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 32 

ABSTRACT 33 

Objective 34 

It is evident that the gut microbiota and factors that influence its composition and activity 35 

influence human metabolic, immunological, and developmental processes. We previously 36 

reported that extreme physical activity with associated dietary adaptations, such as that 37 

pursued by professional athletes, is associated with changes in faecal microbial diversity and 38 

composition relative to that of individuals with a more sedentary lifestyle. Here we address 39 

the impact of these factors on the functionality/metabolic activity of the microbiota which 40 

reveals even greater separation between exercise and a more sedentary state.  41 

Design 42 

Metabolic phenotyping and functional metagenomic analysis of the gut microbiome of 43 

professional international rugby union players (n = 40) and controls (n = 46) was carried out 44 

and results were correlated with lifestyle parameters and clinical measurements (e.g. dietary 45 

habit and serum creatine kinase, respectively) 46 

Results 47 

Athletes had relative increases in pathways (e.g. amino acid and antibiotic biosynthesis and 48 

carbohydrate metabolism) and faecal metabolites (e.g. microbial produced short chain fatty 49 

acids [SCFAs] acetate, propionate, and butyrate) associated with enhanced muscle turnover 50 

(fitness) and overall health when compared to control groups. 51 
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Conclusion 52 

Differences in faecal microbiota between athletes and sedentary controls show even greater 53 

separation at the metagenomic and metabolomics than at compositional levels and provide 54 

added insight into the diet-exercise-gut microbiota paradigm. 55 

SUMMARY 56 

What is already known about this subject? 57 

Taxonomic and functional compositions of the gut microbiome are emerging as biomarkers 58 

of human health and disease. 59 

Physical exercise and associated dietary adaptation are linked with changes in the 60 

composition of the gut microbiome. 61 

Metabolites such as short chain fatty acids (SCFAs) have an impact on a range of health 62 

parameters including immunity, colonic epithelial cell integrity, and brain function.  63 

What are the new findings? 64 

Our original observation of differences in gut microbiota composition in elite athletes is 65 

confirmed and the separation between athletes and those with a sedentary lifestyle is even 66 

more evident at the functional or metabolic level. Microbial derived SCFAs are enhanced 67 

within the athletes. 68 

How might it impact on clinical practice in the foreseeable future? 69 

The findings provide new evidence supporting the link between exercise and metabolic 70 

health. The findings provide a platform for the rational design of diets for those engaged in 71 

vigorous exercise. The identification of specific alterations in the metabolic profile of 72 
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subjects engaged in high levels of exercise provides insight necessary for future efforts 73 

towards targeted manipulation of the microbiome. 74 

INTRODUCTION 75 

Regular exercise challenges systemic homeostasis resulting in a breadth of multi-organ 76 

molecular and physiological responses, including many that centre on immunity, metabolism 77 

and the microbiome-gut-brain axis.[1-5]  Exercise exhibits systemic and end-organ anti-78 

inflammatory effects, as well as contributing to more efficient carbohydrate metabolism, in 79 

addition to trophic effects at the level of the central nervous system.[6, 7] In fact, increasing 80 

physical activity offers an effective treatment and preventative strategy for many chronic 81 

conditions in which the gut microbiome has been implicated.[8-10] Conversely, a sedentary 82 

lifestyle is a major contributing factor to morbidity in developed Western society and is 83 

associated with heightened risk of numerous diseases of affluence, such as obesity, diabetes, 84 

asthma, and cardiovascular disease.[11-14] Recent evidence supports an influential role for 85 

the gut microbiome in these diseases.[15-23]  86 

 The concept that regular exercise and sustained levels of increased physical activity 87 

foster or assist the maintenance of a preferential intestinal microbiome has recently gained 88 

momentum and interest.[24-29] Previously, using 16S rRNA amplicon sequencing, we 89 

demonstrated taxonomic differences in gut microbiota between an elite athlete cohort of 90 

international-level rugby players and a group of age-matched high (>28 kg/m2) and low (<25 91 

kg/m2) BMI controls.[26] This analysis illustrated a significantly greater intestinal microbial 92 

diversity amongst the athletes compared to both control groups. This taxonomic diversity 93 

significantly correlated with exercise and dietary protein consumption. However, the 94 

possibility existed that these differences did not equate to differences at a functional level. 95 

Here, we re-examine the microbiome in these participants by whole metagenome shotgun 96 
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sequencing to provide deeper insight into taxonomic composition and metabolic potential and 97 

by complementary metabolic phenotyping analyses of host- and microbial-derived (urine and 98 

faecal respectively) metabolic profiles. This analysis shows that the differences in the gut 99 

microbiota between athletes and controls  is even more pronounced at the functional 100 

metabolic level than at the compositional level as previously reported and provides further 101 

rationale for prospective controlled studies to unravel the relationship between diet, exercise 102 

and the gut microbiome. 103 

RESULTS 104 

The study groups were comprised of professional male athletes (n = 40) and healthy controls 105 

(n = 46).[26] To better represent the variability of BMI in the athletes, controls were 106 

classified as either low BMI (n = 22, BMI ≤ 25.2) or high BMI (n = 24, BMI ≥ 26.5). 107 

Participants made no report of gastrointestinal (GI) distress or alterations of GI transit time 108 

throughout the course of the initial study. 109 

Functional structure of the enteric microbiome correlates with athletic state 110 

Functional metagenomic analysis of faecal samples allowed for the prediction of the 111 

operational potential of each individual’s microbiota. In total, 19,300 taxonomically linked 112 

metabolic pathways were identified in at least one individual. Comparison of phylogenetic 113 

constructions derived from the 16S rRNA amplicon data of our previous study and the 114 

functional data of this present report reveals a greater level of identification at higher levels 115 

of taxonomy (e.g. phylum) for 16S sequences,[26] while the metagenomic data had greater 116 

fidelity  and superior resolution of lower levels of taxonomy (e.g. species) (Fig. 1). Consistent 117 

with previous results, the microbiota of the athletes were significantly more diverse than that 118 

of both the low and high BMI control groups at the functional level (Fig. 2A). Furthermore, 119 

our previous findings of an enrichment of Akkermansia in athletes was corroborated by the 120 
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presence of significantly higher proportions of metabolic pathways associated with this genus 121 

in athletes when compared to high BMI controls (p < 0.001). Correlation analysis revealed 122 

that, of the total 19,300 pathways, 98 were significantly altered between the three cohorts (p 123 

< 0.05) (Supplementary table 1). Subsequently, large-scale functional dissimilarity between 124 

athletes and controls was determined and distinct patterns of pathway composition between 125 

groups were revealed (Supplementary Fig. 1A). This functional distinction remained true 126 

whether applied to total pathway data or to the statistically significant subset of pathways 127 

(Supplementary Fig. 1B). Correlation of pathways present in at least one member from both 128 

cohorts further exemplified the uniformity of the athletes and the division between the 129 

athletes and control groups (Supplementary Fig. 1C). Separation according to group 130 

membership was further illustrated through Principal Coordinate Analysis (PCoA), with 131 

statistical support of the significant separation between the athletes and both control groups 132 

(p < 0.05) (Fig. 2B). This was also the case for the statistically significant subset of pathways 133 

(Supplementary Fig. 1D). Principal Component Analysis (PCA) supplemented with a 134 

Correspondence Analysis (CA) and k-Nearest Neighbor (k-NN) semi-supervised learning 135 

approach cast further light (i.e. visualization of robustly defined class associations of specific 136 

individuals within the groups) on the clustering of participants within and between cohorts 137 

(Supplementary Fig. 1E). 138 

Pathways exhibiting statistically significant variation between the athletes and both control 139 

groups were organised according to MetaCyc metabolic pathway hierarchy classification (34 140 

metabolic categories), highlighting a number of differences (Fig. 3A, Supplementary table 2). 141 

Distinct clustering patterns were observed within each cohort, with the high BMI control 142 

group having the lowest average abundance scores across 31 metabolic pathway categories 143 

(the exceptions being Vitamin Biosynthesis (VB), Lipid Biosynthesis (LB), and Amino Acid 144 

Biosynthesis (AAB) categories). The athlete group had the highest mean abundance across 29 145 
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of the 34 metabolic categories (e.g. Carbohydrate Biosynthesis [CB], Cofactor Biosynthesis 146 

[CfB], and Energy Metabolism [EM]) (Supplementary table 2).  147 

Numerous statistically significant (p < 0.05) associations were identified between pathway 148 

abundances and serum Creatine Kinase—an enzymatic marker of muscle activity (CK, IU/L), 149 

total bilirubin (IU/L) and dietary macronutrient intake of protein (g/day), fibre (g/day), 150 

carbohydrates (g/day), sugars (g/day), starch (g/day), fat (g/day), and total energy (KJ/day) 151 

(Fig. 3B). Each group was represented by distinct association profiles of the correlation 152 

between clinical measurements and metagenomic pathways. Dietary factors, sugars and other 153 

carbohydrates, as well as energy intake, provide the majority of the correlation for the control 154 

groups whereas the athlete group was predominantly correlated with CK, total bilirubin, and 155 

total energy intake. Of the total number of metabolic pathways with associations to the 156 

clinical data from all three groups (10,760; data not shown), relevant pathways related to the 157 

production of secondary metabolites, co-factors, and SCFAs were identified (e.g. biotin 158 

biosynthesis and pyruvate fermentation to butanoate). 159 

Distinct differences between host and microbial metabolites in athletes and controls 160 

A combination of multi-platform metabolic phenotyping and multivariate analysis based on 161 

Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) was used to compare 162 

urinary and faecal samples from athletes and controls. The cross-validated (CV) OPLS-DA 163 

models show strong differences between athletes and controls in urine samples by proton 164 

nuclear magnetic resonance (1H-NMR) analysis (R2Y=0.86, Q2Y=0.60, Fig. 2C), hydrophilic 165 

interaction ultra-performance liquid chromatography mass spectroscopy (HILIC UPLC-MS) 166 

positive mode analysis (R2Y=0.85, Q2Y=0.74, Supplementary Fig. 2A) and reverse phase 167 

ultra-performance liquid chromatography mass spectroscopy (RP UPLC-MS) in both positive 168 

and negative mode analysis (R2Y=0.83, Q2Y=0.73, and R2Y=0.83, Q2Y=0.67, 169 
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Supplementary Fig. 2B and 2C respectively). Likewise, the CV-OPLS-DA models comparing 170 

faecal samples, although weaker than the urine models, reveal significant differences between 171 

athletes and controls by 1H-NMR analysis (R2Y=0.86, Q2Y=0.52, Fig. 2D) and HILIC 172 

UPLC-MS positive mode analysis (R2Y=0.65, Q2Y=0.34, Supplementary Fig 2D). 173 

The loadings of the pairwise OPLS-DA models were used to identify metabolites 174 

discriminating between the two classes. Athletes’ 1H-NMR metabolic phenotypes were 175 

characterised by higher levels of trimethylamine-N-oxide (TMAO), L-carnitine, 176 

dimethylglycine, O-acetyl carnitine, proline betaine, creatinine, acetoacetate, 3-hydroxy-177 

isovaleric acid, acetone, N-methylnicotinate, N-methylnicotinamide, phenylacetylglutamine 178 

(PAG) and 3-methylhistidine in urine samples and higher levels of propionate, acetate, 179 

butyrate, trimethylamine (TMA), lysine, and methylamine in faecal samples, relative to 180 

controls. Beta-alanine betaine was higher in both faecal and urine samples of athletes. 181 

Athletes were further characterised by lower levels of glycerate, allantoin and succinate and 182 

lower levels of glycine and tyrosine relative to controls in urine and faecal samples, 183 

respectively (Supplementary Table 3). 184 

While numerous metabolites discriminated significantly between athletes and controls with 185 

RP UPLC-MS positive (490) and negative (434) modes for urine, as well as with HILIC 186 

UPLC-MS positive mode for urine (196) and faecal water (3), key metabolites were 187 

structurally identified using the strategy described below. UPLC-MS analyses revealed 188 

higher urinary excretion of N-formylanthranilic acid, hydantoin-5-propionic acid, 3-Carboxy-189 

4-methyl-5-propyl-2-furanpropionic acid (CMPF), CMPF glucuronide, trimetaphosphoric 190 

acid, acetylcarnitine - C2, propionylcarnitine - C3, isobutyrylcarnitine – C4, 2-191 

Methylbutyroylcarnitine - C5, Hexanoylcarnitine - C6, C9:1-carnitine, L-valine, nicotinuric 192 

acid, 4-pyridoxic acid and creatinine in athletes relative to controls. Levels of glutamine, 7-193 

methylxanthine, imidazoleacetic acid, isoquinoline / quinolone were lower in athletes’ 194 
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urinary samples relative to controls. Additionally, 16 unknown glucuronides were lower in 195 

the athlete samples (Supplementary Table 4). 196 

SCFA levels in faeces measured by targeted GC-MS showed significantly higher levels of 197 

acetate (p < 0.001), propionate (p < 0.001), butyrate (p < 0.001) and valerate (p = 0.011) in 198 

athletes relative to controls. Isobutyrate and isovalerate did not differ significantly between 199 

the groups (Fig. 4B, Supplementary Table 5). Furthermore, concentrations of propionate 200 

strongly correlated to protein intake while butyrate was shown to have a strong association 201 

with intake of dietary fibre (Supplementary Table 6). 202 

 203 

Correlating metabonomic and metagenomic results 204 

Correlation analysis between targeted measurements of SCFAs and taxonomic data from 16S 205 

rRNA sequencing revealed a number of correlations that remained significant following 206 

correction; Roseburia was positively correlated with acetate (p = 0.004) and butyrate (p = 207 

0.018) while Family XIII Incertae Sedis was positively correlated with isobutyrate (p < 208 

0.001), isovaleric acid (p < 0.001) and valeric acid (p = 0.008) (Fig. 4A, Supplementary 209 

Table 7). 210 

 211 

SCFAs were also correlated with pathway relative abundances, with all SCFAs associating 212 

with considerably more pathways in the athletes versus the controls (Fig. 4C). Multiple 213 

statistically significant (7,948) (p < 0.05) correlations between the metabolic pathways and 214 

SCFAs were identified (Supplementary Table 8). Two distinct blocks of proportionately 215 

discriminant correlations were observed with isobutyric and isovaleric acids, which were 216 

more abundant in the athletes while acetic and butyric acids were more proportionately 217 

abundant in controls. Correlations of the SCFA concentrations to pathways related to 218 

fermentation, biosynthesis, or modification of fatty acids were identified among the 219 
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numerous other associations (see supplementary table 8 for complete list). Additional 220 

correlations of metabolic pathways against well-identified metabolites detected from both 221 

faecal water (Fig. 5A and 5C) and urine (Fig. 5B and 5D) presented numerous significant 222 

associations (6,186 and 13,412, respectively; data not shown) (p < 0.05). It was also observed 223 

that 16 genera correlated with 12 metabolites (Supplementary Table 9). 224 

DISCUSSION 225 

The results confirm enhancement of microbial diversity in athletes compared with controls. 226 

Supporting previous insights into the beneficial influence of physical exercise and associated 227 

diet on the compositional structure of the gut microbiota,[25, 26, 30] this study has extended 228 

the paradigm to include links between physical fitness and the functional potential of the gut 229 

microbiota and its metabolites. It must be conceded that some athletes, although fit may not 230 

necessarily be more healthy.[31]   231 

Athletes have an increased abundance of pathways that—giving an equivalent amount of 232 

expression activity—could be exploited by the host for potential health benefit, including 233 

biosynthesis of organic cofactors and antibiotics, as well as carbohydrate degradation and 234 

secondary metabolite metabolism compared to both control groups.[32] Furthermore, athletes 235 

have an enriched profile of SCFAs, previously associated with numerous health benefits and 236 

a lean phenotype.[33-35] While interpretation of SCFA data can be difficult as levels 237 

represent a combination of SCFA production and host-absorption rates, it is notable that , as 238 

previously presented, the athletes’ diet maintained significantly higher quantities of fibre 239 

intake [29]. This along with an increased number of detected SCFA pathways in the athletes 240 

would be conducive to an enhanced rate of SCFA production[36] 241 

It was noted that athletes excreted proportionately higher levels of the metabolite TMAO, an 242 

end product metabolite of dietary protein degradation. Elevated TMAO has been observed in 243 
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patients with cardiovascular disease and atherosclerosis, highlighting a potential downside to 244 

increased protein intake.[15-17, 22, 37] However, TMAO is also found in high levels in the 245 

urine of Japanese populations,[38] who do not have high risk for CVD. Similarly to these 246 

populations, the athletes’ diet contained a significantly greater proportion of fish. Our current 247 

understanding of the implications of this result remains limited and requires elaboration in 248 

future studies. Furthermore, pathway abundance in a metagenome merely reflects functional 249 

potential and not necessarily increased expression in situ.  250 

Variance of metagenomic composition between athletes and controls was exemplified with 251 

unique pathway-pathway correlations between the two groups. Analysis of categorically 252 

arranged pathway abundances within the separate cohorts provided additional insight into the 253 

previously described dichotomy between the microbiota of athletes and high BMI controls. 254 

The two groups displayed distinct structures of functional capacity, separately oriented to 255 

operate under the different physiological milieu of the two groups. Notably, from a functional 256 

perspective, the microbiota of the low BMI group was more similar to the athletes. The low 257 

BMI controls were generally engaged in a modestly active-lifestyle, reflected by their 258 

leanness and increased levels of CK. It is speculative but not implausible, that moderate 259 

improvements in physical activity, for overweight and obese individuals may confer the 260 

beneficial metabolic functions observed within the athlete microbiome.  261 

Dietary contributions to the functional composition of the enteric microbial system are also 262 

evident in our study. The relative abundances of pathways related to fundamental metabolic 263 

function—amino acid biosynthesis, vitamin biosynthesis, and lipid biosynthesis—were 264 

higher on average within the high BMI control group when compared to the athlete group. 265 

The mechanisms behind these differences are unclear and might reflect chronic adaptation of 266 

the athlete gut microbiome; possibly due to a reduced reliance on the corresponding 267 

biosynthetic capacities of their gut microbiota. On the contrary, the athlete microbiome 268 
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presents a functional capacity that is primed for tissue repair and to harness energy from the 269 

diet with increased capacity for carbohydrate, cell structure and nucleotide biosynthesis, 270 

reflecting the significant energy demands and high cell-turnover evident in elite sport.  271 

Remarkably, our examination of pathway correlation to dietary macronutrients and 272 

plasma CK, as a biomarker of exercise,[39] is suggestive of an impact of physical activity 273 

upon the utilization of dietary nutrients by the microbiota of the gut. Comparing athletes to 274 

both high and low BMI controls, a greater number of pathways correlating to specific 275 

macronutrients with the controls suggests a shift in the dynamics of these varied metabolic 276 

functions. The impact of the athletes’ increased protein intake compared to both control 277 

groups was evident in the metabolomic phenotyping results. By-products of dietary protein 278 

metabolism (mostly by microbes) including TMAO, carnitines, trimethylamine, 3-Carboxy-279 

4-methyl-5-propyl-2-furanpropionic acid, and 3-hydroxy-isovaleric acid are all elevated in 280 

the athlete cohort. Of particular interest is 3-hydroxy-isovaleric acid (potentially from egg 281 

consumption) which has been demonstrated to have efficacy for inhibiting muscle wasting 282 

when used in conjunction of physical exercise.[40] The compound is also commonly used as 283 

a supplement by athletes to increase exercise-induced gains in muscle size, muscle strength, 284 

and lean body mass, reduce exercise-induced muscle damage, and speed recovery from high-285 

intensity exercise.[41] Numerous metabolites associated with muscle turnover—creatine, 3-286 

methylhistidine, and L-valine—and host metabolism—carnitine—are elevated in the athlete 287 

groups. Metabolites derived from vitamins and recovery supplements common in 288 

professional sports, including glutamine, lysine, 4-pyridoxic acid, and nicotinamide, are also 289 

raised in the athlete group. It is notable that PAG—a microbial conversion product of 290 

phenylalanine—has been associated with a lean phenotype, and is increased in the 291 

athletes.[42] Furthermore, PAG positively correlates with the genus Erysipelotrichaceae 292 

Incertae Sedis, which we have previously noted to be present in relatively higher proportions 293 
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in the athlete group compared to both control groups. PAG is the strongest biomarker post 294 

bariatric surgery, where it is associated with an increase in the relative proportions of 295 

Proteobacteria as observed here in the athlete group. Within the SCFAs, two distinct clusters 296 

were observed; acetic acid, propionic acid and butyric acid correlate with dietary contributors 297 

(fibre and protein), while isobutyric acid, isovaleric acid and valeric acid correlate with 298 

microbial diversity. The same clusters are observed when correlating with individual taxa, in 299 

support of previously observed links between SCFAs and numerous metabolic benefits and a 300 

lean phenotype.[33-35] 301 

Our on-going work in this area with non-athletes engaging in a structured exercise regime 302 

looks to further explore components of the exercise and diet-microbiome paradigm, which 303 

along with the present study may inform the design of exercise and fitness programs, 304 

including diet design in the context of optimizing microbiota functionality for both athletes 305 

and the general population.  306 

   307 

MATERIALS AND METHODS 308 

Study population 309 

Elite professional male athletes (n = 40) and healthy controls (n = 46) matched for age and 310 

gender were enrolled in 2011 as previously described in the study.[26] Due to the range of 311 

physiques within a rugby team (player position dictates need for a variety of physical 312 

constitutions, i.e. forward players tend to have larger BMI values than backs, often in the 313 

overweight/obese range) the recruited control cohort was subdivided into two groups. In 314 

order to more completely include control participants, the BMI parameter for group inclusion 315 

was adjusted to BMI ≤ 25.2 and BMI ≥ 26.5 for the low BMI and high BMI groups 316 
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respectively. Approval for this study was granted by the Cork Clinical Research Ethics 317 

Committee. 318 

Acquisition of clinical, exercise and dietary data 319 

Self-reported dietary intake information was accommodated by a research nutritionist within 320 

the parameters of a food frequency questionnaire (FFQ) in conjunction with a photographic 321 

food atlas as per the initial investigation.[26] Fasting blood samples were collected and 322 

analysed at the Mercy University Hospital clinical laboratories, Cork. As the athletes were 323 

involved in a rigorous training camp we needed to assess the physical activity levels of both 324 

control groups. To determine this we used an adapted version of the EPIC-Norfolk 325 

questionnaire.[43] Creatine kinase levels were used as a proxy for level of physical activity 326 

across all groups. 327 

Preparation of Metagenomic libraries 328 

DNA derived from faecal samples was extracted and purified using the QIAmp DNA Stool 329 

Mini Kit (cat. no. 51504) prior to storage at -80°C. DNA libraries were prepared with the 330 

Nextera XT DNA Library Kit (cat. no. FC-131-1096) prior to processing on the Illumina 331 

HiSeq 2500 sequencing platform (see supplementary methods for further detail). 332 

Metagenomic statistical and bioinformatic analysis 333 

Delivered raw FASTQ sequence files were quality checked as follows: contaminating 334 

sequences of human origin were first removed through the NCBI Best Match Tagger 335 

(BMTagger). Poor quality and duplicate read removal, as well as trimming was implemented 336 

using a combination of SAM and Picard tools. Processing of raw sequence data produced a 337 

total of 2,803,449,392 filtered reads with a mean read count of 32,598,248.74 (± 10,639,447 338 

SD) per each of the 86 samples. These refined reads were then subjected to functional 339 
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profiling by the most recent iteration of the Human Microbiome Project (HMP) Unified 340 

Metabolic Analysis Network (HUMAnN2 v. 0.5.0) pipeline.[44] The functional profiling 341 

performed by HUMAnN2 composed tabulated files of microbial metabolic pathway 342 

abundance and coverage derived from the Metacyc database.[45] Microbial pathway data was 343 

statistically analysed in the R software environment (v. 3.2.2) (for further details see 344 

supplementary methods).[46] All presented p values were corrected for multiple comparisons 345 

using the Benjamini-Hochberg False Discovery Rate (pFDR) method.[47] 346 

 347 

Metabolic profiling 348 

Urine and faecal samples were prepared for metabonomic analysis as previously 349 

described.[48, 49] Utilising established methods, urine samples underwent 1H-NMR, 350 

reversed-phased (RP) and hydrophilic interaction chromatography (HILIC) profiling 351 

experiments. Faecal samples underwent 1H-NMR, hydrophilic interaction chromatography 352 

(HILIC) and bile acid UPLC-MS profiling experiments and GC-MS targeted SCFA 353 

analysis.[49-51] 354 

 355 

After data pre-processing,[52] the resulting 1H-NMR and LC-MS data sets were imported 356 

into SIMCA 14.1 (Umetrics) to conduct multivariate statistical analysis. Principal Component 357 

Analysis (PCA), followed by Orthogonal Partial Least Squares Discriminant Analysis 358 

(OPLS-DA) was performed to examine the data sets and to observe clustering in the results 359 

according to the predefined classes. The OPLS-DA models in the current study were 360 

established based on one PLS component and one orthogonal component. Unit variance 361 

scaling was applied to 1H-NMR data, Pareto scaling was applied to MS data. The fit and 362 

predictability of the models obtained was determined by the R2Y and Q2Y values, 363 

respectively. Significant metabolites were obtained from LC-MS OPLS-DA models through 364 
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division of the regression coefficients by the jack-knife interval standard error to give an 365 

estimate of the t-statistic. Variables with a t-statistic ≥ 1.96 (z-score, corresponding to the 366 

97.5 percentile) were considered significant. Significant metabolites were obtained from 1H-367 

NMR OPLS-DA models after investigating correlations with correlation coefficients values 368 

higher than 0.4. Univariate statistical analysis (Mann-Whitney U test) was used to examine 369 

the SCFA data set. P-values were adjusted for multiple testing using the Benjamini-Hochberg 370 

False Discovery Rate (pFDR) method. 371 

 372 

Confirmation of metabolite identities in the NMR data was obtained using 1D 1H NMR and 373 

2D 1H-1H NMR and 1H-13C NMR experiments. In addition, statistical tools such as SubseT 374 

Optimization by Reference Matching (STORM) and Statistical TOtal Correlation 375 

SpectroscopY (STOCSY) were also applied.[53, 54] Confirmation of metabolites identities in 376 

the LC-MS data was obtained using Tandem MS (MS/MS) on selected target ions. 377 

Metabolite identification was characterized by a level of assignment (LoA) score that 378 

describes how the identification was made.[55] The levels used were as follows: LoA 1: 379 

Identified compound, confirmed by comparison to an authentic chemical reference. LoA 2: 380 

MS/MS precursor and product ions or 1D+2D NMR chemical shifts and multiplicity match to 381 

a reference database or literature to putatively annotate compound. LoA 3: Chemical shift (δ) 382 

and multiplicity matches a reference database to tentatively assign the compound. (For 383 

further details see supplementary methods). 384 

 385 
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FIGURE LEGENDS 579 

Figure 1 | Comparison of phylogenetic constructions from metagenomic and 16S rRNA 580 
gene sequencing sourced from all participants. Phylogenetic trees derived from (A) 581 
metagenomic sequencing and (B) 16S rRNA amplicon sequencing. Taxonomic levels are 582 
assigned from centre out with kingdom level assignment in centre and strain level assignment 583 
in outer most ring. Dark blue radial highlights correspond to poorly identified taxonomies 584 
(i.e. ‘unknown’ and ‘unassigned’ database entries). Number of assignments at each level of 585 
phylogeny is displayed below the respective graph. Taxonomic trees derived from the two 586 
sequencing approaches illustrate an advantage of metagenomic sequencing in the number of 587 
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predictions of lower taxonomic levels and the frequency of full identification of taxa, while 588 
16S rRNA sequencing grants greater insight of high level phylogenies within the population. 589 

 590 

Figure 2 | Group-wise comparison of microbial metagenomic and metabolomic profiles. 591 
(A) Shannon index of diversity for metabolic pathways from all three groups. Pathway 592 
diversity is increased in the athlete group when compared to low BMI and high BMI controls. 593 
Diversity measures are statistically significant between low BMI and athletes (p < 0.049), 594 
with statistical significance between all groups (Kruskal Wallis p < 0.05). (B) Principle 595 
coordinate analysis (PCoA) of Bray-Curtis compiled distance matrix of all microbial 596 
metabolic pathway relative abundances. Groups show significant variation from one another 597 
(Adonis PERMANOVA p < 0.05). (C & D) Cross validated orthogonal partial least squares 598 
regression discriminant analysis (OPLS-DA) of full Nuclear Magnetic Resonance (1H-NMR) 599 
spectra from urine (R2Y=0.86, Q2Y=0.60)(C) and faecal water (R2Y=0.86, Q2Y=0.52)(D) 600 
samples. OPLS-DA displays robust separation between athletes and controls. Models are 601 
comprised of 1 predictive (tcv[1]) and 1 orthogonal (tocv[1]) principal component. 602 

 603 

Figure 3 | Group variation of microbial metabolic function and associations between 604 
pathways and clinical and dietary variables. (A) Mean relative abundance values of 605 
statistically significant (Kruskal Wallis p < 0.05) metabolic pathways binned according to 606 
categories of metabolic function. (B) Number of metabolic pathways significantly 607 
(Benjamini-Hochberg corrected p < 0.05) correlated with dietary constituents and blood 608 
serum metabolites. 609 

 610 

Figure 4 | Athletes display a profile of Short Chain Fatty Acids that alters from that of 611 
the controls. (A) Heat map of bacterial taxa (family, genus, and species level) that correlate 612 
with faecal short-chain fatty acid levels using Spearman’s correlation. Cool colours represent 613 
positive correlations; hot colours represent negative correlations (r). All taxa shown had a 614 
correlation p-value < 0.01. Those marked * represent correlations with a pFDR < 0.01 after 615 
Benjamini-Hochberg multiple testing corrections. (B) Median concentrations of GC-MS 616 
derived faecal short chain fatty acid. Quantitative analysis of SCFAs in faecal samples shows 617 
significant increase in measured concentrations of acetate, propionate, butyrate, and valerate 618 
in athletes. Error bars represent 95% confidence intervals. * Data statistically significant (p < 619 
0.05 after Benjamini-Hochberg corrections). (C) Quantification of statistically relevant 620 
correlations of metabolic pathways to GC-MS derived faecal SCFA concentrations (μM). 621 

 622 

Figure 5 | Distinctive association profiles of metabolic pathways to metabolites in 623 
athletes and controls. (A) Significant correlations of faecal water derived metabolites and 624 
metabolic pathways, represented by number of correlations for each metabolite. (B) Urine 625 
metabolites significantly correlated to pathways and displayed as number of correlations. (C) 626 
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Significant correlations shown in (A) displayed as proportions of total associations. (D) 627 
Correlations presented in (B) given as proportions of total associations. 628 


