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*Graphical Abstract (for review)



Highlights 

 Positively charged, surfactant-free AuNPs capped with L-cysteine methyl ester 

hydrochloride conjugated to poly(ethylene glycol) (PEG) were synthesised in this study. 

 PEGylated AuNPs formed nanoparticles with protamine-complexed siRNA, showing 

favourable physicochemical characteristics required for prolonged circulation in the blood. 

 PEGylation enhanced the biocompatibility of the AuNPs and AuNP.siRNA complexation. 

 PEGylation of AuNPs will facilitate conjugation of a targeting ligand to enhance cell 

specific uptake. 
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Abstract 

The potential of RNA interference (RNAi)-based therapeutics for cancer has received much 

attention; however, delivery of RNAi effectors, such as small interfering RNA (siRNA), 

remains an obstacle to clinical translation. Non-viral delivery vectors, including cationic 

lipids and liposomes, polymers, cyclodextrins, peptides and metals, have been used 

extensively to enhance siRNA delivery. Recently, the potential of gold nanoparticles (AuNPs) 

for transporting drugs, proteins and genetic materials has been demonstrated. Previously, our 

lab has synthesised positively charged, surfactant-free AuNPs in water by the reduction of 

gold (III) chloride (AuCl3) using hydroxylamine hydrochloride (NH2OH.HCl) in the presence 

of L-cysteine methyl ester hydrochloride (HSCH2CH(NH2)COOCH3.HCl) as a capping agent. 

These AuNPs, which achieve higher cell viability in comparison to cetyl trimethyl 

ammonium bromide (CTAB, a surfactant)-capped counterparts, have demonstrated potential 

for siRNA delivery. However, it is well known that systemic administration of cationic 

delivery systems without biological stablising moieties causes non-specific binding with 

negatively charged serum proteins, resulting in particle aggregation and opsonisation. 

Consequently, highly stable AuNPs capped with L-cysteine methyl ester hydrochloride 

(HSCH2CH(NH2)COOCH3.HCl) conjugated to poly(ethylene glycol) (PEG) were synthesised 

in this study. These PEGylated AuNPs formed nanoparticles (NPs) with siRNA (which was 

first compacted with protamine); the complexes had a diameter within the nanoscale range (~ 

250 nm), and a near neutral surface charge (~ 10 mV). PEGylation enhanced the 

biocompatibility of the AuNPs by reducing toxicity in a range of cell types, by inhibiting 

interaction with serum proteins thus avoiding aggregation, and, by providing protection 

against degradation by nucleases. In the future the existance of the PEG chain on the AuNPs 

will facilitate conjugation of a targeting ligand to enhance cell specific uptake. 
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1. Introduction 

The availability of data obtained from sequencing the whole genome of cancer cells has 

resulted in significant changes to our understanding of the molecular pathogenesis of cancer 

[1]. This information has advanced the application of RNA interference (RNAi) by 

identifying sequences complementary to specific target genes, which can be used to improve 

drug discovery and target validation [2] and [3]. Recently, inhibiting specific gene expression 

by RNAi has presented a new therapeutic strategy to treat many diseases, including metabolic 

disorders, viral infections and cancer at the molecular level [4]. However, one of the obstacles 

for RNAi effectors [i.e. small interference RNA (siRNA) and microRNA (miRNA)] impeding 

their clinical progression is the lack of safe and efficient delivery system [4]. Non-viral 

delivery vectors, including cationic lipids and liposomes, polymers, cyclodextrins, peptides 

and metals, have been extensively used for siRNA delivery with varying degrees of success 

[5] [6] [7] [8] [9] [10] [11] and [12]. Among these, gold nanoparticles (AuNPs) have shown 

great potential as siRNA delivery vectors for the treatment of various malignancies due to 

favorable properties such as a bio-inert surface, easily modifiable surface chemistry and the 

high degree of control possible over size and shape during synthesis [13] [14] [15] and [16].  

To achieve successful siRNA delivery, several studies have investigated the effect of particle 

size, shape, surface charge, chemical composition and formulation strategy for AuNPs on 

toxicity, intracellular trafficking and gene silencing [15] [16] [17] and [18]. Due to the 

variability of parameters used in these studies including the physicochemical properties of 

particles, cell types, dosing regimens and biochemical assays, however, it is difficult to 

identify the ideal properties of AuNP-based delivery system.  

We have recently synthesised a group of different sized, nearly spherical, positively charged, 

surfactant-free AuNPs by a seeding growth method involving the reduction of gold (III) 

chloride (AuCl3) using hydroxylamine hydrochloride (NH2OH.HCl) in the presence of L-

cysteine methyl ester hydrochloride (HSCH2CH(NH2)COOCH3.HCl) as a capping agent [19]. 

These AuNPs demonstrated significantly higher cell viability (~ 3 fold) in comparison to 

cetyl trimethyl ammonium bromide (CTAB, a surfactant)-capped counterparts. In addition, 

they achieved effective complexation of siRNA and facilitated internalisation into cancer 

cells, indicating the potential for siRNA delivery [19]. However, prior to systemic 

administration these AuNPs require further development; as positively charged delivery 
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vectors may cause in vivo instability due to non-specific adsorption of plasma/serum proteins 

[20] and [21]. In the case of cationic vectors modifications using polyethylene glycol (PEG) 

have been widely empolyed to improve stability in salt and serum environments, therefore 

reducing interaction with plasma/serum components and prolonging blood circulation of 

siRNA [22].   

PEGylation of a group of AuNPs capped with L-cysteine methyl ester hydrochloride 

(HSCH2CH(NH2)COOCH3.HCl) through partial ligand exchange of L-cysteine by thiolated 

methoxy polyethylene glycol (mPEG-SH) was achieved in the present study. When these 

positively charged AuNPs were decorated with PEG of different molecular weights they 

displayed spherical morphology with a wide range of mean diameters (20-200 nm). In order 

to achieve an effective formulation, siRNA was first compacted with protamine, followed by 

complexation with PEGylated AuNPs [23]. The physicochemical propeties and the 

biocompatibity of the resulting formulations were evaluated. 

 

2. Materials and methods 

2.1. Materials 

Purified H2O (resistivity  18.2 MΩ cm) was used as a solvent for synthesis of AuNPs. All 

glassware was cleaned with aqua regia (3 parts of concentrated HCl and 1 part of 

concentrated HNO3), rinsed with distilled water, ethanol, and acetone and oven-dried before 

use. Gold (III) chloride (AuCl3), sodium borohydride (NaBH4), hydroxylamine hydrochloride 

(NH2OH.HCl) were purchased from Sigma-Aldrich. L-cysteine methyl ester hydrochloride 

(HSCH2CH(NH2)COOCH3.HCl) was obtained from Fluka. Thiol terminated poly(ethylene 

glycol) methyl ether (mPEG-SH), Mw = 2,100, 5,400, 10,800 and 20,800 g mol
-1

 were 

purchased from Polymer Source®, which thereafter refer to PEG 2,000, 5,000, 10,000 and 

20,000, respectively. All products were used as received. 

 

2.2. Preparation of Gold Nanoparticles 

2.2.1. Seed-Mediated Growth of Gold Nanoparticles 
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The AuNPs were synthesised based on a seed-mediated growth method using hydroxylamine 

hydrochloride as a reducing agent [24] and [25]. In a typical procedure, to an aqueous 

solution (50 mL) of AuCl3 (0.5 mmol L
-1

), 0.49 mL of a 51.6 mmol L
-1

 L-cysteine methyl 

ester hydrochloride solution was added to different volumes of the AuNPs-L-cysteine 

colloidal seed solution. The mixture was stirred gently. Afterwards 0.33 mL of 115.8 mmol L
-

1
 NH2OH.HCl was added and the solution was stirred for a few hours (between 2 and 18 hr). 

Further details of the synthesis have been previously described in [19]. 

2.2.2. Grafting of Poly(ethylene glycol) Ligands 

Thiol functionalised methoxy poly(ethylene glycol) (mPEG-SH) was covalently grafted to the 

surface of AuNPs through gold sulfur bond formation. A solution of mPEG-SH of the desired 

molecular weight was added drop wise to a solution of L-cysteine-capped AuNPs while 

stirring (the final concentration of mPEG-SH was fixed at 3 µmol L
-1 

for GR5 and GR7 and 5 

µmol L
-1

 for GR8, GR9, GR11 and GR12). The solution was stirred for ~2 h allowing L-

cysteine ligands to exchange with PEG-SH; successful attachment of PEG onto AuNPs was 

confirmed by DLS and Zeta potential measurements.  

2.2.3. Dynamic Light Scattering 

The measurements were undertaken with the Malvern instrument (Zetasizer Nano Series) at 

25 C using the default non-invasive back scattering (NIBS) technique with a detection angle 

of 173°. Three measurements were made per sample and the standard deviation (σ) was 

calculated, typically σ = 1-2 nm. 

 

2.3. Preparation and Characterisation of Gold Nanoparticle.siRNA Complexation  

The PEGylated AuNPs (100 µg mL
-1

) were added to a solution of siRNA (the Negative 

Control siRNA, sense sequence 5’-UUC UCC GAA CGU GUC ACG U-3’, prepared in 

RNase-free water following Sigma-Aldrich recommendations), at different mass ratios (MRs) 

of AuNPs to siRNA, followed by 1 h incubation with 300 rpm shaking at room temperature 

(RT).  

Alternatively, protamine (Sigma-Aldrich) was added to a solution of siRNA at a MR 0.4 of 

protamine to siRNA, followed by 30 min incubation at RT with 300 rpm shaking. 
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Subsequently, AuNPs were added to ‘protamine.siRNA’ at different MRs of AuNPs to siRNA, 

followed by 30 min incubation with 300 rpm shaking.  

The ability of AuNPs to complex ‘protamine.siRNA’ was analysed by gel retardation. In brief, 

complexes of AuNPs and ‘protamine.siRNA’ were prepared as described above and loaded 

onto 1% (w/v) agarose gels in Tris/Borate/EDTA (TBE) buffer (Sigma-Aldrich) containing 

SafeView (NBS Biologicals, UK). Electrophoresis was performed at 120 V for 30 min and 

the resulting gels were photographed under UV. 

In addition, particle size and zeta potential were measured with the Malvern instrument 

(Zetasizer Nano Series). 0.01 mM NaCl (0.2 μm membrane-filtered) was added to the 

complexes and made up to 1 mL before measurement. The concentration of siRNA was fixed 

at 1 µg mL
-1

. 

 

2.4. Serum Stability of siRNA Complexes 

Complexes containing ‘protamine.siRNA’ (0.5 µg AuNPs, 0.2 µg protamine and 0.5 µg 

siRNA, MR = 1:0.4:1) were incubated for 24 h in 50% (v/v) fetal bovine serum (FBS, Sigma-

Aldrich) at 37 °C. Following incubation, samples were treated for 1 h with excess heparin 

(1000 IU mL
-1

) to release the siRNA from complexes at RT and then loaded onto 1.5% (w/v) 

agarose gels in TBE buffer containing SafeView. Electrophoresis was performed at 120 V for 

30 min and the resulting gels were photographed under UV. 

In addition, these complexes (1 µg AuNPs, 0.4 µg protamine and 1 µg siRNA, MR = 1:0.4:1)  

were incubated in 50 % (v/v) FBS at 37 °C for 24 h and the particle size was measured using 

the Malvern Nano-ZS (Malvern Instruments, UK). FBS on its own and complexes incubated 

in deionised water (DIW, it was filtered by 0.2 µm membrane) at 37 °C for 24 h were used as 

controls. The concentration of siRNA was fixed at 1 µg mL
-1

. 

 

2.5. Cell Culture and Cytotoxicity  

Hep G2 (human hepatocellular carcinoma cell line) and Caco-2 (human colorectal 

adenocarcinoma cell line) cells were maintained in DMEM medium (Sigma-Aldrich) 
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supplemented with 10 % FBS and 2 mM L-glutamine. PC-3 (human prostate carcinoma cell 

line), B16F10 (mouse melanoma cell line) and CT26 (mouse colon carcinoma cell line) cells 

were maintained in RPMI medium (Sigma-Aldrich) supplemented with 10 % FBS. These 

cells (passage number < 30) were grown in the incubator (ThermoForma) at 37 °C with 5 % 

CO2 and 95 % relative humidity.  

Cytotoxicity of AuNPs was assessed using the MTT assay with 3-(4, 5-Dimethylthiazol-2-

yl)-2, 5-diphenyltetrazolium bromide (Sigma-Aldrich) [26]. Hep G2 (20,000 cells per well), 

Caco-2 (10,000 cells per well), PC-3 (5,000 cells per well), B16F10 (1,000 cells per well) and 

CT26 (6,000 cells per well) cells were seeded within 200 µl growth media in 96-well plates 

one day before transfection. AuNPs were incubated with cells for 24 h under normal growth 

conditions. Following incubation, the particle solution was replaced with 200 µl fresh growth 

medium, and 20 µl MTT stock (5 mg mL
-1

 in PBS) was added and incubated with cells for 4 

h at 37 °C. The contents were removed and 100 µl DMSO was added to dissolve the purple 

formazan products. Absorbance was measured at 590 nm using a microplate reader. Results 

were expressed as % dehydrogenase activity compared to untreated controls.  

 

2.6. Fluorescence Activated Cell Sorting 

PC-3 cells (5 x 10
4
 cells/well) were seeded in 24-well plates and incubated for 24 h under 

normal growth conditions. Cells were then transfected with 50 nM fluorescein-siRNA (sense 

sequence sense sequence 5’-UUC UCC GAA CGU GUC ACG U-3’, modified by 6-FAM on 

5’ of sense sequence, prepared in RNase-free water following Sigma-Aldrich 

recommendations), ‘protamine.fluorescein-siRNA’ or ‘protamine.fluorescein-siRNA’ 

complexed with AuNPs, and incubated for 4 and 24 h in 10 % FBS-containing growth 

medium. Naked fluorescein-siRNA was used as the negative control, and siRNA complexed 

with Lipofectamine® 2000 (Life Technologies) (prepared following the manufacturer’s 

recommendation) was used as the positive control. Before FACS, cells were first treated with 

CellScrub (Genlatins) to remove complexes associated with the cell surface (uninternalised 

complexes) according to manufacturer’s instructions. The medium was then removed by 

aspiration, and cells were washed twice with PBS and trypsinised. Cells were subsequently 

centrifuged (1,000 rpm for 5 min), the supernatant was carefully discarded and the pellets 

were re-suspended in 1 mL cold PBS in Polystyrene Round-Bottom Tubes (Becton 
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Dickinson). Ten thousands cells were measured for each sample using the Becton Dickinson 

FACScalibur manual. Fluorescein-positive cells were displayed by Histogram Plot. 

2.7. Statistics 

One-way analysis of variance (ANOVA) was used to compare multiple groups followed by 

Bonferroni’s post hoc test. Statistical significance was set at *p < 0.05. 

 

3. Results and discussion 

3.1. Synthesis and characterisation of PEGylated Gold Nanoparticles 

3.1.1. Synthesis of PEGylated Gold Nanoparticles 

Initially non-PEGylated L-Cysteine AuNPs with different sizes (GR5, GR7, GR8, GR9, 

GR11 and GR12) were synthesised as previously described [19]. Following the addition of 

mPEG-SH, with desired molecular weights (Mw = 2,100, 5,400; 10,800 and 20,800 g mol
-1

), 

L-cysteine ligands were partially exchanged with mPEG-SH. The aim of the present study 

was to stabilise the AuNPs with a neutral PEG while retaining some residual positive charge 

on the AuNP surface to enable the final AuNP-L-cysteine-PEG to complex negatively 

charged siRNA. Consequently, the mPEG-SH was not added in large excess, where the 

concentrations of mPEG-SH were fixed at 3 µmol L
-1

 for GR5 and GR7 ([Au(0)]/[mPEG-SH] 

= 167) and 5 µmol L
-1

 for GR8, GR9, GR11 and GR12 ([Au(0)]/[mPEG-SH] = 100), in order 

to produce a ‘mushroom’ conformation which is known to occur at low surface density rather 

than a ‘brush’ conformation which occurs at high PEG density [22]. However, it should be 

noted that a possible transition of mushroom to brush conformation can take place when the 

size of AuNP core decreases [23]. When the resulting PEGylated AuNPs solutions were 

stored at 4 °C for 12 months no significant changes in size and charge were detected. In 

addition, attempt to determine the number of mPEG-SH per AuNPs surface and study the 

effect of grafting density of mPEG-SH onto AuNPs-Lcysteine on their stability, cellular 

uptakes and efficiency in siRNA delivery, will be performed in future study [13] [16] [27] 

and [28]. 

3.1.2. Dynamic Light Scattering  
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Dynamic light scattering (DLS) is a method for characterisation of nanoparticle dispersions 

and nanoparticle-polymer hybrids from which the hydrodynamic diameter (Dh) can be 

determined. PEG is a flexible linear polymer that can dramatically affect the Brownian 

motion of particles by introducing additional frictional drag, thus reducing nanoparticle 

diffusivity. Moreover, PEGylation increases the stability of AuNPs in complex media and 

prevents their aggregation under physiological conditions [23]. Results in Fig. 1A show the 

hydrodynamic diameter calculated from the size distribution by volume of the samples 

AuNPs-PEG 2,000 with different AuNP core size and a fixed PEG length (Mw 2,100 g mol
-1

). 

The core diameter of AuNPs (namely GR5, GR7, GR8, GR9, GR11 and GR12) used in this 

study correspond to ~38, ~60, ~92, ~113, ~136, and ~191 nm as determined from DLS (Table 

1). In Fig. 1A, the position of the peak maximum of the AuNPs-PEG 2,000 shifts from 47 nm 

to 196 nm when the AuNP core increases from about 38 nm to 191 nm. While the zeta 

potential of all AuNPs-PEG 2,000 were approximately 31  2 mV due to the original 

positively charged AuNP core (Fig. 1B), it was noted that the zeta potential decreased by 4 to 

12 mV after PEGylation indicating that the particles were coated with the PEG 2,000 (Table 

1).  

Results in Fig. 2A show the size distribution of GR5 AuNPs-L-cysteine before and after 

coating with different PEG length (Mw ~ 2,100, 5,400, 10,800 and 20,800 g mol
-1

). An 

increase in the mean nanoparticle diameter from ~38 nm for ‘bare’ L-cysteine capped AuNPs 

to ~76 nm for an mPEG-SH molecular weight of 20,800 g mol
-1

 is clearly seen. The zeta 

potential measurements, Fig. 2B, shifted from around 35 mV for L-cysteine capped Au 

nanoparticles, to ~ 12 mV for AuNPs with an mPEG-SH molecular weight of 20,800 g mol
-1 

indicating the shielding of the surface charge on the nanoparticle by a coating of the neutral 

mPEG-SH.  

The results in Table 1 highlight the zeta potentials (mV), their peak width (zeta deviation) and 

hydrodynamic diameters (Dh) and the polydispersity index (PDI) of all the PEGylated 

AuNPs-L-cysteine solutions used in this study, as well as the synthesised ‘bare’ L-cysteine 

capped AuNPs prior to coating with mPEG-SH of different length. In Table 1, successful 

PEGylation of the AuNPs-L-cysteine can be clearly seen from the increase in size of all 

AuNP samples with increasing PEG length accompanied by a decrease in the zeta potential 

(Figs. 1, 2 and S1). In addition, PEGylated AuNPs displayed a nearly spherical morphology 
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(TEM data shown in S2) which was similar to the corresponding non-PEGylated 

nanoparticles [19].  

3.1.3. Cytotoxicity of PEGylated Gold Nanoparticles 

Although AuNPs are generally recognised as nontoxic, recent reports have demonstrated that 

physicochemical parameters, such as particles size, surface chemistry and charged surface 

functional groups, play a crucial role in determining genotoxic-, mutagenic- or cell toxicity 

effects [29] [30] and [31]. In this study, the cytotoxicity of PEGylated AuNPs was studied in 

Hep G2, Caco-2, PC-3, B16F10 and CT26 cells using an MTT assay (Table 1S to 5S). 

Results showed that PEGylated GR5, GR7, GR8, GR9, GR11 and GR12 AuNPs displayed 

higher cell viability (50% cell growth inhibition, IC50 ≈ 7 to 15 µg mL
-1

) in comparison with 

their non-PEGylated counterparts (IC50 ≈ 7 to 9 µg mL
-1

) as previously reported [19]. It is 

also interesting to note that AuNPs-L-cysteine with longer PEG chains demonstrated less 

cytotoxicity compared to those with shorter PEG (i.e. in the PC-3 cell line, GR11 with PEG 

2,000, 5,000, 10,000 and 20,000 displayed IC50 values equal to 8.7, 11.5, 13.8 and 15.9 µg 

mL
-1

, respectively) (Table 1S to 5S). Therefore, G11 AuNPs PEG 20,000 (Fig. S1) was 

selected for complexation with ‘protamine.siRNA’ in all further experiments (unless 

otherwise mentioned). 

 

3.2. Formation and characterisation of PEGylated Gold Nanoparticle.siRNA complexation 

3.2.1. Complexation of siRNA with PEGylated Gold Nanoparticles 

Previous results have shown that efficient complexation of siRNA with non-PEGylated 

Cysteine GR11 AuNPs occurred from MR20 onward via electrostatic interaction [19]; in 

contrast, PEGylated GR11 AuNPs-L-cysteine failed to complex siRNA (Fig. S3). This is 

most likely due to that fact that PEGylation may reduce the zeta potential and surface area of 

AuNPs, therefore impairing the complexation with siRNA [22] and [32].  

Protamine, a highly positive charged peptide, has been used as a condensation reagent for 

nucleic acids to improve transfection efficiency [25] and [33]. In order to achieve efficient 

siRNA complexation with the PEGylated AuNPs, protamine was first used to partially 

complex siRNA (Fig. S4). As the overall surface charge of ‘protamine.siRNA’ at MR 0.4 
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remained negative (~ -25 mV), it was selected for further complexation to the slightly 

cationic PEGylated G11 AuNPs. Results showed that the ‘protamine.siRNA’ was effectively 

complexed with PEGylated G11 (Fig. 3).  

The size and charge of complexes formed between siRNA, protamine and AuNPs were 

measured by DLS. The data showed that negatively charged ‘protamine.siRNA’ was 

electrostatically complexed with PEGylated G11 resulting in new formulations with a nano-

scale particle size (~ 250 nm) and a slightly positive surface charge (~ 10 mV) (Fig. S5). It is 

interesting to note that when the mass ratio of PEGylated G11 and siRNA was increased 

above 4:1 the particle size and surface charge did not change significantly (Fig. S5). 

It has been reported that systemically administrated NPs can accumulate into tumour tissues 

via the ‘enhanced penetration and retention’ (EPR) effect, in which the immature and leaky 

vasculature provides access to circulating particles with diameter less than 500 nm [20]. The 

average hydrodynamic diameter (~ 250 nm) of PEGylated complexes suggests that they could 

enter solid tumours through the EPR effect. 

3.2.2. Serum stability of PEGylated Gold Nanoparticle.siRNA Complexes 

Systemically administrated gene delivery vectors face a set of obstacles before reaching target 

cells. These include non-specific uptake by the reticuloendothelial system (RES), in which 

NPs are rapidly removed from the bloodstream into the liver, spleen or bone marrow [34]. 

One strategy to overcome this is to chemically graft PEG moieties, which can mask positively 

charged surfaces, onto cationic NPs thereby stabilising the complexes against salt, protein and 

complement-induced instability [22]. It has been demonstrated that AuNPs functionalised 

with PEG are stable in biological media. For instance, PEGylation of AuNPs significantly 

improved nanoparticle stability in water, PBS solution, PBS containing bovine serum 

albumin (BSA) and dichloromethane (DCM) [35].  

In the current study, particle size distribution data generated from DLS measurements 

demonstrated that aggregation (> 1 µm) occurred when complexes of non-PEGylated G11 

and ‘protamine.siRNA’ (MR = 8:0.4:1) (~ 30 mV) were incubated in 50 % FBS at 37 °C for 

24 h (Fig. 4A). In contrast, complexes of G11 PEG 20,000 and ‘protamine.siRNA’ (MR = 

8:0.4:1) resisted to aggregation for up to 24 h under the same conditions (Fig. 4B). In vitro 

aggregation studies have been shown to accurately predict the in vivo performance of NPs 
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[36]; consequently the lack of aggregation seen in the current work suggests that the 

PEGylated AuNPs have potential to prolong circulation of siRNA in the blood. 

In addition, it has been reported that naked siRNA is degraded in plasma with a half-life of 

minutes [20]. However, formulations with various delivery vectors can protect siRNA against 

serum-mediated degradation. To verify whether Au complexes containing ‘protamine.siRNA’ 

are able to protect siRNA from serum nucleases, naked siRNA, ‘protamine.siRNA’ (MR = 

0.5, in which complete siRNA complexation was generated, Fig. S4) and ‘G11 PEG20,000 

‘protamine.siRNA’’ (MR = 1:0.4:1) were incubated in 50% FBS at 37 °C for 24 h. Naked 

siRNA and ‘protamine.siRNA’ were not stable following 24 h incubation (Fig. 5). In contrast, 

the PEGylated AuNPs appeared to enhance the stability of siRNA and provide partial 

protection from nuclease-mediated degradation (Fig. 5).  

In summary, these results suggest that PEGylated AuNPs remain stable in serum avoiding 

significant aggregation or decomplexation of siRNA for up to 24 h, thus indicating the 

potential of PEGylated AuNPs to formulate stable delivery systems for siRNA. 

3.2.3. Internalisation of PEGylated Gold Nanoparticle.siRNA complexation 

Several pathways have been considered to mediate cellular uptake of AuNPs, such as 

clathrin-mediated endocytosis, caveolae-mediated endocytosis, macropinocytosis, 

phagocytosis, and direct penetration [37] [38] and [39]. In general, the internalisation of 

AuNPs can be classified as occurring via either specific (receptor-ligand interaction) or non-

specific pathways. For instance, Choi et al. reported that PEGylated AuNPs modified with 

transferrin (Tf) targeting ligands significantly increased receptor-mediated uptake into cancer 

cells relative to their nontargeted counterparts [38]. In addition, Verma et al. reported that 

AuNPs modified with two capping molecules (anionic and hydrophobic with alternating 

positions on the surface) can enter the cells directly (endocytosis-independent entry) without 

destruction of the cell membrane in a manner similar to cell-penetrating peptides [39] .  

In this study, 50 nM of fluorescein-siRNA was used to monitor the internalisation of 

PEGylated AuNPs containing ‘protamine.siRNA’ into PC3 cancer cells. Fluorescein-siRNA 

on its own and complexed with Lipofectamine® 2000 were used as negative and positive 

controls respectively. Lipofectamine® 2000 achieved approximately 15 % and 65 % 

fluorescein positive cells at 4 and 24 h post-transfection, respectively (Fig. 6). It has been 



 

13 

 

previously reported that non-PEGylated G11 containing 20 nM fluorescein-siRNA achieved 

up to 20% cellular uptake efficiency following 24 h post-transfection [19]. In contrast, the 

‘protamine.siRNA’ (MR0.5) and ‘G11 PEG20,000 ‘protamine.siRNA’’ at various mass ratios 

did not generate significant fluorescein positive cells in comparison to siRNA alone (50 nM) 

(Fig. 6). The FACS data therefore suggest that PEGylation inhibits the internalisation of 

AuNPs into cancer cells. A similar lack of cellular internalisation was seen in Hep G2, Caco-

2, B16F10 and CT26 cells (data not shown). 

Although PEGylation is known to improve in vitro and in vivo stability and reduce 

cytotoxicity, it inhibits both the uptake of complexes into tumour cells and the efficient 

escape from the endosome, thus resulting in low transfection efficacy [40]. To overcome the 

‘PEG dilemma’ phenomenon, tumour-specific ligands such as monoclonal antibodies (mAbs) 

[41], Tf [42], the Arg-Gly-Asp  (RGD) peptide [43] and folic acid [44], can be used to 

enhance cellular uptake. The design of PEGylated AuNPs in this study provides potential for 

conjugation of a targeting ligand.  

Improved endocytosis of tumour cells due to ligand-receptor mediated internalisation may not 

be sufficient to produce gene silencing, as NPs are normally entrapped inside 

endosomal/lysosomal compartments, in which siRNA may be degraded by a variety of 

degradative enzymes [45]. To enhance endosomal escape of siRNA, microenvironment-

responsive materials for example fusogenic peptides, pH-sensitive groups and synthetic 

polymeric groups have frequently been incorporated into NP formulations [6, 46, 47]. An 

added advantage of the cysteine-capped AuNPs is the potential of the ammonium groups to 

promote endosomal escape by a ‘proton sponge’ effect which results in osmotic swelling and 

disruption of the endosome thus facilitating release of siRNA into the cytoplasm [48]. 

 

4. Conclusion 

Despite the therapeutic potential of siRNA, due to the capacity for highly sequence-specific 

gene downregulation, effective and safe delivery is still a significant barrier to translating the 

concept into the clinic. Bioengineered AuNPs with different size, shape, structure, chemistry 

and synthetic strategies have shown potential to enhance siRNA delivery in vitro and in vivo  

[15] [16] [49] and [50].  
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In this study, a series of positively charged, surfactant-free AuNPs decorated with PEG 

moieties of various molecular weights have been synthesised. The AuNPs with a large core 

diameter and PEG groups (i.e. GR11 AuNPs-L-cysteine PEG 20,000) demonstrated effective 

complexation of protamine-complexed siRNA. The resulting formulation showed favorable 

physicochemical characteristics in terms of size, charge and stability, consistent with 

requirements for prolonged circulation in vivo. PEGylation enhanced the biocompatibility of 

the AuNPs by reducing toxicity in a range of cell types, by inhibiting interaction with serum 

proteins thus avoiding aggregation, and, by providing protection against degradation by 

nucleases. Although PEGylation decreased cellular uptake, the design of the AuNPs can 

facilitate conjugation of a targeting ligand at the distal end of the PEG chain to enable ligand-

receptor mediated internalization thus resulting in effective intracellular trafficking of siRNA 

into the cytoplasm, and efficient gene silencing (Fig. 7). The attachment of a targeting ligand 

will be the focus of future work. 
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Table 1. Particle size (nm) and zeta potential (mV) of AuNPs with different core sizes with 

and without PEGylation. 

Figure 1. Size distribution (A) and zeta potential (B) for AuNPs-L-cysteine PEG 2,000 with 

different AuNP core sizes. 

Figure 2. Size distribution (A) and zeta potential (B) for GR5 AuNPs-L-cysteine with 

different PEG molecular weights.  



 

15 

 

Figure 3. Complexation of ‘protamine.siRNA’ (MR 0.4) with G11 AuNPs-L-cysteine PEG 

20,000 at different mass ratios (MRs) using gel retardation (1% agarose gel at 120 mV for 

30 min).  

Figure 4. Aggregation of ‘G11 AuNPs-L-cysteine ‘protamine.siRNA’’ (A) and ‘G11 AuNPs-

L-cysteine PEG 20,000 ‘protamine.siRNA’’ (B) (MR 1:0.4:1) incubated in 50 % FBS for 

24 h. Size distribution of serum on its own and complexes incubated in deionised water (DIW) 

were used as controls. The concentration of siRNA was fixed at 1 µg mL
-1

. 

Figure 5. Serum stability of naked siRNA (0.5 μg), ‘protamine.siRNA’ (MR 0.5) and ‘G11 

AuNPs-cysteine PEG 20,000 ‘protamine.siRNA’’ (MR 1:0.4:1) following incubation in 50% 

FBS for 24 h at 37 °C. 

Figure 6. Cellular uptake of naked fluorescein siRNA (50 nM), fluorescein siRNA 

formulated with Lipofectamine® 2000 or with ‘GR11 AuNPs-L-cysteine PEG 20,000 

‘protamine.siRNA’’ at different mass ratios, analysed by Histogram Plots in PC3 cells by 

FACS. 

Figure 7. A schematic of a multifunctional gold nanoparticle-based delivery vector to 

improve the internalisation and intracellular trafficking of siRNA in cancer cells. AuNPs 

allow for flexible chemistry to enable the grafting of a bio-responsive PEG linker and a distal 

cell-specific targeting ligand. Protamine is used to condensate siRNA into a 

‘protamine.siRNA’ core which will improve the complexation with multifunctional AuNPs. 

When homing to tumour area these ligand-conjugated AuNPs may direct the siRNA delivery 

into tumour cells via specific cancer cell surface receptors (or antigens), entering into cells by 

receptor-mediated endocytosis. The endosomal and lysosomal escape of siRNA can be 

achieved by the activation of bio-responsive groups (i.e. fusogenic peptides, pH-sensitive 

groups and synthetic polymeric groups).  
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Figure 1. Size distribution (A) and zeta potential (B) for AuNPs-L-cysteine PEG 2,000 with 

different AuNP core sizes.  
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Figure 2. Size distribution (A) and zeta potential (B) for GR5 AuNPs-L-cysteine with 

different PEG molecular weights. 

 

 

 



 

 

Figure 3. Complexation of ‘protamine.siRNA’ (MR 0.4) with G11 AuNPs-L-cysteine PEG 

20,000 at different mass ratios (MRs) using gel retardation (1% agarose gel at 120 mV for 

30 min).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 4. Aggregation of ‘G11 AuNPs-L-cysteine ‘protamine.siRNA’’ (A) and ‘G11 AuNPs-

L-cysteine PEG 20,000 ‘protamine.siRNA’’ (B) (MR 1:0.4:1) incubated in 50 % FBS for 

24 h. Size distribution of serum on its own and complexes incubated in deionised water (DIW) 

were used as controls. The concentration of siRNA was fixed at 1 µg mL
-1

. 

 

 

 

 

 

 

 

 

 



 

Figure 5. Serum stability of naked siRNA (0.5 μg), ‘protamine.siRNA’ (MR 0.5) and ‘G11 

AuNPs-cysteine PEG 20,000 ‘protamine.siRNA’’ (MR 1:0.4:1) following incubation in 50% 

FBS for 24 h at 37 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

Figure 6. Cellular uptake of naked fluorescein siRNA (50 nM), fluorescein siRNA 

formulated with Lipofectamine® 2000 or with ‘GR11 AuNPs-L-cysteine PEG 20,000 

‘protamine.siRNA’’ at different mass ratios, analysed by Histogram Plots in PC3 cells by 

FACS. 

 

 

 

 

 

            



 

 

Figure 7. A schematic of a multifunctional gold nanoparticle-based delivery vector to 

improve the internalisation and intracellular trafficking of siRNA in cancer cells. AuNPs 

allow for flexible chemistry to enable the grafting of a bio-responsive PEG linker and a distal 

cell-specific targeting ligand. Protamine is used to condensate siRNA into a 

‘protamine.siRNA’ core which will improve the complexation with multifunctional AuNPs. 

When homing to tumour area these ligand-conjugated AuNPs may direct the siRNA delivery 

into tumour cells via specific cancer cell surface receptors (or antigens), entering into cells by 

receptor-mediated endocytosis. The endosomal and lysosomal escape of siRNA can be 

achieved by the activation of bio-responsive groups (i.e. fusogenic peptides, pH-sensitive 

groups and synthetic polymeric groups). 

 



Table 1. Particle size (nm) and zeta potential (mV) of AuNPs with different core sizes with 

and without PEGylation. 

 

 

AuNPs  

 

Hydrodynamic Diameter (nm) from DLS / PDI 

 

Zeta Potential (mV) ± Standard Deviation 

 

L-cysteine 

 

PEG2000 

 

PEG5000 

 

PEG10000 

 

PEG20000 

 

L-cysteine 

 

PEG2000 

 

PEG5000 

 

PEG10000 

 

PEG20000 

 

GR5 

 

38 / 0.25 

 

47 / 0.23 

 

50 / 0.23 

 

63 / 0.21 

 

76 / 0.36 

 

34.6 ± 14.3 

 

28.1 ± 13.5 

 

23.4 ± 10.7 

 

8.96 ± 10.0 

 

12.8 ± 12.6 

 

GR7 

 

 

60 / 0.139 

 

64 / 0.12 

 

68 / 0.12 

 

74 / 0.12 

 

77 / 0.12 

 

37.6 ± 16.4 

 

33.5 ± 12.8 

 

29.9 ± 15.2 

 

16.1 ± 11.5 

 

19.8 ± 10.9 

 

GR8 

 

 

92 / 0.041 

 

97 / 0.09 

 

101 /0.084 

 

110 / 0.083 

 

112 / 0.069 

 

45.4 ± 13.5 

 

34.9 ± 11.2 

 

29.0 ± 11.6 

 

12.4 ± 9.11 

 

16.1 ± 9.37 

 

GR9 

 

 

113 / 0.108 

 

116 / 0.09 

 

118 / 0.034 

 

124 / 0.125 

 

129 / 0.071 

 

44.3 ± 11.8 

 

32.0 ± 9.02 

 

28.5 ± 11.4 

 

14.2 ± 8.90 

 

15.8 ± 10.5 

 

GR11 

 

 

136 / 0.07  

 

143 / 0.08 

 

137 / 0.04 

 

150 / 0.07 

 

156 / 0.06 

 

41.6 ± 11.1 

 

32.1 ± 9.30 

 

35.0 ± 13.6 

 

10.0 ± 10.4 

 

9.38 ± 6.37 

 

GR12 

 

 

191 / 0.19 

 

196 / 0.03 

 

203 / 0.09 

 

212 / 0.09 

 

218 / 0.07 

 

41.2 ± 10.8 

 

30.08 ± 7.02  

 

31.6 ± 9.23 

 

10.6 ± 7.17 

 

8.85 ± 7.03 
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