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Abstract

Abstract

Semiconductor mode-locked lasers are compact pulsed sources which produce

high quality optical pulses with high repetition rates and subpicosecond pulse

duration. In order to use these sources in real applications, low timing jitter

and robust feedback control stabilisation is highly desirable. In this thesis, a

series of experimental studies have been performed to achieve stabilisation of

two-section self mode-locked quantum-dash laser emitting at ∼ 1.55 µm and

operating at 21 GHz repetition rate.

First, stabilisation of self mode-locked quantum-dash laser over a wide range

of delay tuning was achieved using symmetric dual-loop feedback. Optimum

levels were determined for narrowest RF linewidth and reduced timing jitter

for single- and symmetric dual-loop feedback. Two symmetric dual-loop con-

figurations, with balanced and unbalanced feedback ratios, were studied. We

have demonstrated unbalanced symmetric dual-loop feedback, with the inner

cavity resonant and fine delay tuning of the outer loop, produced narrowest RF

linewidth and reduced timing jitter over a wide range of delay, unlike single and

balanced symmetric dual-loop configurations. This configuration with feedback

lengths 80 and 140 m reduced the RF linewidth by ∼ 4-67x (∼ 2-9x timing jit-

ter reduction) and ∼ 10-100x (∼ 2.5-10x timing jitter reduction), respectively,

across the widest delay range, compared to free-running. For symmetric dual-

loop feedback, the influence of different power split ratios through the feedback

loops was also determined.

We achieved the optimum stabilisation of self mode-locked quantum-dash laser

over a wide range of delay tuning using asymmetric dual-loop feedback. Vari-

ous feedback schemes were investigated and feedback levels far narrowest RF

linewidth and low timing jitter were identified, for single- and asymmetric dual-

loop feedback. We demonstrated that asymmetric dual-loop feedback, with the

shorter feedback cavity tuned to be fully resonant, followed by fine-tuning of

the phase of the longer feedback cavity, gave stable narrow RF spectra across

the widest delay range, unlike single-loop feedback and free-running condi-

tions. This asymmetric dual-loop scheme reduced the RF linewidth ∼ 2.5-4x

compared to single-loop and ∼ 4-100x relative to free-running conditions. In

addition, for asymmetric dual-loop feedback, significant suppression in funda-

mental side-mode was achieved relative to single-loop feedback.

In addition, we have demonstrated an asymmetric dual-loop feedback scheme
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Abstract

to suppress external cavity side-modes induced in self mode-locked quantum-

dash lasers with conventional single- and dual-loop feedback. We reported op-

timal suppression of spurious tones by optimising the delay in the second loop.

We observed that asymmetric dual-loop feedback, with large (∼ 8x) disparity

in loop lengths, produced significant suppression in external-cavity side-modes

and yielded flat RF spectra close to the main peak with low timing jitter, com-

pared to single-loop feedback. Significant reduction in RF linewidth and re-

duced timing jitter was also produced by optimising delay time in the second

feedback loop. Experimental results based on this feedback configuration vali-

date predictions of recently published numerical simulations.

Finally, we reported stabilisation of our self mode-locked quantum-dash laser

on the widest range of delay tuning using simultaneous continuous-wave opti-

cal injection and optical feedback. With optical injection, various wavelength

detuning ranges (1568 to 1578 nm) and optimum wavelengths (1571.725 to

1572.710) were determined which yielded narrowest RF linewidth and reduced

timing jitter. We demonstrated that under double resonance, with both optical

feedback and continuous-wave injection, a minimum RF linewidth of < 1 kHz

(instrument limited) was achieved which was 2x lower than external optical

feedback and > 100x lower than the free-running condition.
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Chapter 1

Introduction

Semiconductor mode-locked lasers (MLLs) have attracted much attention in

recent years due to their potential applications in various fields including op-

tical sampling [1], frequency comb generation [2-5], optical clock recovery [6

,7], optical clock distribution [5], telecommunications [8-11] and spectroscopy

[12]. Pulsed semiconductor MLLs with wavelengths near 1550 nm are of partic-

ular interest in optical telecommunications because the transmission window of

an ideal silica optical fibre lies within the wavelength range of 1280 nm to 1580

nm. These lasers can also be used as pulse sources for time-domain multiplexed

systems [13] and as synchronised pulse sources or multi-wavelength lasers for

wavelength-division multiplexed systems [14, 15]. Some ideal features of semi-

conductor MLLs include compactness, low fabrication costs, low threshold cur-

rent, fast carrier dynamics, inhomogeneously broadened spectrum, and low

amplified spontaneous emission [16, 4]. To improve the performance and to

extend applications of semiconductor MLLs high timing stability is paramount.

In the last two decades, significant progress has been made in the area of mode-

locked laser diodes. However, many open problems still exist and need to be

addressed in depth, including stabilisation of semiconductor MLLs. In order

to improve the stabilisation of self-mode-locked (SML) quantum-dash (QDash)

lasers, a series of experimental studies has been conducted and are described

in this thesis.

In the following sections, a brief introduction to semiconductor lasers, mode-

locking, and quantum nanostructure-based semiconductor MLLs is given, with

essential discussions on the stabilisation techniques (external optical feedback

and optical injection techniques) analysed in this thesis. Finally, the motivation

1



1. INTRODUCTION 1.1 Semiconductor Lasers

for this work and outline of the thesis is presented in sections 1.5 and 1.6,

respectively.

1.1 Semiconductor Lasers

In 1917, Einstein published his classic paper [17] in which he introduced the

concept of stimulated emission, which became the basis of Lasers 1. Stimulated

emission is a quantum mechanical phenomenon in which an electron in the ex-

cited state is stimulated by the interaction of an incoming photon to return to

the lower state with simultaneous emission of a second photon. This emitted

photon has identical properties (polarisation, frequency, phase and direction of

travel) to the incident photon. The basic sketch of the phenomenon of stimu-

lated emission is illustrated in Fig. 1.1 (a).

All types of lasers consist of three fundamental components: a pump generating

population inversion, a gain medium providing amplification and a resonant

cavity confining the optical field. A schematic of a laser cavity including these

three main components is shown in Fig. 1.1 (b).
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Figure 1.1: (a) Sketch of the phenomenon of stimulated emission (b) Schematic
diagram of a laser cavity including the three main components.

The invention of the semiconductor laser can be considered as a revolutionary

development in the field of science and technology. The first report on the

process of stimulated emission in the GaAs based p-n junction was discovered

at the Ioffe Institute, Russia in 1962 [18]. However, a practical semiconductor

device based on the principle of stimulated emission was first demonstrated by

Hall et al. [19], which is now used in many everyday applications, such as

1The word "laser" is an acronym for "light amplification by stimulated emission of radiation."
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read/write data on compact discs, laser pointers, displays, printers and most

optical fibre telecommunications systems. The first reports on semiconductor

lasers were published by the following four institutions within a period of five

weeks in 1962.

• General Electric (GE Schenectady) [19]

• International Business Machines Corporation (IBM Yorktown Heights, NY)

[20]

• General Electric (GE Syracuse, NY) [21]

• Lincoln Lab Massachusetts Institute of Technology (MIT, Cambridge) [22]

Semiconductor lasers are based on semiconductor gain media and population

inversion is achieved when an electric current is injected. The basic mechanism

responsible for light emission from a semiconductor material is the recombina-

tion of electrons and holes at a p-n junction. A basic schematic of p-n junction

based semiconductor laser is depicted in Fig. 1.2. A cavity, formed by place-

ment of high and partially reflecting mirrors, provides the selective feedback

mechanism to emitted photons travelling through the gain media. The stimu-

lated emission occurs within the active region and produces optical gain. If the

injected carrier density is large enough, the stimulated emission of the photons

overcomes the losses and lasing takes place at particular wavelengths related

to the length of the cavity and properties of the materials of the active region.

Figure 1.2: Schematic of semiconductor laser with main components.

The first report of semiconductor lasers [19] was based on homojunction semi-

conductor diodes which consist of two layers made from the same compound,

generally gallium arsenide (GaAs). Semiconductor lasers based on homojunc-

tion materials involved very high threshold current densities because electrons

and holes are free to diffuse and therefore dilute the gain which yields poor car-

rier confinement. Furthermore, the poor overlap of the optical mode with the
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gain leads very high optical losses. To overcome such primary disadvantages of

homojunction based semiconductor lasers, in 1970 Alferov [23] demonstrated

the first double heterostructure (DH) laser. This DH structure consisted of GaAs

active region surrounded by AlxGa1−xAs layers and continuous-wave (CW) op-

eration followed by the lower threshold current density was achieved at room

temperature [24]. The DH structure provides lateral confinement of the elec-

tric field to the active region due to the higher refractive index of the central

region to that of the cladding material. In addition, the surrounding semicon-

ductor layer with wider band-gap results in lower absorption of light, reducing

the optical losses significantly. Due to this remarkable discovery and seminal

role in the development of practical semiconductor lasers, Alferov shared the

Nobel Prize in Physics with Kroemer in 2000. The discovery of DH structures

made possible the production of inexpensive commercially available semicon-

ductor lasers and subsequently revolutionised optical communication and data

storage. Nowadays, most semiconductor lasers are based on DH structures

due to their improved carrier and optical confinement relative to homojunc-

tion lasers. Materials used for development of DH semiconductor laser systems

include GaAs/AlGaAs, InGaAsP/GaInAs/InP and InGaAs/AlGaInAs/InP [25].

In recent decades, optimisation and development of semiconductor materials

have led to new low threshold and high-performance semiconductor lasers,

including quantum-well and quantum-dot/dash lasers, vertical cavity surface

emitting lasers (VCSELs), distributed feedback (DFB) lasers, and quantum cas-

cade lasers which are suitable for a broad range of applications. In DH struc-

tures, a thin layer of GaAs (< 20 nm) confined between two layers of AlGaAs,

traps electrons and holes in the central region. Due to the small thickness of

the GaAs, the confinement energies become quantised and the resulting DH

structure is known as a quantum-well laser [26]. Confinement in two and three

spatial dimensions is also possible, leading to quantum-wires and quantum-

dots respectively. Maximum quantum confinement occurs for quantum-dots in

which the densities of states are discrete and electrons are confined in all three

dimensions. This, in turn, can result in lower threshold current density and

higher optical material gain [27]. The density of states for a different degrees

of confinement is shown in Fig. 1.3. In recent years quantum-dot (QDot) and

QDash semiconductor lasers have attracted much attention for reasons of stabil-

ity, compactness, and low fabrication costs, and are ideal for generating stable

picosecond pulses with high repetition rates.
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Figure 1.3: Quantum confinement and density of states. (a) Bulk structure (no
quantum confinement) (b) Quantum confinement in one dimension (quantum
well) (c) Quantum confinement in two dimensions (quantum-wire) (d) Quan-
tum confinement in three dimensions (quantum-dot).

1.2 Pulse Generation in Semiconductor Lasers

Optical pulses are flashes of light, which are often generated with lasers by ex-

ploiting their unique properties [28]. Repetition rate, pulse duration, peak and

average powers, chirp and timing jitter are the fundamental properties of the

laser pulse. Semiconductor lasers are a suitable candidate to generate high-

quality pulses in terms of high repetition rates (up to 500 GHz) [29], short

pulses up to order of femtoseconds [30] with low timing jitter [31]. In order

to achieve ultrashort optical pulses from semiconductor lasers, generally, there

are three techniques: gain switching [32-34], Q-switching [32, 33, 35] and

mode-locking [32, 36, 37]. In Q-switching, intense short pulses (of the order

of nanoseconds) are generated from the laser rather than CW operation. The

basic idea of Q-switching is that the energy stored in the laser medium can

be released suddenly by increasing the Q-value of the cavity so that the laser

reaches the threshold. This can be done actively [38], by moving one of the res-

onator mirrors in place or passively [39, 40] by inserting a saturable absorber

inside the resonator. Gain switching is a method in which the light of extremely

short pulses (of the order of picoseconds) is generated by quick modulation of

the laser gain via the pump power. Unlike Q-switching, gain-switching does

not require the insertion of active/passive elements in the laser cavity, but it

requires external elements (RF signal sources) to modulate the laser gain [34,

41, 42]. In comparison to Q-switching, the major advantage of gain-switching

is that it is wavelength tunable [43]. Among the above-discussed techniques,

mode-locking [44, 45] is the simplest technique, resulting in shorter and higher

quality optical pulses with lower timing jitter, and is sometimes simple to im-
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plement.

1.2.1 Mode-Locking in Semiconductor Lasers

Semiconductor MLLs are attractive sources of ultrashort optical pulse trains

with high repetition rates. Applications for MLLs include telecommunications,

optical data storage, defense, security, metrology, medical systems, and many

other emerging areas. Mode-locking is a technique that allows the genera-

tion of light pulses of extremely short duration (on the order of picoseconds

or femtoseconds), and occurs when the longitudinal modes of the laser’s res-

onant cavity are forced to oscillate with fixed amplitudes and locked phases.

Mode-locking in semiconductor lasers can be achieved by three broad cate-

gories: active mode-locking [46], passive mode-locking [47-50], and hybrid

mode-locking [51]. In all these techniques, optical modes of the laser cavity

are forced to oscillate with stable amplitudes and fixed relative phases.

1.2.1.1 Active Mode-Locking

Active mode-locking in semiconductor lasers can be implemented by modulat-

ing the gain or an absorber in the laser cavity at frequencies synchronised to

the cavity round-trip time [32, 52]. To modulate the absorption, an electro-

absorption modulator monolithically embedded in the laser cavity can be used

to lock the phases of the longitudinal modes together. An external RF source

is used to synchronise the modulating signal frequency with the inverse round

trip time of the resonator or an integer multiple of it, generating windows of

positive gain. During a short period of net gain, optical pulses of the order of

picoseconds are generated with low timing jitter.

1.2.1.2 Passive Mode-Locking

In passive mode-locking, ultra-short optical pulses are generated without any

external source for modulating the gain or absorption. This technique requires a

saturable absorber embedded within the laser cavity. A saturable absorber acts

as an intensity dependent transmission which absorbs low-intensity light and

leads to selective amplification of high-intensity light, so that highly intense

pulses are produced. After many round trips, the pulses are generated in a
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1.3 Quantum Dash/Dot Mode-locked Lasers
Emitting at 1.55 µm

steady stream by temporal interaction of gain and absorber dynamics, where

the absorber is saturated faster than the gain, and recovers before the gain,

enabling a positive net gain window which sharpens the pulses with a repetition

rate corresponding to the round-trip time of the cavity.

1.2.1.3 Hybrid Mode-Locking

Hybrid mode-locking is a combination of both active and passive mode-locking.

With this approach, as external RF source synchronises the pulse timing, as

in active mode-locking, while an absorber also generating optical pulses as

in passive mode-locking. This technique has the advantage of stabilising the

phase-noise of the laser which leads a significant reduction in RF linewidth and

has many applications in telecommunication systems, where synchronisation of

pulses is required.

1.3 Quantum Dash/Dot Mode-locked Lasers Emit-

ting at 1.55 µm

The device investigated in this thesis was a two-section self mode-locked QDash

laser emitting at ∼ 1550 nm and operating at ∼ 21 GHz pulse repetition rate.

In this section, we describe a brief history of InP based QDash/Dot MLLs.

Renaudier et al. [53] first demonstrated single-section QDot Fabry-Pérot semi-

conductor lasers emitting at 1.5 µm and operating at 45 GHz repetition rates.

Mode-locking in these lasers was obtained without saturable absorbers and

record low RF linewidth (100 kHz) was achieved relative to bulk and quantum-

well lasers. Later, Gosset et al. [54, 55] reported pulse generation in one-

section passive mode-locked QDash semiconductor lasers emitting at 1.5 µm

with a repetition rate of 134 GHz. Optical pulses of width 800 fs were achieved

with a time-bandwidth product of 0.46. In addition, a record low RF linewidth

(50 kHz) was demonstrated for passive mode-locked QDash laser operated

at 42 GHz with few ps range pulse-width. Such low RF linewidth highlights

the potential of quantum nano-structure based semiconductor lasers to de-

sign high-performance pulse sources and low timing-jitter devices for poten-

tial application in optical communications. Similar investigations have been

performed by another group [56] who demonstrated femtosecond pulses from
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1.4 Stabilisation of Semiconductor QDash
Mode-Locked Lasers

InAs/InP based single-section passive mode-locked QDot lasers. Optical pulses

with duration 312 fs were generated at a repetition rate of 92 GHz with RF

linewidths as low as 20 kHz. The most interesting part was the fact that these

deliberate pulsations were observed for single-section Fabry-Pérot lasers with-

out any desirable passive (absorber section) or active mode-locking schemes.

Mode-locked lasers which automatically start mode-locking in the absence of

any active/passive scheme in the device are called self-mode-locked lasers. In

self-mode-locking, non-linear effects such as self-phase modulation (SPM) [57,

58], cross-phase modulation (XPM) [59] and four-wave-mixing (FWM) [60,

61] inside the laser medium contribute to maintain fixed phase relationship

between the longitudinal modes inside the laser cavity [56]. Further self-mode-

locking has been demonstrated in InGaAsP based bulk lasers [62], GaAs bulk

lasers [63], quantum-well lasers emitting at 980 nm [64] and 1.55 µm [65,

66]. Self-mode-locked quantum dot lasers allow reduction of device complex-

ity and simplify packaging and cost, with improved performance including low

RF linewidth and corresponding timing jitter relative to quantum-well and bulk

semiconductor lasers [31, 53].

1.4 Stabilisation of Semiconductor QDash Mode-

Locked Lasers

The focus of this thesis will be to achieve stabilisation of our SML QDash lasers

using controlled external optical feedback and optical injection techniques. In

this section, a brief introduction and overview of external optical feedback and

optical injection will be presented.

1.4.1 External Optical Feedback

In 1980, Lang and Kobayashi [67] reported some aspects of the dynamics of a

semiconductor laser exposed to optical feedback. In optical feedback approach,

photons emitted from the active medium are partially reflected by an external

mirror back into the gain medium of the laser cavity, as shown in Fig. 1.4.

Semiconductor lasers under external optical feedback are of high interest to

study the dynamical behavior of the systems because external optical feedback

introduces a delay in the system. This delay results in rich dynamical states like
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1.4 Stabilisation of Semiconductor QDash
Mode-Locked Lasers
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Figure 1.4: Schematic of semiconductor laser subject to external optical feed-
back.

multistability [68, 69], chaos [70, 71], and low-frequency fluctuation regimes

[72]. Furthermore, the amount of feedback into the laser cavity significantly af-

fects the characteristics of semiconductor lasers and yields complex dynamical

states due to high sensitivity of semiconductor lasers to external optical feed-

back. The effects of small amounts of external optical feedback with proper

phase matching can be highly beneficial for the characteristics of semiconduc-

tor lasers, and a considerable reduction in RF linewidth and timing jitter can

be obtained. Goldberg et al. [73] experimentally observed changes in spec-

tra of GaAlAs semiconductor lasers subject to external optical feedback, and

minimum RF linewidth as low as 100 kHz was achieved. In 1983, Tambur-

rini et al. [74] reported phase-noise measurements on semiconductor lasers

with considerable reduction in RF linewidth in the presence of external optical

feedback. Later, Patzak et al. [75] and Agrawal [76] showed that proper phase-

matching and weak optical feedback conditions produced linewidth reduction

of the semiconductor lasers by a factor of ∼ 10. In the early 90’s, Solgard and

Lau [77] experimentally demonstrated that external optical feedback can be

used to reduce the RF linewidth close to two orders of magnitude compared

to free-running conditions. It was also determined that the effects of optical

feedback change periodically as the length of the feedback loop is varied, and

the feedback level required to stabilise the laser was further identified. During

the last two decades, a number of experimental [77-81] and numerical [81-85]

investigations have been performed to evaluate the properties of semiconductor

lasers under external optical feedback. Recently, Lin et al. [79] experimentally

investigated the influence of external optical feedback on two-section passively

mode-locked QDot lasers operating at 5.1 GHz repetition rate. It was found

that under fully resonant feedback level up to -36 dB, the RF linewidth was re-

duced to 8 kHz from 100 kHz for the free-running. In addition, for a passively

mode-locked QDash laser emitting at 1580 nm and operating at 17 GHz repe-

tition rate, RF linewidth reduction to as low as 500 Hz occurs at significantly

stronger feedback -22 dB [80]. These differences in feedback level are expli-

cable by the likelihood that the anti-guiding (phase-amplitude coupling) factor
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is lower in quantum-dashes. Most recently, 99% reduction in RF linewidth and

23 fs pulse-to-pulse jitter was reported using single cavity feedback for a 40

GHz QDot mode-locked laser [78]. Five different feedback regimes were iden-

tified along with the regime of resonant optical feedback most favorable and

desirable for practical applications.

The introduction of a high fraction of the back-reflected light into the gain

medium of the laser cavity can be disadvantageous and restrict practical ap-

plications of semiconductor lasers. For example, to use semiconductor lasers

as transmitters in optical networks, expensive optical isolators are needed to

avoid back reflections that influence the temporal stability of the lasers. In

1984, Cho and Umeda [86] claimed that high feedback ratio (5-10%) into the

laser cavity leads the laser into a state of chaos. Lenstra et al. [87] first observed

the dramatic increase in linewidth broadening (∼ 25 GHz) at moderate higher

feedback level as a form of chaos, referred to as coherence collapse. Since then

much attention has been devoted to understand and explore such complex dy-

namical states. Research on the phenomenon of low-frequency fluctuation and

coherence collapse regime is still going on [88, 89].

1.4.2 Optical-Injection of Semiconductor Lasers

The phenomenon of optical injection can be described as two coupled oscil-

lators, where one oscillator represents the injection field and the other diode

laser: shown in Fig. 1.5. For optical injection, the relevant parameters include

pump power, feedback level injected into the slave laser, and frequency detun-

ing between the injected field and the free-running laser.

 
Output

 
Diode Laser 

Light Source 

Injection

Figure 1.5: Schematic of semiconductor laser subject to optical-injection.

At theoretical prediction of the locking of electrical oscillators was presented

by Van der Pol in 1927. In the middle of the 20th century, Adler reported [90]

that the oscillation frequency of an electrical oscillator can be locked to the fre-

quency of the injected oscillator. The first injection-locking was demonstrated

by Stover and Steier and successful phase-locking was achieved by direct injec-

tion of the first laser into the cavity of the other laser [91]. Both lasers used
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in this experimental study were He-Ne lasers operating in a single longitudinal

mode at 632.8 nm [91]. In 1980, Kobayashi et al. reported the first obser-

vations of injection-locking in DH structure AlGaAs semiconductor lasers [92]

and measured experimental results agreed well with theoretical values based

on Adler’s theory [90]. Later, Lang [93] analysed the injection-locking proper-

ties of a semiconductor laser and found that injection carrier density results in

peculiar asymmetric tuning curves and a dynamic instability. A detailed theoret-

ical and experimental investigation of the locking conditions of semiconductor

lasers was presented by Mogensen et al. [94] in 1985. From a purely physi-

cal point of view, many studies have been done on the analysis of stability and

behaviour of laser systems under optical injection as a system of nonlinear cou-

pled oscillators. For further details on optical injection, see the review article

[95] and references therein.

1.5 Motivation for This work

Quantum nanostructure-based semiconductor MLLs are of increasing interest

for various applications in optical communication systems, such as multi-carrier

transmission systems in orthogonal frequency division multiplexing (OFDM)

[96, 15], coherent wavelength division multiplexing (CoWDM) [13], arbitrary

waveform generation [97], all-optical signal processing [98] and millimeter-

wave generation [99]. While picosecond pulses from these lasers have been

demonstrated routinely, these pulses have significant chirp and poor timing jit-

ter. The latter is usually determined by measuring the linewidth of the repeti-

tion rate peak in the RF intensity fluctuation spectrum. To improve the phase-

noise of passively MLLs, several experimental methods such as external optical

feedback [77-81, 100], coupled optoelectronic oscillators (OEOs) [101-104],

hybrid mode-locking [105] and injection-locking [100, 106-108] techniques

have been proposed and demonstrated. Optoelectronic feedback has been uti-

lized to stabilise timing jitter by conversion of the optical signal (using a fast

photodetector) to an electrical oscillation for use in a long feedback loop. This

technique does not utilize an RF source but requires optical-to-electrical con-

version. Hybrid mode-locking requires electrical modulation of the gain or ab-

sorber bias, while optical injection needs an external laser, making these tech-

niques less attractive for practical implementation where low cost, simplicity,

and reliability are paramount. Of all stabilisation techniques, external optical
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feedback is the simplest and most cost-effective demonstrated to date both ex-

perimentally and numerically, which suppresses instabilities and filters noise

by establishing one or more compound cavities with external reflectors or res-

onators. It is clear that stabilisation using conventional single-loop feedback

is very sensitive to small delay adjustments, with optimum performance being

limited to one narrow regime. In practice, MLLs require a reduced sensitiv-

ity of RF linewidth and timing jitter to detuning and drift in the delay phase.

In this regard, the first area of interest is to maintain the stability of our SML

QDash laser over the widest delay range using external optical feedback. Be-

sides improvement in timing jitter with single-loop feedback, the existence of

extra mirror(s) generates side-bands resonant with the round-trip time of the

external cavities which affect RMS timing jitter and quality of the pulse trains,

as measured by RF spectra. Recently, dual-loop feedback [109, 110] with the

second loop shorter than the main one has been demonstrated to suppress ex-

ternal cavity side-bands but produces additional noise peaks resonant with the

delay in the second cavity which is undesirable in many applications where low

noise and flat spectra are required, as in optical frequency comb generation.

Most recently, the influence of the various length of second feedback delay on

side-mode suppression [112] and timing jitter [113] has been studied numeri-

cally. However, a thorough experimental investigation is desired to explore the

relation of side-mode suppression with precise alignment of the length of the

second loop delay.

In order to deal with general issues mentioned above, a series of experimental

studies have been performed, and reported in this thesis.

1.6 Thesis Outline

This thesis is organised as follows:

Chapter 1 has discussed a basic overview of semiconductor lasers and mode-

locking mechanisms along with a literature review on InP based semiconductor

QDash MLLs and stabilisation techniques (optical feedback and optical injec-

tion). The motivation for this work including the outline of thesis was given.

Chapter 2 provides basic structure and fabrication details of our SML QDash

lasers. In addition, measurement techniques carried out to study the basic char-

acteristics of free-running InP QDash MLLs are discussed.
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Chapter 3 explains the influence of symmetric dual-loop optical feedback (equal

feedback loops) on the RF linewidth and timing jitter of SML QDash lasers

versus delay tuning. Various feedback schemes are investigated and optimum

levels were determined for the narrowest RF linewidth and reduced timing jit-

ter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-

loop configurations, with balanced and unbalanced feedback ratios, were stud-

ied and compared to results with single-loop feedback and free-running condi-

tions. We demonstrated that unbalanced SDL feedback provides the best stabil-

ity, maintaining stable RF spectra with narrow linewidth and low timing jitter

over a range of delay detuning. In addition, for symmetric dual-loop feedback,

the influence of different power split ratios through the external feedback loops

was determined.

Chapter 4 presents the variation in RF linewidth versus delay tuning followed

by different power split ratios through the symmetric dual-loop feedback con-

figuration. RF linewidth narrowing and broadening over a broad range of delay

phase was demonstrated when each cavity was set to integer resonance and the

second cavity was fine-tuned. We further observed that RF linewidth reduction

over a broad range of phase delay was achieved by setting the stronger cavity

to an integer resonance then fine-tuning the weaker cavity.

Chapter 5 focuses on the influence of asymmetric dual-loop feedback (second

loop shorter than the main one) on timing stability of SML QDash laser as a

function of delay tuning. Various feedback conditions were investigated and

optimum levels determined for the narrowest linewidth and reduced timing

jitter for both single-loop and asymmetric dual-loop configurations. We demon-

strated that asymmetric dual-loop feedback, with the shorter feedback cavity

tuned to be fully resonant, followed by fine-tuning of the phase of the longer

feedback cavity, gives stable narrow RF spectra across the widest delay range,

unlike single-loop feedback. Moreover, the influence of asymmetric dual-loop

feedback scheme on suppression of external cavity side-modes was further dis-

cussed.

Chapter 6 presents a novel asymmetric dual-loop feedback method to suppress

external cavity side-modes induced in a SML QDash laser with conventional

single-loop and asymmetric dual-loop feedback. The best combination of the

lengths of the two feedback cavities, to eliminate the external cavity side-modes

and modal overlaps in the RF spectra was determined. In addition, we deter-

mined optimum conditions for stabilisation and timing jitter reduction by vary-
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ing the length of the second feedback cavity. Measured experimental results

were compared with recently published numerical simulations.

Chapter 7 explains the influence of simultaneous external optical feedback and

CW optical injection on the timing stability of the SML QDash laser, and com-

pared to results with external optical feedback alone. Wavelength ranges which

yield narrow RF linewidth and reduced timing jitter under full resonance were

identified. In addition, variation in RF linewidth and pulse repetition frequency

as functions of the master laser wavelength were investigated.

Finally, a conclusive summary of the contributions of this research work fol-

lowed by suggested future work is given in Chapter 8.
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Chapter 2

Basic Characteristics of SML QDash
MLLs

2.1 Introduction

In this chapter, the basic structure and fabrication details of two-section SML

QDash lasers are presented. After introducing the devices, the main measure-

ment techniques of optical power, free-running optical/electrical spectra and

timing jitter will be briefly introduced.

This chapter is organised as follows: In Section 2.2, the basic structure of SML

QDash lasers is described, then in Section 2.3 device fabrication details are

given. In Section 2.4, techniques used to measure optical power, free-running

optical/electrical spectra and integrated timing jitter of SML QDash lasers are

described.

2.2 Device Structure

Devices under investigation were two-section InAs/InP QDash MLLs with active

regions consisting of nine InAs QDash monolayers grown by gas source molec-

ular beam epitaxy (GSMBE) embedded within two barrier layers, and separate

confinement heterostructure (SCH) layers of InGaAsP, emitting at ∼ 1550 nm

[31]. Both the barriers and SCH layers consisted of In0.8Ga0.2As0.4P0.6 quater-

nary materials with λg = 1.55 µm. In the DBARR (dash-in-barrier) type, QDash

15
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mono layers were embedded directly into the barriers and SCH layers as shown

in Fig. 2.1.

QDash 1.55 mm
(0.8 eV)    

BARR 1.17 mm
(1.06 eV)    

Figure 2.1: Active region structure of the device and resonant wavelengths of
the device, Acronyms: QDash: Quantum-Dash, BARR: barrier layer.

In DBARR type, the barrier and SCH were undoped. Cavity length was 2030

µm, 11.8% (240 µm) of which formed the absorber section, giving pulsed repe-

tition frequency ∼ 20.7 GHz. These devices had two sections along the direction

of light propagation: one was the gain section and the other was the absorber

section, with the same active layers. The gain and absorber sections were elec-

trically isolated by 9 kΩ. The lasers were mounted p-side up (substrate down)

on an AlN submount and a copper block with active temperature control. Elec-

trical contacts were formed by wire bonding, and heat sink temperature was

fixed at 190C. The schematic of the cavity structure of our two-section devices

is shown in Fig. 2.2.

Figure 2.2: Schematic of absorber and gain sections of two-section QDash de-
vices.

One important difference between our two-section devices with other saturable-

absorber mode-locking (SAML) devices is that the two-section QDash MLLs still

Stabilisation of Self Mode-Locked Quantum
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operate as MLLs when the absorber is left open or is slightly forward biased. In

this work, mode-locking of the devices under test was obtained without reverse

bias applied to the absorber section. This was a two-section device but was

packaged similarly to a single-section self-mode-locked lasers since the absorber

was unbiased: its minimal absorption does not affect the self-mode-locking

mechanism [107]. Recently, 1550 nm InAs/InP based QDash single-section self-

mode-locked lasers have demonstrated promising high speeds, narrow pulse

generation, specifically GHz pulse repetition rate and very low RF linewidth

[54, 55] with low timing jitter. The absence of any obvious active/passive

mode-locking scheme in these devices looks surprising at first glance. However,

self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave-

mixing (FWM) in the cavity has been proposed as the reason for this coherent

self-pulsing behavior [31].

2.3 Device Fabrication

Growth of our QDash structures was carried out using gas-source molecular

beam epitaxy (GSMBE) on a Silicon-doped InP substrate with (100) crystal di-

rection using the Stransky-Krastanow growth method [31]. The QDash layer

growth is based on deposition of a very thin layer (about 1 nm thick) of InAs on

InGaAsP; the mismatch between the lattice constants of the two layers causes

the formation of QDot islands [31]. However, due to the GSMBE growth con-

ditions and surface anisotropy of InGaAsP layer, the formation of QDots is usu-

ally modified to form nanostructures elongated in the direction perpendicular

to the growth direction. These nanostructures are called quantum-dashes and

have typical thickness ∼ 2 nm, width ∼ 15-20 nm and length ∼ 40-300 nm,

depending on growth conditions [31] (shown in Fig. 2.3).

The DBARR structure was processed into waveguides with either shallow ridge

or buried ridge structures with well-established InP processing technology for

InP based quantum-well or bulk devices [31]. For buried ridge stripe structures,

waveguides were defined using contact lithography. Metal Organic Vapour

Phase Epitaxy (MOVPE) was used to grow the p-doped InP cladding layer and

GaInAs contact layers. For lateral confinement of carriers, proton implantation

was utilized. P and n type electrical contact pads were realized by ion beam

sputtering of Ti/Pt/Au films [114]. For the two-section devices, interruption of

the metal mask, etching of the ternary contact layer and ion implantation forms

Stabilisation of Self Mode-Locked Quantum
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Long Quantum 
Dash Structure

 Quantum Dot 
Structure

Figure 2.3: View of the active layer using transmission electron microscopy
(TEM).

two isolated sections used as the gain and absorber sections with the desired

length ratios. Growth and processing of the devices were performed at III-V

lab, a joint ventures of Alcatel Lucent Bell Labs, Thales Research Technology

and CEA-LETI, France [114]. The devices were cleaved to the required lengths

at the Laboratory for Photonics and Nanostructures (LPN), CNRS, France. The

layer schematic of the DBARR device is shown in Fig. 2.4.

The singulation of devices, mounting and wire-bonding were carried out at

UCC/Tyndall. The devices were mounted on AlN submounts using silver epoxy

as the bond material, followed by electrical connections to the devices using

standard wire bonding. The submount was mounted on a copper block for

active temperature control. A picture of a mounted device is shown in Fig. 2.5.

2.4 Measurement Techniques

In this section, we will discuss the measurement techniques used in the course

of this work to determine the following parameters of the device under test

(DUT): optical power, optical/electrical spectra and measurement of integrated

timing jitter.

Stabilisation of Self Mode-Locked Quantum
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2. Basic Characterisations of
Quantum-Dash Mode-Locked Lasers 2.3 Measurement Techniques

(a)

(b)

Figure 2.3: Layer structures of the devices. (a). DWELL laser (b). DBARR laser. The
thickness of layers are not scaled to the actual size.

LabView® is run on a computer connected to the power meter and current source to
automatically change the current of the laser and read measurements from the power
meter in a loop.

Properties and Applications of Injection Locking
in 1.55 µm Quantum-Dash Mode-Locked
Semiconductor Lasers

28 Ehsan Sooudi

Figure 2.4: Layer structures of the DBARR laser device.

Figure 2.5: Photo of a mounted device on an AlN submount with electrical
contacts using ball-type wire bonding.

2.4.1 Optical Power Versus Bias Current Characterisation

The schematic of the experimental arrangement for power measurement is

shown in Fig. 2.6. Light from the laser was collected and collimated using

lenses and a free space isolator, and was shone onto a photodetector with large

Stabilisation of Self Mode-Locked Quantum
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detection area connected to a power meter (Thorlabs Germanium PIN photode-

tector, model S122B with PM30 console system). The free space isolator was

used to prevent any possible feedback from the photodetector to the laser. The

photodetector was so slow that it could be assumed that it always measured

the time-averaged power. This term will be used from now on for any corre-

spondence about the emitted power, and the injection ratio used to evaluate

the strength of external injection.
 
QDash MLL ISO

Power Meter

Figure 2.6: Schematic of measurement setup for (L-I) and optical measure-
ment, Acronyms– QDash MLL: Quantum-Dash mode-locked laser, ISO: Optical
Isolator.

For the L-I measurement, LabView® was run on a computer connected to the

power meter and current source to automatically change the current of the laser

and read measurements from the power meter in a loop. Fig. 2.7 shows the

resulting light-current (L-I) characteristics.

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
0

1
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Figure 2.7: Light-Current (L-I) characteristics of SML QDash laser.
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2.4.2 Optical Spectrum Analysis

The schematic of an experimental arrangement for the analysis of optical spec-

tra is shown in Fig. 2.8. Light from the laser was collected from port 2 of

an optical circulator and then the output of the circulator was sent to a semi-

conductor optical amplifier (SOA, gain 9.8 dB). Optical coupling loss between

adjacent ports was -0.64 dB. For automatic measurements (for example the evo-

lution of optical/RF spectra versus bias current), a computer was used to con-

trol instruments via LabView®. The optical spectrum of the laser was measured

using a diffraction-grating based commercial optical spectrum analysers (Ando

AQ6317B and Advantest Q8384) covering the infrared wavelength range up to

1700 nm with a minimum resolution bandwidth of 0.01 nm. The measured

ISOISORF Amp.RF Amp. PDPD

23

1

50:5050:50

SOASOA

50
 %

50 %

GainGain

QDML SourceQDML Source

Lensed FiberLensed Fiber II

OCOC
Figure 2.8: Schematic of measurement setup for optical and RF spectra,
Acronyms- OC: Optical Circulator, SOA: Semiconductor Optical Amplifier, OSA:
Optical Spectrum Analyser, ESA: Electrical Spectrum Analyser, ISO: Optical Iso-
lator, PD: High-speed Photodetector, RF Amp.: RF Amplifier, QDML: Quantum-
Dash mode-locked laser.

optical spectrum of our QDash, mode-locked under free-running condition, is

shown in Fig. 2.9. The spectrum was centered at 1570 nm with a 3 dB band-

width spanning 12 nm and containing ∼ 68 longitudinal modes, with 0.18 nm

free spectral range (FSR).

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

21 Haroon Asghar



2. BASIC CHARACTERISTICS OF SML QDASH

MLLS 2.4 Measurement Techniques

1 5 5 5 1 5 6 0 1 5 6 5 1 5 7 0 1 5 7 5 1 5 8 0 1 5 8 5- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

 

 

Op
tica

l P
ow

er 
(dB

m)

W a v e l e n g t h  ( n m )

O p t i c a l  S p r e c t r u m

Figure 2.9: Optical spectra of free-running SML QDash laser measured for a
bias condition of 300 mA and temperature controlled at 19oC.

2.4.3 RF Spectrum Analysis

The power spectrum in the radio-frequency (RF) domain provides useful in-

formation about the stability of MLL. For example, the RF spectrum gives in-

formation on the laser’s repetition frequency, its frequency purity (phase-noise

information), effective RF power, amplitude noise, and other nonlinear effects

such as Q-switching. In the frequency domain, a Dirac-comb spaced by the

repetition rate is expected. However, in a real mode-locked, the Dirac-delta

functions are broadened due to unavoidable timing jitter. A schematic of an

experimental arrangement for the analysis of RF spectra is shown in Fig. 2.8.

To measure RF spectra, an optical signal from the laser was collected from port

2 of an optical circulator and then the output of the circulator was sent to a

semiconductor optical amplifier (SOA, gain 9.8 dB). Finally, the amplified sig-

nal went to an RF spectrum analyser (Agilent, E-series, E4407B model) with a

minimum resolution bandwidth of 1 kHz and a frequency range of 9 kHz - 26.5

GHz. The RF spectrum of the free-running QDash mode-locked over the full

frequency span [0-26 GHz] is shown in Fig. 2.10. For the free-running laser,

the minimum RF linewidth was measured to be 100 kHz. The RF spectrum and

its Lorentzian fit are shown in Fig. 2.11.
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Figure 2.10: RF spectra of free-running QDash MLLs across the full frequency
span [0 - 26 GHz] for a bias condition of 300 mA and temperature controlled
at 19oC.

Figure 2.11: RF spectra of free-running SML QDash laser and its Lorentzian fit
using frequency span 1 MHz (resolution bandwidth 1 kHz and video bandwidth
100 Hz). [Note: The Lorentzian fit was made over a 5 MHz frequency span but
only the zoom is shown here so as to better demonstrate the excellence of the
fit at the peak.]

2.4.4 Integrated Timing Jitter

Pulse trains generated by MLLs exhibit some deviations of the temporal pulse

positions from those in a perfectly periodic pulse train, and this is refereed
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to as timing jitter. The fundamental origin of timing jitter in MLLs arises due

to spontaneous emission of the gain medium coupled into resonator modes,

and to intra-cavity losses [116]. The spontaneous emission essentially gener-

ates photons with random phase and polarisation, unlike the desired stimulated

emission which generates photons with the same polarisation in phase as those

already in the laser cavity. In addition, there can be technical noise influences,

vibrations of the cavity mirrors and temperature fluctuations.

We calculated the root mean square (RMS) timing jitter from single sideband

(SSB) phase-noise spectra measured at the fundamental RF pulse repetition

frequency (20.7 GHz) using [116]:

σRMS = 1
2πfML

√
2

∫ fu

fd

L(f) df (2.1)

where fML is the pulse repetition rate and fu and fd are the upper and lower

integration limits. L(f) is the single sideband (SSB) power due to phase fluctu-

ations relative to the total power and is given by:

Ł(f) = Noise power in 1 Hz bandwidth
Total signal power

(2.2)

To measure the RMS timing jitter of the laser, single-sideband (SSB) noise spec-

tra for the fundamental harmonic repetition frequency were measured. RF spec-

tra at several spans around the repetition frequency were measured from small

(finest) to large (coarse) resolution bandwidths. The corresponding ranges for

frequency offsets were then extracted from each spectrum and superimposed

to obtain SSB spectra normalized for power and per unit frequency bandwidth.

The higher frequency bound was 100 MHz (instrument limited).

Using this method, the timing jitter of our QDash mode-locked was observed

to be 3.9 ps for the free-running condition [integration: 10 kHz to 100 MHz].

Measured phase-noise trace for free-running laser (black line) as functions of

frequency offset from fundamental mode-locked frequency are depicted in Fig.

2.12.
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Figure 2.12: SSB phase-noise trace of free-running laser using integration limits
10 kHz to 100 MHz.

2.5 Summary

In this chapter, a detailed discussion on the basic structure and fabrication of the

SML QDash laser was presented. The measurement techniques are described

for the optical power, optical/electrical spectra and integrated timing jitter of

the device under test. Our QDash mode-locked laser generated optical spectra

centered at 1570 nm with a 3 dB bandwidth spanning 12 nm and containing

approximately 68 optical modes. The RF linewidth was 100 kHz at 300 mA

gain current. In addition, it was observed that under free-running conditions

the timing jitter of our SML QDash laser was 3.9 ps. Low jitter achieved by

the QDash SML indicates the potential for applications such as microwave and

terahertz generation.
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Chapter 3

Stabilisation of SML QDash Lasers
by Symmetric Dual-Loop Optical
Feedback

3.1 Introduction

In this chapter, we report on experimental studies of the influence of symmetric

dual-loop optical feedback on the RF linewidth and timing jitter of SML two-

section QDash lasers emitting at 1550 nm. Various feedback schemes were in-

vestigated and optimum levels were determined for the narrowest RF linewidth

and low timing jitter, for single and symmetric dual-loop feedback. Two sym-

metric dual-loop configurations, with balanced and unbalanced feedback ratios,

were studied. We demonstrated that unbalanced symmetric dual-loop feedback,

with the inner cavity resonant and fine delay tuning of the outer loop, produced

the narrowest RF linewidth and reduced timing jitter over a wide range of delay,

unlike single and balanced symmetric dual-loop configurations. For symmetric

dual-loop feedback, the influence of different power split ratios through the

feedback loops was further determined. Our results show that symmetric dual-

loop feedback is markedly more effective than single-loop feedback in reducing

RF linewidth and timing jitter, and is much less sensitive to delay phase, making

it ideal for applications where robustness and alignment tolerance are essential.

This chapter is structured as follows. In the next section, Mach-Zehnder inter-

ferometer based symmetric dual-loop feedback will be presented. The exper-

imental setup will be introduced in Section 3.3 and analysis of experimental
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3.2 Mach-Zehnder Interferometer Based
Symmetric Dual-Loop Feedback

results will be given in Section 3.4. In Subsections (3.4.1, 3.4.2 and 3.4.3),

the effects of optical delay length, external feedback levels, and optical de-

lay phase tuning are described on the RF linewidth and timing jitter of QDash

mode-locked laser using single-loop optical feedback. In Subsection 3.4.4, we

shall then discuss the influence of balanced symmetric dual-loop feedback on

the timing stability of SML QDash lasers versus the widest delay phase tuning.

Under the double resonance condition, RF linewidth versus power split ratio

through symmetric dual-loop feedback will be presented in Subsection 3.4.5.

In Subsection 3.4.6, we will then discuss the influence of unbalanced symmet-

ric dual-loop feedback versus full delay phase tuning on the timing stability of

the SML QDash laser. Finally, comparison of balanced and unbalanced sym-

metric dual-loop configuration with longer delay lengths will be presented in

Subsection 3.4.7.

3.2 Mach-Zehnder Interferometer Based Symmet-

ric Dual-Loop Feedback

The Mach-Zehnder interferometer is used to determine the relative phase shift

between collimated beams by splitting from a single light source and then re-

combining them. An optical signal is equally (50:50) split into two phase shift-

ing arms of the interferometer by a 3-dB coupler and then recombined to pro-

duce the output. The lengths of the phase shifting arms are equal as shown in

Fig. 3.1. If the optical path in the two arms of the interferometer is an integral

number of optical wavelengths, the two waves will arrive at the output coupler

in phase and interfere constructively to produce high intensity. If an electric

field is used to create a relative phase difference between the two optical sig-

nals, as in Mach-Zehnder modulators (MZMs), the intensity can be reduced.

In MZMs, each of the phase shifters can also be manipulated individually and

the phase difference between the two arms can be varied from 0o to 180o. For

this particular configuration, 0o phase difference between two arms results in

constructive interference and 180o phase difference results in destructive inter-

ference.

Symmetric dual-loop feedback can be regarded as a superposition of two single

feedback loops at the 3-dB coupler. Fig. 3.2 shows the two fibre paths between

3-dB couplers forming a Mach-Zehnder (M-Z) interferometer. The path differ-

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

27 Haroon Asghar



3. STABILISATION OF SML QDASH LASERS

BY SYMMETRIC DUAL-LOOP OPTICAL

FEEDBACK 3.3 Experimental Arrangement

Input Light Output Light

Reference Arm

Phase Shift

Figure 3.1: Schematic of a general Mach-Zehnder interferometer.

ence in this interferometer can be finely tuned using optical delay lines (ODL-I

and ODL-II) attached to the two external feedback loops. When modes in the

outer and inner feedback loops were aligned, then optical pulses in either feed-

back loop overlapped and constructive interference was formed in the M-Z fibre

interferometer to stabilise the optical pulses. The superposition of RF spectra in

either feedback loop makes the RF spectrum with symmetric dual-loop feedback

much narrower and sharper relative to single-loop feedback.

Input Light

Output Light

ODL-I ODL-I 

ODL-II (c)ODL-II (c)

Att-IAtt-I

Att-II

PC-I PC-I 

PC-II PC-II 

Figure 3.2: Superposition effect of RF spectra in M-Z interferometer formed by
symmetric dual-loop optical feedback, Acronyms– ODL: Optical delay line; Att:
Optical attenuator; PC: polarisation controller.

3.3 Experimental Arrangement

A schematic of the single-loop and symmetric dual-loop feedback experiments

is depicted in Fig. 3.3. For single and dual-loop feedback, a calibrated frac-

tion of light was fed back through port 1 of an optical circulator, then injected

into the laser cavity via port 2. Optical coupling loss from port 2 to port 3

was -0.64 dB. The output of the circulator was sent to a semiconductor optical

amplifier (SOA) with gain 9.8 dB then split into two arms by a 50/50 coupler.

Half the amplified signal went to an RF spectrum analyser (Keysight, E4407B)
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via a 21 GHz photodiode, and also to two optical spectrum analysers (Ando

AQ6317B and Advantest Q8384). The other half of the power was directed to

the feedback arrangement. For a single feedback loop, all power passed through

loop-I in Fig. 3.3. For symmetric dual-loop configurations, power was split into

equal two parts via a 3-dB splitter, each loop containing an optical delay line

plus a variable optical attenuator and a polarisation controller. For symmet-

ric dual-loop configurations, two combinations of feedback ratios were studied.

For symmetric dual-loop with balanced feedback ratios, equal power was cou-

pled to both external cavities. However, for unbalanced symmetric dual-loops

feedback more power (-20 dB), was coupled to loop-I than to loop-II (-26 dB).

The lengths of the fibre loops were fine-tuned by optical delay lines based on

stepper-controlled stages with delay resolution 1.67 ps. polarisation controllers

in each loop and one polarisation controller before port 1 of the circulator en-

sured the light from both loops matched the emitted light polarisations to max-

imise feedback effectiveness.

3.4 Analysis of Results

In this section, we described the effects of three key parameters: optical loop

length, optical feedback level, and optical delay phase tuning, on the timing

stability of our QDash mode-locked laser. The laser was subjected to single and

symmetric dual-loop (balanced and unbalanced power ratios) feedback into the

gain section.

3.4.1 Effects of Fibre Delay Length on RF Linewidth and In-

tegrated Timing Jitter using Single-Loop Feedback

To achieve improved stability and spectral purity, optical feedback with a high-

quality-factor (Q-factor) resonator is the most practical approach to reduce the

phase-noise and RF linewidth of MLLs. It has been previously demonstrated,

both analytically and experimentally [104], that the length of the fibre deter-

mines the phase-noise and is inversely proportional to the loop length [110]. In

the following section, we explored the relationship between the RF linewidth

and timing jitter versus fibre delay length using single-loop feedback.

To study the effects of various fibre delay lengths on the RF linewidth and timing
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Figure 3.3: Schematic of the experimental arrangement for a single (ex-
cluding dashed portion) and dual-loop configurations (with dashed portion).
Acronyms– SOA: Semiconductor Optical Amplifier; ISO: Optical isolator; PD:
Photodiode; RF Amp.: RF Amplifier; ODL: Optical delay line; Att: Optical at-
tenuator; PC: polarisation controller; ESA: Electrical spectral analyser; OSA:
Optical spectrum analyser; SMF: Single mode fibre; PM: Power Meter; QDash
MLL: Quantum-dash mode-locked laser.

jitter of the laser, loop-II was disconnected and the maximum feedback to the

gain section was -22 dB, as shown in Fig. 3.3. Single 20, 48, 80 and 140 m fibre

spans were used, the stable resonant condition being achieved by optimising

optical delay line ODL-I which was adjustable from 0-84 ps in steps of 1.67 ps.

The exact condition of integer resonance is obtained when the optical length of

the external cavity is an integral multiple of that of the internal cavity.

τF B = nτML n = 1, 2, 3, .... (3.1)

where τF B is the round trip time inside the feedback loop and τML is the round

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

30 Haroon Asghar



3. STABILISATION OF SML QDASH LASERS

BY SYMMETRIC DUAL-LOOP OPTICAL

FEEDBACK 3.4 Analysis of Results

trip time inside the laser cavity.

Upon detuning of the optical delay line (ODL-I), RF linewidth narrowing and

broadening occur at various delay settings. Under full resonance, the RF linewidth

decreased from 100 kHz free-running to 15 kHz for loop length 20 m, 13 kHz

for loop length 48 m, 3 kHz for loop length 80 m and 4 kHz for loop length

140 m. Under similar conditions, the RF spectrum is shown in Fig. 3.4 for loop

length 20 m (black line), 48 m (red line), 80 m (blue line) and 140 m (green

line).

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

 

 

RF
 Sp

ect
ral

 Po
we

r (
dB

m)

F r e q u e n c y  O f f s e t  ( M H z )

 2 0  m  :  1 5  k H z   
 4 8  m  :  1 3  k H z
 8 0  m  :  3  k H z
 1 4 0  m  :  4  k H z

S i n g l e  L o o p

Figure 3.4: Measured RF spectra under fully resonant condition for loop lengths
20 m (black line), 48 m (red line), 80 m (blue line) and 140 m (green line).

As detuning of the optical delay line varies the RF linewidth considerably, there-

fore integrated timing jitter also varies as a function of optical delay tuning. The

RF linewidth, which directly influences the phase-noise spectral density, is di-

rectly related to the integrated RMS timing jitter in semiconductor passive MLLs

[116]. When the optical delay line was fully resonant, the integrated timing jit-

ter was reduced from 3.9 ps for free-running to 1.2 ps for loop length 20 m,

0.8 ps for loop length 48 m, 0.6 ps for loop length 80 m and 0.65 ps for loop

length 140 m. It should be noted that integrated timing jitter was measured

using integration limits 10 kHz - 100 MHz. Measured phase-noise traces as a

function of frequency offset under fully resonant condition are shown in Fig.
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Figure 3.5: Measured phase-noise traces under fully resonant condition for loop
length 20 m (black line), 48 m (red line), 80 m (blue line) and 140 m (green
line) using single-loop optical feedback with integration limits 10 kHz - 100
MHz.

3.5 for loop length 20 m (black line), 48 m (red line), 80 m (blue line) and 140

m (green line).

Measured RF linewidth and integrated timing jitter data as functions of external

cavity loop length are shown in Fig. 3.6 using single-loop feedback. It can

be seen from measured experimental results that RF linewidth and integrated

timing jitter decrease with increasing external cavity loop length. These results

agree well with the model presented in [116].

In addition, measured RF spectra are shown in Fig. 3.7 for the four chosen

feedback lengths. Strong external cavity side-modes were noticed a few MHz

away from the fundamental mode-locked frequency. The frequency spacing

of these external cavity side-modes was 4.3 MHz, 2.53 MHz, and 1.45 MHz in

accordance with the 48, 80 and 140 m nominal length of each loop, respectively.
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Figure 3.6: Measured RF linewidth and integrated timing jitter under fully res-
onant condition for loop length 20 m (black square), 48 m (red square), 80 m
(green square) and 140 m (blue square) using single-loop feedback.

3.4.2 Effects of Feedback Strength on RF Linewidth and In-

tegrated Timing Jitter Subject to Single-Loop Feedback

A number of experimental [77-81] and numerical investigations [81-85] have

been performed to evaluate the influence of MLLs under external optical feed-

back. The effects of small amounts of external optical feedback with proper

phase matching can be highly beneficial for the characteristics of semiconduc-

tor lasers, and considerable reduction in RF linewidth and timing jitter can be

obtained. On the other hand, slightly higher levels of optical feedback result

in coherence collapse and low-frequency fluctuation regimes [78, 79] leading

to a sharp increase in RF linewidth and timing jitter. It is therefore essential to

identify the most favorable amount of optical feedback for stable mode-locked

operation.

In this section, the impact of external optical feedback from single-loop and

symmetric dual-loop on the RF linewidth and integrated timing jitter was in-

vestigated. The attenuation in the feedback loop was varied from the minimum

achievable feedback ratio -46 dB up to a maximum -22 dB after which laser ex-

hibits unstable behavior. The feedback ratio into the gain section was subjected

to nine chosen attenuations (-46 dB, -39 dB, -36 dB, -31 dB, -29 dB, -26 dB,

-24 dB, -21 dB and -22 dB). For single-loop feedback, all the power was passed
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Figure 3.7: RF spectrum of loop length (a) 20 m, (b) 48 m (c) 80 m and (d)
140 m subject to single-loop feedback using frequency span 10 MHz (resolution
bandwidth 10 kHz and video bandwidth 1 kHz).

through loop-I. However, for symmetric dual-loop configuration, the feedback

ratio was equally split into two parts as shown in Fig. 3.3. It can be seen that at

feedback level -46 dB, the RF linewidth was 73 kHz for single-loop, 69 kHz for

unbalanced symmetric dual-loop and 75 kHz for balanced symmetric dual-loop

feedback configuration, with corresponding timing jitter 3, 2.9 and 3.1 ps, re-

spectively (integration from 10 kHz-100 MHz). Under weak feedback (-46 dB,

-39 dB and -36 dB), upon tuning of the optical delay line, no deviation in the

position of the fundamental frequency occurred, so that no major reduction in

RF linewidth and timing jitter was seen relative to free-running. With a slight

increase in feedback level to -29 dB, a gradual decrease in RF linewidth and

timing jitter was observed. At this feedback condition, the RF linewidth was

reduced to 28.7 kHz for single-loop, 21.5 kHz for unbalanced symmetric dual-

loop and 29 kHz for balanced symmetric dual-loop configuration. As a result,

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

34 Haroon Asghar



3. STABILISATION OF SML QDASH LASERS

BY SYMMETRIC DUAL-LOOP OPTICAL

FEEDBACK 3.4 Analysis of Results

RMS timing jitter was decreased to 1.75 ps for single-loop, 1.6 ps for unbal-

anced symmetric dual-loop and 1.8 ps for balanced symmetric dual-loop feed-

back scheme. Further increase in feedback level to -22 dB results in optimum

reduction in RF linewidth and timing jitter for single and symmetric dual-loop

feedback configurations (subject to balanced and unbalanced feedback ratios).
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Figure 3.8: 3-dB RF linewidth under resonant condition for single-loop (black
circles), unbalanced symmetric dual-loop (blue triangles) and balanced sym-
metric dual-loop (red squares) feedback configurations as a function of external
feedback ratio at 300 mA gain current.

The minimum achieved RF linewidth and timing jitter for single and symmetric

dual-loop configurations as functions of feedback level are depicted in Figs. 3.8

and 3.9, respectively, under integer resonance. From this data, we have identi-

fied the optimal feedback ratio to be -22 dB for single and symmetric dual-loop

feedback, limited by self-pulsation above this level. Our results demonstrate

that for practical applications, the relatively flat characteristics of the plot of RF

linewidth versus feedback ratio (-26 dB, -24 dB, -23-dB and -22 dB) are more

favourable. Other studies [77, 80] also depict the variation in RF linewidth as

a function of feedback level, with behaviour corresponding well with our stud-

ies. Furthermore, variation in RF linewidth and timing jitter in all feedback

schemes (single, balanced/unbalanced symmetric dual-loop feedback configu-

rations) follows a similar trend when the feedback level approaches the op-

timal value (- 22 dB). A theoretical expression was suggested to measure RF
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linewidth and corresponding integrated timing jitter, instead of calculating the

RF phase-noise power spectral density (PSD) from the photocurrent [116]. Our

experimental measurements agree well with the reported analytical expression

(square root dependence of the RF linewidth on integrated timing jitter) [116].

Recently, for a QDot mode-locked laser operating at a 5.1 GHz repetition rate,

the minimum RF linewidth was obtained at relatively low feedback level -36

dB [79]. On the other hand, for a passively mode-locked QDash laser emitting

at 1580 nm and operating at 17 GHz repetition rate, a marked reduction in RF

linewidth occurs at a significantly stronger feedback (-22 dB) [80], in agree-

ment with our studies. These differences are explicable by the likelihood that

the anti-guiding (phase-amplitude coupling) factor is lower in QDashes.
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Figure 3.9: Integrated timing jitter under resonant condition subjected to
single-loop (black circles), unbalanced symmetric dual-loop (blue triangles)
and balanced symmetric dual-loop (red squares) feedback configurations as
functions of external feedback ratio at 300 mA gain current.

As discussed above, by optimisation of the optical delay to the fully resonant

condition and varying the feedback ratio, significant reduction in RF linewidth

and corresponding timing jitter was noted, for both single- and symmetric dual-

loop configurations. Measured RF spectra for single- and symmetric dual-loop

configurations under three chosen feedback attenuations (-46 dB, -29 dB, and

-22 dB) is shown in Figs. 3.10 (a) and (b), respectively.
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Figure 3.10: RF spectra under stable resonant condition with frequency span
1 MHz (resolution bandwidth 1 kHz and video bandwidth 100 Hz) using (a)
single- and (b) symmetric dual-loop feedback configurations under three cho-
sen feedback attenuations (-46 dB, -29 dB and -22 dB).

3.4.3 RF Linewidth and Integrated Timing Jitter Versus Delay

Tuning for Single-Loop Feedback

From the above measured results, the optimal feedback level and fibre delay

length yielding the narrowest RF linewidth and reduced timing jitter were de-

termined to be -22 dB and 80 m, respectively. Our next experimental measure-
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ments were performed at these fixed feedback levels and fibre delay length.

To study the effects of single-loop feedback on RF linewidth and timing jitter

over a wide delay range (0-84 ps), loop-II was disconnected and the maximum

feedback to the gain section was set (-22 dB) via a single 60 m fibre span using

a variable optical attenuator (Att-I). The schematic of this single-loop optical

feedback is shown in Fig. 3.11.

60 m60 m

Input Light

Output Light

ODL-I (c)  
Att-IAtt-I

PC-I PC-I 

Figure 3.11: Schematic of single-loop optical feedback scheme; Acronyms–
ODL: Optical delay line; Att: Optical attenuator; PC: polarisation controller.

Stable resonance was achieved by optimising optical delay line ODL-I, adjustable

from 0-84 ps in steps of 1.67 ps. The resulting RF linewidth (black squares) and

timing jitter (blue triangles) versus delay are shown in Fig. 3.12. Clearly, sta-

bilisation effectiveness depends strongly on feedback delay, most likely because

detuning of the optical delay from exact resonance changes synchronization

conditions between pulses in the laser cavity and feedback loops [112]. The

periodicity in RF linewidth versus delay tuning is 48 ps, in agreement with the

fundamental mode-locked frequency (20.7 GHz) of our laser. Furthermore, this

optimisation of the single-loop delay reduced the RF linewidth and correspond-

ing timing jitter considerably, as in other reported experiments [77, 79] and

theoretical predictions [85].

Effective stable mode-locking occurs when the external cavity optical length is

close to an integer multiple of that of the laser cavity. When fully resonant, the

RF linewidth decreased from 100 kHz free-running to 3 kHz, and integrated

timing jitter from 3.9 ps to 0.6 ps (10 kHz-100 MHz). Measured RF spectra

and phase-noise traces at this feedback delay with single-loop feedback (blue

line) and free-running (gray line) are shown in Figs. 3.13 (a) and (b), re-

spectively. Upon tuning of the loop delay by 6-54 ps, synchronization of the

optical pulses between the laser cavity and external cavity did not occur, the

RF spectra became highly deformed and non-resonant feedback was observed.

Experimental results for a single-loop feedback show that for practical use of

QDash MLLs the most stable, delay-insensitive ranges are near 5 and 53 ps.

Optimum stabilisation using conventional single-loop feedback is very sensitive

to phase adjustment and limits the region of optimum performance to a narrow
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Figure 3.12: RF linewidth (black squares) and integrated timing jitter (blue
triangles) as a functions of full delay range [0-84 ps], for single-loop optical
feedback.
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Figure 3.13: (a) Comparison of RF spectra measured using single-loop feedback
(blue line) and free-running condition (gray line) with frequency span 1 MHz
(resolution bandwidth 1 kHz and video bandwidth 100 Hz) (b) Comparison of
phase-noise traces measured using single-loop feedback (blue line) and free-
running (gray line) with integration limits 10 kHz -100 MHz.

parameter space. For practical applications of MLLs, it is desirable to extend

the range of resonant feedback over a much wider range of delay times, such

that environmental changes maintain stable pulse trains with narrow linewidth

and low timing jitter.
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3.4.4 RF Linewidth and Integrated Timing Jitter Versus De-

lay Tuning for Balanced Symmetric Dual-Loop Configu-

ration

For dual-loop experiments, the optical feedback was split into two fibre cavities

whose lengths were calibrated by measurement of RF spectra with each loop

unblocked separately. A schematic of single cavity feedback for each loop is

shown in Fig. 3.14.

60 m60 m

60 m60 m

Loop-ILoop-I

Input Light

Output Light

ODL-I (c)  
Att-IAtt-I

PC-I PC-I 

Input Light

Output Light

ODL-II (c)

Att-II

PC-II PC-II 

Loop-IILoop-II

Figure 3.14: Schematic of single-loop feedback with loop-I and loop-II;
Acronyms– ODL: Optical delay line; Att: Optical attenuator; PC: polarisation
controller.

For the first set, loop-II was disconnected and RF spectra were measured. Sim-

ilarly, for the second set, loop-I was blocked and RF spectra were measured.

For each loop, the cavity spacing was 2.53 MHz, consistent with 80 m nominal

length of both equal loops. RF spectral measurements with this arrangement

are shown in Fig. 3.15.

To study the effects of symmetric dual-loop feedback on laser stability, fine ad-

justment of the optical attenuator (Att-I) and polarisation controller (PC-I) was

made with equal feedback power (-22 dB) coupled to both loops. Optical delay

line ODL-I was set to full resonance (integer number of times the laser cavity

delay) and ODL-II tuned over its entire available delay range. The schematic of

symmetric dual-loop feedback is shown in Fig. 3.16.

The RF linewidth and integrated timing jitter are presented as functions of delay

in Fig. 3.17. We see that symmetric dual-loop feedback yields results compara-

ble to those using a single-loop, and is similarly sensitive to delay. In the liter-
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Figure 3.15: Separate measurement of RF spectra of single-loop feedback from
loop-I (gray line) and loop-II (blue line) using frequency span 10 MHz (resolu-
tion bandwidth 10 kHz and video bandwidth 1 kHz).
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Input Light

Output Light

ODL-I ODL-I 

ODL-II (c)

Att-IAtt-I

Att-II

PC-I PC-I 

PC-II PC-II 

Figure 3.16: Schematic of symmetric dual-loop optical feedback scheme;
Acronyms– ODL: Optical delay line; Att: Optical attenuator; PC: polarisation
controller.

ature [77, 79], it was observed that the pulse repetition frequency shifts with

feedback delay; in our experiments, we used the fully resonant Loop-I to set the

fundamental repetition frequency, then tuned pulse trains from Loop-II through

these by varying the delay. For most settings of Loop-II delay, pulses from both

loops overlapped at the edges rather than the center (see Fig. 3.18(a)), broad-

ening RF linewidth and increasing timing jitter, so that measured RF spectra

were worse than for single-loop feedback. Only with both loops resonant does

stability improve, giving RF linewidth 12 kHz and timing jitter 0.85 ps, versus 3

kHz and 0.6 ps for optimized single-loop feedback. The measured RF spectrum
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Figure 3.17: RF linewidth (black squares) and Integrated timing jitter (blue
triangles) as a function of full delay phase subjected to balanced symmetric
dual-loop feedback.

(blue line) is shown in Fig. 3.18 (b) for balanced feedback ratio symmetric

dual-loop.
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Figure 3.18: (a) Broadening of RF spectra under non resonant condition using
frequency span 5 MHz (resolution bandwidth 3 kHz and video bandwidth 1
kHz) (b) RF spectra under resonant condition for balanced symmetric dual-
loop feedback using frequency span 1 MHz (resolution bandwidth 1 kHz and
video bandwidth 100 Hz).

Recently, in a separate series of experiments, we achieved 0.97 kHz linewidth

(instrument limited) and timing jitter 0.45 ps with both cavities resonant [118],
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confirming balanced symmetric dual-loop feedback produces effective stabilisa-

tion, but only at a specific delay with tolerance ∼ 1 ps, a very stringent require-

ment in practice.

3.4.5 RF Linewidth Versus Power Split for Symmetric Dual-

Loop Feedback

Next, we explored unbalanced dual-loop feedback, in which the power split

between the two cavities was varied. In these experiments, the inner feed-

back cavity (loop-I) was fully resonant and the outer feedback cavity fine-tuned

around resonance. The schematic of this setup is shown in Fig. 3.19.

60 m60 m

Input Light

Output Light

ODL-I ODL-I 

ODL-II (c)

Att-IAtt-I

Att-II

PC-I PC-I 

PC-II PC-II 

Figure 3.19: Schematic of symmetric dual-loop with ODL-I at integer resonance
and fine-tuning of ODL-II (c); Acronyms– ODL: Optical delay line; Att: Optical
attenuator; PC: polarisation controller.
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Figure 3.20: Measured RF spectra as a function of different feedback ratios
through two external feedback cavities for symmetric dual-loop feedback. Fre-
quency span was 1 MHz (resolution bandwidth 1 kHz and video bandwidth 100
Hz).
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Measured RF spectra at different loop power splits are shown in Fig. 3.20, with

corresponding RF linewidths in Table 3.1.

Table 3.1: Calculated RF linewidth as a function of power split ratio (in dB)
through two external feedback loops using the asymmetric dual-loop feedback
configuration

Loop-I Loop-II (c) Total Feedback at Gain Facet RF-Linewidth
-26 dB -20 dB -22 dB 4.1 kHz

-24.3 dB -20.6 dB -22 dB 3.4 kHz
-21 dB -21 dB -22 dB 2.1 kHz
-22 dB -22 dB -22 dB 12 kHz
-21 dB -21 dB -22 dB 30 kHz

-20.6 dB -24.3 dB -22 dB 1.6 kHz
-20 dB -26 dB -22 dB 1.5 kHz

Minimum RF linewidth occurred when both external cavities were fully reso-

nant, as expected. Values of 1.6 and 1.5 kHz were achieved when resonant

loop-I had feedback -20.6 and -20 dB, and fine-tuned loop-II had -24.3 and -26

dB, respectively. This combination of feedback ratios was particularly effective

and was investigated further.

3.4.6 RF Linewidth and Timing Jitter Versus Delay for Unbal-

anced Symmetric Dual-Loop Feedback

The next experiments concerned the effects of unbalanced symmetric dual-loop

feedback on timing stability of the laser: feedback strengths in loop-I and loop-

II were set at -20 and -26 dB, a ratio of 4:1 resulting in overall feedback -22

dB to the gain section. Delay in loop-I was then fine-tuned to full resonance,

and loop-II tuned over its entire available delay ranged 0-84 ps. This yielded

much more stable dynamics: narrow RF spectra and reduced timing jitter were

maintained over the full delay range, unlike single-loop and balanced symmet-

ric dual-loop feedback. This dual-loop scheme with 4:1 power ratio between

loops was most successful, reducing RF linewidth by up to two orders of mag-

nitude (70x) compared to free-running, 2-5x over single-loop and 5-8x rela-

tive to balanced symmetric dual-loop feedback. Measured RF linewidths (black

squares) and timing jitter (blue triangles) for this unbalanced symmetric dual-

loop scheme are given in Fig. 3.21. Furthermore, with this feedback configu-

ration, measured RF linewidth and integrated timing jitter on full delay range

ranged from as high as 28 kHz and 1.5 ps to as low as 1.5 kHz and 0.45 ps
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(free-running values are 100 kHz and 3.9 ps). Again the most effective and ro-

bust linewidth narrowing and lowest timing jitter occurred when both external

cavities were fully resonant. The RF spectrum under double resonance is shown

in Fig. 3.22 (blue line). Recently, it was theoretically predicted that dual-loop

optoelectronic oscillators could be optimized by controlling the phase delay and

power split ratio [118].
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Figure 3.21: RF linewidth (black squares) and integrated timing jitter (blue
triangles) as a function of full delay phase subject to unbalanced symmetric
dual-loop feedback.
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Figure 3.22: RF spectra under double resonance condition using unbalanced
symmetric dual-loop feedback.
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In addition, when optical delay line ODL-I was adjusted to full resonance, and

loop-II tuned over its entire available delay range 0-84 ps, it was observed that

stable RF linewidth could be achieved versus delay when the attenuation in the

laser gain section is varied in three chosen feedback levels (-46 dB, -29 dB and

-22 dB), as shown in Fig. 3.23. These results demonstrate that at feedback level

-46 dB, across the full delay range, no significant reduction in RF linewidth oc-

curs and results were comparable to the free-running condition. Under double

resonance, the RF linewidth narrows to 68 kHz. This attenuation level agrees

well with previously reported measurements [78]. It has been shown, that with

further increase in feedback level up to -29 dB, the RF linewidth narrows down

to 2.5-5x, across the widest delay range, compared to free-running. However,

under double resonance it lowers to 20 kHz. With a slight increase in feed-

back level to -22 dB, extreme suppression of RF linewidth and corresponding

reduced timing jitter occurs versus full delay tuning and RF linewidth narrows

down to 3.6-67x compared to free-running. The influences of three chosen

feedback attenuations (-46 dB, -29 dB and -22 dB) on the laser performance

are presented in Fig. 3.23. These experimental results suggest that stability of

MLLs on widest delay ranges could be achieved even at low feedback ratios.
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Figure 3.23: RF Linewidth as a function of maximum available optical delay
range [0 – 84 ps] for unbalanced symmetric dual-loop feedback configurations
under three chosen feedback attenuations ( -46 dB (black squares), -29 dB
(green circles) and -22 dB (blue triangles)).
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Furthermore, when free-running the peak power of RF noise spectra is -20 dB.

For single-loop and unbalanced symmetric dual-loop feedback, the noise peak is

30 dB higher (see Fig. 3.13(a)) due to the reduced RF linewidth and also lower

threshold current with feedback, increasing the optical power emitted at fixed

bias. This increase in the amplitude of RF spectra of single-loop feedback and

unbalanced symmetric dual-loop configuration compared to the free-running

condition are shown in Figs. 3.13(a) and 3.22, respectively. Comparison of RF

spectra and measured phase-noise traces for unbalanced symmetric dual-loop

feedback versus frequency offset with the free-running condition are given in

Figs. 3.24(a) and 3.24(b), respectively.
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Figure 3.24: (a) Measured RF spectra with loop length 140 m (blue line) and
free-running (gray line) under frequency span 10 MHz (resolution bandwidth
10 kHz and video bandwidth 1 kHz) (b) Comparison of phase-noise trace of
symmetric dual-loop with loop length 140 m (blue line) and free-running laser
(gray line) with integration limit 10 kHz-100 MHz.

Measured RF linewidths versus delay for a single-loop, with -20 dB feedback

through loop-I (blue triangles), are shown in Fig. 3.25(a) for comparison. At

stable resonance, single-loop feedback at -20 and -26 dB narrows the linewidth

to 8 kHz and 68 kHz, respectively. When dual-loops were unbalanced, mea-

sured RF linewidth as a function of the delay was as in Fig. 3.25(b), show-

ing that unbalanced dual-loops are more effective in stabilizing the linewidth.

Here optimisation of ODL-II yields better linewidth stabilisation (blue triangles)

than optimisation of ODL-I (black squares) (see Fig. 3.25(b)). For symmetric

dual-loop feedback, fine-tuning of ODL-I yields narrow RF linewidth at an in-

teger resonance, but the linewidth broadens significantly when the delay is

tuned away from this point. Our results show that the most effective algorithm

for stable linewidth reduction over a broad range of phase delay is to set the
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stronger cavity to an integer resonance then fine-tune the weaker cavity. Opti-

mising loop-II in symmetric dual-loop feedback (blue triangles in Fig. 3.25(b)),

changes the linewidth similarly to single-loop feedback (black squares in Fig.

3.25(a)) but almost 1-2 orders of magnitude (6-64x) narrower.
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Figure 3.25: (a) RF linewidth as a function of maximum delay [0 - 84 ps]
using single-loop feedback with feedback strength -20 (blue triangles) and -26
dB (black squares) (b) RF linewidth versus delay [0 - 84 ps] for unbalanced
symmetric dual-loop configuration with optimisation of ODL-I (black squares)
and ODL-II (blue triangles).

3.4.7 Comparison of Balanced and Unbalanced Symmetric

Dual-Loop Feedback with Longer Delay Times

Effects of longer delay times on RF linewidth were also investigated for both

balanced and unbalanced symmetric dual-loop feedback. For this purpose, the

60 m fibre loop was replaced with 120 m of fibre. The basic schematic for this

feedback configuration is depicted in Fig. 3.26.

120 m120 m

Input Light

Output Light

ODL-I ODL-I 

ODL-II (c)ODL-II (c)

Att-IAtt-I

Att-II

PC-I PC-I 

PC-II PC-II 

Figure 3.26: Schematic of symmetric dual-loop with ODL-I at integer resonance
and full delay tuning of ODL-II (c); Acronyms– ODL: Optical delay line; Att:
Optical attenuator; PC: polarisation controller.
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Measured RF linewidth versus phase tuning is shown in Fig. 3.27 for symmet-

ric dual-loops with balanced (black squares) and unbalanced (blue triangles)

feedback ratios. Unbalanced symmetric dual-loop feedback again reduced the

RF linewidth by 10-100x across a broader range of delay than the free-running

laser. However, balanced symmetric dual-loop feedback was less sensitive to de-

lay, though the linewidth was 8-16x broader than unbalanced symmetric dual-

loop (Fig. 3.27). Narrowest linewidth obtained was 1 kHz under full resonance

(25 ps delay in Fig. 3.28) which is the limit of resolution of our spectrum anal-

yser. Timing jitter was also minimized at 0.4 ps and timing jitter versus widest

delay range for unbalanced symmetric dual-loop optical feedback is shown in

Fig. 3.28.
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Figure 3.27: RF linewidth subjected to balanced (red squares) and unbalanced
symmetric dual-loop feedback configuration (blue triangles) as a function of
maximum available delay tuning [0 - 84 ps].

The RF spectrum under these conditions is shown in Fig. 3.29(a) (blue line).

We observed 1.45 MHz external cavity mode spacing as expected for a 140

m loop. Measured phase-noise versus frequency offset from the fundamental

mode-locked frequency is shown in Fig. 3.29(b) (blue line). RF linewidth and

timing jitter were lower over a wider delay range with the longer cavity, due

to its higher quality factor (Q). The Q-factor is commonly used to describe the

sharpness of the resonance of a resonator. The higher the Q-factor, the narrower

the linewidth and corresponding integrated timing jitter.
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Figure 3.28: Integrated timing jitter subjected to unbalanced symmetric dual-
loop feedback configuration (blue triangles) as a function of maximum avail-
able delay tuning [0 - 84 ps].
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Figure 3.29: (a) Comparison of RF spectra subjected to unbalanced symmet-
ric dual-loop feedback (blue triangles) and free-running condition (gray line)
under frequency span 10 MHz (resolution bandwidth 10 kHz and video band-
width 1 kHz) (b) Comparison of phase-noise trace of unbalanced symmetric
dual-loop feedback (blue triangles) and free-running condition (gray line) with
integration limit 10 kHz-100 MHz.

3.5 Summary

This chapter has highlighted the effects of external optical feedback level, max-

imum effective optical delay phase tuning (0-84 ps), optical delay lengths (80
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and 140 m), and external optical feedback scheme on the timing jitter and sta-

bility of the 21 GHz SML QDash laser. Two symmetric dual-loop configurations,

subject to balanced and unbalanced feedback ratios were demonstrated, and

results were compared with single-loop feedback and free-running condition.

First, effects of different lengths of fibre delays on the RF linewidth and tim-

ing jitter were investigated using a single-loop feedback scheme. It was found

that increased fibre delay length leads to significant reduction in RF linewidth

and timing jitter, mainly due to the quality factor (Q) of the feedback loop

determined by the round-trip time (optical length) of the external cavity. In

addition, the influence of external optical feedback on the RF linewidth and

integrated timing jitter was investigated for single and symmetric dual-loop

feedback (with balanced and unbalanced feedback ratios). Initially a gradual

decrease in RF linewidth and integrated timing jitter was observed, however af-

ter a certain value of feedback ratio, saturation in RF linewidth and timing jitter

was achieved. From this analysis, we have identified the optimal feedback ratio

(-22 dB) for single and symmetric dual-loop feedback, which leads to significant

reduction in RF linewidth and timing jitter. It is reported in the literature that

RF linewidth narrowing and reduced timing jitter versus delay phase tuning

depend strongly on feedback delay. For single-loop feedback, RF linewidth and

timing jitter were shown to be very sensitive to small delay adjustments, with

optimum performance being limited to a narrow range of delay (0 - 5 ps). For

practical applications of MLLs, it is desirable to extend the range of resonant

feedback condition to the full range of delay phase, such that changes in de-

lay maintain stable RF spectra with narrow linewidth and minimal timing jitter

even in the most demanding applications.

After investigating the influence of single-loop feedback on the RF linewidth

and timing jitter of the QDash mode-locked laser, a second cavity was added

which made a significant contribution to the timing jitter over the full delay

tuning. The lengths of both external feedback loops were kept similar and two

feedback schemes were studied: balanced and unbalanced symmetric dual-loop

feedback. For symmetric dual-loop with balanced feedback ratio, equal power

was fed through both external feedback loops. We see that balanced symmet-

ric dual-loop feedback yields results comparable to those using a single-loop,

and is similarly sensitive to delay, producing effective stabilisation only at a

specific delay value. For unbalanced symmetric dual-loop feedback configura-

tion, higher feedback ratio (-20 dB) was passed through loop-I relative to the

other (-26 dB). We found that unbalanced symmetric dual-loops, with the in-
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ner cavity fully resonant (at higher feedback intensity) and fine delay tuning of

the outer loop (at lower feedback intensity), gave narrow RF linewidth and re-

duced timing jitter over a wide range of delay detuning [0-84 ps], unlike single

and balanced symmetric dual-loop configurations. In this proposed symmetric

dual-loop configuration, reduced sensitivity of RF linewidth and timing jitter

was observed over a wider delay range because changing delay does not cause

switching into unstable or unwanted dynamical regimes. In addition, the in-

fluence of longer feedback delay times (140 m) on the RF linewidth narrowing

and reduced timing jitter on wider delay range tuning [0-84 ps] were further

studied. It was found that with long feedback delay times (140 m), the RF

linewidth and timing jitter on the full delay range was much narrower than

that with the shorter feedback delay time (80m) which is mainly due to the

higher quality factor (Q) of the external cavity.

In summary, we have demonstrated that unbalanced symmetric dual-loop feed-

back provides best overall stability, maintaining stable RF spectra with narrow

linewidth and low timing jitter over a range of delay detuning ∼ 80 ps, which

means it would be relatively insensitive to temperature, vibration and other

common environmental variations. Unbalanced symmetric dual-loop feedback

is significantly better than conventional single-loop feedback and balanced sym-

metric dual-loop feedback, producing up to two orders of magnitude reduction

in RF linewidth to 1 kHz (instrument limited) and RMS timing jitter 0.4 ps,

compared to free-running. Longer (140 m) fibre loops are more effective than

shorter (80 m) loops. For symmetric dual-loop feedback, we have studied the

effects of varying the power split between the loops. We demonstrated a novel

unbalanced symmetric dual-loop feedback scheme with feedback lengths of 80

and 140 m, which narrowed the RF linewidth by ∼ 4-67x and ∼ 10-100x,

respectively, across the widest delay range, compared to free-running. The pro-

posed scheme is effective in overcoming the primary drawback of mode-locked

diode laser their lack of dynamical stability and robustness in practical applica-

tions such as frequency comb generation, optical sampling, signal timing and

regeneration, metrology, lidar and many others.
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Chapter 4

stabilisation of SML QDash Lasers
using Symmetric Dual-Loop Optical
Feedback

4.1 Introduction

In Chapter 3, we described investigation of the RF linewidth versus power

split through symmetric dual-loop feedback configurations under double res-

onance. However, for unbalanced symmetric dual-loop feedback, the influence

of variation in optical delay of either feedback loop on stability of the QDash

mode-locked laser was neglected. In this chapter, we are primarily interested

in observing the variation in RF linewidth versus a wide range of delay tuning

[0-84 ps] followed by varying the power split between the feedback loops. RF

linewidth narrowing/broadening over a broad range of delay phase was ob-

tained when one cavity was set to an integer resonance, the second cavity was

fine-tuned. Later we will see that RF linewidth reduction over a broad range of

phase delay can be achieved by setting the stronger cavity to an integer reso-

nance then fine-tuning the weaker cavity.

This chapter is structured as follows. In Section 4.2, two different feedback

approaches were studied to investigate stabilisation versus power split ratio

for symmetric dual-loop optical feedback. A comprehensive analysis of the RF

linewidth as a function of full delay range tuning will be presented in Subsec-

tions 4.2.1 and 4.2.2, when the first feedback cavity (stronger) was set to an

integer resonance and fine-tuned the second cavity (weaker). Finally, in Sec-
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tion 4.3, the RF linewidth versus delay for balanced and unbalanced symmetric

dual-loop optical feedback will be presented.

4.2 Stabilisation of SML QDash Lasers Versus Power

Split Ratio for Symmetric Dual-Loop Optical

Feedback

In this section, we conducted an experimental analysis of the RF linewidth with

dual-loop optical feedback as a function of the power split ratio and separate

fine tuning of the optical delay phase in either feedback loop. Thus, two dual-

loop feedback configurations, symmetric (equal arms of external loops) and

asymmetric (unequal arms of external loops) were presented. Both feedback

schemes with following optical delay phase settings have been studied.

1. RF linewidth versus full phase delay with the weaker cavity (ODL-II) set

to an integer resonance, the stronger cavity fine-tunes (ODL-I (c))

2. RF linewidth versus full phase delay with the stronger cavity (ODL-I) set

to an integer resonance, then weaker cavity fine-tunes (ODL-II (c))

A comprehensive analysis of RF linewidth versus the widest range of delay tun-

ing for both symmetric and asymmetric dual-loop feedback mentioned above is

presented in the following sections.

4.2.1 RF Linewidth Versus Phase Delay with Weaker Cavity

(ODL-II) set to an Integer Resonance, the Stronger Cav-

ity Fine-Tunes (ODL-I (c))

The experimental arrangement for this symmetric dual-loop setup remained the

same as in Fig. 3.3 except for replacing the 80 m fibre with 200 m. To study

the effects of optical delay phase tuning on the RF linewidth of our QDash

mode-locked laser, fine adjustment of PC-I and PC-II were made: optical delay

line ODL-II was set to full resonance (integer number of times the laser cavity

delay), then we fine-tuned the ODL-I. A higher feedback ratio of loop-I relative

to loop-II was fixed using the variable optical attenuators (Att-I and Att-II),
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with overall feedback ratio -22 dB back into the gain section. A schematic of

the symmetric dual-loop optical feedback setup is shown in Fig. 4.1.

200 m200 m

Input Light

Output Light

ODL-I (c) 

ODL-IIODL-II

Att-IAtt-I

Att-II

PC-I PC-I 

PC-II PC-II 

Figure 4.1: Schematic of symmetric dual-loop with ODL-II at integer resonance
and full delay tuning of ODL-I (c); Acronyms– ODL: Optical delay line; Att:
Optical attenuator; PC: polarisation controller

Four chosen combinations of feedback ratios (in units of percentage and dB) in-

vestigated in this work are presented in Table. 4.1. The percentage of feedback

ratio through either external feedback loop can be converted into dB using the

following formula:

feedback into dB = 10 ∗ log10
(% loop− I) + (% loop− II)

2 ∗ 100 (4.1)

Table 4.1: Four chosen combinations of feedback ratio through either feedback
loop, and the resulting overall feedback strength into the gain section.

Loop-I(c) Loop-II Total Feedback at Gain Facet
-19.5 dB (1.13%) -29.03 dB (0.12%) -22 dB (0.625%)

-20.6 dB (1%) -24.3 dB (0.25%) -22 dB (0.625%)
-21 dB (0.88%) -22.7 dB (0.3%) -22 dB (0.625%)

-21.3 dB (0.75%) -23 dB (0.5%) -22 dB (0.625%)

• Loop-I (c) = -19.5 dB and Loop-II = -29.03 dB

In order to study the effects of -19.5 dB feedback ratio through loop-I and -29.03

dB feedback ratio through loop-II, ODL-II was adjusted to integer resonance

and ODL-I was tuned over its entire available delay range 0-84 ps. Measured

RF linewidth data versus full delay range tuning are shown in Fig. 4.2(a).

From these experimental results, it was observed that under integer resonance

the RF linewidth narrowed to 11 kHz from 100 kHz for the free-running laser.

Measured RF spectra (black line) are shown in Fig. 4.3. These results show

that, with this selective combination of feedback ratios (loop-I=-19.5 dB and

loop-II=-29.03 dB) effective stabilisation can be achieved at only one particular

delay setting (∼ 50 ps), but over a wider delay range (0-30 ps and 56-84 ps)

the RF linewidth was relatively broad and was comparable to free-running.
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• Loop-I (c) = -20.6 dB and Loop-II = -24.3 dB

In this case, -20.6 dB feedback was passed through loop-I and -24.3 dB was fed

through loop-II. Measured RF linewidth versus delay is shown in Fig. 4.2(b).

When both feedback cavities were fully resonant, the measured RF linewidth

was as low as 3 kHz from 100 kHz, which is 33x lower than free-running. RF

spectra under double resonance are shown in Fig. 4.3 (green line). In addition,

with full delay phase tuning, the results were much better than measured with

the previous combination of feedback ratios (loop-I=-19.5 dB and loop-II=-

29.03 dB).

• Loop-I (c) = -21 dB and Loop-II = -22.7 dB

In the following, the feedback ratios in loop-I and loop-II were fixed at -21 dB

and -22.7 dB, respectively. Measured RF linewidth data as a function of full

delay range tuning (ODL-I) are shown in Fig. 4.2(c). When both feedback

loops were fully resonant, the RF linewidth was reduced from 100 kHz for

free-running to as low as 3 kHz, which was 33x lower than the free-running.

A 33x reduction in RF linewidth also occurs under double resonance in the

above combination of feedback ratio (loop-I=-20.6 dB and loop-II=-24.3 dB).

However on full delay phase tuning, significant suppression in RF linewidth was

noticed, across a broad delay range 8 to 84 ps. Measured RF spectra under the

double resonance are shown in Fig. 4.3 (red line).

• Loop-I (c) = -21.3 dB and Loop-II = -23 dB

When -21.3 dB feedback was passed through loop-I and -23 dB through loop-II,

the RF linewidth narrowed from 100 kHz free-running to as low as 10 kHz. On

the other hand, under non-resonant conditions, the RF linewidth broadened

to 55 kHz which is only ∼ 1.9x lower than free-running. In addition, the RF

linewidth versus full delay range tuning (0 - 84 ps) was only 5-10x lower than

free-running. Measured RF linewidth versus delay is shown in Fig. 4.2(d).

In comparison to previous combinations of feedback ratios, this combination

(loop-I=-21.3 dB and loop-II=-23 dB) through either feedback loop shows sta-

ble behaviour in RF linewidth over a broad range of delay (0 to 84 ps). This

comprehensive analysis confirms that to achieve effective stabilisation on full

delay phase tuning, -21 dB feedback through loop-I and -21 dB through loop-II

is desirable when the optical delay line (ODL-I) on the first (stronger) feedback

loop is fine-tuned. Measured RF spectra under double resonance are shown in

Fig. 4.3 (blue line).
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Figure 4.2: Measured RF as a function of full delay phase (ODL-I(c)) subjected
to following combinations of feedback ratio through either external feedback
loop (a) loop-I:-19.5 dB; loop-II:-29.03 dB (b) loop-I:-20.6; loop-II:-24.3 dB (c)
loop-I:-21 dB; loop-II:-22.7 dB (d) loop-I:-21.3 dB; loop-II:-23 dB.

Comprehensive analysis of RF linewidth versus delay demonstrates that for

symmetric dual-loop feedback, fine-tuning of ODL-I yields narrow RF linewidth

at an integer resonance [see in Table 4.3], but the linewidth broadens signif-

icantly when the delay is tuned away from this point. In the literature [77,

79], it was observed that the pulse repetition frequency shifts with feedback

delay; in our experiments, we have used the fully resonant loop-II to set the

fundamental repetition frequency, then tuned pulse trains from loop-I through
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these by varying the delay. With a higher feedback ratio through loop-I, the

first feedback loop was more sensitive to frequency pulling than the other. For

most settings of loop-II delay, pulses from both loops overlapped at the edges

rather than the center, broadening RF linewidth and increasing timing jitter, so

that measured RF spectra are worse and corresponding timing jitter values are

higher.
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Figure 4.3: Measured RF spectra using frequency span 1 MHz (resolution band-
width 1 kHz, video bandwidth 100 Hz) as functions of power split ratio (a)
loop-I:-19.5 dB; loop-II:-29.03 dB (black line) (b) loop-I:-20.6; loop-II:-24.3 dB
(green line) (c) loop-I:-21 dB; loop-II:-22.7 dB (red line) (d) loop-I:-21.3 dB;
loop-II:-23 dB (blue line).

The minimum RF linewidth, measured for four chosen combinations of feed-

back ratios is summarised in Table. 4.2 under double resonance.

Table 4.2: Four chosen combinations of feedback ratio through either feedback
loop using symmetric dual-loop optical feedback and measured minimum and
maximum RF linewidth for each case.

Loop-I(c) Loop-II Minimum RF Maximum RF
-19.5 dB -29.03 dB 11 kHz 110 kHz
-20.6 dB -24.3 dB 3 kHz 110 kHz
-21 dB -22.7 dB 3 kHz 145 kHz

-21.3 dB -23 dB 10 kHz 55 kHz
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4.2.2 RF Linewidth Versus Phase Delay with Stronger Cavity

(ODL-I) set to an Integer Resonance then Weaker Cav-

ity Fine-Tunes (ODL-II (c))

In the second feedback approach, the phase delay in the strong cavity (ODL-I)

is set to integer resonance, then we fine-tuned the weaker cavity (ODL-II (c)).

A schematic of this symmetric dual-loop configurations is depicted in Fig. 4.4.

200 m200 m

Input Light

Output Light

ODL-I ODL-I 

ODL-II (c)

Att-IAtt-I

Att-II

PC-I PC-I 

PC-II PC-II 

Figure 4.4: Schematic of symmetric dual-loop feedback with ODL-I at integer
resonance and full delay tuning of ODL-II (c); Acronyms– ODL: Optical delay
line; Att: Optical attenuator; PC: polarisation controller.

The combinations of feedback ratio passed through the two feedback loops in

various symmetric dual-loop feedback configurations are presented in Table.

4.3.

Table 4.3: Four chosen combinations of feedback ratios through either feedback
loop and overall feedback strength into gain section.

Loop-I Loop-II (c) Total Feedback at Gain Facet
-19.5 dB (1.13%) -29.03 dB (0.12%) -22 dB (0.625%)

-20.6 dB (1%) -24.3 dB (0.25%) -22 dB (0.625%)
-21 dB (0.88%) -22.7 dB (0.3%) -22 dB (0.625%)

-21.3 dB (0.75%) -23 dB (0.5%) -22 dB (0.625%)

• Loop-I = -21.3 dB and Loop-II (c) = -23 dB

This experiment concerned the effects of unbalanced symmetric dual-loop feed-

back on timing stability of the laser: fine adjustment of the polarisation con-

trollers (PC-I and PC-II), variable optical attenuators (Att-I and Att-II) and one

optical delay line (ODL-I) was done. Higher feedback strength was passed

through loop-I relative to loop-II. The feedback ratio from loop-I was fixed to

-21.3 dB, while from loop-II it was adjusted to -23 dB giving overall feedback

ratio -22 dB back into the gain section. In this symmetric dual-loop feedback

approach, maximum available delay range tuning (0 to 84 ps) was tuned on
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the second (weaker coupled) cavity. Optical delay line ODL-II and optical de-

lay line ODL-I were held at integer resonant condition. Measured RF linewidth

data versus delay are shown in Fig. 4.5(a). From these experimental results,

it was observed that under double resonance, the RF linewidth narrowed to 8

kHz from 100 kHz, ∼ 14x lower than the free-running. Measured RF spectra

(black line)are shown in Fig. 4.6.

• Loop-I = -21 dB and Loop-II (c)= -22.7 dB

In this section, -21 dB feedback was passed through loop-I and -22.7 dB through

loop-II. When both feedback cavities were fully resonant, this configuration

narrowed the RF linewidth from 100 kHz free-running to as low as 15 kHz.

Measured RF linewidth data as a function of full delay range tuning are shown

in Fig. 4.5(b). In comparison to previous combinations of feedback ratios,

this combination of feedback ratios (loop-I=-21.3 dB and loop-II=-23 dB) yield

several instabilities at a few delay settings (24, 49 and 72 ps). Measured RF

spectra are shown in Fig. 4.6 (red line).

• Loop-I = -20.6 dB and Loop-II (c)= -24.3 dB

In this case, -20.6 dB feedback ratio was passed through loop-I and -24.3 dB

through loop-II. In this case, RF linewidth narrowing to as low as 5 kHz was

observed under full resonance. Measured RF linewidth versus delay is shown

in Fig. 4.5(c). In addition, under delay settings (7, 28, 58 and 80 ps) the

RF linewidth was much broader then free-running. Measured RF spectra are

shown in Fig. 4.6 (green line).

• Loop-I = -19.5 dB and Loop-II (c)= -29.03 dB

Unbalanced symmetric dual-loop feedback, with -19.5 dB feedback ratio through

loop-I and -29.03 dB through loop-II, yielded much more stable dynamics: nar-

row RF spectra and reduced timing jitter were maintained over the full delay

range, unlike the first three combinations of feedback ratios discussed above.

Measured RF linewidth data as a function of full delay range tuning (ODL-II) are

shown in Fig. 4.5(d). Under full resonance, the RF linewidth, in this case, was

reduced from 100 kHz free-running to as low as 1.5 kHz. RF spectra are shown

in Fig. 4.6 (blue line). Our measurements show that to achieve RF linewidth

stabilisation over a broad delay range, -19.5 dB feedback ratio through loop-I

and -29.03 dB feedback ratio through loop-II is desirable when the optical delay

line (ODL-I) in the second feedback loop (lower feedback intensity) is varied.

These experimental results demonstrate that different percentages of feedback
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ratio through the two external feedback cavities have a significant influence on

the timing stability of the laser. In this feedback configuration, the fundamen-

tal mode spacing frequency from one feedback cavity was fixed and the other

one was fine-tuned. As weak feedback was passed through the second feedback

cavity, the repetition frequency as a function of optical delay range (ODL-II) is

not changing too much. Hence frequency shifting as a function of optical delay

length (ODL-II) from loop-II lies within the range of mode-locked frequency

from loop-I which leads to jitter stabilisation over full delay range followed by

optimisation of the weaker cavity (optical delay line (ODL-II)).
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Figure 4.5: Measured RF linewidth as a function of full delay phase (ODL-II(c))
subjected to following combinations of feedback ratio through either external
feedback loop (a) loop-I:-21.3 dB; loop-II:-23 dB (b) loop-I:-21 dB; loop-II:-22.7
dB (c) loop-I:-20.6; loop-II:-24.3 dB (d) loop-I:-19.5 dB; loop-II:-29.03 dB.

Minimum and maximum RF linewidth, measured for four chosen combinations

of feedback ratio is summarised in Table. 4.4 under double resonance.
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Figure 4.6: Measured RF spectra using frequency span 1 MHz (resolution band-
width 1 kHz and video bandwidth 100 Hz) as a function of power split ratio (a)
loop-I:-21.3 dB; loop-II:-23 dB (black line)(b) loop-I:-21 dB; loop-II:-22.7 dB
(red line) (c) loop-I:-20.6; loop-II:-24.3 dB (green line) (d) loop-I:-19.5 dB;
loop-II:-29.03 dB (blue line).

Table 4.4: Four chosen combinations of feedback ratio through either feedback
loop with measured minimum and maximum RF linewidth for each case.

Loop-I Loop-II(c) Minimum RF Maximum RF
-19.5 dB -29.03 dB 1.5 kHz 12 kHz
-20.6 dB -24.3 dB 3 kHz 140 kHz
-21 dB -22.7 dB 14 kHz 150 kHz

-21.3 dB -23 dB 7 kHz 94 kHz

4.3 RF Linewidth Versus Delay using Balanced and

Unbalanced Symmetric Dual-Loop Feedback

In this section, the effects of balanced and unbalanced symmetric dual-loop

feedback, on the RF linewidth and timing jitter of our QDash mode-locked laser

are described. For balanced symmetric dual-loop feedback, equal ratios were

coupled to the two external feedback cavities, while for unbalanced symmet-

ric dual-loops, the feedback ratios in the two loops were fixed to -19.5 dB and

-29.03 dB. The measured RF linewidth as a function of maximum available

phase tuning (0 - 84 ps) is given in Fig. 4.7 for symmetric dual-loops with bal-
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anced (black squares) and unbalanced (blue triangles) feedback. It was further

confirmed that for unbalanced symmetric dual-loop feedback, the RF linewidth

narrowed to 8-40x over the full delay phase relative to free-running. However,

balanced symmetric dual-loop feedback yields broadened RF linewidth over a

wider delay range. It can be seen for unbalanced symmetric dual-loop feed-

back, the RF linewidth was 2-14x lower than with balanced symmetric dual-

loops over the full delay range. For unbalanced symmetric dual-loop feedback,

under fully resonant conditions (tunable delay set to ∼ 28 ps), the RF linewidth

narrows to 1.5 kHz, versus 4 kHz for balanced symmetric dual-loop feedback.
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Figure 4.7: RF linewidth subjected to balanced (black squares) and unbalanced
symmetric dual-loop feedback configuration (blue triangles) as a function of
maximum available delay tuning [0 - 84 ps].

Comparison of measured RF spectra under stable resonance is shown in Fig.

4.8(a) for a feedback loop of length 220 m (blue line). Here, we observed 0.92

MHz spacing of external cavity side-modes from the fundamental mode-locked

frequency, consistent with the 220 m loop length. The measured phase-noise

trace as a function of the frequency offset from the fundamental mode-locked

frequency is shown in Fig. 4.8(b) (blue line).
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Figure 4.8: (a) Measured RF spectra with loop length 220 m (blue line) with
free-running RF spectra using frequency span 10 MHz (resolution bandwidth 10
kHz and video bandwidth 1 kHz) (b) Comparison of phase-noise trace of loop
length 220 m (blue line) with free-running laser (gray line) using integration
limit 10 kHz-100 MHz.

4.4 Summary

In this chapter, we have investigated the effectiveness of unbalanced symmetric

dual-loop optical feedback as a means of robust stabilisation of SML QDash

lasers. We demonstrated that symmetric dual-loop optical feedback provides

the best stability, maintaining stable RF spectra with narrow linewidth over a

broad range of delay detuning by controlling the power split-ratio and separate

fine-tuning of the optical delay phase. For symmetric dual-loop feedback, better

RF linewidth stabilisation (∼ 9-100x compared to free-running) versus delay

was achieved when the feedback strengths in loop-I and loop-II were -19.5 and

-29.03 dB and the delay phase in the weaker cavity was fine-tuned. A study of

the feedback ratio controlled dual-loop feedback scheme further suggests that

dual-loop optical feedback can be implemented for greater stabilisation and

improvement of ultrashort optical pulse dynamics.
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Chapter 5

Optimum stabilisation of SML
QDash Lasers using Asymmetric
Dual-Loop Feedback

5.1 Introduction

In this chapter, we experimentally investigated the RF linewidth and timing

jitter over a wide range of delay tuning in the SML two-section QDash laser

subject to single- and asymmetric dual-loop optical feedback back into the gain

section. Various configurations were investigated and optimum feedback levels

determined to obtain the narrowest linewidth and lowest timing jitter for both

single- and dual-loop arrangements. We will demonstrate that dual-loop feed-

back, with the shorter cavity tuned to be fully resonant, followed by fine-tuning

of the phase of the longer cavity, gave stable narrow RF spectra across the widest

delay range, far superior to single-loop feedback. Moreover, we will show the

influence of asymmetric dual-loop feedback on the side-mode suppression ratio

(SMSR).

The chapter is organised as follows: In the next section, we will introduce the

experimental setup. Various feedback scenarios will be investigated and de-

scribed in Section 5.3 and optimum levels determined for the narrowest RF

linewidth and reduced timing jitter for single- and asymmetric dual-loop feed-

back schemes. In Section 5.4, RF linewidth and integrated timing jitter as func-

tions of delay tuning [0-84 ps] using single-loop optical feedback will be pre-

sented. In Section 5.5, we discuss the influence of balanced and unbalanced
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asymmetric dual-loop feedback on the RF linewidth and integrated timing jitter

versus delay, and results will be compared to single-loop and free-running con-

ditions. Finally, the influence of asymmetric dual-loop feedback on SMSR will

be presented in Section 5.6.

5.2 Asymmetric Dual-Loop Feedback

The optical fibre is essentially the energy-storage component in the feedback

loop, the length of which determines the Q-factor of the resonator [110]. In

addition, the pulse train stability of mode-locked QDot laser can be improved

using passive auxiliary optical fiber cavity [111] which reduced the timing jitter

of the pulse train. The reduction of the timing jitter for resonant single cavity

feedback can be directly related to the increase in the memory of the systems.

Besides an improvement in timing jitter, single-cavity optical feedback induces

adverse frequency fluctuations around the fundamental frequency in the power

spectrum [78]. In Chapters 3 and 4, we have proposed unbalanced symmet-

ric dual-loop feedback and demonstrated its efficacy over a much wider delay

range. However, a major disadvantage of symmetric dual-loop feedback is ex-

ternal cavity side-modes which arise due to the equal lengths of the external

feedback loops. These side-modes contribute significantly to timing jitter, par-

ticularly for longer cavities when they are close to the main peak and are less

suppressed.

To deal with these issues, an asymmetric dual-loop feedback configuration has

been demonstrated, with the shorter feedback cavity tuned to be fully resonant

(ODL-II), followed by fine-tuning of the phase of the longer feedback cavity

(ODL-I (c)). A schematic of this asymmetric dual-loop feedback is depicted in

Fig. 5.1.

A schematic of our feedback experiment is depicted in Fig. 5.2. For single-

and dual-loop feedback, a calibrated fraction of light was fed back through

port 1 of an optical circulator, then injected into the laser cavity via port 2.

Optical coupling loss from port 2 to port 3 was -0.64 dB. The output of the

circulator was sent to a semiconductor optical amplifier (SOA) with a gain of

9.8 dB, then split into two arms by a 50/50 coupler. 50% went to an RF spec-

trum analyser (Keysight, E4407B) via a 21 GHz photodiode, and to two optical

spectrum analysers (Ando AQ6317B and Advantest Q8384). The other 50% of
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5.3 Effects of Feedback Strength on the RF
Linewidth and Integrated Timing Jitter Using

Single and Asymmetric Dual-Loop Feedback

160 m160 m

Input Light

Output Light

ODL-I (c)  

ODL-II 

Att-I

Att-II

PC-I PC-I 

PC-II PC-II 
80 m80 m

Asymmetric Dual-LoopAsymmetric Dual-Loop

Figure 5.1: Schematic of asymmetric dual-loop feedback (red line indicates that
ODL-I is varied); Acronyms– ODL: Optical delay line; Att: Optical attenuator;
PC: polarisation controller.

power was directed to the feedback arrangements. For a single feedback loop,

all power passed through loop-I. For dual-loop configurations the power was

split into two equal parts (feedback loops-I and-II) via a 3-dB splitter. Each

feedback loop contained an optical delay line combined with a variable opti-

cal attenuator and a polarisation controller. Loop lengths were 160 m and 80

m corresponding to pulse round-trip frequencies 1.28 MHz and 2.60 MHz, re-

spectively. Feedback strengths in both loops were controlled by variable optical

attenuators and monitored using a power meter. Equal feedback was received

from both external feedback cavities. The microscopic lengths of the fibre loops

were optimized by optical delay lines based on stepper-controlled stages with

resolution 1.67 ps, covering a range of 0-84 ps. polarisation controllers in each

loop plus a polarisation controller before port 1 of the circulator ensured the

light fed back through both loops matched the emitted light polarisations to

maximise feedback effectiveness.

5.3 Effects of Feedback Strength on the RF Linewidth

and Integrated Timing Jitter Using Single and

Asymmetric Dual-Loop Feedback

To investigate the effects of external optical feedback on RF linewidth and in-

tegrated timing jitter using single-loop feedback, the attenuation in the gain

section was varied from the minimum achievable feedback level -46 dB to the

maximum feedback -22 dB before the laser became unstable. The feedback ra-
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Figure 5.2: Schematic of the experimental arrangement for a single (excluding
dashed portion) and asymmetric dual-loop configurations (with dashed por-
tion). Acronyms; SOA: Semiconductor optical amplifier; ISO: Optical isolator;
PD: Photodiode; RF Amp.: RF Amplifier; ODL: Optical delay line; Att: Optical
attenuator; PC: polarisation controller; ESA: Electrical spectral analyser; OSA:
Optical spectrum analyser; SMF: Single mode fibre; PM: Power meter.

tio in the gain section was set to one of nine chosen values (-46 dB, -39 dB, -36

dB, -31 dB, -29 dB, -26 dB, -24 dB, -23-dB and -22 dB). These results demon-

strate that at -46 dB, -39 dB and -36 dB, the RF linewidth was 80 kHz, 61.3 kHz,

and 60 kHz respectively for single-loop feedback. Under feedback attenuations

-46 dB, -39 dB and -36 dB, the corresponding RMS timing jitter was reduced to

3, 2.7 and 2.6 ps, respectively (integrated from 10 kHz to 100 MHz). At this low

feedback attenuation (-46 dB, -39 dB and -36 dB), the effects of external optical

feedback were very small, so that no major reduction in RF linewidth and tim-

ing jitter was seen relative to free-running (100 kHz). With increased feedback

ratio to -29 dB, gradual decreases in the RF linewidth and RMS jitter were ob-

served. This feedback level (-29 dB) gave RF linewidth as low as 11 kHz, with

RMS timing jitter as low as 1.38 ps. Further, increase in feedback level to -22

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

68 Haroon Asghar



5. OPTIMUM STABILISATION OF SML QDASH

LASERS USING ASYMMETRIC DUAL-LOOP

FEEDBACK

5.3 Effects of Feedback Strength on the RF
Linewidth and Integrated Timing Jitter Using

Single and Asymmetric Dual-Loop Feedback

dB resulted in saturation of the RF linewidth and timing jitter. The minimum

achieved RF linewidth and integrated timing jitter as functions of feedback ra-

tio for integer resonant cases are depicted in Fig. 5.3. Furthermore, measured

RF spectra and phase-noise traces using single-loop feedback are shown in Figs.

5.4(a) and (b), respectively, for three chosen feedback attenuations (-46 dB,

-29 dB and -22 dB).
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Figure 5.3: 3-dB RF linewidth (solid black squares) and integrated timing jitter
(hollow blue squares) as a function of external feedback ratio at 300 mA gain
current for single-loop feedback.

To study the influence of external optical feedback on RF linewidth and inte-

grated timing jitter using asymmetric dual-loop feedback, the optical power was

split into two equal parts via a 3-dB coupler. The resulting feedback ratio into

the gain section was set to -22 dB. To achieve stable resonant conditions for

dual-loop feedback, the first optical delay line (ODL-I) was tuned to full reso-

nance while the second optical delay line (ODL-II) was fine-tuned. When both

feedback cavities were fully resonant, RF linewidth narrowing and reduced tim-

ing jitter were achieved. The feedback ratio in the gain section was set to one

of nine chosen values (-46 dB, -39 dB, -36 dB, -31 dB, -29 dB, -26 dB, -24 dB,

-23-dB and -22 dB). The measured experimental results reveal that at -46 dB,

-39 dB and -36 dB, the RF linewidth was 70 kHz, 60 kHz, and 58 kHz respec-

tively for dual-loop feedback. Under feedback attenuations -46 dB, -39 dB and

-36 dB, the corresponding RMS timing jitter was reduced to 3, 2.9 and 2.8 ps,
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Figure 5.4: (a) Measured RF spectra using frequency span 1 MHz (resolution
bandwidth 1 kHz and video bandwidth 100 Hz) under fully resonant condition
as a function of three chosen feedback attenuations (-46 dB, -29 dB and -22 dB)
using single-loop feedback configuration (b) Measured SSB Phase-noise traces
under fully resonant condition as a function of three chosen feedback attenua-
tions (-46 dB, -29 dB and -22 dB) using single-loop feedback configuration with
integration limits 10 kHz - 100 MHz.

respectively (integrated from 10 kHz to 100 MHz). Similar to single-loop feed-

back, at low feedback attenuations (-46 dB, -39 dB and -36 dB), the effects of

external optical feedback were very small, so that no significant reduction in

RF linewidth and timing jitter was observed relative to free-running and single-

loop feedback. However, with increased feedback ratio to -29 dB, a gradual

decrease in the RF linewidth and RMS timing jitter was noted. This feedback

level (-29 dB) gives RF linewidth as low as 10 kHz, with RMS timing jitter as

low as 1.38 ps. Further increase in feedback ratio to -22 dB yielded saturated

RF linewidth and timing jitter. The minimum achieved RF linewidth and tim-

ing jitter, as functions of feedback ratio for integer resonant cases, are depicted

in Fig. 5.5. Furthermore, measured RF spectra and phase-noise traces using

asymmetric dual-loop feedback are shown in Figs. 5.6(a) and (b), respectively

for three chosen feedback attenuations (-46 dB, -29 dB and -22 dB). From this

detailed experimental analysis of RF linewidth versus feedback strength, we

have identified optimal parameters for single and asymmetric dual-loop config-

urations, with a strong reduction in RF linewidth and timing jitter. Our results

demonstrate that for practical applications, the relatively flat characteristics of

RF linewidth versus feedback ratio (-24 dB, -23-dB and -22 dB) are more favor-

able. Variation in RF linewidth and timing jitter in both single and asymmetric

dual-loop feedback follows similar trends when feedback approaches the op-

timal value, which agrees well with reported square root dependence of RF
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Figure 5.5: RF linewidth (solid black squares)and integrated timing jitter (hol-
low blue squares) as a function of external feedback ratio at 300 mA gain cur-
rent for asymmetric dual-loop feedback.

linewidth on integrated timing jitter [116].
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Figure 5.6: (a) Measured RF spectra using frequency span 1 MHz (resolution
bandwidth 1 kHz and video bandwidth 100 Hz) under fully resonant condition
as a function of three chosen feedback attenuations (-46 dB, -29 dB and -22
dB) using asymmetric dual-loop feedback (b) Measured SSB phase-noise traces
under fully resonant condition as a function of three chosen feedback attenu-
ations (-46 dB, -29 dB and -22 dB) using asymmetric dual-loop feedback with
integration limits 10 kHz - 100 MHz.
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5.4 RF Linewidth and Integrated Timing Jitter Ver-

sus Delay for Single-Loop Feedback

To study the dynamic effects of single-loop feedback on RF linewidth and noise

properties of MLLs, fine-tuning of one polarisation controller (PC-I) was done

and maximum feedback to the gain section was limited to -22 dB using the vari-

able optical attenuator (Att-I). A schematic of the single-loop optical feedback

setup is shown in Fig. 5.7.

160 m160 m

Input Light

Output Light

ODL-I (c)  
Att-IAtt-I

PC-I PC-I 

Figure 5.7: Basic schematic of single-loop optical feedback setup; Acronyms–
ODL: Optical delay line; Att: Optical attenuator; PC: polarisation controller.

To achieve stable resonant conditions for the single-loop, the microscopic length

of the feedback cavity was optimized using an optical delay line (ODL-I), ad-

justable from 0 to 84 ps in steps of 1.67 ps. This optimisation of the single

feedback loop delay reduced the RF linewidth considerably, as with reported

experiments [77, 79] and theoretical predictions [85]. Resulting RF linewidth

(black squares) and timing jitter (blue triangles) are shown in Fig. 5.8 versus

delay tuned from 0-84 ps; clearly, the efficacy of single-loop feedback is highly

dependent on feedback delay. As the feedback delay phase was tuned, the sys-

tem adapted such that the pulses in the laser cavity are synchronised with the

pulses in the feedback cavity. Under this situation, significant reduction in RF

linewidth and reduced timing jitter was observed. It can be seen from measured

experimental results (see Fig. 5.8), over delay ranges 0-13 and 60-78 ps that

effective stabilisation is achieved, as the external cavity length was close to an

integer multiple of that of the solitary laser.

When fully resonant (13 and 63 ps delay), the RF linewidth decreased from

100 kHz free-running to 4 kHz. In addition, SSB phase-noise - 70 dBc/Hz at a

frequency offset 10 kHz was measured. Due to this decrease in phase-noise, the

timing jitter reduced from 3.9 ps free-running to 700 fs [10 kHz – 100 MHz].

Measured RF spectra is shown in Fig. 5.9(a). The measured phase-noise traces

for the free-running laser (gray line) and single-loop feedback (blue line) as
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Figure 5.8: RF linewidth (black squares) and integrated timing jitters (blue
triangles) of mode-locked pulse trains as a function of full delay phase tuning
[0 – 84 ps] for single-loop optical feedback.

functions of frequency offset from the fundamental mode-locked frequency are

depicted in Fig. 5.9(b).
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Figure 5.9: Measured RF spectrum for asymmetric dual-loop configurations
using 1 MHz frequency span (resolution bandwidth 1 kHz and video bandwidth
100 Hz (b) Comparison of SSB phase-noise traces of single-loop feedback (blue
line) with free-running condition (gray line) using integration limits 10 kHz -
100 MHz).

In addition, under fully resonant condition (delay 13 ps), strong side-modes
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Figure 5.10: Comparison of RF Spectra of single-loop feedback (blue line) with
length 160 m and free-running laser (gray line) using frequency span 10 MHz
(resolution bandwidth 10 kHz and video bandwidth 1 kHz).

appeared at frequency spacing 1.28 MHz, corresponding to the length of the

feedback loop (160 m). The external cavity modes can be seen in the SSB

phase-noise trace and are more prominent under optimal feedback level (-22

dB). Comparison of the free-running RF spectrum (gray line) with RF spectra

measured with single-loop optical feedback (blue line) is shown in Fig. 5.10.

Frequency resonances a few MHz from the fundamental mode-locked frequency

make significant contributions to integrated timing jitter. Most recently, an

asymmetric dual-loop feedback scheme with the second loop shorter than the

main loop has been demonstrated [109, 110] to suppress these external cavity

side-modes. We will discuss such suppression in Section 5.6.

Under the fully resonant condition (delay 13 ps) the peak power of the RF spec-

trum rose by 52 dB. However, for the free-running condition, the peak power

of the RF spectrum was observed to be 20 dB. For single-loop feedback, this 32

dB increase in peak spectral power is a result of reduced RF linewidth which

contributes to increase in optical power. The peak power of the RF spectrum

was measured at each delay length and is shown in Fig. 5.11 as a function of

full delay phase tuning.

From measured RF linewidth, integrated timing jitter and RF peak power as
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Figure 5.11: Peak power of RF spectra of mode-locked pulse trains as a function
of full delay phase tuning [0 – 84 ps] for single-loop optical feedback and its
comparison with free-running situation.

functions of delay, we observed that, at delay settings from 15-58 ps and 80-83

ps, the laser became highly unstable in its noise emission: RF linewidth broad-

ened to 61 kHz and RMS timing jitter to 2.2 ps at delay 35 ps. This occurs

because the delay time is tuned too far from the fundamental mode-locked fre-

quency, the system cannot adapt its periodicity and the pulses become highly

deformed. Experimental results on single-loop feedback show that for practical

use of MLLs, the most suitable and stable delay ranges are close to resonant

regimes (0-13 ps and 60-78 ps). However, this is still quite sensitive to packag-

ing and production. In the next section, we describe how to reduce the sensi-

tivity of resonant single-loop feedback using a stable and efficient asymmetric

dual-loop feedback scheme which is practical, robust and cost-effective.
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5.5 RF Linewidth and Integrated Timing Jitter Ver-

sus Delay for Balanced Asymmetric Dual-Loop

Feedback Configurations

In asymmetric dual-loop feedback, simultaneous optical feedback from two ex-

ternal cavities was applied to the gain section at -22 dB, using the setup shown

in Fig. 5.2. Feedback from both cavities was kept equal using the variable op-

tical attenuators (Att-I and Att-II) plus fine adjustment of the polarisation con-

trollers (PC-I and PC-II) in both feedback loops. The first optical delay (ODL-II)

was adjusted to full resonance and the length of the second optical delay line

(ODL-I) was tuned from 0-84 ps, the maximum range available. This arrange-

ment yielded much better dynamics: stable narrow RF spectra were maintained

across the full delay range, unlike single-loop feedback. This asymmetric dual-

loop scheme reduced the RF linewidth 2.5-4x compared to single-loop, and

4-100x relative to free-running. Measured RF linewidth (black squares) and

timing jitters data (blue triangles) versus delay are shown in Fig. 5.12.
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Figure 5.12: RF linewidth (black squares) and integrated timing jitters (blue
triangles) of mode-locked pulse trains as a function of full optical delay tuning
in asymmetric dual-loop feedback.

It was observed that at multiple optical delay ranges [Figs. 5.13 (a) and (b)] the
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RF linewidth was instrument limited at less than 1 kHz, so the actual value may

be lower. RF spectra is shown in Fig. 5.14. This shows that under these delay

settings the RF linewidth was > 100x less than free-running. This behavior

indicates that to maximise the RF linewidth, fine tuning of both optical delay

lines is required. Furthermore, in this experiment, from delay settings 0-40 ps

and 56 -78 ps, the RF linewidth was below the minimum RF linewidth measured

for single-loop feedback; see Fig. 5.13(b).
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Figure 5.13: (a) 3 RF linewidth as a function of optical delay less than 1 kHz
(instrumental limited) (b) RF linewidth as a function of optical delay [0-40 ps
and 56 ps- 78 ps] less than 4 kHz (minimum RF linewidth measured in single-
loop feedback).
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Figure 5.14: Measured RF spectrum for asymmetric dual-loop configurations
using 1 MHz span (resolution bandwidth 1 kHz and video bandwidth 100 Hz).

Our results demonstrate that asymmetric dual-loop feedback is an effective and

robust means of maintaining jitter stabilisation over wide delay phase tuning

compared to single-loop feedback. The impact of asymmetric dual-loop optical

feedback on the noise properties of our QDash lasers as a function of delay is
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shown in Fig. 5.12 (blue triangles). Recently, the regime of resonance optical

feedback configuration has been identified in the delay range 5 - 20 ps using

single-loop feedback for a 40 GHz QDot mode-locked laser [78]. However,

our proposed asymmetric dual-loop scheme maximises the resonant feedback

regime from delay range 0 - 40 ps and 56 - 78 ps. Furthermore, we can see

that the resonant condition in asymmetric dual-loop feedback is independent

of optical delay, which makes it ideal for various practical applications because

it offers a cost-effective control input.

Moreover, from the RF spectra, it is noticeable that the peak power of the RF

spectrum in asymmetric dual-loop spectra rises by up to 63 dB. This increased

RF peak power was 11 dB higher than single-loop feedback and 43 dB higher

than free-running, and is a result of reduced RF linewidth and reduced thresh-

old current which contributes to increase in optical power. The variation in RF

peak power as a function of full delay phase tuning is shown in Fig. 5.15.
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Figure 5.15: Peak power of RF spectra of mode-locked pulse trains as a function
of full delay phase tuning (0 – 84 ps) for dual-loop optical feedback and its
comparison with free-running situation.
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5.5 RF Linewidth and Integrated Timing Jitter
Versus Delay for Balanced Asymmetric

Dual-Loop Feedback Configurations

5.5.1 Asymmetric dual-loop optical feedback subject to un-

balanced feedback ratio

In the following, we observed the variation in RF linewidth versus delay with

different percentage of power split ratio through two external feedback cavities

based on asymmetric dual-loop optical feedback. Three combinations of feed-

back ratios studied in this study are presented in Table. 5.1. A schematic of

asymmetric dual-loop feedback is shown in Fig. 5.16.

160 m160 m

Input Light

Output Light

ODL-I (c)  

ODL-II 

Att-I

Att-II

PC-I PC-I 

PC-II PC-II 
80 m80 m

Asymmetric Dual-LoopAsymmetric Dual-Loop

Figure 5.16: Schematic of asymmetric dual-loop feedback; Acronyms– ODL:
Optical delay line; Att: Optical attenuator; PC: polarisation controller.

Table 5.1: Three chosen combinations of feedback ratio through either feedback
loop and overall feedback strength into gain section.

Loop-I Loop-II Total Feedback at Gain
-22 dB (0.625%) -22 dB (0.625%) -22 dB (0.625%)

-23.29 dB (0.47%)(c) -28.06 dB (0.16%) -22 dB (0.625%)
-23.29 dB (0.47%) -28.06 dB (0.16%)(c) -22 dB (0.625%)

In above section, we experimentally investigated the RF linewidth and tim-

ing jitter over a wide range of delay tuning in SML QDash lasers subject to

balanced asymmetric dual-loop optical feedback. However, in following, we

further demonstrated and investigated stabilisation of SML QDash lasers sub-

ject to different power split ratio through the external feedback loops which

is asymmetric dual-loop feedback. In this case, fine adjustment of polarisa-

tion controllers (PC-I and PC-II) and optical delay line (ODL-I) was done. In

addition, phase delay attached with a weaker cavity (ODL-II) was set to inte-

ger resonance then we fine-tuned the stronger cavity (ODL-I (c)). Feedback

ratio through loop-I and loop-II was fixed to -23.29 and -28.06 dB using vari-

able optical attenuators (Att-I and Att-II), respectively. The RF linewidth versus

delay is shown in Fig. 5.17(b) (red circles). These results demonstrates that
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RF linewidth versus delay yields severe instabilities over a widest range of de-

lay tuning when the weaker cavity (ODL-II) is set to an integer resonance the

stronger cavity (ODL-I(c)) is fine tuned. When both feedback cavities were fully

resonant, the RF linewidth narrowing to as low as 1.3 kHz was noted. Measured

RF spectrum under integer resonance is shown in Fig. 5.18 (red line).
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Figure 5.17: Measured RF linewidth versus delay using asymmetric dual-loop
optical feedback with power split ratio (a) loop-I:-22 dB; loop-II:-22 dB (black
squares) (b) loop-I(c):-23.29 dB; loop-II: -28.06 dB (red squares) (c) loop-I:-
23.29 dB; loop-II(c):-28.06 dB (green triangle).

For the next combination of power split, the phase delay of the strong cavity

(ODL-I=-23.29 dB) was set to integer resonance then fine-tunes the weaker

cavity fine-tuned (ODL-II (c)) (-28.06 dB). RF linewidth versus delay is shown

in Fig. 5.17(c) (green triangles) and under double resonance the RF linewidth

was reduced to 1.2 kHz. However, for the widest delay range, a significant

reduction in RF linewidth was observed. Measured RF spectra under integer

resonance is shown in Fig. 5.18 (green line).

These results demonstrate that different power split ratios have significant in-
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Figure 5.18: Measured RF spectra using frequency span 1 MHz (resolution
bandwidth 1 kHz and video bandwidth 100 Hz) as a function of power split
ratio (a) loop-I:-22 dB; loop-II:-22 dB (black line) (b) loop-I(c):-23.29 dB; loop-
II: -28.06 dB (red line) (c) loop-I:-23.29 dB; loop-II(c) (green line).

Table 5.2: Three chosen combinations of feedback ratio through either feedback
loop using asymmetric dual-loop optical feedback and measured minimum and
maximum RF linewidth for each case.

Loop-I Loop-II Minimum RF Maximum RF
-22 dB -22 dB 1 kHz 25 kHz

-23.29 dB(c) -28.06 dB 1.3 kHz 94 kHz
-23.29 dB -28.06 dB(c) 1.4 kHz 26 kHz

fluences on the RF linewidth of our SML QDash laser subject to asymmetric

dual-loop at integer resonance, as well as the widest range of delay tuning. In

addition, these measurements further reveal that stabilisation of SML QDash

lasers can be improved by controlling parameters such as the power split ratio

and optical delay tuning using asymmetric dual-loop optical feedback.
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5.6 Suppression of External Cavity Side-Modes us-

ing Asymmetric Dual-Loop Optical Feedback

As demonstrated in the above section, to achieve lower timing jitter, fine-tuning

of both external feedback cavities is desirable. To investigate the side-mode sup-

pression effects, a series of dual-loop feedback experiment was performed with

the following lengths (shown in Table 5.3) in two external feedback cavities.

Table 5.3: Lengths of loop-I and loop-II in balanced asymmetric dual-loop opti-
cal feedback.

Feedback Scheme Loop-I Loop-II
Asymmetric dual-loop 160 m 80 m
Asymmetric dual-loop 205 m 40 m
Asymmetric dual-loop 2 km 200 m

5.6.1 Asymmetric Dual-Loop Optical Feedback with Loop Lengths

160 m and 80 m

For asymmetric dual-loop experiments, the optical feedback was split into two

fibre cavities whose lengths were calibrated by measurement of RF spectra with

each loop unblocked separately. For the first set, the cavity spacing was 1.28

MHz consistent with the 160 m nominal length of loop-I. For the second, the

cavity frequency spacing was 2.6 MHz in agreement with the 80 m length of

loop-II. RF spectral measurements with this arrangement are shown in Figs.

5.19(a) and (b).

To explore the influence of asymmetric dual-loop optical feedback on side-mode

suppression ratio (SMSR), one delay (ODL-I) was set to 25 ps, the other (ODL-

II) fixed to 15 ps then every second mode of loop-I coincided precisely with a

mode of loop-II. As a result, a maximum of 30 dB suppression in the first order

side-mode occurred (see Fig. 5.19(c)) the RF linewidth narrowed to 1 kHz.

SSB phase-noise was as low as -80 dBc/Hz at frequency offset 10 kHz and the

integrated timing jitter was reduced to 295 fs [10 kHz – 100 MHz]. Optimal

suppression of external cavity side-modes occurred due to the interference of

the two delayed feedback signals at the 3 dB coupler. Modal overlap in the

RF spectrum was observed for spectral alignment of the modes of the two fibre

loops having identical intensity and resemble as RF frequency comb (see Fig.
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5.19(d)). Exact conditions for modal overlap, of course, depends on the precise

optical lengths of the feedback loops; here we noted 2.60 MHz spacing between

supermodes, in agreement with our 80 m outer loop.
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Figure 5.19: RF Spectra of single loop feedback with length (a) 160 m (b) 80 m
(c) dual loop having spectrally aligned cavity lengths with > 30 dB sidemode
suppression (d) RF spectrum of spectrally offset (misaligned) dual loop cav-
ity with strong side-mode: All spectrums are measured using Span=10 MHz,
resolution bandwidth=10 kHz and video bandwidth = 1 kHz.

However, with slight tuning offset between the modes of both fibre loops, strong

side-modes appear with intensity -26 dBm (see Fig. 5.19(d)) and at the same

time, the RF linewidth is reduced to 1.94 kHz and the integrated timing jit-

ter approaches 450 fs [10 kHz – 100 MHz]. The SSB phase-noise traces for

asymmetric dual-loops subjected to aligned (blue line) and misaligned (black

line) cavity states are depicted in Fig. 5.20. From measured RF spectra of

single-loop optical feedback and misaligned dual-loop feedback: the expected

noise-resonances appear around the fundamental mode-locked frequency, con-

tributing significantly to the phase-noise. The 155 fs reduction in timing jitter

for the aligned cavity state as compared to the misaligned one, further confirms

this argument.
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Figure 5.20: SSB phase-noise traces for misaligned asymmetric dual-loop (black
line) and aligned asymmetric dual-loop (blue line) with integration limits 10
kHz - 100 MHz.

5.6.2 Asymmetric Dual-Loop Optical Feedback with Length

of Loop-I=185 m and Loop-II ∼ 20 m

To further investigate side-mode suppression, we used another experimental

arrangement, replacing 160 m and 80 m fibre loops with 185 m and 20 m

fibre in the experimental arrangements shown in Fig. 5.2. The schematic of

single and asymmetric dual-loop optical feedback configuration is depicted in

Fig. 5.21.

The single-loop feedback was measured when loop-II was disconnected and the

resulting spectrum was measured using a frequency span of 10 MHz (black line

in Fig. 5.22) and 100 MHz (black line in Fig. 5.23). The spacing between the

side-modes was 0.99 MHz which corresponded well with a feedback loop ∼ 206

m. When loop-I was disconnected, the configuration again acted as a single-

loop, and the RF linewidth narrowed to 12 kHz. However, when the parallel

arms of the two feedback loops were connected and the length of loop-I was

varied so that every fourth mode of the inner fibre loop was in precise alignment

with a mode of the outer, suppression of the first side-mode was demonstrated

with SMSR > 23 dB. Measured RF spectra for asymmetric dual-loop feedback

are shown in Fig. 5.22 (blue line) and Fig. 5.23 (blue line), respectively. This

suppression occurred due to the interference of the two delayed optical signals
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Figure 5.21: Schematic of single- and asymmetric dual-loop optical feedback;
Acronyms– ODL: Optical delay line; Att: Optical attenuator; PC: polarisation
controller.

at the 3-dB coupler. Consequently, a strong reduction in additional side-modes

and phase-noise was observed. Modal overlap in the RF spectrum could be

observed due to constructive interference of the modes of the inner and outer

fibre loops. The modal overlap depends on the ratio of the two feedback loops.

Under optimal feedback level and fully resonant condition, the RF linewidth

was reduced from 100 kHz to < 1 kHz for dual-loops and 12 kHz for single-loop

feedback. RF linewidth measured using asymmetric dual-loops was > 100x

lower than the free-running condition and > 12x than single-loop feedback.

In addition, the timing jitter associated with optical pulses generated by our

two-section QDash SML laser was also reduced from 3.9 ps free-running to 400

fs for asymmetric dual-loop feedback and 800 fs for a single-loop. RMS timing

jitter was calculated by integrating the phase-noise trace from 10 kHz to 100

MHz.
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Figure 5.22: RF spectra measured using single (black line) and asymmetric
dual-loop feedback (blue line) with frequency span 10 MHz (resolution band-
width 10 kHz and video bandwidth 1 kHz).

5.6.3 Asymmetric Dual-Loop Optical Feedback with Length

of Loop-I=2 km and Loop-II=200 m

Opto-electronic oscillators (OEOs) can generate signals or tens of gigahertz with

fibre lengths of 1 km or more. That means the mode spacing in their RF spectra

ranges from several hundred to tens of kilohertz. It is very difficult to design a

filter with a bandwidth narrow enough to select a single mode at multiple GHz

[103]. To overcome these issues, optoelectronic feedback [104] can also be

utilized to stabilise timing jitter and to suppress cavity side-modes by conversion

of the optical oscillation (using a fast photodetector) to an electrical signal used

in a long feedback loop.

In this section, a simpler asymmetric dual-loop feedback technique without op-

tical/electrical conversion has been demonstrated to improve timing jitter and

to filter or suppress unwanted spurious side-bands. A schematic of the single

and asymmetric dual-loop optical feedback setup is shown in Fig. 5.24. With

fibre lengths of 2.25 km, signals of a few gigahertz are generated with mode

spacing 90 kHz away from the fundamental mode-locked frequency, as shown
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Figure 5.23: RF spectra measured using single (black line) and asymmetric
dual-loop feedback (blue line) with frequency span 100 MHz (resolution band-
width 100 kHz and video bandwidth 10 kHz).
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Figure 5.24: Basic schematic of single and asymmetric dual-loop optical feed-
back; Acronyms– ODL: Optical delay line; Att: Optical attenuator; PC: polarisa-
tion controller.
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in Fig. 5.25 (black line). Upon fine-tuning of both external feedback loops, the

asymmetric dual-loop configuration suggested here (Loop-I=2 km and Loop-

II=200 m) is a promising approach which leads to significant suppression in

external cavity side-modes closer to the main peak, and the fundamental fre-

quency oscillates in the resonator cavity and becomes a carrier signal. Measured

RF spectra are shown in Fig. 5.25 using single-loop feedback with fibre lengths

2 km (black line), 200 m (red line) and dual-loop (blue line) feedback. The

asymmetric dual-loop feedback method demonstrated in this chapter is a robust

and powerful technique which effectively suppresses unwanted noise-induced

oscillations and yields side-band free RF spectra. Measured RF linewidth, in-

tegrated timing jitter and SMSR are summarised in Table 5.4 for single and

asymmetric dual-loop feedback.
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Figure 5.25: Measured RF spectra using single-loop feedback with length 2.25
km (black line), 200 m (red line) and asymmetric dual-loops having lengths
2.25 km for loop-I and 200 m for loop-II under frequency span 1 MHz (resolu-
tion bandwidth 1 kHz and video bandwidth 100 Hz).

5.7 Summary

This chapter has highlighted the effects of external optical feedback from asym-

metric dual- and single-loop optical feedback on the RF linewidth and tim-
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Table 5.4: Comparison of RF Linewidth, Timing Jitter and SMSR using single-
and asymmetric dual-loop feedback configuration.

Feedback Scheme Loop-I Loop-II RF (kHz) TJ (ps) SMSR (dB)
free-running - - 100 3.9 -
single-loop 160 m - 4 0.7 -
single-loop 80 m - 3 kHz 0.65 -
dual-loop 160 m 80 m <1 kHz 0.295 30

single-loop 205 m - 12 kHz 0.8 -
dual-loop 205 m 40 m < 1 kHz 0.4 23

single-loop - 200 m < 1 kHz - -
dual-loop 2 km 200 m < 1 kHz - 30

ing jitter for a wide range of delay tuning. The feedback level which yielded

narrowest RF linewidth and reduced timing jitter was identified to be ∼ -22

dB for single-loop and asymmetric dual-loop feedback. It was observed that

single-loop feedback produced effective stabilisation near the resonant feed-

back regime (5 and 53 ps) and generated additional noise-resonances a few

MHz away in the power spectrum. To extend the regime of resonant optical

feedback and to suppress adverse noise fluctuations, a dual-loop feedback con-

figuration with the second loop shorter than the main one was used. We showed

that asymmetric dual-loop feedback has far greater tolerance to delay phase

tuning than single-loop feedback. Moreover, optimised asymmetric dual-loop

feedback extends the effective resonant feedback regime and maintains stable

RF spectra, with narrow RF linewidth and reduced timing jitter across the entire

accessible delay range, making this setup desirable for practical applications.

Using external feedback loops which were doubly resonant achieved signifi-

cant suppression in external cavity side-modes relative to single-loop feedback.

These results suggest that optimised asymmetric dual-loop feedback is a robust

and effective means to overcome the most difficult performance limitations of

mode-locked diode lasers, namely large timing jitter and tendency to exhibit

instabilities.

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

89 Haroon Asghar



Chapter 6

Asymmetric Dual-Loop Feedback to
Suppress Spurious-Tones in SML
QDash Lasers

6.1 Introduction

In this chapter, we will show how additional noise-resonances induced in con-

ventional single- and dual-loop feedback schemes can be suppressed by appro-

priately choosing the relative loop lengths. We will further explore the length

ratio between the two cavities in asymmetric dual-loop configurations which

are desired to achieve best SMSR and lowest timing jitter. It will be further

observed that RF linewidth and integrated timing jitter were reduced by in-

creasing the length of the second cavity. Measured experimental results will be

compared with recently reported numerical simulations. Our findings suggest

that noise stabilisation and side-mode suppression depend strongly on addi-

tional feedback delay times. The resulting setup was integrable in a transceiver

package using hybrid integrated optics, passive optical networks (PONs) and/or

compact fibre loops.

This chapter is structured as follows: In section 6.2, we will introduce the ex-

perimental setup. In section 6.3, we will show how additional noise-resonances

induced in conventional single- and asymmetric dual-loop feedback schemes

can be suppressed by appropriately choosing the length of the second feedback

loop, and results will be compared with recently reported numerical simula-

tions. Finally, the influence of side-mode suppression on the RF linewidth and
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corresponding timing jitter of SML QDash laser will be presented in Section 6.4.

6.2 Suppression of Additional Noise-Resonances by

Asymmetric Dual-Loop Feedback

Asymmetric dual-loop optical feedback, as proposed and demonstrated in the

previous chapter, yielded sub-kHz linewidths and sub-picosecond timing jitter

but produced additional noise peaks (modal overlaps) at frequencies resonant

with the inverse of the delay time in the second cavity. These modal overlaps

depend on the ratio of the two feedback loops and are undesirable in many ap-

plications where low noise and flat spectra are required, as in frequency comb

generation. To eliminate these adverse dynamical effects, we have proposed

and demonstrated an asymmetric dual-loop feedback with long and short op-

tical cavities. The combinations of optical delay times used are given in Table

6.1.

Table 6.1: Comparison of RF Linewidth, Timing Jitter and SMSR using single-
and dual-loop feedback configuration.

Feedback Scheme Loop-I Loop-II
Single-loop 160 m -

Asymmetric dual-loop 160 m 80 m
Asymmetric dual-loop 160 m 53 m
Asymmetric dual-loop 160 m 20 m

A schematic for the asymmetric dual-loop experiment is depicted in Fig. 6.1.

For single and dual-loop feedback configurations, a calibrated fraction of light

was fed back through port 1 of an optical circulator, then injected into the laser

cavity via port 2. Optical coupling loss from port 2 to port 3 was -0.64 dB. The

output of the circulator was sent to a semiconductor optical amplifier (SOA)

with a gain of 9.8 dB, then split into two arms by a 50/50 coupler. 50% went to

an RF spectrum analyser (Keysight, E4407B) via a 21 GHz photodiode and to

optical spectrum analysers (Ando AQ6317B and Advantest Q8384). The other

50% of power was split into two equal parts by a 3-dB splitter. For single-loop

feedback, all power passed through loop-I. For asymmetric dual-loop configu-

rations (feedback loops-I and-II) the power was split into two loops at the 3-dB

splitter. Feedback strengths in both loops were controlled by variable optical
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6.2 Suppression of Additional
Noise-Resonances by Asymmetric Dual-Loop

Feedback

attenuators and monitored using power meters. In this experimental arrange-

ment, the length of loop-I was fixed to 160 m while the length of the second

feedback loop was set to one of the following lengths: 20, 53 and 80 m. polari-

sation controllers in each loop plus one polarisation controller before port 1 of

the circulator ensured the light fed back through both loops matched the emit-

ted light polarisations to maximise feedback effectiveness. In this experiment,

the feedback ratio into the gain section was limited to -22 dB.

Figure 6.1: Schematic of the experimental arrangement for single (excluding
dashed portion) and asymmetric dual-loop configurations (with dashed por-
tion). Acronyms– SOA: Semiconductor Optical Amplifier; ISO: Optical isolator;
PD: Photodiode; RF Amp.: RF Amplifier; ODL: Optical delay line; Att: Opti-
cal attenuator; PC: polarisation controller; ESA: Electrical spectrum analyser;
OSA: Optical spectrum analyser; PM: Power Meter; QDMLL: Quantum-dash
mode-locked laser.
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6.3 Results and Discussions

In this section, we experimentally show that a second feedback loop can sup-

press additional noise-resonances, and how this influences the RF linewidth and

timing jitter of MLLs.

6.3.1 RF Spectra of Single-Loop Feedback using 160 m Loop

To observe RF spectra with single-loop feedback, the loop was initially set at

160 m; optimally stable resonance occurred when the feedback length was fine-

tuned using an optical delay line (ODL-I) which spanned 0 to 84 ps in steps of

1.67 ps. Such optimisation provides a resonant condition (at delay setting=13

ps) under which the RF linewidth was reduced from 100 kHz free-running to as

low as 4 kHz, with integrated timing jitter to 0.7 ps from 3.9 ps [10 kHz - 100

MHz]. RF spectra and measured phase-noise traces as functions of frequency

offset from fundamental mode-locked frequency are given in Figs. 6.2(a) and

(b), for the free-running laser (gray line) and single-loop feedback (blue line),

respectively. Under similar delay settings, external cavity side-modes appear

in the RF spectrum with frequency spacing 1.28 MHz, the inverse of the loop

round-trip delay. RF spectra are shown in Figs. 6.3(a) and (b), respectively.

Frequency resonances can be seen in both frequency spans which contribute

significantly to timing jitter, particularly for the longer feedback cavities as they

are closer to the main peak and are less suppressed [100]. To eliminate these

fluctuations and to improve the SMSR, asymmetric dual-loop feedback was im-

plemented as described in the next section.

6.3.2 RF Spectra of Dual-Loop Feedback with Loop-I=160 m

and Loop-II=80 m

To assess suppression of these frequency resonances, a shorter feedback cavity

corresponding to half the period of the noise-induced oscillations of Loop-I was

introduced. Feedback strengths of both cavities were equalised using the vari-

able optical attenuators (Att-I and Att-II) plus polarisation controllers (PC-I and

PC-II). One optical delay (ODL-II) was adjusted to full integer resonance and

the length of the other delay line (ODL-I) was tuned over the maximum range

available 0-84 ps. When ODL-I and ODL-II were fine-tuned (ODL-I=15 ps and
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Figure 6.2: (a) Comparison of RF spectra for single-loop feedback (blue line)
with free-running (gray line) using frequency span 1 MHz (resolution band-
width 1 kHz and video bandwidth 100 Hz) (b) Comparison of phase-noise
traces of free-running laser (gray line) with single-loop feedback (blue line) as
a function of frequency offset from fundamental mode-locked frequency with
integration limits 10 kHz - 100 MHz.
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Figure 6.3: (a) RF Spectra of single-loop feedback of length 160 m (red line) us-
ing frequency span 10 MHz (resolution bandwidth 10 kHz and video bandwidth
1 kHz) (b) RF Spectra of single-loop feedback of length 160 m (red line) using
frequency span 100 MHz (resolution bandwidth 100 kHz and video bandwidth
10 kHz).

ODL-II=25 ps) so that every second mode of loop-I coincided precisely with a

mode of Loop-II, maximum >30 dB suppression in the first order side-mode

was achieved. However, additional fluctuations (modal overlaps) appeared at

frequencies resonant with the inverse of the length of the second delay time

which became the carrier signal. These noise fluctuations depend on the ratio

of the loop lengths. Here these fluctuations at frequency spacing 2.60 MHz are

consistent with the length of the second feedback loop 80 m. RF spectra of the
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asymmetric dual-loop configuration are shown in Figs. 6.4(a) and (b), respec-

tively. In this fully resonant configuration, the RF linewidth narrowed to < 1

kHz (instrument limited), with timing jitter reduced to 295 fs. Comparison of

RF spectra and phase-noise traces with free-running conditions are shown in the

Figs. 6.5(a) and (b), respectively. Most recently, relative modulation suppres-

sion was determined from Floquet exponents and numerically calculated power

spectra for a mode-locked laser were compared with Floquet spectra [112]]. It

was observed that the n2=495 [see Fig. 5(c) of Ref [112] fundamental mode

was suppressed but additional fluctuations appeared at frequencies resonant

with the inverse of the second delay time which agrees well with our experi-

mentally measured power spectra [see Fig. 6.4(a)]. The RF spectra illustrated

in Figs. 6.6 and 6.7 show that this feedback configuration is not suitable to

achieve effective suppression in frequency resonances, as the second delay time

will be resonant with the second mode of the first feedback loop. This restricts

practical applications where flat and side-band free RF spectra are required. To

improve this situation, a different dual-loop feedback configuration with non-

resonant shorter second loop (53 m) was investigated, as described in the next

section.
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Figure 6.4: RF Spectra of asymmetric dual-loops having lengths 160 m for loop-
I and 80 m for loop-II using frequency span (a) 10 MHz (resolution bandwidth
10 kHz and video bandwidth 1 kHz) (b) and frequency span 100 MHz (resolu-
tion bandwidth 100 kHz and video bandwidth 10 Hz).
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Figure 6.5: (a) Comparison of RF spectra for asymmetric dual-loop (blue line)
and free-running (gray line) with frequency span 1 MHz (resolution bandwidth
1 kHz and video bandwidth 100 Hz) (b) Comparison of phase-noise traces of
free-running laser (gray line) with asymmetric dual-loop feedback (blue line)
using integration limits 10 kHz - 100 MHz.

6.3.3 RF Spectra of Dual-Loop Feedback with Loop-I=160 m

and Loop-II=53 m

In the asymmetric dual-loop configuration presented in this section, the length

of loop-I was initially set to 160 m while that of loop-II was 53 m. Upon fine-

tuning of both optical delay lines (ODL-I=13 ps and ODL-II=15 ps), when the

second delay time was resonant with the third harmonic of the first loop, sup-

pression of the first two frequency resonances occurred, while the third har-

monic (modal overlap) was unsuppressed. This harmonic was observed at a

frequency offset 3.9 MHz, corresponding to the 53 m length of the outer feed-

back loop. RF spectra for the asymmetric dual-loop configuration are shown

in Figs. 6.6(a) and (b), respectively. In this configuration, when both external

cavities are fully resonant, the RF linewidth narrowed to 2 kHz with integrated

timing jitter 0.45 ps. Comparison of RF spectra and phase-noise traces for asym-

metric dual-loop (blue line) with free-running (gray line) are shown in Figs.

6.7(a) and (b), respectively. These measured results show that external cav-

ity side-modes cannot be optimally suppressed by simply choosing the second

feedback delay time to be a fraction of the first. Numerically it was observed

that the n2=325 [refer to Fig. 5(b) of Ref [112]], the first harmonic was sup-

pressed but modal overlap occurred at a frequency resonant with the inverse of

the third delay time which agrees well with our measured power spectra [Figs.

6.6(a) and (b)]. To achieve stable and flat RF spectra, we designed an asymmet-
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ric dual-loop feedback configuration for effective suppression of external cavity

side-modes. This produced flat RF spectra close to the main peak compared to

conventional single- and asymmetric dual-loop feedback.
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Figure 6.6: RF Spectra of single-loop feedback with length 160 m (gray line)
and dual-loops having lengths 160 m for loop-I and 53 m for loop-II (red line)
using frequency span (a) 10 MHz (resolution bandwidth 10 kHz and video
bandwidth 1 kHz) (b) 100 MHz (resolution bandwidth 100 kHz and video
bandwidth 10 kHz).
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Figure 6.7: (a) Comparison of RF spectra measured for asymmetric dual-loop
(blue line) and free-running (gray line) with frequency span 1 MHz (resolu-
tion bandwidth 1 kHz and video bandwidth 100 Hz) (b) Comparison of phase-
noise traces of free-running laser (gray line) with asymmetric dual-loop feed-
back (blue line) with integration limits 10 kHz - 100 MHz.
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6.3.4 RF Spectra of Dual-Loop Feedback with Loop-I=160 m

and Loop-II ∼ 20 m

In this asymmetric dual-loop feedback, the length of Loop-I was fixed (160 m)

and Loop-II was set ∼ 8x shorter than loop-I. Fine-tuning of both cavities (ODL-

I=15 ps and ODL-II=21 ps) produced precise coincidence of every eighth mode

of Loop-I with a mode of Loop-II so that strong side-mode suppression occurred

and all feedback-induced side-modes and spectral resonances were eliminated.

RF spectra for this asymmetric dual-loop feedback configuration (red line) are

shown in Figs. 6.8(a) and 6.(b) using span 10 and 100 MHz, respectively. Fur-

thermore, when both external cavities were fully resonant, the RF linewidth

narrowed to 8 kHz with integrated timing jitter 0.6 ps. Comparison of RF spec-

tra and phase-noise traces under double resonance with free-running condi-

tions is shown in Figs. 6.9(a) and (b), respectively. In this configuration, the RF

linewidth was higher than for single-loop feedback, but the measured timing

jitter was lower; this is due to suppression of external cavity side-modes. In

Ref [112], it was predicted that for n2=90, the fundamental frequencies of the

first feedback cavity would be significantly suppressed. However, modes cor-

responding to the 9th, 10th, and 11th harmonics are weakly suppressed. Our

measured RF spectra [Figs. 6.8(a) and (b)], showed weak modal overlap (with

intensity ∼ -6 dBm) at 10.2 MHz frequency spacing, consistent with our 20 m

outer loop; this is shown in Fig. 6.8(b) (red line).
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Figure 6.8: RF Spectra of single-loop feedback with length 160 m (gray line)
and asymmetric dual-loops having lengths 160 m for loop-I and 20 m for loop-
II (red line) using frequency span (a) 10 MHz (resolution bandwidth 10 kHz
and video bandwidth 1 kHz) (b) 100 MHz (resolution bandwidth 100 kHz and
video bandwidth 10 kHz).
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Comprehensive analysis based on the above three different experimental con-

figurations shows that the second feedback delay has a significant influence

on the side-mode suppression, due to the long feedback cavity. This behaviour

shows that effective suppression of external cavity side-modes and reduced tim-

ing jitter can be achieved by appropriately fine-tuning the length of the second

feedback loop.

It should be noted that the length of loop-II (∼ 20 m) is only optimal in our

specific experimental setup. Further reduction in the length of the second feed-

back loop is not possible, as the combined variable optical attenuator, optical

delay line, polarisation controller and 3-dB coupler have a minimum length of

∼ 20 m. Better suppression of cavity side-modes could be achieved in an ar-

rangement not subject to this limitation, such as a photonic integrated circuit.
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Figure 6.9: (a) RF Spectra measured for asymmetric dual-loop (blue line) and
free-running (gray line) with frequency span 1 MHz (resolution bandwidth 1
kHz and video bandwidth 100 Hz) (b) Phase-noise trace of free-running con-
ditions (gray line) with asymmetric dual-loops having lengths 160 m for loop-I
and 20m for loop-II (blue line) with integration limits 10 kHz - 100 MHz.

Measured phase-noise traces for free-running condition (green line), single-

loop (gray line) and asymmetric dual-loop feedback with loop-II at 20 m (red

line), 53 m (black line) and 80 m (blue line) as functions of frequency offset

from the fundamental mode-locked frequency, are given in Fig. 6.10. From

measured phase-noise traces of single-loop optical feedback and asymmetric

dual-loop feedback, the expected noise-resonances can be seen as functions

of frequency offset from the fundamental mode-locked frequency, contributing

significantly to the timing jitter.

Measured RF spectra under integer resonance are shown in Fig. 6.11 for free-

running condition (green line), single-loop (gray line) and dual-loop feedback
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Figure 6.10: SSB phase-noise trace of free-running, single- and asymmetric
dual-loop feedback configurations with loop-I = 160 m and loop-II ∼ 20 m (red
line), 53 m (black line) and 80 m (blue line) under fully resonant condition with
integration limits 10 kHz - 100 MHz.
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Figure 6.11: RF spectra for free-running, single- and dual-loop feedback with
loop-I = 160 m and loop-II ∼ 20 m (red line), 53 m (black line) and 80 m
(blue line) using frequency span 1 MHz (resolution bandwidth 1 kHz and video
bandwidth 100 Hz).
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6.4 Influence of Side-Mode Suppression on
Integrated Timing Jitter

with Loop-II at 20 m (red line), 53 m (black line) and 80 m (blue line). Varia-

tion in RF linewidth and timing jitter in single- and asymmetric dual-loop feed-

back followed a similar trend when feedback approached the optimal value,

which agrees well with reported analytical results (square root dependence of

the RF linewidth on integrated timing jitter) [116].

6.4 Influence of Side-Mode Suppression on Inte-

grated Timing Jitter

We now describe investigation of the influence of side-mode suppression on the

timing jitter of our QDash mode-locked laser. As observed in section 6.3, the

external cavity side-modes for conventional single- and dual-loop feedback play

a significant role in timing jitter. A comparison of RF linewidth and integrated

timing jitter under stable resonant conditions, for three chosen lengths of the

second feedback cavity, is shown in Fig. 6.12. Measured integrated timing jitter

in all dual-loop configurations was lower than for single-loop feedback. How-

ever, the best suppression in external cavity side-modes was achieved with the

second delay time ∼ 8x shorter than the first. Furthermore, the integrated tim-

ing jitter in this case was 16% lower than for single-loop feedback. Reduction

in timing jitter occurs due to suppression of external cavity side-modes relative

to single-loop feedback.

In the literature [109, 110], it was reported that side-mode suppression was

achieved when both feedback delays had a common multiple. This shows that

effective suppression in external cavity side-modes is highly dependent on the

length of the second loop. Recently, the influence of the second loop delay

on the suppression of external cavity side-modes [112] and timing jitter [112]

was studied numerically. In this work, experimentally measured suppression of

cavity side-modes and integrated timing jitter as a function of the second cavity

delay corresponds well with published numerical simulations [112, 114].

6.5 Summary

In this chapter, we have reported a novel asymmetric dual-loop feedback scheme,

suppressing parasitic noise-resonances when single-loop and dual-loop optical
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Figure 6.12: RF Linewidth (blue triangles) and Integrated timing jitter (black
circles) for asymmetric dual-loop feedback with loop-I = 160 m and loop-II =
20, 53 and 80 m.

Table 6.2: Comparison of RF Linewidth, Timing Jitter and SMSR using single-
and dual-loop feedback configuration.

Feedback Scheme Loop-I Loop-II RF (kHz) TJ (ps) SMSR (dB)
Free-running - - 100 3.9 -
Single-loop 160 m - 4 0.7 -
Dual-loop 160 m 80 m <1 kHz 0.295 30
Dual-loop 160 m 53 m 2 kHz 0.45 25
Dual-loop 160 m 20 m 8 kHz 0.6 -

feedback was used to stabilise our InP based SML QDash laser. Conditions for

optimum suppression were determined and compared with published theory.

To assess the SMSR, RF spectra were measured with fixed loop length 160 m,

in which frequency resonances given by the inverse of the loop round-trip delay

appeared spaced by 1.28 MHz from the fundamental mode-locked frequency.

To eliminate these fluctuations and to improve the SMSR, asymmetric dual-

loop feedback with successively three discrete lengths [80, 53, and 20 m] of the

second loop was implemented. It was observed that with Loop-I=160 m and

Loop-II=80 m, maximum >30 dB suppression in the first-order side-mode was

achieved. However, additional noise fluctuations (modal overlap) appeared at

frequencies resonant with the inverse of the second cavity which affects timing
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SUPPRESS SPURIOUS-TONES IN SML
QDASH LASERS 6.5 Summary

jitter. To study the suppression of these parasitic frequency resonances, loop-I

was fixed at 160 m and loop-II set to 53 m, then suppression of the first two

frequency resonances occurred, while the third harmonic (modal overlap) re-

mained unsuppressed. These modal overlaps depend on the ratio of the lengths

of the two feedback loops. Experimental results using this two configurations

showed that external cavity side-modes cannot be optimally suppressed by sim-

ply choosing the second feedback delay time to be a simple fraction of the first.

To achieve stable flat RF spectra, we designed an asymmetric dual-loop feed-

back configuration with loop-I=160 m and loop-II ∼ 20 m which effectively

suppresses cavity side-modes and produces flat RF spectra close to the main

peak, superior to conventional single- and dual-loop feedback schemes. This

behavior showed that effective suppression of external cavity side-modes and

reduced timing jitter can be achieved by roughly setting the first loop and fine-

tuning the length of the second feedback loop. Furthermore, by increasing the

length of the second loop, a significant reduction in RF linewidth and RMS tim-

ing jitter was produced. Our experimental results have validated predictions

of recently published numerical simulations. Measured integrated timing jitter

in all asymmetric dual-loop configurations was lower than for single-loop feed-

back. However, best suppression in the external cavity side-modes was achieved

with the second delay time ∼ 8x shorter than the first. Furthermore, integrated

timing jitter, in this case, was 16% lower than single-loop feedback. Reduction

in timing jitter occurs due to suppression of external cavity side-modes relative

to single-loop feedback. Using this method, stable side-band-free integrated

photonic oscillators based on MLLs may be developed which are feasible and

attractive for many applications in optical telecommunications, time-domain

multiplexing, frequency comb generation and as synchronised pulse sources or

multi-wavelength lasers for wavelength-diversity or multiplexing.
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Chapter 7

stabilisation of SML QDash Lasers
by Simultaneous Optical Injection
and Optical Feedback

7.1 Introduction

In this chapter, we report investigation of the simultaneous effects of external

optical feedback and CW optical injection-locking on the stability of two-section

SML QDash lasers over a wide range of delay tuning. The RF linewidth and a

shift in the fundamental mode-locked frequency were reported as functions of

CW optical injection. Various wavelength ranges were investigated and op-

timum wavelengths were determined which yield the narrowest RF linewidth

and lowest timing jitter. We have also observed that incorporation of single-loop

feedback and CW optical-injection leads to significant reduction in RF linewidth

across a wide range of delay tuning compared to single-loop feedback.

This chapter is organised as follows: In Section 7.2, we introduce the CW in-

jection properties and the experimental setup. In Section 7.3, variation in RF

linewidth and pulse repetition frequency as functions of injected wavelength

are investigated, and wavelength ranges for best stability were identified. A

comprehensive analysis of RF linewidth versus delay range will be presented in

Section 7.4 using single-loop optical feedback plus CW optical-injection.
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7. STABILISATION OF SML QDASH LASERS

BY SIMULTANEOUS OPTICAL INJECTION

AND OPTICAL FEEDBACK 7.2 CW Injection

7.2 CW Injection

In previous chapters, we enhanced the stability of our SML QDash laser using

external optical feedback. However, in this section, we use optical injection

for this technique. The behaviour of the slave laser when the external light is

injected depends on three external parameters: frequency detuning (frequency

or wavelength difference between the master and the slave), and slave laser

power. Under certain conditions, the slave laser becomes locked with the wave-

length phase of the master which is known as injection locking.

The device under investigation was a two-section InAs/InP QDash mode-locked

laser with an active region consisting of nine InAs quantum dash monolayers

grown by gas source molecular beam epitaxy (GSMBE) embedded within two

barrier layers (dash-in-barrier device), and separate confinement heterostruc-

ture layers of InGaAsP, emitting at ∼ 1.55 µm. A detailed description of the

laser can be found in Chapter 2.
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Figure 7.1: Schematic of the experimental arrangement for single-loop feed-
back plus CW optical- injection Acronyms– SOA: Semiconductor Optical Am-
plifier; ISO: Optical isolator; PD: Photodiode; RF Amp.: RF Amplifier; ODL:
Optical delay line; Att: Optical attenuator; PC: polarisation controller; ESA:
Electrical spectral analyser; OSA: Optical spectrum analyser; SMF: Single mode
fibre; PM: Power Meter; QDash MLLs: Quantum dash mode-locked lasers; CW
TLS: continuous-wave tunable laser source.

A schematic of the experimental arrangement is shown in Fig. 7.1. For single-

loop feedback, a calibrated fraction of light was fed back through port 1 of an
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7. STABILISATION OF SML QDASH LASERS

BY SIMULTANEOUS OPTICAL INJECTION

AND OPTICAL FEEDBACK

7.3 Variation in RF Linewidth and Pulse
Repetition Frequency as a Function of Injected

Wavelength

optical circulator, then injected into the laser cavity via port 2. The optical cou-

pling loss from port 2 to port 3 was -0.64 dB. The output of the circulator was

sent to a semiconductor optical amplifier (SOA) with a gain of 9.8 dB and then

split into two arms by a 50/50 coupler. Half of the amplified signal went to an

RF spectrum analyser (Keysight, E4407B) via a 21 GHz photodiode and optical

spectrum analysers (Ando AQ6317B and Advantest Q8384). The other half of

power was directed to the feedback circuit containing an optical delay line com-

bined with a variable optical attenuator and a polarisation controller. For the

optical-injection part, we used a commercial external cavity tunable laser (New

Focus 6328, 1520-1570 nm) with an optical linewidth <1 MHz and fine-tuning

resolution of ∼ 0.5 pm was used as the master laser. The feedback intensity in-

cident on the slave laser absorber section was controlled with a variable optical

attenuator (Att-II) and was set to -13.6 dB. A polarisation controller was used

to align the polarisation of the master laser with that of the slave. Master laser

wavelengths were precisely controlled by a LabView® program.

7.3 Variation in RF Linewidth and Pulse Repeti-

tion Frequency as a Function of Injected Wave-

length

In order to investigate the influence of CW optical-injection on the RF spec-

tra of the free-running slave laser, first fine adjustment of a polarisation con-

troller (PC-II) was made and part of the feedback intensity was fed back to

the absorber section of the slave laser. The power injected from the master

laser was controlled by a variable optical attenuator (Att-II). The measured

RF linewidth (blue triangles) and the shifting in RF peak frequency (black

squares) as functions of injected wavelength are shown in Fig. 7.2. Four dif-

ferent spectral regimes were identified, under which the injected laser makes

the RF linewidth narrower or broader relative to free-running. It can be seen

that the RF linewidth becomes narrower and RF peak frequency gets closer to

that of free-running when the injected wavelengths were 1571.725 - 1572.10

nm. However, the injected wavelengths 1572.25 to 1578 nm, the RF linewidth

becomes much wider and RF peak frequency gets farther away from the free-

running RF peak frequency. The comparison of free-running optical spectra

with that of optical-injection is shown in Figs. 3(a) - 3(d). When the CW laser
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7.3 Variation in RF Linewidth and Pulse
Repetition Frequency as a Function of Injected

Wavelength
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Figure 7.2: Dependences of the RF linewidth and RF peak frequency as a func-
tion of different injected wavelengths of the master laser.

was injected at 1568.45 nm, the RF linewidth was 158 kHz which is ∼ 1.5x

higher than free-running. At this wavelength, comparison of the free-running

optical spectra with that using optical-injection (1568.45 nm) is shown in Fig.

7.3(a) which is narrower than the free-running optical spectrum. With further

detuning of the injected wavelength (1571.725 to 1572.10 nm), significant re-

ductions in RF linewidth and timing jitter were observed. From this analysis,

we have identified the wavelength range of master laser (1571.725 to 1572.10

nm) which yields narrowest RF linewidth and reduced RMS timing jitter of

slave laser. In this range, the RF linewidth was reduced from 100 kHz free-

running-laser to 44 kHz, with RMS timing jitter as low as 1.39 ps from 3.9 ps

free-running (integrated from 10 kHz to 100 MHz). Comparisons of measured

RF spectra and phase-noise traces of the free-running laser (gray line) with the

injection-locked laser (blue line) are shown in Figs. 7.4(a) and (b), respec-

tively. The optical spectrum of the injected light (1571.725 nm) was shown in

Fig. 7.3(b) (red line) and we see that most of the side-modes were suppressed

by at least 3 dB.

Furthermore, in Fig. 7.3(c), injection at 1573.935 nm makes the optical spec-

trum narrower than that of the free-running laser. However, some short wave-

length optical modes were suppressed and some long wavelength side-modes
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7.3 Variation in RF Linewidth and Pulse
Repetition Frequency as a Function of Injected

Wavelength
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Figure 7.3: Optical spectra for free-running mode-locked laser compared with
the optical spectra of the injected master laser at wavelength (a) 1568.45 nm
(b) 1571.725 nm (c) 1573.935 nm and (d) 1576.685 nm.
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Figure 7.4: (a) Comparison of measured RF spectra of free-running mode-
locked laser (gray line) and injected wavelength 1571.25 nm (blue line) us-
ing frequency span 1 MHz (resolution bandwidth 1 kHz and video bandwidth
100 Hz) (b) Comparison of measured phase-noise traces of free-running mode-
locked laser (gray line) and injected mode-locked laser at wavelength 1571.725
nm (blue line) with integration limits 10 kHz - 100 MHz.
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arose, resulting in wider RF linewidth (122 kHz) than that of the free-running

laser (100 kHz). Moreover, when the CW laser was injected at 1576.685 nm,

there is no obvious effect on the laser stability: the optical spectrum and RF

linewidth of injected mode-locked laser were both similar to free-running. From

this detailed analysis, the injected wavelength range 1571.725 to 1572.10 nm

was identified to be most efficient to stabilise the optical pulses of our SML

QDash mode-locked laser.

7.4 Comparison of RF Linewidth Versus Delay

From above detailed investigations, we determined the range of injected wave-

length (1568 nm - 1578 nm) which yields significant reduction in RF linewidth

and integrated timing jitter. Next we compared the effect of external optical

feedback with simultaneous optical feedback and optical-injection at (1571.725

nm).

7.4.1 Using Single-Loop Feedback

To study the effects of single-loop feedback on the RF linewidth of the laser

for the widest delay range [0-70 ps], maximum feedback to the gain section

was limited to -22 dB. For single-loop feedback, a single 120 m fibre span was

used, stable resonant condition being achieved by optimising optical delay line

ODL-I which was adjustable in steps of 1.67 ps. Resulting RF linewidths (black

squares) are shown in Fig. 7.5 versus delay from 0-70 ps. This behaviour shows

that timing stability depends strongly on feedback delay. This effect occurs be-

cause for feedback delay times which are detuned from the main resonance

condition, the system needs to adapt its periodicity for synchronisation to occur

between the pulses in the laser and feedback cavities [112]. The periodicity

in the RF linewidth as a function of delay tuning can be seen to be 48.4 ps,

which agrees well with the fundamental mode-locked frequency (20.7 GHz)

of our QDash mode-locked laser. Furthermore, this optimisation of the single

feedback loop delay reduced the RF linewidth and corresponding timing jitter

considerably, as for other reported experiments [77, 79] and theoretical pre-

dictions [85]. Effective and stable mode-locking could be achieved when the

external cavity length was close to an integer multiple of that of the solitary
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laser. When fully resonant, the RF linewidth decreased from 100 kHz free-

running to 2 kHz, and integrated timing jitter from 3.9 ps to 0.7 ps (10 kHz -

100 MHz). Under this feedback delay time, the arrival time of the pulses from

the laser cavity and the feedback cavity coincide precisely, at the laser facet. At

full resonance, the comparisons of measured RF spectra and phase-noise traces

with single-loop feedback (blue line) and free-running (gray line) are shown in

Figs. 7.7(a) and (b), respectively. Upon tuning of the optical delay to 6 and 54

ps, synchronization of the optical pulses emitted from the laser cavity did not

occur with the optical pulses inside the feedback cavity. At these delay values,

the RF spectra became highly deformed and non-resonant feedback regime (6

to 54 ps) was observed. Our experimental results using single-loop feedback

show that for practical use of QDash mode-locked laser, the most suitable and

stable delay ranges are located at delays 5 and 53 ps. However, this is still quite

sensitive to packaging and production. In the next section, we describe how to

reduce the sensitivity of resonant single-loop feedback using simultaneous CW

optical-injection and external optical feedback.
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Figure 7.5: Variation of RF linewidth versus delay with optical feedback (black
squares) and optical feedback plus simultaneous CW optical-injection (blue tri-
angles) of wavelength 1571.725 nm.

Stabilisation of Self Mode-Locked Quantum
Dash Semiconductor Lasers

110 Haroon Asghar



7. STABILISATION OF SML QDASH LASERS

BY SIMULTANEOUS OPTICAL INJECTION

AND OPTICAL FEEDBACK 7.4 Comparison of RF Linewidth Versus Delay

7.4.2 Simultaneous Single-Loop Optical Feedback Plus CW

Optical-Injection

After investigating the effects of single-loop feedback on the RF linewidth and

timing jitter, the simultaneous effects of both CW optical-injection and external

optical feedback were demonstrated. For this purpose, experimental arrange-

ments for single-loop feedback were kept fixed and light from the tunable laser

source was fed back into the laser absorber section. The optical delay line

(ODL-I) and polarisation controller (PC-I) were fine-adjusted and the master

laser with fixed wavelength (1571.725 nm) was shone into the slave laser’s ab-

sorber section, the injected power controlled by a variable optical attenuator

(Att-II). Measured RF linewidth data for single-loop feedback (black squares)

alone and optical feedback plus optical-injection (blue triangles) are shown in

Fig. 7.5. With both optical feedback and CW optical-injection, a minimum

RF linewidth of < 1 kHz (instrumental limited) was achieved which was 2x

lower than external optical feedback and > 100x lower than the free-running

condition. Moreover, integrated timing jitter was reduced from 3.9 ps for the

free-running laser to 0.45 ps for optical feedback alone and 0.4 ps for simulta-

neous optical feedback and CW optical-injection.

Measured RF spectra for free-running, single-loop feedback (blue line) and op-

tical feedback plus optical-injection (red line) of integer cavity resonances are

shown in Fig. 7.6. The cavity frequency spacing was 1.45 MHz in accordance

with the 140 m nominal length of the external feedback loop. Comparison of

RF spectra and phase-noise traces of the free-running laser (gray line) with

external optical feedback (blue line) and simultaneous feedback plus optical-

injection scheme (red line) are shown in Figs. 7.7(a) and (b), respectively. With

both CW injection and optical feedback, we achieved sub-kHz RF linewidth,

sub-ps timing jitter under full resonance, which was better than using opti-

cal feedback only. However, over the full delay range, CW optical-injection

plus optical feedback yielded much more stable dynamics: narrow RF spectra

and reduced timing jitter were found over a widest delay range, unlike exter-

nal optical feedback alone. Recently,timing jitter reduction have been investi-

gated using optical injection technique [100, 120]. The optical-injection-locked

laser, double-locked with optical feedback, showed 2x TBP reduction and RF

linewidth reduction by two orders of magnitude.

Measured RF linewidths versus delay for optical feedback plus injection at
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Figure 7.6: Comparison of RF spectra of free-running (gray line) with optical
feedback (blue line) and optical feedback plus simultaneous optical-injection
(red line) of wavelength 1571.725 nm with frequency span 10 MHz (resolution
bandwidth 10 kHz and video bandwidth 1 kHz).
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Figure 7.7: (a) Comparison of measured RF spectra of single-loop feedback
(blue line), simultaneous optical-injection plus optical feedback (red line) and
free-running (gray line) with frequency span 1 MHz (resolution bandwidth 1
kHz and video bandwidth 100 Hz) (b) Comparison of measured SSB phase
noise traces of single-loop feedback (blue line), simultaneous optical-injection
plus optical feedback (red line) and free-running (gray line) with integration
limits 10 kHz - 100 MHz.

three chosen injected wavelengths (1571.685, 1571.710 and 1571.720 nm),

are shown in Fig. 7.8. The RF linewidth reduced to its minimum when the
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round-trip time of the feedback loop became an integer multiple of the laser’s

round-trip time which was modified by optical-injection. At stable resonance,

simultaneous optical feedback plus optical-injection narrows the linewidth to

1.35, 5 and 1.3 kHz for optical-injection wavelengths 1571.685, 1571.710 and

1571.720 nm, respectively. These results show that optical feedback plus optical-

injection technique reduced the RF linewidth at an integer resonance. However,

over a wider delay range, several instabilities were observed. Therefore, these

wavelengths are not suitable to achieve stabilisation of our SML QDash laser.

Measured RF spectra under full resonance are shown in Fig. 7.9 for feedback

plus simultaneous injected wavelengths 1571.685 (black line), 1571.710 nm

(red line), 1571.720 nm (green line) and 1571.725 nm (blue line), respectively.
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Figure 7.8: Measured RF linewidth versus delay using feedback loop plus in-
jected wavelength 1571.685 (black squares), 1571.710 nm (red circles), and
1571.725 nm (green triangles).

In summary, we have demonstrated the potential of the combination of optical-

injection and optical feedback. Measured experimental results suggest that this
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Figure 7.9: Measured RF spectra for feedback plus simultaneous injected wave-
length 1571.685 (black line), 1571.710 nm (red line), 1571.720 nm (green
line) and 1571.725 nm (blue line) under frequency span 1 MHz (resolution
bandwidth 1 kHz and video bandwidth 100 Hz).

approach is an efficient technique to improve the stabilisation of QDash mode-

locked lasers compared to optical feedback alone, though at the price of addi-

tional cost, bulk and complexity.

7.5 Summary

This chapter has highlighted the effects of single-loop feedback plus CW optical-

injection on the RF linewidth and timing jitter, over the widest delay range,

compared to results with single-loop optical feedback. The regime of injected

wavelengths from the master laser leading to optimal RF linewidth narrow-

ing and shifting of the fundamental frequency was identified to be 1571.725

- 1572.10 nm. First, variation in RF linewidth versus delay was observed us-

ing single-loop optical feedback and it was observed that single-loop feedback

yields effective stabilisation near the resonant condition, while over the full

delay range several instabilities were observed. In order to improve jitter stabil-

isation on widest delay ranges, the simultaneous effects of single-loop feedback

plus CW optical-injection were studied. It was observed that optical feedback

plus CW optical-injection maximised the resonant regime across the entire ac-
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cessible delay range relative to results measured with single-loop feedback and

the free-running. In addition, under double resonance, with both optical feed-

back and CW injection, a minimum RF linewidth of < 1 kHz (instrumental

limited) was achieved which was 2x lower than external optical feedback and

> 100x lower than free-running.
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Chapter 8

Summary and Future Work

In this chapter, we present a summary of research work carried out in this

thesis. In addition, we highlight the problems corresponding to each technical

contribution, to be investigated for future extensions of this research work.

8.1 Summary of the Work Presented

The primary goal of this thesis was to achieve stabilisation of SML QDash lasers

under external optical feedback and optical-injection. A brief summary of the

experimental investigations described in this thesis is given below.

Chapter 1 provided a brief introduction to pulsed semiconductor lasers, and

their potential applications in high-speed optical telecommunications and clock-

ing. Mode-locking mechanism to generate ultra-short optical pulses includ-

ing three major mode-locking techniques (active, passive and hybrid mode-

locking), were reviewed. In addition, a brief overview of stabilisation tech-

niques (external optical feedback and external optical-injection) performed in

the thesis to investigate the stability of our QDash mode-locked laser was given.

The motivation for this work and outline of this thesis was also presented in this

Chapter.

Chapter 2 presented a basic characterisation of the SML QDash lasers. After

introducing the device, the main measurement techniques to investigate opti-

cal/electrical spectra, optical power, and integrated timing jitter were briefly

introduced.
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Chapter 3 focused on the effectiveness of symmetric dual-loop optical feedback

with predictable delay difference between the two external feedback cavities as

means of robust stabilisation of SML QDash lasers operating at 21 GHz pulse

repetition rate and emitting at 1550 nm wavelength. Various feedback schemes

were investigated and the optimum feedback level determined to be -22 dB,

narrowest RF linewidth and low timing jitter, for single- and symmetric dual-

loop feedback. In addition, the fibre delay length (80 m) yielded the lowest

RF linewidth and a reduced timing jitter was also identified. Two symmet-

ric dual-loops configurations, with balanced and unbalanced feedback ratios

were studied. For symmetric dual-loop with balanced feedback ratios equal

power was coupled to both external cavities. However, for unbalanced sym-

metric dual-loop feedback more power (-20 dB) was coupled to loop-I than

Loop-II (-26 dB). We demonstrated that unbalanced symmetric dual-loop feed-

back, with the inner cavity resonant and fine delay tuning of the outer loop,

gives the narrowest RF linewidth and reduced timing jitter over a wide range

of delay, unlike single and balanced symmetric dual-loop configurations. This

configuration with feedback lengths 80 and 140 m narrowed the RF linewidth

by ∼ 4-67x (∼ 2-9x timing jitter reduction) and ∼ 10-100x (∼ 2.5-10x timing

jitter reduction), respectively, across the widest delay range, compared to free-

running. For symmetric dual-loop feedback, the influence of different power

split ratios through the feedback loops was further determined. A dual-loop

scheme with 4:1 power ratio between loops was most successful, reducing RF

linewidth by up to two orders of magnitude (70x) compared to free-running,

2-5x over single-loop and 5-8x relative to balanced symmetric dual-loop feed-

back. Longer 140 m fibre loops proved to be more effective than shorter 80

m loops. Our results showed that symmetric dual-loop feedback is markedly

more effective than single-loop feedback in reducing RF linewidth and timing

jitter, and is much less sensitive to delay phase, making this technique ideal for

applications where robustness and alignment tolerance are essential.

Chapter 4 explored the variation in RF linewidth versus a wide range of de-

lay tuning [0-84 ps] followed by different percentages of the power split ratio

through either external feedback cavity using the symmetric dual-loop feedback

configuration. RF linewidth narrowing and broadening over a broad range of

delay phase was demonstrated when each cavity was set to an integer resonance

and the second cavity was fine-tuned, which produced RF linewidth reduction

over a broad range of phase delay.

Chapter 5 briefly discussed the effects of optical feedback from asymmetric
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dual and single feedback loops on the RF linewidth and timing jitter for a

wide range of delay tuning in SML QDash lasers. The feedback ratio which

yielded the narrowest RF linewidth and low timing jitter was identified for sin-

gle and asymmetric dual-loop feedback. Our measurements reveal that asym-

metric dual-loop feedback with one loop shorter than the main one maximises

tolerance to delay phase mismatch relative to single-loop feedback. Moreover,

optimised dual-loop feedback extends the effective resonant feedback regime

and maintains stable RF spectra, with narrow RF linewidth and reduced tim-

ing jitter across the entire accessible delay range, making this setup desirable

for practical applications. It was further observed that at multiple optical delay

ranges, the RF linewidth was instrument limited at less than 1 kHz, so the actual

value may be lower. This behaviour indicates that to maximise the RF linewidth,

delicate tuning of both optical delay lines is required. Furthermore, in this ex-

perimental arrangement, from delay settings 0-40 ps and 56.7-78.4 ps, the RF

linewidth was below the minimum RF linewidth measured for single-loop feed-

back. In addition, this asymmetric dual-loop scheme reduced RF linewidth ∼
2.5-4x compared to single-loop and 4-100x relative to free-running conditions.

Our results demonstrate that asymmetric dual-loop feedback is more effective

than single-loop feedback at reducing linewidth and jitter, across a much wider

range of delay phase. The resonant condition in asymmetric dual-loop feedback

is nearly independent of optical delay, making it ideal for practical applications.

We also assessed the influence of asymmetric dual-loop optical feedback on

SMSR and observed that suppression of external cavity side-modes leads to a

significant reduction in timing jitter. It was demonstrated that when the length

of loop-I was fixed to 160 m and loop-II was set to 80 m then 30 dB fundamental

side-mode suppression was achieved. However, when the length of loop-I was

adjusted to 185 m and loop-II was fixed to 20 m, 23 dB suppression occurs for

first harmonic. Furthermore, the influence of the long fibre loop-I (up to order

of > 2 km) relative to Loop-II on the suppression of external cavity side-modes

was investigated.

Chapter 6 described an asymmetric dual-loop feedback method to suppress ex-

ternal cavity side-modes induced in SML QDash lasers with conventional single-

loop and dual-loop feedback. An asymmetric dual-loop feedback configuration

discussed in Chapter 5 suppressed noise-resonances but additional noise fluc-

tuations (modal overlap) appeared at frequencies resonant with the inverse of

the round trip delay in the second cavity. However, for some particle applica-

tions of MLLs, narrow and flat RF spectra are required. For this purpose, an
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asymmetric dual-loop feedback has been demonstrated to suppress additional

noise-resonances found in conventional single and dual-loop feedback setups.

In this experimental arrangement, the length of loop-I was fixed to 160 m while

the length of the second feedback loop was varied in three chosen lengths: 20,

53 and 80 m. It was observed that with loop-I=160 m and loop-II=80 m, maxi-

mum > 30 dB suppression in the first order side-mode was achieved. However,

additional noise fluctuations (modal overlap) appeared at frequencies resonant

with the inverse of the length of the second delay time which becomes the

carrier signal. To assess suppression of these frequency resonances, when the

length of loop-I was fixed to 160 m and loop-II was kept 53 m then suppression

of the first two frequency resonances occurred, while the third harmonic (modal

overlap) remained unsuppressed. These modal overlaps depends on the ratio

of the length of two feedback loops. Experimental results using these two feed-

back configurations show that external cavity side-modes cannot be optimally

suppressed by simply choosing the second feedback delay time to be a fraction

of the first. To achieve stable and flat RF spectra, we designed an asymmet-

ric dual-loop feedback configuration with length of loop-I=160 m and loop-

II ∼ 20 m which effectively suppress cavity side-modes and produced flat RF

spectra close to the main peak compared to conventional single and dual-loop

feedback schemes. This behaviour shows that effective suppression of external

cavity side-modes and reduced timing jitter can be achieved by appropriately

fine-tuning the length of the second feedback loop. Furthermore, by increas-

ing the length of the second loop, a significant reduction in RF linewidth and

integrated timing jitter was produced. Our experimental results have validated

predictions of recently published numerical simulations.

Chapter 7 discussed the influence of simultaneous external optical feedback

and CW optical-injection on the timing stability of the SML QDash laser. We

identified the wavelength ranges which yielded narrow RF linewidth and re-

duced timing jitter under full resonance. It was further found that simultane-

ous injection-locking and optical feedback leads to narrow RF linewidth across

the full delay range compared to optical feedback alone. Furthermore, the re-

lationship between RF linewidth and repetition rate tuning as a function of the

injected wavelength was also investigated.

Measured RF linewidth and integrated timing jitter in each experimental per-

formed is summarized in Table 8.1. In addition, SMSR for the balanced asym-

metric dual-loop feedback was presented in Table 8.2.
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8.2 Future Work

Some suggestions for future extension of this research work are listed below:

• Mode-locking in our QDash mode-locked laser was obtained without re-

verse bias applied to the absorber section. This was a two-section de-

vice but was packaged similarly to a single-section SML laser since the

absorber was unbiased: its minimal absorption does not affect the self-

mode-locking mechanism. Non-linear effects such as self-phase modula-

tion (SPM), cross-phase modulation (XPM) and four-wave-mixing (FWM)

in the cavity has been proposed as the reason for this coherent self-pulsing

behavior. Probably an important problem which is still open is the devel-

opment of a theoretical model for explanation of the self-mode-locking

present in QDash MLLs.

• In Chapter 6, we demonstrated that the best side-mode suppression and

lower timing jitter relative to single-loop feedback were achieved with the

length ratio between the two cavities ∼ 8x. It should be noted that the

length of loop-II (∼ 20 m) is only optimal in our specific experimental

setup. Further reduction in the length of second feedback loop are not

possible, as the combined variable optical attenuator, ODL, PC, and 3 dB

coupler have a minimum length of ∼ 20 m. Better suppression in external

cavity side-modes could be achieved in an arrangement not subject to this

limitation, such as experimental arrangements in free space.

• This thesis is based on self mode-locking. However, similar experimental

studies could be performed for passive mode-locking which has a signif-

icant influence on repetition rates and pulse duration of semiconductor

QDash MLLs.

• As discussed in various experimental studies, the minimum RF linewidth

can be achieved when the phase of the emitted light matches the phase of

the injected light. In addition, the coupling efficiency plays a crucial role

in narrowing and broadening of the RF linewidth. Mechanical vibrations

of the systems can lead to severe instabilities and cause degradation in

the RF linewidth. To improve stabilisation of MLLs, robust integration of

laser systems is highly desirable.

• In Chapters 3-6, we demonstrated that jitter stabilisation on the full range

of delay phase tuning can be achieved using dual-loop feedback. In Chap-
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ter 7, we improved the timing stability of SML QDash laser subject to

single-loop feedback plus CW optical-injection. We believe that further

improvement in the timing stability of QDash mode-locked laser is possi-

ble using simultaneous CW injection into the absorber section and asym-

metric dual-loop feedback into the gain section of the laser. The proposed

experimental arrangement for this experimental setup is shown in Fig.

8.1.
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Figure 8.1: Schematic of the experimental arrangement for dual-loop feedback
plus cw optical- injection Acronyms– SOA: Semiconductor Optical Amplifier;
ISO: Optical isolator; PD: Photodiode; RF Amp.: RF Amplifier; ODL: Optical
delay line; Att: Optical attenuator; PC: polarisation controller; ESA: Electrical
spectral analyser; OSA: Optical spectrum analyser; SMF: Single mode fibre;
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Table 8.1: Comparison of RF Linewidth (RF), and Timing Jitter (TJ) using
single- and dual-loop feedback performed in this thesis; Acronyms– FS: Feed-
back Scheme; FBR: feedback ratio through either feedback loop; FR: Free-
running; SL: Single-loop; BSDL: Balanced symmetric dual-loop; USDL: Unbal-
anced symmetric dual-loop; ADL: Asymmetric dual-loop; Opt. Inj: Optical-
Injection.

FS Loop-I Loop-II FBR RF TJ
m m dB kHz ps

FR - - - 100 3.9
SL 20 - -22 4 1.2
SL 48 - -22 4 0.8
SL 80 - -22 4 0.6
SL 80 - -20 68 -
SL 80 - -26 8 -
SL 80 - -46.6 72.7 3
SL 80 - -39.6 64 2.9
SL 80 - -36.6 50 2.3
SL 80 - -31.8 40.1 2.1
SL 80 - -29.59 28.7 1.75
SL 80 - -26.58 12.9 1.1
SL 80 - -24.82 7 0.89
SL 80 - -23.57 5 0.98
SL 80 - -22.6 3 0.6
SL 120 - -22 2 0.7
SL 145 - -22 4 0.65
SL 160 - -22 4 0.7
SL 160 - -46.6 80 3
SL 160 - -39.6 61.3 2.7
SL 160 - -36.6 60.3 2.6
SL 160 - -31.8 34.7 2
SL 160 - -29.59 10 1.3
SL 160 - -26.58 9.12 1
SL 160 - -24.82 6.2 0.9
SL 160 - -23.57 4.03 0.72
SL 160 - -22.6 4 0.7
SL 200 - -22 < 1 -
SL 205 - -22 12 0.8

BSDL 80 - -22:-22 12 0.89
BSDL 80 - -46.6: -46.6 75 3.1
BSDL 80 - -39.6: -39.6 70 3
BSDL 80 - -36.6: -36.6 48 2.5
BSDL 80 - -31.8: -31.8 33 2
BSDL 80 - -29.59: -29.59 28.7 1.8
BSDL 80 - -26.58: -26.58 17 1.35
BSDL 80 - -24.82: -24.82 16.5 1.3
BSDL 80 - -23.57: -23.57 16 0.98
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FS Loop-I Loop-II FBR RF TJ
m m dB kHz ps

BSDL 80 - -22.6: 22.6 15 0.9
BSDL 140 - -22:-22 8 -
BSDL 220 - -22:-22 4 0.75
USDL 80 - -26:-20(c) 4.1 -
USDL 80 - -24.3:-20.6(c) 3.4 -
USDL 80 - -23:-21.3(c) 2.1 -
USDL 80 - -21.3:-23(c) 30 -
USDL 80 - -20.6:-24.3(c) 1.6 -
USDL 80 - -20:-26(c) 1.5 0.45
USDL 80 - -46.6: -46.6 69 2.9
USDL 80 - -39.6: -39.6 57 2.5
USDL 80 - -36.6: -36.6 52.8 2.3
USDL 80 - -31.8: -31.8 32.1 1.9
USDL 80 - -29.59: -29.59 21.5 1.6
USDL 80 - -26.58: -26.58 7.23 1
USDL 80 - -24.82: -24.82 3.36 0.8
USDL 80 - -23.57: -23.57 2.78 0.69
USDL 80 - -22.6: 22.6 2 0.45
USDL 140 - -19.5:-29.03(c) 1 0.4
USDL 220 - -19.5(c):-29.03 11 -
USDL 220 - -20.6(c):-24.3 3 -
USDL 220 - -21(c):-22.7 3 -
USDL 220 - -21.3(c):-23 10 -
USDL 220 - -19.5:-29.03(c) 1 -
USDL 220 - -20.6:-24.3(c) 3 -
USDL 220 - -21:-22.7(c) 14 -
USDL 220 - -21.3:-23(c) 7 -
BADL 160 80 -22:-22 <1 0.295
BADL 160 53 -22:-22 2 0.45
BADL 160 20 -22:-22 8 0.6
BADL 205 40 -22:-22 < 1 0.4
BADL 2000 200 -22:-22 < 1 -
UADL 160 80 -22:-22 1.3 -
UADL 160 80 -23.29(c):-28.06 1.3 -
UADL 160 80 -23.29:-28.06(c) 1.4 -
UADL 160 80 -46.6 70 3
UADL 160 80 -39.6 57 2.5
UADL 160 80 -36.6 52.8 2.4
UADL 160 80 -31.8 32.1 1.9
UADL 160 80 -29.59 10 1.3
UADL 160 80 -26.58 7.23 98
UADL 160 80 -24.82 3.36 0.8
UADL 160 80 -23.57 2.78 0.5
UADL 160 80 -22.6 0.4 0.29
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FS Loop-I Loop-II FBR RF TJ
m m dB kHz ps

FB plus 1571.725 nm 120 - -22 < 1 0.4
FB plus 1571.685 nm 120 - -22 1.35 -
FB plus 1571.710 nm 120 - -22 5 -
FB plus 1571.720 nm 120 - -22 1.9 1.9

Table 8.2: Side mode suppression ratio (SMSR) dual-loop feedback performed
in this thesis; Acronyms– FS: Feedback Scheme; FBR: feedback ratio through
either feedback loop; BADL: Balanced asymmetric dual-loop

FS Loop-I Loop-II FBR SMSR
m m dB dB

BADL 160 53 -22:-22 25
BADL 160 80 -22:-22 30
BADL 205 40 -22:-22 23
BADL 2000 200 -22:-22 30
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