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Abstract
High-throughput sequencing technologies have led to explosive growth of genomic databases;
one of which will soon reach hundreds of terabytes. For many applications we want to build
and store indexes of these databases but constructing such indexes is a challenge. Fortunately,
many of these genomic databases are highly-repetitive – a characteristic that can be exploited
and enable the computation of the Burrows-Wheeler Transform (BWT), which underlies many
popular indexes. In this paper, we introduce a preprocessing algorithm, referred to as prefix-free
parsing, that takes a text T as input, and in one-pass generates a dictionary D and a parse P
of T with the property that the BWT of T can be constructed from D and P using workspace
proportional to their total size and O(|T |)-time. Our experiments show that D and P are
significantly smaller than T in practice, and thus, can fit in a reasonable internal memory even
when T is very large. Therefore, prefix-free parsing eases BWT construction, which is pertinent
to many bioinformatics applications.
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Supplement Material Source code: https://gitlab.com/manzai/Big-BWT
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1 Introduction

The money and time needed to sequence a genome have shrunk shockingly quickly and
researchers’ ambitions have grown almost as quickly: the Human Genome Project cost billions
of dollars and took a decade but now we can sequence a genome for about a thousand dollars
in about a day. The 1000 Genomes Project [21] was announced in 2008 and completed in
2015, and now the 100,000 Genomes Project is well under way [22]. With no compression
100,000 human genomes occupy roughly 300 terabytes of space, and genomic databases
will have grown even more by the time a standard research machine has that much RAM.
At the same time, other initiatives have began to study how microbial species behave and
thrive in environments. These initiatives are generating public datasets which are just are as
equally challenging from a size perspective as the 100,000 Genomes Project. For example, in
recent years, there has been an initiative to move toward using whole genome sequencing
to accurately identify and track foodborne pathogens (e.g. antibiotic resistant bacteria) [5].
This led to the existence of GenomeTrakr, which is a large public effort to use genome
sequencing for surveillance and detection of outbreaks of foodborne illnesses. Currently,
the GenomeTrakr effort includes over 100,000 samples, spanning several species available
through this initiative – a number that continues to rise as datasets are continually added [19].
Unfortunately, analysis of this data is limited due to their size, even though the similarity
between genomes of individuals of the same species means the data is highly compressible.

These public databases are used in various applications – e.g., to detect genetic variation
within individuals, determine evolutionary history within a population, and assemble the
genomes of novel (microbial) species or genes. Pattern matching within these large databases
is fundamental to all these applications, yet repeatedly scanning these – even compressed
– databases is infeasible. Thus for these and many other applications, we want to build
and use indexes from the database. Since these indexes should also fit in RAM and cannot
rely on word boundaries, there are only a few candidates. Many of the popular indexes
in bioinformatics are based on the Burrows-Wheeler Transform (BWT) [4] and there have
been a number of papers about building BWTs for genomic databases; see, e.g., [18] and
references therein. However, it is difficult to process anything more than a few terabytes of
raw data per day with current techniques and technology because of the difficulty of working
in external memory.

Since genomic databases are often highly repetitive, we revisit the idea of applying a
simple compression scheme and then computing the BWT from the resulting encoding in
internal memory. This is far from being a novel idea – e.g., Ferragina, Gagie and Manzini’s
bwtdisk software [7] could already in 2010 take advantage of its input being given compressed,
and Policriti and Prezza [17] recently showed how to compute the BWT from the LZ77 parse
of the input using O(n(log r + log z))-time and O(r + z)-space, where n is the length of the
uncompressed input, r is the number of runs in the BWT and z is the number of phrases in
the LZ77 parse – but we think the preprocessing step we describe here, prefix-free parsing,
stands out because of its simplicity and flexibility. Specifically, the parsing algorithm itself is
straightforward and it can either be made to work using a single pass over the data on disk
or it can be parallelized. Once we have the results of the parsing, which are a dictionary
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and a parse, building the BWT out of them is more involved, but when our approach works
well, the dictionary and the parse are together much smaller than the initial dataset and
that makes the BWT computation less resource-intensive.

Our Contributions. In this paper, we formally define and present prefix-free parsing. The
main idea of this method is to divide the input text into overlapping variable-length phrases
with delimiting prefixes and suffixes. To accomplish this division, we slide a window of
length w over the text and, whenever the Karp-Rabin hash of the window is 0 modulo p,
we terminate the current phrase at the end of the window and start the next one at the
beginning of the window. This concept is partly inspired by rsync’s [1] use of a rolling hash
for content-slicing. Here, w and p are parameters that affect the size of the dictionary of
distinct phrases and the number of phrases in the parse. This takes linear-time and one pass
over the text, or it can be sped up by running several windows in different positions over the
text in parallel and then merging the results.

Just as rsync can usually recognize when most of a file remains the same, we expect that
for most genomic databases and good choices of w and p, the total length of the phrases in
the dictionary and the number of phrases in the parse will be small in comparison to the
uncompressed size of the database. We demonstrate experimentally that with prefix-free
parsing we can compute BWT using less memory and equivalent time. In particular, using
our method we reduce peak memory usage up to 10x over a standard baseline algorithm which
computes the BWT by first computing the suffix array using the algorithm SACA-K [16],
while requiring roughly the same time on large sets of salmonella genomes obtained from
GenomeTrakr.

In Section 3, we show how we can compute the BWT of the text from the dictionary
and the parse alone using workspace proportional only to their total size, and time linear
in the uncompressed size of the text when we can work in internal memory. In Section 4
we describe our implementation and report the results of our experiments showing that in
practice the dictionary and parse often are significantly smaller than the text and so may fit
in a reasonable internal memory even when the text is very large, and that this often makes
the overall BWT computation both faster and smaller. We conclude in Section 5 and discuss
directions for future work. Prefix-free parsing and all accompanied documents are available
at https://gitlab.com/manzai/Big-BWT.

2 Review of the Burrows-Wheeler Transform

As part of the Human Genome Project, researchers had to piece together a huge number
of relatively tiny, overlapping pieces of DNA, called reads, to assemble a reference genome
about which they had little prior knowledge. Once the Project was completed, however, they
could then use that reference genome as a guide to assemble other human genomes much
more easily. To do this, they indexed the reference genome such that, after running a DNA
sample from a new person through a sequencing machine and obtaining another collection of
reads, for each of those new reads they could quickly determine which part of the reference
genome it matched most closely. Since any two humans are genetically very similar, aligning
the new reads against the reference genome gives a good idea of how they are really laid out
in the person’s genome.

In practice, the best solutions to this problem of indexed approximate matching work
by reducing it to a problem of indexed exact matching, which we can formalize as follows:
given a string T (which can be the concatenation of a collection of strings, terminated by
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Figure 1 The suffix trie for our example with the three strings GATTACAT, GATACAT and
GATTAGATA. The input is shown at the bottom, in grey because we do not need to store it.

special symbols), pre-process it such that later, given a pattern P , we can quickly list all
the locations where P occurs in T . We now start with a simple but impractical solution to
the latter problem, and then refine it until we arrive at a fair approximation of the basis
of most modern assemblers, illustrating the workings of the Burrows-Wheeler Transform
(BWT) along the way.

Suppose we want to index the three strings GATTACAT, GATACAT and GATTAGATA,
so T [1..n] = GATTACAT$1GATACAT$2GATTAGATA$3, where $1, $2 and $3 are termin-
ator symbols. Perhaps the simplest solution to the problem of indexing T is to build a trie of
the suffixes of the three strings in our collection (i.e., an edge-labelled tree whose root-to-leaf
paths are the suffixes of those strings) with each leaf storing the starting position of the
suffix labelling the path to that leaf, as shown in Figure 1.

Suppose every node stores pointers to its children and its leftmost and rightmost leaf
descendants, and every leaf stores a pointer to the next leaf to its right. Then given P [1..m],
we can start at the root and descend along a path (if there is one) such that the to the node
at depth i is P [i], until we reach a node v at depth m+ 1. We then traverse the leaves in v’s
subtree, reporting the the starting positions stored at them, by following the pointer from v

to its leftmost leaf descendant and then following the pointer from each leaf to the next leaf
to its right until we reach v’s rightmost leaf descendant.

The trie of the suffixes can have a quadratic number of nodes, so it is impractical for
large strings. If we remove nodes with exactly one child (concatenating the edge-labels above
and below them), however, then there are only linearly many nodes, and each edge-label
is a substring of the input and can be represented in constant space if we have the input
stored as well. The resulting structure is essentially a suffix tree (although it lacks suffix and
Weiner links), as shown in Figure 2. Notice that the label of the path leading to a node v is
the longest common prefix of the suffixes starting at the positions stored at v’s leftmost and
rightmost leaf descendants, so we can navigate in the suffix tree, using only the pointers we
already have and access to the input.

Although linear, the suffix tree still takes up an impractical amount of space, using several
bytes for each character of the input. This is significantly reduced if we discard the shape of
the tree, keeping only the input and the starting positions in an array, which is called the
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Figure 2 The suffix tree for our example. We now store the input.

suffix array (SA). The SA for our example is shown in Figure 3. Since the entries of the
SA are the starting points of the suffixes in lexicographic order, with access to T we can
perform two binary searchs to find the endpoints of the interval of the suffix array containing
the starting points of suffixes starting with P : at each step, we consider an entry SA[i] and
check if T [SA[i]] lexicographically precedes P . This takes a total of O(m logn) time done
naïvely, and can be sped up with more sophisticated searching and relatively small auxiliary
data structures.

Even the SA takes linear space, however, which is significantly more than what is needed
to store the input when the alphabet is small (as it is in the case of DNA). Let Ψ be the
function that, given the position of a value i < n in the SA, returns the position of i + 1.
Notice that, if we write down the first character of each suffix in the order they appear in the
SA, the result is a sorted list of the characters in T , which can be stored using using O(logn)
bits for each character in the alphabet. Once we have this list stored, given a position i in
SA, we can return T [SA[i]] efficiently.

Given a position i in SA and a way to evaluate Ψ, we can extract T [SA[i]..n] by
writing T [SA[i]], T [SA[Ψ(i)]], T [SA[Ψ2(i)]], . . .. Therefore, we can perform the same kind
of binary search we use when with access to a full suffix array. Notice that if T [SA[i]] ≺
T [SA[i + 1]] then Ψ(i) < Ψ(i + 1), meaning that Ψ(1), . . . ,Ψ(n) can be divided into σ

increasing consecutive subsequences, where σ is the size of the alphabet. It follows that we
can store nH0(T ) +o(n log σ) bits, where H0(T ) is the 0th-order empirical entropy of T , such
that we can quickly evaluate Ψ. This bound can be improved with a more careful analysis.

Now suppose that instead of a way to evaluate Ψ, we have a way to evaluate quickly its
inverse, which is called the last-to-first (LF) mapping. (This name was not chose because,
if we start with the position of n in the suffix array and repeatedly apply the LF mapping
we enumerate the positions in the SA in decreasing order of their contents, ending with 1;
to some extent, the name is a lucky coincidence.) The LF mapping for our example is also
shown with arrows in Figure 3. Since it is the inverse of Ψ, the sequence LF(1), . . . ,LF(n)
can be partitioned into σ incrementing subsequences: for each character c in the alphabet,
if the starting positions of suffixes preceded by copies of c are stored in SA[j1], . . . ,SA[jt]
(appearing in that order in the SA), then LF(j1) is 1 greater than the number of characters

WABI 2018
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G A T T A C A T $1
1 2 3 4 5 6 7 8 9
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Figure 3 The suffix array for our example is the sequence of values stored in the leaves of the
tree (which we need not store explicitly). The LF mapping is shown as the arrows between two
copies of the suffix array; the arrows to values i such that T [SA[i]] = A are heavy, to illustrate that
they point to consecutive positions in the suffix array and do not cross. Since Ψ is the inverse of the
LF mapping, it can be obtained by simply reversing the direction of the arrows.

lexicographically less than c in T and LF(j2), . . . ,LF(jt) are the next t−1 numbers. Figure 3
illustrates this, with the arrows to values i such that T [SA[i]] = A heavy, to illustrate that
they point to consecutive positions in the suffix array and do not cross.

Consider the interval IP [i..m] of the SA containing the starting positions of suffixes
beginning with P [i..m], and the interval IP [i−1] containing the starting positions of suffixes
beginning with P [i− 1]. If we apply the LF mapping to the SA positions in IP [i..m], the SA
positions we obtain that lie in IP [i−1] for a consecutive subinterval, containing the starting
positions in T of suffixes beginning with P [i− 1..m]. Therefore, we can search also with the
LF mapping.

If we write the character preceding each suffix of T (considering it to be cyclic) in the
lexicographic order of the suffixes, the result is the Burrows-Wheeler Transform (BWT) of
T . A rank data structure over the BWT (which, given a character and a position, returns
the number of occurrences of that character up to that position) can be used to implement
searching with the LF-mapping, together with an array C indicating for each character in the
alphabet how many characters in T are lexicographically strictly smaller than it. Specifically,

LF(i) = BWT.rankBWT[i](i) + C[BWT[i]] .

If follows that, to compute IP [i−1..m] from IP [i..m], we perform a rank query for P [i− 1]
immediately before the beginning of IP [i..m] and add C[P [i+ 1]] + 1 to the result, to find
the beginning of IP [i−1..m]; and we perform a rank query for P [i− 1] at the end of IP [i..m]
and add C[P [i + 1]] to the result, to find the end of IP [i−1..m]. Figure 4 shows the BWT
for our example, and the sorted list of characters in T . Comparing it to Figure 3 makes the
formula above clear: if BWT[i] is the jth occurrence of that character in the BWT, then
the arrow from LF(i) leads from i to the position of the jth occurrence of that character in
the sorted list. This is the main idea behind FM-indexes [8], and the main motivation for
bioinformaticians to be interested in building BWTs.
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Figure 4 The BWT and the sorted list of characters for our example. Drawing arrows between
corresponding occurrences of characters in the two strings gives us the diagram for the LF-mapping.

3 Theory

We let E ⊆ Σw be any set of strings each of length w ≥ 1 over the alphabet Σ and let
E′ = E ∪ {#, $w}, where # and $ are special symbols lexicographically less than any in Σ.
We consider a text T [0..n− 1] over Σ and let D be the maximum set such that for d ∈ D,

d is a substring of #T $w,
exactly one proper prefix of d is in E′,
exactly one proper suffix of d is in E′,
no other substring of d is in E′.

We let S be the set of suffixes of length greater than w of elements of D.
Given T and a way to recognize strings in E, we can build D iteratively by simulating

scanning #T $w to find occurrences of elements of E′, adding to D each substring of #T $w

that starts at the beginning of one such occurrence and ends at the end of the next one.
While we are building D we also build a list P of the occurrences of the elements of D in T ,
which we call the parse (although each consecutive pair of elements overlap by w characters,
so P is not a partition of the characters of #T $w). We then build S from D and sort it.

For example, suppose we have Σ = {!, A, C, G, T}, w = 2, E = {AC, AG, T!} and

T = GATTACAT!GATACAT!GATTAGATA .

Then it follows that we get

D = {#GATTAC, ACAT!, AGATA$$, T!GATAC, T!GATTAG} ,
S = {#GATTAC, GATTAC, . . . , TAC,

ACAT!, CAT!, AT!,
AGATA$$, GATA$$, . . . , A$$,
T!GATAC, !GATAC, . . . , TAC,

T!GATTAG, !GATTAG, . . . , TAG}

and, identifying elements of D by their lexicographic ranks, P = 0, 1, 3, 1, 4, 2.

WABI 2018



2:8 Prefix-Free Parsing

I Lemma 1. S is a prefix-free set.

Proof. If s ∈ S were a proper prefix of s′ ∈ S then, since |s| > w, the last w characters of s –
which are an element of E′ – would be a substring of s′ but neither a proper prefix nor a
proper suffix of s′. Therefore, any element of D with s′ as a suffix would contain at least
three substrings in E′, contrary to the definition of D. J

I Lemma 2. Suppose s, s′ ∈ S and s ≺ s′. Then sx ≺ s′x′ for any strings x, x′ ∈
(Σ ∪ {#, $})∗.

Proof. By Lemma 1, s and s′ are not proper prefixes of each other. Since they are not equal
either (because s ≺ s′), it follows that sx and s′x′ differ on one of their first min(|s|, |s′|)
characters. Therefore, s ≺ s′ implies sx ≺ s′x′. J

I Lemma 3. For any suffix x of #T $w with |x| > w, exactly one prefix s of x is in S.

Proof. Consider the substring d stretching from the beginning of the last occurrence of
an element of E′ that starts before or at the starting position of x, to the end of the first
occurrence of an element of E′ that starts strictly after the starting position of x. Regardless
of whether d starts with # or another element of E′, it is prefixed by exactly one element of
E′; similarly, it is suffixed by exactly one element of E′. It follows that d is an element of D.
Let s be the prefix of x that ends at the end of that occurrence of d in #T $w, so |s| > w and
is a suffix of an element of D and thus s ∈ S. By Lemma 1, no other prefix of x is in S. J

Let f be the function that maps each suffix x of #T $w with |x| > w to the unique prefix
s of x with s ∈ S.

I Lemma 4. Let x and x′ be suffixes of #T $w with |x|, |x′| > w. Then f(x) ≺ f(x′) implies
x ≺ x′.

Proof. By the definition of f , f(x) and f(x′) are prefixes of x and x′ with |f(x)|, |f(x′)| > w.
Therefore, f(x) ≺ f(x′) implies x ≺ x′ by Lemma 2. J

Define T ′[0..n] = T $. Let g be the function that maps each suffix y of T ′ to the unique
suffix x of #T $w that starts with y, except that it maps T ′[n] = $ to #T $w. Notice that
g(y) always has length greater than w, so it can be given as an argument to f .

I Lemma 5. The permutation that lexicographically sorts T [0..n−1] $w, . . . , T [n−1] $w,#T $w

also lexicographically sorts T ′[0..n], . . . , T ′[n− 1..n], T ′[n].

Proof. Appending copies of $ to the suffixes of T ′ does not change their relative order, and
just as #T $w is the lexicographically smallest of T [0..n− 1] $w, . . . , T [n− 1] $w,#T $w, so
T ′[n] = $ is the lexicographically smallest of T ′[0..n], . . . , T ′[n− 1..n], T ′[n]. J

Let β be the function that, for i < n, maps T ′[i] to the lexicographic rank of f(g(T ′[i+
1..n])) in S, and maps T [n] to the lexicographic rank of f(g(T ′)) = f(T $w).

I Lemma 6. Suppose β maps k copies of a to s ∈ S and maps no other characters to s, and
maps a total of t characters to elements of S lexicographically less than s. Then the (t+ 1)st
through (t+ k)th characters of the BWT of T ′ are copies of a.

Proof. By Lemmas 4 and 5, if f(g(y)) ≺ f(g(y′)) then y ≺ y′. Therefore, β partially sorts
the characters in T ′ into their order in the BWT of T ′; equivalently, the characters’ partial
order according to β can be extended to their total order in the BWT. Since every total
extension of β puts those k copies of a in the (t + 1)st through (t + k)th positions, they
appear there in the BWT. J
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From D and P , we can compute how often each element s ∈ S is preceded by each
distinct character a in #T $w or, equivalently, how many copies of a are mapped by β to
the lexicographic rank of s. If an element s ∈ S is a suffix of only one element d ∈ D and a
proper suffix of that – which we can determine first from D alone – then β maps only copies
of the the preceding character of d to the rank of s, and we can compute their positions
in the BWT of T ′. If s = d or a suffix of several elements of D, however, then β can map
several distinct characters to the rank of s. To deal with these cases, we can also compute
which elements of D contain which characters mapped to the rank of s. We will explain in a
moment how we use this information.

For our example, T = GATTACAT!GATACAT!GATTAGATA, we compute the information shown
in Table 1. To ease the comparison to the standard computation of the BWT of T ′ $, shown
in Table 2, we write the characters mapped to each element s ∈ S before s itself.

By Lemma 6, from the characters mapped to each rank by β and the partial sums of
frequencies with which β maps characters to the ranks, we can compute the subsequence
of the BWT of T ′ that contains all the characters β maps to elements of S, which are not
complete elements of D and to which only one distinct character is mapped. We can also
leave placeholders where appropriate for the characters β maps to elements of S, which are
complete elements of D or to which more than one distinct character is mapped. For our
example, this subsequence is ATTTTTTCCGGGGAAA!$!AAA - - TAA. Notice we do not need all
the infomation in P to compute this subsequence, only D and the frequencies of its elements
in P .

Suppose s ∈ S is an entire element of D or a suffix of several elements of D, and
occurrences of s are preceded by several distinct characters in #T $w, so β assigns s’s
lexicographic rank in S to several distinct characters. To deal with such cases, we can sort
the suffixes of the parse P and apply the following lemma.

I Lemma 7. Consider two suffixes t and t′ of #T $w starting with occurrences of s ∈ S,
and let q and q′ be the suffixes of P encoding the last w characters of those occurrences of s
and the remainders of t and t′. If t ≺ t′ then q ≺ q′.

Proof. Since s occurs at least twice in #T $w, it cannot end with $w and thus cannot be
a suffix of #T $w. Therefore, there is a first character on which t and t′ differ. Since the
elements of D are represented in the parse by their lexicographic ranks, that character forces
q ≺ q′. J

We consider the occurrences in P of the elements of D suffixed by s, and sort the
characters preceding those occurrences of s into the lexicographic order of the remaining
suffixes of P which, by Lemma 7, is their order in the BWT of T ′. In our example, TAC ∈ S
is preceded in #T $$ by a T when it occurs as a suffix of #GATTAC ∈ D, which has rank 0 in
D, and by an A when it occurs as a suffix of T!GATAC ∈ D, which has rank 3 in D. Since the
suffix following 0 in P = 0, 1, 3, 1, 4, 2 is lexicographically smaller than the suffix following 3,
that T precedes that A in the BWT.

Since we need only D and the frequencies of its elements in P to apply Lemma 6 to build
and store the subsequence of the BWT of T ′ that contains all the characters β maps to
elements of S, to which only one distinct character is mapped, this takes space proportional to
the total length of the elements of D. We can then apply Lemma 7 to build the subsequence
of missing characters in the order they appear in the BWT. Although this subsequence of
missing characters could take more space than D and P combined, as we generate them we
can interleave them with the first subsequence and output them, thus still using workspace
proportional to the total length of P and the elements of D and only one pass over the space
used to store the BWT.
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Table 1 The information we compute for our example, T = GATTACAT!GATACAT!GATTAGATA. Each
line shows the lexicographic rank r of an element s ∈ S; the characters mapped to r by β; s itself;
the elements of D from which the mapped characters originate; the total frequency with which
characters are mapped to r; and the preceding partial sum of the frequencies.

mapped preceding
rank characters suffix sources frequency partial sum

0 A #GATTAC 1 1 0
1 T !GATAC 2 1 1
2 T !GATTAG 3 1 2
3 T A$$ 5 1 3
4 T ACAT! 4 2 4
5 T AGATA$$ 5 1 6
6 C AT! 4 2 7
7 G ATA$$ 5 1 9
8 G ATAC 2 1 10
9 G ATTAC 1 1 11
10 G ATTAG 3 1 12
11 A CAT# 4 2 13
12 A GATA$$ 5 1 15
13 ! GATAC 2 1 16
14 $ GATTAC 1 1 17
15 ! GATTAG 3 1 18
16 A T!GATAC 2 1 19
17 A T!GATTAG 3 1 20
18 A TA$$ 5 1 21
19 T, A TAC 1; 2 2 22
20 T TAG 3 1 24
21 A TTAC 1 1 25
22 A TTAG 3 1 26

If we want, we can build the first subsequence from D and the frequencies of its elements
in P ; store it in external memory; and make a pass over it while we generate the second
one from D and P , inserting the missing characters in the appropriate places. This way
we use two passes over the space used to store the BWT, but we may use significantly less
workspace.

Summarizing, assuming we can recognize the strings in E quickly, we can quickly compute
D and P with one scan over T and then from them, with Lemmas 6 and 7, we can compute
the BWT of T ′ = T $ by sorting the suffixes of the elements of D and the suffixes of P . Since
there are linear-time and linear-space algorithms for sorting suffixes when working in internal
memory, this implies our main theoretical result:

I Theorem 8. We can compute the BWT of T $ from D and P using workspace proportional
to sum of the total length of P and the elements of D, and O(n) time when we can work in
internal memory.
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Table 2 The BWT for T ′ = GATTACAT!GATACAT!GATTAGATA$. Each line shows a position in the
BWT; the character in that position; and the suffix immediately following that character in T ′.

i BWT[i] suffix

0 A $
1 T !GATACAT!GATTAGATA$
2 T !GATTAGATA$
3 T A$
4 T ACAT!GATACAT!GATTAGATA$
5 T ACAT!GATTAGATA$
6 T AGATA$
7 C AT!GATACAT!GATTAGATA$
8 C AT!GATTAGATA$
9 G ATA$
10 G ATACAT!GATTAGATA$
11 G ATTACAT!GATACAT!GATTAGATA$
12 G ATTAGATA$
13 A CAT!GATACAT!GATTAGATA$
14 A CAT!GATTAGATA$
15 A GATA$
16 ! GATACAT!GATTAGATA$
17 $ GATTACAT!GATACAT!GATTAGATA$
18 ! GATTAGATA$
19 A T!GATACAT!GATTAGATA$
20 A T!GATTAGATA$
21 A TA$
22 T TACAT!GATACAT!GATTAGATA$
23 A TACAT!GATTAGATA$
24 T TAGATA$
25 A TTACAT!GATACAT!GATTAGATA$
26 A TTAGATA$

4 Practice

We have implemented our BWT construction in order to test our conjectures that, first, for
most genomic databases and good choices of w and p, the total length of the phrases in the
dictionary and the number of phrases in the parse will both be small in comparison to the
uncompressed size of the database; second, computing the dictionary and the parse first and
then computing the BWT from them leads to an overall speedup and reduction in memory
usage. In this section we describe our implementation and then report our experimental
results.

4.1 Implementation
As described in Sections 1 and 3, we slide a window of length w over the text, keeping track
of the Karp-Rabin hash of the window; we also keep track of the hash of the entire prefix
of the current phrase that we have processed so far. Whenever the hash of the window is
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0 modulo p, we terminate the current phrase at the end of the window and start the next
one at the beginning of the window. We prepend a NULL character to the first phrase and
append w copies of NULL to the last phrase. If the text ends with w characters whose hash
is 0 modulo p, then we take those w character to be the beginning of the last phrase and
append to them w copies of NULL. We note that we prepend and append copies of the same
NULL character; although using different characters simplifies the proofs in Section 3, it is
not essential in practice.

We keep track of the set of hashes of the distinct phrases in the dictionary so far, as well
as the phrases’ frequencies. Whenever we terminate a phrase, we check if its hash is in that
set. If not, we add the phrase to the dictionary and its hash to the set, and set its frequency
to 1; if so, we compare the current phrase to the one in the dictionary with the same hash to
ensure they are equal, then increment its frequency. (Using a 64-bit hash the probability of
there being a collision is very low, so we have not implemented a recovery mechanism if one
occurs.) In both cases, we write the hash to disk.

When the parsing is complete, we have generated the dictionary D and the parsing
P = p1, p2, . . . , pz, where each phrase pi is represented by its hash. Next, we sort the
dictionary and make a pass over P to substitute the phrases’ lexicographic ranks for their
hashes. This gives us the final parse, still on disk, with each entry stored as a 4-byte integer.
We write the dictionary to disk phrase by phrase in lexicographic order with a special
end-of-phrase terminator at the end of each phrase. In a separate file we store the frequency
of each phrase in as a 4-byte integer. Using four bytes for each integer does not give us the
best compression possible, but it makes it easy to process the frequency and parse files later.
Finally, we write to a separate file the array W of length |P | such that W [j] is the character
of pj in position w + 1 from the end (recall each phrase has length greater than w). These
characters will be used to handle the elements of S that are also elements of D.

Next, we compute the BWT of the parsing P , with each phrase represented by its
4-byte lexicographic rank in D. The computation is done using the SACA-K suffix array
construction algorithm [16] which, among the linear time algorithms, is the one using
the smallest workspace. Instead of storing BWT (P ) = b1, b2, . . . , bz, we save the same
information in a format more suitable for the next phase. We consider the dictionary words
in lexicographic order, and, for each word di, we write the list of BWT positions where di

appears. We call this the inverted list for word di. Since the size of the inverted list of
each word is equal to its frequency, which is available separately, we write to file the plain
concatenation of the inverted lists using again four bytes per entry, for a total of 4|P | bytes.
In this phase we also permute the elements of W so that now W [j] is the character coming
from the phrase that precedes bj in the parsing, i.e. P [SA[j]− 2].

In the final phase of the algorithm we compute the BWT of the input T . We deviate
slightly from the description in Section 3 in that instead of lexicographically sorting the
suffixes in D larger than w we sort all of them and later ignore those which are of length
≤ w. The sorting is done applying the gSACAK algorithm [14] which computes the SA and
LCP array for the set of dictionary phrases. We then proceed as in Section 3. If during
the scanning of the sorted set S we meet s which is a proper suffix of several elements of
D we use a heap to merge their respective inverted lists writing a character to the final
BWT file every time we pop a position from the heap. If we meet s which coincides with
a dictionary word d we write the characters retrieved from W from the positions obtained
from d’s inverted list.
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Table 3 The dictionary and parse sizes for several files from the Pizza & Chili repetitive corpus,
with three settings of the parameters w and p. All sizes are reported in megabytes; percentages are
the sums of the sizes of the dictionaries and parses, divided by the sizes of the uncompressed files.

w = 6, p = 20 w = 8, p = 50 w = 10, p = 100
file size dict. parse % dict. parse % dict. parse %

cere 440 61 77 31 43 159 46 89 17 24
cere_no_Ns 409 33 77 27 43 33 18 60 17 19
dna.001.1 100 8 20 27 13 9 21 21 4 25

einstein.en.txt 446 2 87 20 3 39 9 4 17 5
influenza 148 16 28 30 32 12 29 49 6 37

kernel 247 14 52 26 14 20 13 15 10 10
world_leaders 45 5 5 21 8 2 21 11 1 26

world_leaders_no_dots 23 4 5 34 6 2 31 7 1 33

4.2 Experiments
In this section, the parsing and BWT computation are experimentally evaluated. All
experiments were run on a server with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and
756 gigabytes of RAM.

Table 3 shows the sizes of the dictionaries and parses for several files from the Pizza &
Chili repetitive corpus [2], with three settings of the parameters w and p. We note that
cere contains long runs of Ns and world_leaders contains long runs of periods, which can
either cause many phrases, when the hash of w copies of those characters is 0 modulo p, or a
single long phrase otherwise; we also display the sizes of the dictionaries and parses for those
files with all Ns and periods removed. The dictionaries and parses occupy between 5 and 31
percent of the space of the uncompressed files.

Table 4 shows the sizes of the dictionaries and parses for prefixes of a database of
Salmonella genomes [20]. The dictionaries and parses occupy between 14 and 44 percent
of the space of the uncompressed files, with the compression improving as the number of
genomes increases. In particular, the dataset of ten thousand genomes takes nearly 50 GB
uncompressed, but with w = 10 and p = 100 the dictionary and parse take only about 7 GB
together, so they would still fit in the RAM of a commodity machine. This seems promising,
and we hope the compression is even better for larger genomic databases.

Table 5 shows the runtime and peak memory usage for computing the BWT from the
parsing for the database of Salmonella genomes. As a baseline for comparison, simplebwt
computes the BWT by first computing the Suffix Array using algorithm SACA-K [16];
SACA-K is a linear time algorithm that uses O(1) workspace and is fast in practice. As
shown in Table 5, the peak memory usage of simplebwt is reduced by a factor of 4 to 10 by
computing the BWT from the parsing; furthermore, the total runtime is competitive with
simplebwt. In some instances, for example the databases of 5000, 10000 genomes, computing
the BWT from the parsing achieved significant runtime reduction over simplebwt; with
w = 10, p = 100 on these instances, the runtime reduction is more than factors of 2, 4,
respectively. For our BWT computations, the peak memory usage with w = 6, p = 20 stays
within a factor of roughly 2 of the original file size and is smaller than the orginal file size on
the larger databases of 1000 genomes. For the database of 5000 genomes, the most expensive
steps were parsing and computing the missing characters – about 23% of the total BWT –
to fill in the subsequence.

Qualitatively similar results on files from the Pizza & Chili corpus are shown in Table 6.
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Table 4 The dictionary and parse sizes for prefixes of a database of Salmonella genomes, with
three settings of the parameters w and p. Again, all sizes are reported in megabytes; percentages are
the sums of the sizes of the dictionaries and parses, divided by the sizes of the uncompressed files.

number of w = 6, p = 20 w = 8, p = 50 w = 10, p = 100
genomes size dict. parse % dict. parse % dict. parse %

50 249 68 43 44 77 20 39 91 10 40
100 485 83 85 35 99 39 28 122 19 29
500 2436 273 424 29 314 194 21 377 96 19

1000 4861 475 847 27 541 388 19 643 192 17
5000 24936 2663 4334 28 2915 1987 20 3196 985 17

10000 49420 4190 8611 26 4652 3939 17 5176 1955 14

Table 5 Time (seconds) and peak memory consumption (megabytes) of BWT calculations for
prefixes of a database of Salmonella genomes, for three settings of the parameters w and p and for
the comparison method simplebwt.

number of w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt
genomes time peak time peak time peak time peak

50 71 545 63 642 65 782 53 2247
100 118 709 100 837 102 1059 103 4368
500 570 2519 443 2742 402 3304 565 21923
1000 1155 4517 876 4789 776 5659 1377 43751
5000 7412 42067 5436 46040 4808 51848 11600 224423

10000 19152 68434 12298 74500 10218 84467 43657 444780

Table 6 Time (seconds) and peak memory consumption (megabytes) of BWT calculations on
various files from the Pizza & Chili repetitive corpus, for three settings of the parameters w and p
and for the comparison method simplebwt.

w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt
file time peak time peak time peak time peak

cere 90 603 79 559 74 801 90 3962
einstein.en.txt 53 196 40 88 35 53 97 4016

influenza 27 166 27 284 33 435 30 1331
kernel 43 170 29 143 25 144 50 2216

world_leaders 7 50 7 74 7 98 7 405

5 Conclusion and Future Work

We have described how prefix-free parsing can be used as preprocessing step to enable
compression-aware computation of BWTs of large genomic databases. Our results demonstrate
that the dictionaries and parses are often significantly smaller than the original input, and so
may fit in a reasonable internal memory even when T is very large. Finally, we show how the
BWT can be constructed from a dictionary and parse alone. We plan to investigate using
compressed suffix arrays during the construction of the BWT, instead of suffix arrays, which
should reduce our memory usage at the cost of increasing the running time by approximately
a factor logarithmic in the size of the input; we will report the results in the full version of
this paper.
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In future extended versions of this work, we plan to explore its applications to sequence
datasets that are terabytes in size; such as GenomeTrakr [19] and MetaSub [15]. We
note that when downloading large datasets, prefix-free parsing can avoid storing the whole
uncompressed dataset in memory or on disk. Suppose we run the parser on the dataset as it
is downloaded, either as a stream or in chunks. We have to keep the dictionary in memory
for parsing but we can write the parse to disk as we go, and in any case we can use less
total space than the dataset itself. Ideally, the parsing could even be done server-side to
reduce transmission time and/or bandwidth – which we leave for future implementation and
experimentation.

A natural extension of our method is to consider efficient parallelization of the parsing.
With k processors, we could divide the input string into k equal blocks, with each consecutive
pair of blocks overlapping by w characters; we scan each block with a processor, to find
the locations of the substrings of length w with Karp-Rabin hashes congruent to 0 modulo
p; and then we scan the input with the k processors in parallel to compute the dictionary
and parse, starting at roughly evenly-spaced locations of such substrings. Alternatively, our
approach can be viewed as a modified Schindler Transform [3] and since previous authors [6]
have shown how the Schindler Transform benefits from GPU parallelization, we believe that
GPU-based parallelization could be both easy and effective.

Perhaps the main use of BWTs is in FM-indexes [8], which are at the heart of the most
popular DNA aligners, including Bowtie [11, 10], BWA [12] and SOAP 2 [13]. With only
rank support over a BWT, we can count how many occurrences of a given pattern there are
in the text, but we cannot tell where they are without using a suffix-array sample. Until
recently, suffix-array samples for massive, highly repetitive datasets were usually either much
larger than the datasets BWTs, or very slow. Gagie, Navarro and Prezza [9] have now shown
we need only store suffix array values at the ends of runs in the BWT, however, and we
conjecture that we can build this sample while computing the BWT from the dictionary and
the parse. Indeed, we were initially motivated to study new approaches to BWT construction
because without them, Gagie et al.’s result may never realize its full potential.
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