Performance comparison with ε0 = ε1 (1) and ε0 =
√

ε1φ
mn

(2).

Algorithm LazyFwdUpdate DynamicFP (1) DynamicFP (2)
Time 36.01s 23.60 9.71s
#node visits per-update 13,925 8024 2749
L1-error 0.0047 0.0056 0.0061

we used the corresponding variant (unweighted network; weighted-degree normalization) of
the DynamicFP algorithm. The results, summarized in Table 4, show that our algorithm
compares favorably to LazyFwdUpdate, especially when varying the ratio between ε0 and ε1.

6 Conclusions

We have devised a dynamic algorithm for network propagation that can handle a vertex
deletion in O(m

n1/4) time and provides a speedup of Ω(n1/4) over previous work. Importantly,
the algorithm leads to huge speedups of up to a 50-100 fold on real data. Thus, it allows,
for the first time, the application of costly methods (such as [12] and [14]) to examine
multiple gene knockouts simultaneously. The proposed algorithm can substantially increase
the number of different knockout effects that can be simulated in a reasonable time. While
our work focused on vertex deletions that are very common in the biological domain, it would
be interesting to extend our algorithm to a fully dynamic one. This may result in various
applications that concern situations in which edges rather than nodes are perturbed.

References

1 Amy N. Langville and Carl D. Meyer. Deeper Inside PageRank. Internet Mathematics,
1(3), jan 2004. doi:10.1080/15427951.2004.10129091.

2 Dengyong Zhou, Olivier Bousquet, Thomas N. Lal, Jason Weston, and Bern-
hard Scholkopf. Learning with Local and Global Consistency. In Proceed-
ings of the 16th International Conference on Neural Information Processing Sys-
tems, pages 321–328. MIT Press, 2004. URL: http://papers.nips.cc/paper/
2506-learning-with-local-and-global-consistency.pdf.

3 Glen Jeh and Jennifer Widom. Scaling Personalized Web Search. In Proceedings of the
Twelfth International World Wide Web Conference, WWW 2003, Budapest, Hungary, May
20-24, 2003, WWW ’03, pages 271–279, New York, NY, USA, 2003. ACM. doi:10.1145/
775152.775191.

4 Gregorio Alanis-Lobato, Miguel A. Andrade-Navarro, and Martin H. Schaefer. HIPPIE
v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nu-
cleic Acids Research, 45(D1):D408–D414, jan 2017. doi:10.1093/nar/gkw985.

http://dx.doi.org/10.1080/15427951.2004.10129091
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf
http://dx.doi.org/10.1145/775152.775191
http://dx.doi.org/10.1145/775152.775191
http://dx.doi.org/10.1093/nar/gkw985

B. Sternberg and R. Sharan 7:11

5 Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate Personalized PageRank on
Dynamic Graphs. arXiv:1603.07796 [cs], 2016. arXiv: 1603.07796. URL: http://arxiv.
org/abs/1603.07796.

6 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Cita-
tion Ranking: Bringing Order to the Web., nov 1999. URL: http://ilpubs.stanford.edu:
8090/422/.

7 Lenore Cowen, Trey Ideker, Benjamin J. Raphael, and Roded Sharan. Network propagation:
a universal amplifier of genetic associations. Nature Reviews. Genetics, 18(9):551–562, 2017.
doi:10.1038/nrg.2017.38.

8 Minji Yoon, WooJeong Jin, and U Kang. Fast and Accurate Random Walk with Restart on
Dynamic Graphs with Guarantees. arXiv:1712.00595 [cs], 2017. arXiv: 1712.00595. URL:
http://arxiv.org/abs/1712.00595.

9 Monica Bianchini, Marco Gori, and Franco Scarselli. PageRank and Web communities. In
Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), pages
365–371, oct 2003. doi:10.1109/WI.2003.1241217.

10 Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. Efficient PageRank
Tracking in Evolving Networks. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, KDD ’15, pages 875–884, New York, NY, USA, 2015. ACM. doi:
10.1145/2783258.2783297.

11 Oron Vanunu, Oded Magger, Eytan Ruppin, Tomer Shlomi, and Roded Sharan. Associating
Genes and Protein Complexes with Disease via Network Propagation. PLOS Computational
Biology, 6(1):e1000641, 2010. doi:10.1371/journal.pcbi.1000641.

12 Ortal Shnaps, Eyal Perry, Dana Silverbush, and Roded Sharan. Inference of Personalized
Drug Targets via Network Propagation. Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, 21:156–67, 2016. URL: https://www.semanticscholar.
org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/
b57104bd662ffeb95bb150d00adb381caffce013.

13 Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Bidirectional PageRank Estimation:
From Average-Case to Worst-Case. In Algorithms and Models for the Web Graph - 12th
International Workshop, WAW 2015, Eindhoven, The Netherlands, December 10-11, 2015,
Proceedings, WAW 2015, pages 164–176, New York, NY, USA, 2015. Springer-Verlag New
York, Inc. doi:10.1007/978-3-319-26784-5_13.

14 Sushant Patkar, Assaf Magen, Roded Sharan, and Sridhar Hannenhalli. A network diffusion
approach to inferring sample-specific function reveals functional changes associated with
breast cancer. PLoS Computational Biology 13(11): e1005793, in press, 13, nov 2017.
doi:10.1371/journal.pcbi.1005793.

15 Yomtov Almozlino, Nir Atias, Dana Silverbush, and Roded Sharan. ANAT 2.0: recon-
structing functional protein subnetworks. BMC bioinformatics, 18(1):495, 2017. doi:
10.1186/s12859-017-1932-1.

A Supplementary proofs

I Lemma A.1. When ForwardPushSym(W,α, ε, p) returns,
∑
t∈V
| P (t)√

w(t)
− π(p, t)| < 2εmφ

where π(p, t) is the propagation score for node t with prior p under symmetric normalization.

Proof. By Lemma 3.3, ForwardPush applied on S with prior p′ returns a vector P of

WABI 2018

http://arxiv.org/abs/1603.07796
http://arxiv.org/abs/1603.07796
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://dx.doi.org/10.1038/nrg.2017.38
http://arxiv.org/abs/1712.00595
http://dx.doi.org/10.1109/WI.2003.1241217
http://dx.doi.org/10.1145/2783258.2783297
http://dx.doi.org/10.1145/2783258.2783297
http://dx.doi.org/10.1371/journal.pcbi.1000641
https://www.semanticscholar.org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/b57104bd662ffeb95bb150d00adb381caffce013
https://www.semanticscholar.org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/b57104bd662ffeb95bb150d00adb381caffce013
https://www.semanticscholar.org/paper/Inference-of-Personalized-Drug-Targets-via-Network-Shnaps-Perry/b57104bd662ffeb95bb150d00adb381caffce013
http://dx.doi.org/10.1007/978-3-319-26784-5_13
http://dx.doi.org/10.1371/journal.pcbi.1005793
http://dx.doi.org/10.1186/s12859-017-1932-1
http://dx.doi.org/10.1186/s12859-017-1932-1

7:12 A Dynamic Algorithm for Network Propagation

estimated scores, where
∑
t∈V
|P (t)− π(p′, t)| = |P − πp′|1 ≤ 2εm.

|P − ψ(S,D1/2p, α)|1 ≤ 2εm→
|P − ψ(S,D1/2p, α)|1 ≤ 2εm|D−1/2|1|D1/2|1 →

|D−1/2|1|P − ψ(S,D1/2p, α)|1 ≤ 2εm|D−1/2|1 →
|D−1/2|1|P − ψ(S,D1/2p, α)|1 ≤ 2εmφ

Since |D−1/2|1 = sup
v 6=0

|D−1/2v|1
|v|1 it follows that |D−1/2v|1 = |D−1/2v|1

|v|1 |v|1 ≤ |D−1/2|1|v|1.

Therefore: |D−1/2P −D−1/2ψ(S,D1/2p, α)|1 ≤ 2εmφ.
Note that ψ(W,p, α) is a vector of propagation scores π(p, t) for all nodes t. By the stochastic
Lemma 3.6, ψ(W,p, α) = D−1/2ψ(S,D1/2p, α). Thus,

|D−1/2P − ψ(W,p, α)|1 ≤ 2εmφ→
∑
t∈V
| P (t)√

w(t)
− π(p, t)| ≤ 2εmφ J

I Lemma A.2. When V ertexRemoveProp(v,R, P,W, ε) returns,
∑
t∈V
| P (t)√

w′(t)
− π′(p, t)| <

2εmφ where π′(p, t) is the propagation score for node t with prior p under symmetric nor-
malization after node v removal.

Proof. Denote by R′, P ′, S′, D′ the changed residuals and estimates, weights and sum
of degrees (for an isolated vertex u we define D−1

uu = Duu = 1), respectively, after line
(16) in V ertexRemoveProp and p′ := D1/2p, p′′ := D′1/2p. Note that p′u :=

√
w(u)pu,

p′′u :=
√
wv(u)pu by definition of D′ (after node removal). We will first prove the following:

I Lemma A.3. The following holds:
1. if x 6= v then P ′(x)S′xu = P (x)Sxu
2. if x = v and u ∈ N(v) then P ′(x)S′xu = 0
3. if x = v and u /∈ N(v) then P ′(x)S′xu = P (x)Sxu

Proof.
1. Let x 6= v, if P (x) 6= P ′(x) then x ∈ N(v) by algorithm def, hence P ′(x) = P (x)/Fu(v)

and S′xu = SxuFu(v). Then for sure P ′(x)S′xu = P (x)Sxu. If P (x) = P ′(x) then x is not
a neighbor of v, hence by algorithm def. S′xu = Sxu.

2. Let x = v and u ∈ N(v), by algorithm def, S′xu = S′vu = 0 as the edge was removed, and
P ′(x)S′xu = 0.

3. Let x = v and u /∈ N(v), by algorithm def, P ′(x) = P (x), as no edge that connects to u
was removed, also S′xu = Sxu hence P (x)Sxu = P ′(x)S′xu. J

We will show that after line (16) in V ertexRemoveProp (2), the invariants of
ForwardPush (3.1) are kept with respect to p′′ as the prior, S′ as the weights matrix and α.

Let u ∈ LeafN(v), then after line (16) node u becomes isolated and
P ′(u) + αR′(u) = αpv = αp′′v as required.
Let u ∈ N(v), we will show the invariant is kept for u. We know:

P (u) + αR(u) = (1− α)
∑
x∈V

P (x)Sxu + αp′u (4)

We want to show:
P ′(u) + αR′(u) = (1− α)

∑
x∈V

P ′(x)S′xu + αp′′u (5)

B. Sternberg and R. Sharan 7:13

Hence, it is enough to show that RHS of (5) minus the RHS of (4) equals to the LHS of
(5) minus the LHS of (4).
Using Lemma A.3, for any node x 6= v it holds P ′(x)S′xu = P (x)Sxu and for x = v it
holds P ′(x)S′xu = 0. Then:

((1− α)
∑
x∈V

P ′(x)S′xu + αp′′u) − ((1− α)
∑
x∈V

P (x)Sxu + αp′u) =

−(1− α)P (v)Svu − α(p′u − p′′u)
By Algorithm 2, line 8:

(P ′(u) + αR′(u))− (P (u) + αR(u)) = (P ′(u)− P (u)) + α(R′(u)−R(u))

= −(1− 1
Fv(u))P (u) + α[1

α
(1− 1

Fv(u))P (u)

− (1− α)
α

P (v)Svu + (
√
wv(u)−

√
w(u))pu]

= −(1− α)P (v)Svu + α(p′′u − p′u)
Let u /∈ N(v), using Lemma A.3, P ′(x)S′xu = P (x)Sxu for any x. By algorithm def.
P ′(u) = P (u), R′(u) = R(u) and p′u = p′′u. Then:

P ′(u) + αR′(u) = P (u) + αR(u) =
(1− α)

∑
x∈V

P (x)Sxu + αp′u = (1− α)
∑
x∈V

P ′(x)S′xu + αp′′u

Therefore, after applying V ertexRemoveProp we compute a valid propagation vector
over the weights S′′ with p′′ as prior and α after node v removal. using A.1 we get the same
approximation. J

WABI 2018

	Introduction
	Preliminaries
	The Forward-Push algorithm
	A dynamic decremental algorithm for vertex removals
	Results
	Conclusions
	Supplementary proofs

