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Addiction is a chronic, progressive disorder caused by repetitive drug use, which leads to 

long-lasting synaptic alterations in the brain. Drugs of abuse are powerful reinforcers that 

‘hijack’ specific brain circuits that control reward-motivated behaviors, creating a maladaptive 

state that can trigger craving and relapse, even after prolonged periods of abstinence. 

Environmental contexts and cues that are present during drug use can later evoke drug-related 

memories that promote drug-seeking conditioned responses. Despite recent attempts to treat 

addiction with a combination of behavioral and pharmacological tools, success has been limited, 

mainly because the underlying mechanisms that govern drug-associated memories have not been 

fully elucidated. Studying the neural circuits and the synaptic and molecular underpinnings of 

drug-associated memories may uncover a means to reduce their salience, thereby reducing the 

likelihood of relapse.  

The amygdala is important for integrating sensory information during cue-dependent 

learning and is activated by both fear- and drug-related stimuli. Preclinical models have shown 

that the amygdala activates behavioral responses to fear- or drug-conditioned cues. 

Neuroadaptations within amygdala-based circuits have been examined in models of aversive 

learning but have not been well studied during reward-based learning, especially in the context 

of drugs of abuse. The work presented in this dissertation focuses on understanding the circuit-

specific synaptic and molecular changes that occur within the amygdala both during the 

formation of a drug-cue memory and upon subsequent re-exposure to drug-related cues. Through 
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a combination of electrophysiological, molecular, optogenetic, and behavioral techniques we 

find that repeated self-administration of cocaine, paired with an audiovisual cue, involves 

strengthening of auditory thalamic, but not cortical, synapses in the lateral amygdala. We also 

find that reversing drug-cue induced plasticity in this pathway, either through extensive cue re-

exposure or by optical induction of postsynaptic LTD, inhibits cue-elicited relapse-like behavior. 

Finally, we show that specific pharmacological manipulations of an intracellular signaling 

pathway involved in bidirectional regulation of synaptic activity can interfere with 

reconsolidation and promote extinction of a drug-cue memory. Together, these studies suggest a 

projection-specific mechanistic approach for the inhibition of drug-cue memory, which may be 

informative for future pharmacobehavioral relapse prevention strategies. 
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1.0  INTRODUCTION: ADDICTION AS A DISORDER OF LEARNING AND 

MEMORY SYSTEMS 

Within the brain, there exists a set of evolutionarily conserved neural systems responsible for 

controlling primitive biological functions that are vital for survival. One of these systems is 

known as the mesocorticolimbic system, a series of interconnected brain regions that govern 

reward, learning and memory, emotion, and executive function. Activity within the 

mesocorticolimbic system is necessary for the procurement of naturally-occurring positive 

reinforcers, such as food and sex, and is accompanied by a pleasurable sensation that motivates 

future reward-driven behaviors (Berridge and Kringelbach, 2015). Drugs of abuse, including 

psychomotor stimulants (like cocaine and methamphetamine) also activate the 

mesocorticolimbic system, which enhances locomotor activity aimed towards obtaining the drug 

(Kalivas et al., 2005; Yeh and Haertzen, 1991). Repeated drug exposure can result in behavioral 

sensitization as well as tolerance, which necessitates an escalation in drug use in order to achieve 

the original psychophysiological response (Morgan et al., 2006; Robinson and Berridge). 

Additionally, by engaging brain areas involved in learning and memory, individuals remember 

the circumstances surrounding the rewarding experience. In this manner, drug use is reinforced, 

thus promoting a chronic, progressive increase in substance use that induces long-lasting 

neuroadaptations within the mesocorticolimbic system. Over time, these changes to the neural 
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circuitry can result in a shift from reward-driven behavior to the more compulsive behaviors that 

are characteristic of addiction, or substance use disorders (SUDs) (Hyman et al., 2006; Piazza 

and Deroche-Gamonet, 2013).  

Addiction is a highly prevalent disorder. Approximately 1 in 12 adults (8% of the 

population) struggles with substance abuse (National Household Survey on Drug Abuse, 2016). 

Drug use also represents a huge economic burden, whereby 600 billion dollars per year is lost 

due to substance abuse (National Household Survey on Drug Abuse, 2016). Addiction is 

characterized by repetitive cycles of drug use, withdrawal, abstinence, and relapse; throughout 

these periods, drug use continues despite the occurrence of sometimes severe, negative 

consequences (i.e. withdrawal, negative social relationships, economic hardship). A major 

problem facing individuals with a SUD is the dilemma of either engaging in drug-seeking 

behavior, which has immediate short-term rewarding effects, or maintaining abstinence, which 

has more long-term benefits. However, because drugs of abuse interact with and strengthen the 

connections within a system that is already evolutionarily hardwired for survival, SUDs are 

extremely difficult to overcome. Indeed, drug-induced alterations within the mesocorticolimbic 

system have been directly linked to craving and relapse-like behavior (Engblom et al., 2008; 

Mameli et al., 2011; Nugent et al., 2007). During early abstinence there is a progressive increase 

in craving during which time affected individuals are extremely vulnerable to relapse. Craving 

also remains elevated during prolonged abstinence (Gawin and Kleber, 1986; Kassani et al., 

2015; Miller et al., 2012), so as the duration of abstinence increases, the risk of relapse remains. 

Recent surveys by the National Institute of Health estimate relapse rates to be between 40-60%, 

and even as high as 90% for alcohol (National Household Survey on Drug Abuse, 2016). This 
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high tendency for relapse is perhaps the biggest challenge for the successful treatment of 

addiction (Sinha et al., 2011). 

Treatment of SUDs is therefore aimed at reducing the risk of relapse and sustaining 

abstinence. Over time, the weakening and strengthening of specific synapses by drugs of abuse 

generates abnormally strong, long-lasting memories of drug use. One strategy for preventing 

relapse has been to interfere with these “drug-associated memories.” Oftentimes, neutral 

environmental stimuli, or cues, that are present during drug use can become predictors of drug 

availability, thus acting as conditioned reinforcers (Di Ciano and Everitt, 2003; Stewart, 1992). 

Specific drug-associated cues can vary widely across individuals but can include friends and 

family members with whom the individual engaged in drug-related behaviors, a specific context 

or location in which drugs were formerly used, and drug paraphernalia. Generally, these stimuli 

are grouped into either contextual or discrete cues (Back et al., 2014; Marchant et al., 2015; 

O’Brien et al., 1992). Evidence from clinical and preclinical research suggests that re-exposure 

to these drug-paired cues triggers drug-related memories that remind the individual of past drug 

use and activate the drug-adapted reward pathways, ultimately leading to craving and relapse.  

Attempts to study the neural mechanisms that promote the activation of drug-associated 

memories have been undertaken with the hopes of developing an effective treatment medication; 

however, few pharmacological options have been found that can successfully prevent relapse 

across an extended period of time (Bossert et al., 2013; Tiffany and Conklin, 2002). Likewise, 

recent clinical efforts have utilized behavioral strategies aimed at suppressing drug-related 

memories, but behavioral approaches alone have also proven to be widely insufficient for 

maintaining abstinence. Interestingly, these strategies are highly effective at disrupting the 

emotionally-salient memories that form the basis of anxiety disorders, such as post-traumatic 
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stress disorder (PTSD). For example, cue exposure therapy (CET) can reduce the likelihood of 

fearful stimuli to evoke a detrimental stress response (Marin et al., 2015), and the effects of cue 

exposure can be enhanced by combining it with specific pharmacological compounds (Hofmann 

et al., 2006; Norrholm et al., 2016; Ressler et al., 2004). These same ideas have been utilized for 

the treatment of drug dependence; however, despite observed success of CET in the clinical 

setting, drug-seeking behavior is often renewed when the patient returns to the original drug-

paired environment and is re-exposed to drug-associated stimuli (Crombag et al., 2008; 

Thewissen et al., 2006). Clinical efforts that use both behavioral therapies and treatment 

medication have yielded the highest success rates at reducing the strength of drug-associated 

memories (Cleva et al., 2010; Torregrossa and Taylor, 2016). Many of the neural processes that 

regulate fear-associated memories have proven to play a role in drug-related memories as well, 

which has been useful for proposing candidates for pharmacological intervention (Milton and 

Everitt, 2010; Monfils et al., 2009). Still, compounds that enhance CET in patients with PTSD, 

have had mixed results in individuals with a SUD (Price et al., 2013; Santa Ana et al., 2009), 

suggesting that there may be important differences in the neural mechanisms that regulate fear- 

vs. drug-associated memories. Continuing to study the specific circuits and cellular mechanisms 

involved in the formation, storage, and maintenance of drug-induced maladaptive memories may 

prove useful for the development of a successful intervention for drug addiction that has long-

lasting inhibitory effects on relapse. 
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1.1 NEURAL MECHANISMS OF LEARNING AND MEMORY 

In order to learn about their environment and survive, most organisms need acquired information 

to be stored as a memory that can later be accessed, updated, and modified as new information 

about the given environment is learned. The organism then utilizes this information to make 

decisions and direct their behavioral response. This type of learning, in which behavioral 

responses are guided by an environmental stimulus is known as associative learning. Two types 

of associative learning exist: classical (Pavlovian) conditioning and operant (instrumental) 

conditioning (Jones and Skinner, 1939; Pavlov, 1927; Robinson and Berridge). In classical 

conditioning, a neutral environmental stimulus is repeatedly paired with a biologically relevant 

unconditioned stimulus (US), so that an association between the two stimuli forms. The 

previously neutral stimulus then becomes a conditioned stimulus (CS) that, when presented 

alone, can trigger a conditioned response (CR) that is similar to the unconditioned response. The 

classic example is the pairing of a bell (CS) every time a dog is given food, which triggers 

reflexive salivation (US); eventually ringing of the bell alone can induce salivation (Pavlov, 

1927). On the other hand, operant conditioning involves the modification of a behavioral 

response based on the outcome of a given action. The behavior can be increased if the response 

is reinforced (by reward) or decreased if the response is punished (Jones and Skinner, 1939). An 

example of this is when an individual learns that touching a hot stove burns his/her hand. As will 

be discussed in subsequent sections, both classical and operant conditioning are important 

principles that underlie drug-related memories and relapse-like behavior. However, it is 

important to first consider the cellular and molecular mechanisms that occur within neurons that 

enable these learning processes to occur. These mechanisms regulate the various stages of 
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learning and can serve as potential targets for manipulating the stability of maladaptive drug-

related memories. 

1.1.1 Synaptic and molecular mechanisms of learning and memory 

Hebbian learning suggests that memories form through the simultaneous activation of a set of 

neurons, which increases the synaptic strength between those neurons (Hebb, 1949). Hebb’s 

theory forms the basis of spike-timing dependent plasticity (STDP), whereby connections 

between two neurons are strengthened or weakened in a temporally-specific manner. This input-

specificity ensures that only synapses experiencing correlated activity will be modified. 

Typically, a synapse tends to be strengthened if, over time, a postsynaptic neuron depolarizes 

and fires an action potential immediately (10-20 ms) after receiving synaptic input from a given 

presynaptic neuron (Levy and Steward, 1983; Magee and Johnston, 1997; Markram et al., 1997). 

Conversely, synapses can be weakened if the order of firing reverses so that the postsynaptic 

neuron tends to fire prior to receiving the synaptic input (Bi and Poo, 2001). The refinement of 

synapses via STDP is an important hallmark of development and occurs universally throughout 

the nervous system (Katz and Shatz, 1996). A diverse set of cellular machinery is required at 

both the synaptic and molecular level for synaptic modifications to occur. Organisms have also 

developed specific neuroanatomical systems that specifically utilize these mechanisms for the 

formation, storage, and updating of memories. Importantly, drugs of abuse have actions at the 

neuroanatomical systems involved in memory (e.g. cocaine and amphetamine acting at the 

dopamine transporter; See Section 1.2) and exert their effects through many of the same cellular 

and molecular substrates, which accounts for drug-dependent learning. 
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The strengthening and weakening of synapses occurs through mechanisms known 

respectively as long-term potentiation (LTP) and long-term depression (LTD) (Bi and Poo, 1999; 

Malenka and Bear, 2004). Activity-dependent synaptic plasticity takes place universally 

throughout the nervous system at both glutamatergic and GABAergic synapses, and at both the 

pre- and postsynaptic membrane. A discussion of GABAergic synaptic plasticity is beyond the 

scope of this dissertation; however, it should be noted that activity at local inhibitory synapses is 

likely an important factor in the regulation of memory (Vogels et al., 2011). Excitatory synapses 

are referred to as asymmetric synapses because of the enriched postsynaptic density (PSD) 

(Carlin et al., 1980; Walikonis et al., 2001) that is host to an array of structural proteins (F-actin, 

integrins, AKAP5), intracellular signaling proteins (protein kinase A (PKA), protein kinase C 

(PKC), Ca2+/calmodulin-dependent kinase II (CaMKII), calcineurin (CaN), and protein 

phosphatase 1 (PP1)), and receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPAR) and N-methyl-ᴅ-aspartate receptors (NMDAR)) (Bosch et al., 2014; Gipson 

et al., 2014; Malenka et al., 1989; Moczulska et al., 2013). Glutamatergic postsynaptic sites are 

typically contained within transient, specialized structures known as dendritic spines. The shape, 

size, and number of dendritic spines are all indicators of synaptic strength (Meyer et al., 2014; 

Oh et al., 2013). Large, mushroom-shaped spines are thought to be more stable, and an increase 

in spine density is characteristic of a potentiated-state. 

The most commonly observed forms of long-term plasticity at glutamatergic synapses are 

NMDAR-dependent LTP and LTD (Kauer and Malenka, 2007; See Figure 1). NMDA-dependent 

LTP and LTD both require presynaptic glutamate release, concurrent with time-dependent 

AMPAR-mediated depolarization of a postsynaptic neuron. Postsynaptic depolarization 

displaces Mg2+ ions from the channel pore of NMDAR, allowing Ca2+ and other ions to enter the 
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postsynaptic neuron and subsequently activate protein kinases and phosphatases, which have 

downstream phosphorylation or dephosphorylation activity, respectively (Klann et al., 1991; 

Levy and Steward, 1983; Malenka et al., 1989). Depending on the concentration of Ca2+ and the 

balance between protein kinase and phosphatase activity, either LTP or LTD can occur. 

Synapses that receive the most consistent input undergo structural alterations that result in their 

stability (LTP), while those that are activated less frequently may be weakened or destabilized 

(LTD) (Hasegawa et al., 2015; Lüscher et al., 2000). Typically, LTP is triggered through high-

frequency presynaptic burst activity that results in transiently-elevated Ca2+ levels, although there 

are instances of LTP also being induced from low-frequency stimulation (Malenka et al., 1999). 

High levels of Ca2+ preferentially activates kinases (PKA, PKC, and CaMKII) that result in 

upregulated gene expression, increased protein synthesis, and/or the phosphorylation of several 

synaptic proteins, including AMPAR (Abel et al., 1997; Boehm et al., 2006; Sanhueza and 

Lisman, 2013). The phosphorylation of specific amino acids on AMPAR initiate its transport, 

insertion, and stability at the postsynaptic membrane (Lee et al., 2000; Malinow and Malenka, 

2002; Whitehead et al., 2013). Experimentally, measurements of LTP include increases in spine 

size and density as well as increased AMPA:NMDA ratios (Chen and Roche, 2007; Collin et al., 

1997; Hayashi, 2000).  

NMDA-dependent LTP involves activity of CaMKIIα (Figure 1), a protein that is 

necessary for various learning tasks (Coultrap et al., 2014; Lisman et al., 2012; Sanhueza et al., 

2011). For example, CaMKIIα knockout mice have deficits in LTP that correlate with 

impairments in hippocampal-dependent spatial learning (Silva et al., 1992a, 1992b). CaMKIIα is 

a dodecameric protein (consisting of 12 subunits) that is activated following Ca2+ influx through 

NMDAR. Ca2+ forms a complex with calmodulin (CaM) that binds CaMKIIα, initiating auto- 
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Figure 1. Mechanisms of excitatory synaptic plasticity. 

Simplified schematic of cellular mechanisms that regulate NMDAR-dependent forms of synaptic plasticity. 

Glutamatergic afferents form synapses primarily at dendritic spines. Under baseline conditions, the hyperpolarized 

postsynaptic neuron is minimally activated due to the block of NMDAR by Mg2+ ions, which prevents the influx of 

Ca2+ and other ions. However, under conditions of increased activity (brief, high frequency stimulation) postsynaptic 

depolarization removes Mg2+ ions from the NMDAR pore. When glutamate binds the NMDAR, Ca2+ ions enter the 

postsynaptic neuron. The relatively high level of Ca2+ activates kinases, including CaMKIIα, which is also 

dependent on CaM. CaMKIIα autophosphorylates and then phosphorylates several downstream proteins, including 

AMPAR GluA1 subunits. The phosphorylation of AMPAR results in its translocation and insertion in the synaptic 

membrane, leading to an increase in AMPA:NMDA and potentiation. Similar mechanisms underlie the 

reconsolidation of associative memories. Under conditions of sustained, subthreshold activity (long durations of low 

frequency stimulation) the postsynaptic is not as strongly depolarized, leading to a smaller influx of Ca2+ ions, for 

example through L-type voltage-gated Ca2+ channels (not pictured). The relatively low level of Ca2+ preferentially 

activates phosphatases, including CaN, which is also dependent on CaM activity. CaN activation causes the 

dephosphorylation of other phosphatases and results in the dephosphorylation of AMPAR GluA1 subunits, followed 

by the internalization of AMPAR and decrease in AMPA:NMDA. This mechanism of depotentiation is likely 

responsible for the extinction of associative memories. CaMKII: calcium/calmodulin-dependent protein kinase II; 

CaN: calcineurin; CaM: calmodulin. 
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phosphorylation at Thr286 (Baucum et al., 2015; Rodrigues, 2004), and leads to the translocation 

of CaMKIIα to the synapse, where it directly phosphorylates the AMPAR subunit GluA1 at 

Ser831 which primes AMPAR for synaptic insertion, thereby increasing channel conductance (El 

Gaamouch et al., 2012; Kristensen et al., 2011; Lemieux et al., 2012; Lu et al., 2010). The 

complex structure of CaMKIIα and its capacity for auto-phosphorylation makes it suitable for the 

regulation of synaptic activity. Once a single subunit is phosphorylated at Thr286, neighboring 

subunits can subsequently be phosphorylated, giving rise to the autonomous activity of the 

protein (Coultrap and Bayer, 2012). CaMKIIα can function autonomously even after its substrate 

for activation, Ca2+, falls below baseline levels. As a result, the protein can retain long-term 

modification and cause a cascade of molecular events over a longer course of time following a 

brief activation period, consistent with the theory for how LTP shapes learning and memory 

formation. CaMKIIα acts to mediate dendritic spines through its actions at synaptic proteins 

including the actin-binding protein, α-actinin, the guanine nucleotide exchange factor, kalirin-7, 

and cyclin-dependent kinase 5 (Hosokawa et al., 2006; Ma et al., 2008; Walikonis et al., 2001). 

CaMKIIα also forms a complex with NMDAR, by binding to the GluN2B subunit, that is 

thought to provide synaptic stability and contribute to long-term information storage (Coultrap 

and Bayer, 2012). CaMKIIα activity influences other signaling pathways that are involved in 

memory processes, including the PI3K/mTOR pathway (Joyal et al., 1997). 

NMDAR-dependent LTD arises from low-frequency presynaptic activity combined with 

a smaller-magnitude postsynaptic depolarization that results in a sustained, but lower Ca2+ 

concentration (Figure 1). This form of LTD is also dependent on activation of L-type voltage-

gated Ca2+ channels (LTCC), which are activated subsequent to NMDAR and because of their 

long activation duration, allow a more sustained increase in intracellular Ca2+ that preferentially 
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activates phosphatases (Bi and Poo, 1998; Ghosh et al., 2017). One phosphatase that is 

particularly important for this form of plasticity is CaN, a Ca2+/CaM-dependent phosphatase that, 

when activated initiates a sequence that leads to dephosphorylation of AMPAR, initiating their 

internalization. (Baumgartel and Mansuy, 2012; Mulkey et al., 1994). CaN is often described as 

a negative regulator of CaMKIIα activity (Wen et al., 2004) because the frequency and duration 

of Ca2+ input controls the relative activation of the two proteins and is an important predictor of 

the direction of synaptic activity (LTP vs LTD) (Lüscher and Malenka, 2012). CaN is a 

heterodimer composed of a catalytic A subunit and a regulatory B subunit (Mumby and Walter, 

1993). Sequential conformational changes following binding of Ca2+ and calmodulin to CaNB 

activates the phosphatase by allowing displacement of a CaNA autoinhibitory domain (Shen et 

al., 2008). CaN has both direct and indirect actions at postsynaptic proteins that promote 

depotentiation. CaN directly dephosphorylates GluA1 at Ser845 (the PKA phosphorylation site). 

Phosphorylation of Ser845 drives AMPAR membrane insertion and is associated with enhanced 

AMPAR current (Beattie et al., 2000; Man et al., 2007; Roche et al., 1996). CaN also directly 

dephosphorylates the A-type K+ channel, Kv4.2, which is itself a negative regulator of plasticity 

(Jung et al., 2008). Dephosphorylation of Kv4.2 by CaN leads to its stabilization in the 

membrane, thereby promoting LTD. Finally, CaN dephosphorylates a peptide known as 

inhibitor-1, which subsequently activates PP1 and protein phosphatase 2A, which function to 

inactivate LTP-promoting kinases (Mulkey et al., 1994). The internalization of AMPAR is linked 

to changes in spine morphology, decreased spine density and decreased AMPA:NMDA ratios, 

which are features of LTD (Beattie et al., 2000; Lu et al., 2000; Sanderson et al., 2016).  

In addition to CaMKII and CaN, several other intracellular signaling molecules can 

contribute to LTP and LTD.  The activation of G-protein coupled metabotropic receptors (e.g., 
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metabotropic glutamate receptors; mGluRs, dopamine receptors) can activate or inhibit PKA via 

effects on adenylyl cyclase and cyclic adenosine monophosphate (cAMP). PKA phosphorylates 

GluA1 at Ser845, which promotes insertion into the postsynaptic membrane (Zhang et al., 2016). 

Other metabotropic receptors (e.g., serotonin receptors, mGluR1) can activate phospholipase C 

(PLC), an important enzyme in the production of inositol 1,4,5-triphosphate (IP3), which induces 

release of Ca2+ from internal stores (Fukami et al., 2010). Diacyl glycerol (DAG), a byproduct of 

this reaction, induces PKC activation, which also has LTP-like effects (Malinow et al., 1989). 

Additionally, PLC initiates synthesis of endocannabinoids that retrogradely activate presynaptic 

CB1 receptors and leads to a presynaptic form of LTD characterized by decreased glutamate 

release (Andrade-Talavera et al., 2016). Finally, LTP can also be induced presynaptically, when 

repetitive synaptic activity increases presynaptic Ca2+
 activation of PKA, leading to 

phosphorylation of proteins (Rab3a, RIM1α) that increase presynaptic glutamate release (Wong 

and Stanley, 2010). Increases and decreases in glutamate release probability are associated with 

presynaptic potentiation and depression, respectively. Experimental measures of presynaptic 

plasticity include paired pulse ratio (PPR) and frequency of spontaneous excitatory postsynaptic 

currents (EPSC). PPR is inversely correlated with presynaptic strength, such that decreases in 

PPR are associated with increased neurotransmitter release probability, and vice versa 

(Kleschevnikov et al., 1997). Conversely, measurements of postsynaptic plasticity include 

AMPA:NMDA ratio and EPSC amplitude. As will be described throughout this dissertation, 

these measurements are important for helping deduce the underlying mechanisms responsible for 

changes in synaptic plasticity. 

Finally, other neurotransmitters, especially neuromodulators such as dopamine (DA) 

have a prominent role in the regulation of synaptic plasticity at glutamatergic synapses (Ciranna, 
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2006; Hamilton et al., 2010; Otani et al., 2015; Sun et al., 2005). There are two primary classes 

of DA receptors: D1- and D2-like. D1-like receptors (D1R) are Gs/Gq-coupled and stimulate the 

production of adenylyl cyclase, which increases cAMP and enhances neural activity. Conversely, 

D2-like receptors (D2R) are Gi/o-coupled proteins that when activated, have opposing effects to 

D1R, and are therefore associated with decreased neural activity (Beaulieu and Gainetdinov, 

2011; Li and Rainnie, 2014). Both D1R and D2R mediate several downstream effectors, which 

facilitates synaptic changes that can ultimately result in LTP or LTD (Otani et al., 1998; 

Roggenhofer et al., 2010). D1R increase the activity of protein kinases (Chergui and Lacey, 

1999; Gutierrez-Arenas et al., 2014; Matsuyama et al., 2002), enhancing downstream 

phosphorylation; for example, phosphorylation of DARPP-32 (DA and cAMP-regulated 

phosphoprotein, 32kDA) by PKA regulates excitatory transmission through effects at LTCC, as 

well as AMPAR and NMDAR (Bibb et al., 1999; Flores-Hernandez, 2002; Nishi et al., 1997).  

D2R activation inhibits phosphorylation of PKA targets (DARPP-32). Additionally, 

presynaptically-located D2R activate G-protein-coupled inwardly rectifying potassium (GIRK) 

channels, which inhibit subsequent DA release (Martel et al., 2011; Michaeli and Yaka, 2010). 

As will be discussed below, drugs of abuse increase dopaminergic transmission particularly in 

areas involved in the expression and maintenance of reward sensitivity and memory, such as the 

medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and lateral amygdala (LA). 

Together this leads to alterations in normal memory processes and promotes addictive-like 

behaviors. 
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1.1.2 Consolidation, reconsolidation, and extinction of memories 

The formation, maintenance, and modification of drug-cue associations depend on a series of 

processes known as consolidation, reconsolidation, and extinction (Lee et al., 2005; Marchant et 

al., 2013; Tronson and Taylor, 2007). These processes have been extensively studied for various 

types of classical and instrumental learning (Dudai, 2012; Todd et al., 2014), and are prominent 

during emotionally-salient learning, for example, auditory or contextual fear conditioning 

(Debiec et al., 2002; Duvarci et al., 2008; Schafe and LeDoux, 2000) as well as drug-cue 

learning. Consolidation is a time- and protein synthesis-dependent process that occurs following 

initial learning and is necessary for stabilizing and storing new information after it has been 

acquired. Over time, consolidated memories can be reactivated, which retrieves and destabilizes 

the memory, causing it to enter a transiently labile state. After reactivation, the malleable 

memory must then undergo reconsolidation to be re-stabilized (Dudai, 2012; Rodriguez et al., 

1993). As with consolidation, blocking protein synthesis prior to re-stabilization impairs the 

memory (Nader et al., 2000). Reconsolidation exists as a mechanism to update or strengthen 

memories, for example, the detection and encoding of environmental changes. Induction of 

reconsolidation is therefore strongest when new information is presented at the time of memory 

retrieval (e.g., reactivation in a novel context) (Haubrich et al., 2015; Lee et al., 2009). However, 

the extent to which reconsolidation affects pre-established memories is currently unclear. Some 

studies support reconsolidation as necessary to strengthen and update memories, while others fail 

to show memory-enhancing effects (Bonin and De Koninck, 2015; Fukushima et al., 2014). At 

the very least, successful reconsolidation seems to preserve memories that have been destabilized 

after recall. To this end, pharmacological agents that affect reconsolidation have been used as a 
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means for altering the strength of memories (Besnard et al., 2012; Finnie and Nader, 2012). For 

example, Tronson and colleagues demonstrated that stimulating PKA in the amygdala 

immediately after retrieval of a conditioned fear memory increases the degree of freezing during 

subsequent exposures to the CS (Tronson et al., 2006). An opposing effect was observed after 

intra-amygdala infusion of PKA inhibitors following cue retrieval: CS-elicited freezing was 

reduced, suggesting that reconsolidation was disrupted. Importantly, PKA inhibitors given in the 

absence of CS reactivation are insufficient to block the fear memory, verifying that retrieval is 

required as a precursor to reconsolidation, which can then be interfered with by amnestic agents. 

Utilizing this approach clinically could indeed prove beneficial for treating maladaptive memory 

disorders (Agren et al., 2012; Lee et al., 2005).  

 Reconsolidation occurs following just brief interaction with the CS, as short exposure 

durations are sufficient to reactivate CS-associated memories. Repeated or long-term exposure to 

CS in the absence of the associated US instead promotes memory extinction (Monfils et al., 

2009; Rich et al., 2016; Tronson et al., 2012a). Extinction is a separate and opposing process that 

involves the formation of a competing association, where the CS no longer predicts the US (Lee 

et al., 2006; Morgan et al., 1993; Quirk et al., 2010). Like reconsolidation, extinction was first 

characterized in studies of aversive learning, in which it effectively attenuated fear-like 

behaviors (Fucich et al., 2016; Santini, 2004). Despite learning of a new association, extinction 

does not result in erasure of the original memory. In fact, re-exposure to the US can promote 

reinstatement of the extinguished response (Rescorla and Heth, 1975). Additionally, extinction is 

highly context-dependent, so if the extinction context and the training context are different, 

responding to the CS can be renewed upon return to the original training context (Effting and 

Kindt, 2007; Todd et al., 2014). Finally, extinguished responses will often spontaneously 
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recover, suggesting there is competition between the original memory and the extinction 

memory. These characteristics (reinstatement, renewal, and spontaneous recovery) are especially 

problematic for memory-based relapse prevention therapies, which highlights the importance of 

therapeutic strategies aimed at inhibiting reconsolidation and enhancing extinction. The use of 

preclinical animal models of addiction has shed light on several of the neural mechanisms 

responsible for these memory processes, which have a great deal of overlap with the cellular and 

synaptic mechanisms involved in promoting LTP and LTD. 

1.2 NEURAL SUBSTRATES UNDERLYING DRUG-CUE MEMORY 

The strength of drug-associated memories is indicative of their potential to cause relapse; 

therefore, interfering with reconsolidation or strengthening extinction have been proposed as 

therapeutic strategies to prevent relapse (Taylor et al., 2009; Torregrossa and Taylor, 2013). 

These processes can be evoked in an animal model of operant conditioning where rodents learn 

to self-administer (SA) drugs of abuse. In this model, an operant response (nose poke or lever 

press) results in delivery of the drug (US) in unison with a discrete cue (CS). Over the course of 

many trials, the drug-cue association is consolidated and stored in memory (Hernandez et al., 

2002; Schafe and LeDoux, 2000; Wilensky et al., 1999). Next, the operant response is 

extinguished (instrumental extinction) by allowing animals to make nonreinforced responses. 

Over time, the animals adapt their behavior to cease performing the operant response, as it no 

longer results in a rewarding drug infusion. During this phase, operant responses are not paired 

with CS presentation, so that, although the operant response is extinguished, the drug-cue 
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association remains intact. Finally, the now extinguished behavioral response is reinstated, either 

by re-exposure to the CS, the reinforcing substance (drug), or a stressful stimulus. Importantly, 

instrumental responses made during reinstatement occur in the absence of drug reinforcement, 

thereby serving as a measure of risk of drug-seeking behavior. Typically, the number of operant 

responses is much higher than the number of responses under extinction conditions.  

The reinstatement paradigm closely mirrors patterns of human drug use in which subjects 

take a drug under their own volition (as opposed to experimenter administered drugs), and drug-

seeking occurs after a period of abstinence (Koob, 2000). Cue-induced reinstatement enables 

measurement of the subject’s behavioral and neural response to drug-associated CS. Similar 

behavioral strategies are often used clinically in drug-dependent individuals to measure 

physiological responses and subjective craving in response to relapse-promoting cues, making 

the reinstatement paradigm a valid translational model (Epstein and Preston, 2003; Katz and 

Higgins, 2003; Shaham et al., 2003). Reinstatement has been utilized almost universally across 

drug classes, including stimulants, opioids, nicotine, alcohol, and cannabinoids (Bertholomey et 

al., 2016; Feltenstein et al., 2012; Kirschmann et al., 2017; Shalev et al., 2002). Recently, our lab 

and colleagues have developed a slight modification to the model that provides an opportunity to 

separate instrumental extinction from the more clinically-relevant Pavlovian cue extinction, as 

well as to examine the neural correlates and behavioral effect of drug-cue memory 

reconsolidation (Rich et al., 2016; Torregrossa et al., 2010). Following instrumental extinction, 

subsequent, brief exposures to CS (3 CS presentations) trigger memory retrieval, followed by 

reconsolidation. If reconsolidation is successful, the original drug-cue association should be 

strengthened or at least maintained, and subjects will display high levels of reinstatement 

(Figure 2). Alternatively, if the CS is presented in sufficient number or over a long enough  
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Figure 2. Schematic representing events that follow re-exposure to drug-associated cues. 

Brief re-exposure initiates LTP-like synaptic mechanisms. These changes lead to memory reconsolidation and the 

maintenance or strengthening of drug-associated memory, which increases relapse potential upon subsequent 

presentation of cues. Repeated, or a longer exposure to cues causes LTD-like synaptic changes that induce memory 

extinction. The drug-cue memory is destabilized and weakened, resulting in lower relapse potential when the cues 

are re-encountered (From Rich and Torregrossa, 2017). 
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period without drug reinforcement (60-120 CS presentations), extinction can occur (Pedreira and 

Maldonado, 2003). In this scenario, CS is no longer predictive of drug delivery, and expression 

of the original drug-cue memory is blocked (Bouton and Moody, 2004). Thus, after sufficient 

extinction, subsequent encounters with the stimuli are less likely to trigger the relapse-promoting 

CR, and levels of reinstatement will be decreased (See Figure 2). Recent studies have utilized 

the reinstatement model in combination with optogenetic techniques to determine if stimulation 

or inhibition of specific neural circuits can promote or attenuate relapse-like behavior (Arguello 

et al., 2017; Ma et al., 2014; Stefanik and Kalivas, 2013), which has shed light on the underlying 

anatomical circuitry and neural mechanisms that are activated following re-exposure to drug-

associated cues. Combining these novel approaches with manipulations of reconsolidation and 

extinction may reduce the efficacy of drug-cue memories to trigger relapse. 

 

1.2.1 Central circuitry governing reward-related behavior 

Behavioral responses to addictive substances require coordinated communication between 

several areas of the mesocorticolimbic system as well as various sensorimotor brain regions. By 

serving as a mediator of reward-motivated behaviors, the mesocorticolimbic system plays an 

important role in drug-seeking and relapse-like behavior. Midbrain dopamine (DA) neurons 

located in the ventral tegmental area (VTA) send projections to cortical and subcortical limbic 

structures, including the medial mPFC, NAc, hippocampus (HPC) and amygdala (Lüscher and 

Malenka, 2011; Pierce and Kumaresan, 2006; Wise, 2004). Collectively, the projections from the 

midbrain form part of the medial forebrain bundle (MFB). Stimulation of the MFB results in 
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increased locomotor activity, which drives reward seeking (Wise, 1987). Animals will also learn 

to complete tasks that result in self-stimulation of the MFB, suggesting a role for this pathway in 

motivated behavior (Gallistel, 1978; Sagara et al., 2010). The brain regions that receive VTA 

projections are also coupled by dense excitatory and inhibitory projections, forming a complex, 

interconnected network that functions to control adaptive behaviors, which can be modulated by 

DA (Geisler and Zahm, 2005; Sesack and Grace, 2010). Drugs of abuse, as with naturally-

occurring rewards, increase the firing rate of VTA DA neurons, resulting in locally-elevated DA 

levels (Tomasi et al., 2015; Volkow et al., 2009). Additionally, psychostimulants block or 

reverse the presynaptic DAT, allowing postsynaptic activation of DA receptors to be enhanced 

(Harris and Baldessarini, 1973). These rapid pharmacodynamic effects of drugs enhance goal-

directed behaviors that serve to promote reinforcement learning and increase motivation for 

drugs of abuse over natural reinforcers (Montague et al., 2004; Robbins and Everitt, 2002). 

Drugs and drug-related stimuli also induce expression of the immediate early gene Fos in 

glutamtergic neurons throughout the mesocorticolimbic system (Ciccocioppo et al., 2001; 

Neisewander et al., 2000; Pierce and Kumaresan, 2006). Fos is a marker of neural activity, which 

further implicates these brain regions in the control of drug-related behaviors.  

Human imaging studies have revealed that drug-induced increases in DA release are 

accompanied by a subjective feeling of euphoria (Drevets et al., 2001), which creates an 

expectation for future reward, increasing the likelihood of future drug use, causing DA neurons 

to fire when reward is predicted (Schultz et al., 2000). This mechanism of anticipatory firing 

enables environmental stimuli to acquire incentive motivational properties that trigger future 

drug use. Re-exposure to drug-paired stimuli augment excitatory transmission to the VTA, 

increasing DA neuron firing rate even if the drug itself is withheld (Phillips et al., 2003; Stuber et 
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al., 2008). Based on theories of reward prediction error, if anticipated rewards are withheld 

following cue presentation, firing of DA neurons is inhibited (Schultz et al., 2000), and if 

repeated frequently enough, may shape behavior toward an inhibition of drug-seeking, thus 

acting as a signal mediating the extinction of drug-related memories. In addition to changes in 

firing rate, drugs of abuse induce synaptic changes in VTA DA neurons. For example, a single 

experimenter-administered cocaine injection is sufficient to rapidly increase excitatory 

transmission, a change that can last for up to 5 days (Ungless et al., 2001). Similar synaptic 

changes have been observed following cocaine SA even after 3 months of withdrawal (Chen et 

al., 2008). Drug-induced enhancements of VTA synaptic strength appear to be driven by 

alterations in the subtype of synaptic glutamate receptors. Specifically, cocaine increases the 

expression of GluN3A/GluN2B NMDAR, which have decreased conductance and are less 

permeable to Ca2+, and also increases the expression of synaptic GluA2-lacking, Ca2+-permeable 

AMPAR (Creed et al., 2016). Overall, drug-induced synaptic changes in VTA excitatory 

transmission may lead to the increases in intrinsic excitability that enhances DA release in 

downstream limbic structures (mPFC, amygdala, NAc) and helps perpetuate drug-seeking 

behavior. 

Two of the most well-studied brain regions in terms of understanding addictive behaviors 

are the mPFC and the NAc. The mPFC functions in the control of working memory and is 

specialized for the representation of abstract information that guides behaviors related to 

executive function and cognition (Goldman-Rakic, 1987). The mPFC forms excitatory synapses 

with several GABAergic brain regions and is therefore an important source of “top-down” 

inhibitory control over unwanted or unnecessary behaviors (Kesner and Churchwell, 2011; Quirk 

and Mueller, 2008). Abnormal DA signaling within the PFC has been demonstrated in human 
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addicted individuals (Volkow et al., 2009). Furthermore, chronic cocaine SA modulates 

membrane excitability of PFC pyramidal neurons (Dong, 2005). Drug-induced adaptations in the 

PFC may account for the failure to inhibit drug-seeking even in the face of negative 

consequences, although pre-existing dysfunction in the PFC may also make individuals more 

susceptible to risky decisions that increase vulnerability to addiction (Blum et al., 2015; Cheng 

and Lee, 2016). The rodent PFC can be subdivided anatomically into a dorsal prelimbic cortex 

(PL) and a ventral infralimbic cortex (IL), which are analogs of human dorsomedial and 

ventromedial PFC, respectively. PL and IL are often viewed as functionally distinct brain regions 

that have opposing effects on behavior. Typically, the PL has been shown to promote drug-

seeking behavior, while IL activity causes inhibition of drug-seeking (Peters et al., 2009).  

The mPFC projects to the NAc, which is a major site of sensorimotor integration that 

functions in the assignment of motivational significance to rewarding substances (and reward-

related cues) to drive goal-directed motor activity (Kalivas and Volkow, 2005). The NAc 

receives afferent information from the VTA, hippocampus, mPFC, and amygdala, and projects to 

the dorsal striatum and ventral pallidum. The NAc also has reciprocal connections with the VTA, 

which functions as an important feedback mechanism to control dopaminergic activity (Gibson 

et al., 2018). The major output neurons of the NAc are GABAergic medium spiny neurons 

(MSN), which represent approximately 90-95% of all neurons in the NAc (Kauer and Malenka, 

2007). The NAc can be subdivided into two distinct subregions (core and shell), which may have 

different roles in the control of drug-related behavior. For example, lesions of the NAc shell 

attenuate unconditioned behavioral responses to psychostimulants, but do not prevent the 

acquisition of conditioned drug-seeking behavior. Conversely, lesions to the NAc core impair the 

ability of drug-associated reinforcers to maintain drug-seeking behavior (Ito et al., 2004). The 
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core and shell also exhibit distinct responses to drugs of abuse and drug-related stimuli that are 

underscored by different patterns of synaptic activity. Re-exposure to drugs or drug-paired cues 

result in a rapid potentiation of AMPAR-mediated glutamatergic signaling in the core, but a 

reduction in AMPAR expression in the shell (Gipson et al., 2014; Shen et al., 2011).  

One possible explanation for the functional differences of the core and shell may be that 

the two regions receive a separate set of afferent projections. A common belief is that the PL 

projects to the NAc core to promote drug-seeking, while the IL innervates the NAc shell and 

functioned to suppress drug-seeking (Peters et al., 2009). Instrumental extinction results in 

activation of the IL-NAc shell, and inhibition of the IL is sufficient to induce a robust increase in 

relapse-like behavior (Peters et al., 2008). However, anatomical studies have contradicted this 

behavioral dichotomy, as there are also strong connections from IL to NAc core and from PL to 

NAc shell (Brog et al., 1993; Ma et al., 2014; Sesack et al., 1989). New behavioral evidence 

suggests that both the PL and IL can promote relapse. Activation of glutamatergic projections 

from IL to NAc shell can induce context-induced reinstatement of heroin seeking (Bossert et al., 

2012). Likewise, clusters of neurons within the IL respond to cues predictive of reward 

availability to promote reward seeking (Suto et al., 2016). These conflicting reports may be due 

to a cell-type specific circuit in which behavioral output (enhancement or inhibition of drug-

seeking) depends on the subtype of MSN that is predominately activated (D1- vs. D2-containing 

MSNs). Recent technological developments (e.g., optogenetics, DREADDs) have begun to shed 

light upon these discrepancies, such as studies demonstrating that D1-MSN activity promotes, 

and D2-MSN activity suppresses drug-seeking behaviors (Bock et al., 2013; Heinsbroek et al., 

2017; Ortinski et al., 2015). For example, specific inhibition of D2-MSNs increases motivation 

for cocaine, while activation of these neurons suppresses cocaine SA. The antagonistic effects on 
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drug-seeking are mediated by the different projection targets of D1- and D2-MSNs, whereby D1-

MSNs project to the substantia nigra (direct pathway) and D2-MSNs primarily project to the 

ventral pallidum (indirect pathway) (Kravitz et al., 2012). It should be noted that most of the 

studies that have investigated the role of the mPFC-NAc circuit on the extinction of drug-related 

behavior have done so using a model of instrumental extinction. Therefore, relatively little is 

known about the circuitry that mediates Pavlovian cue extinction, and likewise reconsolidation, 

of drug-associated memories. However, based on other studies of cue-related learning, the 

amygdala, which might be acting as a mediator between the mPFC and NAc, has emerged as a 

likely candidate for the control of memories evoked by drug-associated cues. 

1.2.2 Control of cue-dependent memory by the amygdala 

The amygdala is a phylogenetically-primitive collection of cortical and subcortical nuclei located 

within the temporal lobe that has been heavily implicated in the control of emotionally-salient 

memories, acting to establish emotional and motivational associations between CS and US 

(Cador et al., 1989; Johansen et al., 2011; Maren and Quirk, 2004). Early lesion studies showed 

that the amygdala was important for establishing behavioral responses to reinforcing stimuli as 

animals with amygdala lesions failed to exhibit typical freezing behavior in response to 

footshock-predictive cues (Weiskrantz, 1956). Similarly, amygdala lesions prevent various 

reward-related behaviors. Lesioned animals fail to exhibit conditioned place preference for 

methamphetamine (Hiroi and White, 1991). Additionally, amygdala lesions have no effect on 

responding during cocaine SA, but they do alter responding during cue extinction and abolish 

cue-induced reinstatement (Meil and See, 1997; See, 2002), suggesting a specific role in 
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mediating cue-dependent behaviors. More recent imaging studies in humans have demonstrated 

activation of the amygdala by drug-related stimuli, as well as when subjects are told to think 

about drug use, which correlates with physiological and subjective measures of craving 

(Childress et al., 1999; Garavan et al., 2000; Jasinska et al., 2014). Electrophysiological 

recordings show that amygdala neurons fire in response to reward-predictive cues and are also 

activated during goal-directed seeking of both natural rewards and drugs of abuse (Schoenbaum 

et al., 1999; See, 2002). Finally, increased Fos expression is observed in the amygdala following 

acute exposure to cocaine and cocaine-associated stimuli as well as cocaine-cue extinction, 

suggesting that intracellular changes within the amygdala occur during drug-induced memory 

processes (Ciccocioppo et al., 2001; Neisewander et al., 2000; Nic Dhonnchadha et al., 2010).  

The amygdala can be broadly subdivided into the basolateral amygdala (BLA) and the 

central amygdala (CeA). The BLA can be further divided anatomically into lateral (LA), basal 

(BA), and basomedial (BM) nuclei, while the CeA is made up of both lateral (CeL) and medial 

(CeM) nuclei. The major projection neurons of the BLA are glutamatergic principal neurons 

while the CeA is more “striatal-like” in that it is made up of mostly GABAergic projection 

neurons (Janak and Tye, 2015). Additionally, interposed between the BLA and CeA are groups 

of GABAergic neurons known as intercalated cell masses, that project to the BLA and CeA and 

serve an important inhibitory function by suppressing amygdala output (Asede et al., 2015a; 

Pinard et al., 2012). The general construct of information flow through the amygdala is that the 

LA receives input and forwards this to the BA, BM, and CeL, which in turn project to the CeM. 

The CeM is considered the major output nucleus of the amygdala, although this is an 

oversimplification, as the BLA and CeL also have direct projections to other brain regions, 

including the NAc (Janak and Tye, 2015).  
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The amygdala is well positioned anatomically to integrate converging afferent input from 

multiple brain areas (PFC, sensory cortex, thalamus, and VTA; See Figure 3), all of which are 

also activated by cue/context exposure (Cho et al., 2017; Ciccocioppo et al., 2001; Do-Monte et 

al., 2015; Peter et al., 2012). The LA has reciprocal connections with the cortex, including IL, 

PL, and primary sensory areas. The PL and IL send glutamatergic projections to LA principal 

neurons, but also synapse with LA GABAergic interneurons and intercalated neurons, which 

then inhibit LA neuronal output (An et al., 2017; Quirk and Mueller, 2008). The role of the 

amygdala in cue-dependent memory arises from the diversity of its inputs, as it receives afferent 

sensory information about CS and also interoceptive information about US. Together, CS-US 

pairings enhance excitatory synaptic plasticity. Fear conditioning, in particular, has repeatedly 

been shown to induce LTP within the LA. The enhanced synaptic strength of CS inputs allows 

future presentations of the CS to activate the same LA neurons that are activated by the US 

(footshock) alone, thereby initiating conditioned freezing responses (Schafe et al., 2001). The 

specific inputs responsible for carrying CS-relevant information have also begun to be 

delineated. Brain regions responsible for auditory perception synapse directly with LA principal 

neurons (Figure 3). Auditory cortical projections are carried by the external capsule (EC), while 

subcortical/thalamic auditory information is carried by the internal capsule (IC; LeDoux et al., 

1984; Romanski and LeDoux, 1992). IC- and EC-BLA synapses have been identified as 

potential loci for cue-mediated behaviors, and plasticity at these synapses is involved in the 

formation and extinction of fear-associated memories. For example, following fear conditioning, 

increases in cue-elicited freezing are correlated with increased synaptic strength at both thalamo-

amygdala (T-LA) and cortico-amygdala (C-LA) synapses, and these changes are reversed by fear 

extinction (Kim et al., 2007; Hong et al., 2009). These bidirectional changes were also observed 
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Figure 3. Afferent and efferent projections of the amygdala. 

Simplified schematic representing the inputs and outputs of the amygdala. The amygdala receives sensory input 

from regions of thalamus and cortex from separate glutamatergic projections to lateral amygdala (LA) principal 

neurons. Auditory input is carried from the medial geniculate nucleus (MGN) by the internal capsule and from the 

auditory cortex (Te3) by the external capsule. The amygdala also has reciprocal connections with the mPFC; 

glutamatergic mPFC afferents synapse on LA principal neurons, but also on GABAergic interneurons and 

intercalated cell masses (not pictured). Bot the LA and BA received dopaminergic inputs from the ventral tegmental 

area (VTA) that can shape the response to glutamatergic inputs. The LA and BA integrate information and forward 

it to the central amygdala (CeA) and nucleus accumbens (NAc). The NAc functions as a sensorimotor gate which 

helps process incoming reward-related information and generate motor responses. The NAc also receives 

glutamatergic input from the mPFC and dopaminergic input from the VTA (Omitted for simplicity). 
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in a separate study that measured dendritic structural plasticity. Authors showed that fear 

conditioning increases BLA spine density while fear extinction reverses spine density back to 

control levels (Heinrichs et al., 2013). Optogenetic techniques have also been utilized to activate 

specific inputs to the LA during conditioned behaviors. In one such study, conditioned freezing 

responses and synaptic potentiation was evoked when a footshock US was paired with 

photoactivation of ChR2-expressing terminals from the medial geniculate nucleus (MGN; 

primary auditory thalamus) and/or primary auditory cortex (Te3). Subsequent induction of in 

vivo LTD in these pathways resulted in extinction of the fear-evoked response (Nabavi et al., 

2014). 

Interestingly, while aversive memories involve plasticity from both thalamic and cortical 

inputs, reward-associated learning appears to be a more complicated situation. As with fear-

associated CS, LA neurons also develop enhanced excitatory responses to sensory cues paired 

with rewarding substances, like palatable food (Schoenbaum et al., 1998; Tye and Janak, 2007). 

In a series of experiments, Tye and colleagues trained rats to associate an auditory cue with a 

sucrose reward. Under normal circumstances, increases in AMPA:NMDA ratio were observed at 

T-LA synapses (IC pathway) but not C-LA synapses (EC pathway) (Tye et al., 2008). However, 

enhancing DA activity during cue-reward training by blocking DAT in the LA acted to prime C-

LA synapses, resulting in enhanced synaptic activity at both T-LA and C-LA synapses (Tye et 

al., 2010). The implications of these results for understanding the acquisition of drug-cue 

learning remain unclear, although one might anticipate that since cocaine also blocks the DAT, 

pairing cocaine infusions with cues during cocaine SA might also enhance synaptic activity at 

both T-LA and C-LA synapses. The interplay between glutamatergic and dopaminergic activity 

is an important consideration, as activity of both neurotransmitters in the LA has been shown to 



29 

 

directly modulate aspects of synaptic activity during various types of Pavlovian conditioning 

(Feltenstein and See, 2007; Lee et al., 2005; Milton et al., 2008; Sanchez et al., 2010). For 

instance, application of the DA receptor antagonist, haloperidol, can block enhancements in 

neuronal excitability that are normally observed when a footshock is repeatedly paired with a 

particular odor (Rosenkranz and Grace, 2002). NMDAR antagonists also prevent the acquisition 

and extinction of several conditioned behaviors (Rodrigues et al., 2001; Sotres-Bayon et al., 

2007; Zimmerman and Maren, 2010).  

Finally, as was mentioned earlier, the initiation of drug-cue elicited behaviors is 

dependent on activity in the NAc. Recent studies have shown that the NAc receives direct cell-

specific input from the BLA that may promote reward seeking (Figure 3). Optical stimulation of 

BLA-NAc glutamatergic fibers has been shown to be in and of itself reinforcing (Britt et al., 

2012; Stuber et al., 2011). This positive reinforcement effect was blocked by intra-NAc 

injections of D1- but not D2-antagonists. Furthermore, optical inhibition of BLA-NAc 

projections blocked the ability of cocaine-paired cues to elicit reinstatement, and the same effect 

was observed when BLA-PL projections were inhibited (Stefanik et al., 2013). Together, the 

collective body of research gives rise to a potential circuit whereby the PL, IL, and LA function 

together to integrate subcortical information, and forward this processed information to the NAc 

core or shell, which either increases or limits drug-seeking, depending on the strength of the 

contextual association, the balance of afferent input, and the subtype of neurons that are 

activated. Although not directly tested, it is probable that drug-dependent learning would also 

involve LA-dependent synaptic changes that affect downstream communication to the NAc. 

Successful manipulation of the mechanisms that strengthen drug-associated memories may serve 

to disrupt the conditioned behaviors that promote relapse. Based on this premise, an emerging 
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line of research has been the use of pharmacological agents in the amygdala to target the 

molecules involved in the regulation of drug-associated memory reconsolidation and extinction. 

1.2.3 Synaptic and molecular mechanisms underlying drug-associated memories 

Early studies examining the role of DA transmission in reward-related behavior suggested that 

phasic DA release was responsible for encoding motivational significance. However, the diffuse 

projections of the VTA preclude DA, on its own, from encoding more detailed information, 

including specific details about an individual’s experiences within an environment. In order for 

an individual to make specific predictions about a given stimulus, DA requires interaction with 

other circuits that are involved in encoding detailed information (Hyman et al., 2006; Robbins 

and Everitt, 2002). Therefore, associative learning processes (e.g., consolidation, 

reconsolidation, and extinction) require similar mechanisms that govern forms of excitatory 

neural plasticity, providing a conceptual framework for understanding how these memory 

processes function. As was mentioned above, LTP and LTD both require a specific temporal 

pattern of presynaptic glutamate release and postsynaptic depolarization. Similarly, for a CS to 

develop emotional significance and elicit a CR, CS-US pairings must occur in a time-specific 

manner, where the CS precedes the US by a short interval (Davis et al., 1989). The cellular 

processes that occur following cue retrieval (and lead to reconsolidation and/or extinction) also 

closely mirror the processes that occur following induction of LTP/LTD. For example, protein 

degradation (via polyubiquitination and proteasomal degradation) followed by the synthesis of 

new proteins is required for both LTP and reconsolidation (Artinian et al., 2008; Fonseca et al., 

2006). Inhibiting protein degradation blocks destabilization and therefore prevents recall-induced 
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memory strengthening (Fukushima et al., 2014; Ren et al., 2013). The administration of protein 

synthesis inhibitors is also sufficient to block both the reconsolidation of fear after retrieval and 

the consolidation of extinction memories (Nader et al., 2000; Santini, 2004). The dependence on 

protein synthesis has been extended to drug-associated memories; inhibition of protein synthesis 

in the BLA prevents the reconsolidation of cocaine-associated cue and contextual memories 

(Fuchs et al., 2009; Lee et al., 2005). Similarly, inhibition of protein synthesis interferes with the 

induction and maintenance of both LTP and LTD (Barea-Rodríguez et al., 2000; Osten et al., 

1996; Sajikumar and Frey, 2003).  

Some of the most commonly investigated targets for the disruption of drug-associated 

memory are components of glutamatergic signaling (Figure 4). Activation of NMDAR are 

required for the reconsolidation of drug-cue memories, and therefore, NMDAR antagonists can 

interfere with reconsolidation. For example, intra-BLA infusion of the NMDAR antagonist ᴅ-

APV prior to reconsolidation reduces subsequent cue-dependent drug-seeking behavior, which 

correlates with decreased expression of the immediate early gene, zif268 (Lee et al., 2005). 

Furthermore, systemic injections of the NMDAR antagonist MK-801 prior to reactivation also 

reduce cue-reinforced drug-seeking (Milton et al., 2008). Together, these studies suggest that 

NMDAR-dependent increases in BLA neural activity are necessary for drug-cue reconsolidation 

and the maintenance of drug-associated conditioned behaviors. Studies aimed at enhancing 

extinction have also targeted the glutamatergic system (Figure 4). Extinguishing an operant 

response for cocaine is associated with a reversal in cocaine-induced decreases in GluA1 and 

GluA2/3 expression in the NAc shell. Moreover, extinction is enhanced by viral overexpression 

of GluA1 and GluA2 in the NAc, demonstrating that extinction involves enhanced glutamatergic 

activity in the NAc shell (Self and Choi, 2004; Sutton et al., 2003). Antagonism of NMDAR in 
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this region results in disrupted extinction (Feltenstein and See, 2007; Fuchs et al., 2008). The 

involvement of gluamatergic activity during extinction has led to attempts to pharmacologically 

facilitate extinction via glutamate receptor agonists. ᴅ-Serine, an agonist at the glycine site of the 

NMDAR was shown to facilitate extinction, resulting in a decrease in cocaine-primed 

reinstatement (Kelamangalath et al., 2009). Similarly, N-acetylcysteine, given in combination 

with instrumental extinction training, produces long-lasting reductions in cue- and heroin-primed 

drug seeking (Zhou and Kalivas, 2008). Finally, D-cycloserine (DCS), a partial agonist at the 

NMDAR, has also been shown to augment the extinction of drug-associated memories. For 

example, the extinction of responding for self-administered cocaine was enhanced by DCS in 

both rats and monkeys, thereby reducing cocaine reacquisition (Nic Dhonnchadha et al., 2010). 

Additionally, DCS treatment following cue extinction in a novel context inhibits cue-induced 

renewal of drug-seeking, but only when injected systemically or directly to the NAc core 

(Torregrossa et al., 2010). The effects of DCS on the extinction of drug memories are similar to 

results observed in studies of fear memory extinction in both animal models and human clinical 

studies (Ledgerwood et al., 2004; Ressler et al., 2004). However, in clinical studies of human 

drug using populations, the success of DCS has been limited. A randomized, placebo-controlled 

study showed that DCS was unable to facilitate extinction, and instead, enhanced craving in 

cocaine-dependent individuals (Price et al., 2013). Moreover, in preclinical studies, DCS 

treatment can increase reinstatement of drug seeking. Increased cue-induced drug seeking after 

DCS treatment appears to occur following a brief re-exposure to the CS, suggesting that DCS 

may be strengthening the reconsolidation process as opposed to promoting extinction (Lee et al., 

2009). Indeed, in this study, DCS was administered after re-exposure to 30 cue presentations, 

and studies from our lab indicate that 60 cue presentations only yield a mild reduction in  
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Figure 4. Pharmacological agents that weaken drug-associated memories. 

List of pharmacological compounds that have been demonstrated to weaken drug-associated memories, either by 

inhibiting reconsolidation, facilitating extinction, or both. These manipulations are most often examined in the 

context of either reconsolidation or extinction, not both. Inhibition of CaMKII is the first manipulation that has been 

shown to inhibit reconsolidation and facilitate extinction. From (Rich and Torregrossa, 2017). 
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reinstatement, indicating that 30 was unlikely to sufficient produce extinction (Rich et al., 2016). 

Together, these studies highlight the complicated nature of reconsolidation and extinction 

following cue reactivation, and demonstrate that a combined approach, in which a single 

pharmacological compound can simultaneously enhance extinction and inhibit reconsolidation, 

may have a better likelihood of weakening drug-associated memory to prevent relapse.  

Several intracellular signaling pathways that are important for the induction of LTP and 

LTD also mediate drug-memory reconsolidation. Chronic cocaine exposure persistently 

increases PKA activity (Lynch and Taylor, 2005; Nestler, 2004), and post-retrieval inhibition of 

PKA in the BLA reduces both cue-and context-induced, but not drug-primed reinstatement 

(Arguello et al., 2014; Sanchez et al., 2010). Inhibition of a constitutively active isoform of PKC, 

known as PKMζ blocks the development of cocaine sensitization, while reducing AMPAR 

membrane expression (Howell et al., 2014). Furthermore, direct inhibition of PKMζ in the NAc 

can disrupt the retrieval and reconsolidation of a drug-dependent conditioned approach behavior 

(Crespo et al., 2012). Additionally, the reconsolidation of cocaine-associated contextual 

memories depends on ERK (extracellular-regulated kinase) signaling. Intra-NAc core ERK 

inhibition decreases preference for a cocaine-conditioned context (Miller and Marshall, 2005), 

whereas intra-BLA ERK inhibition following reactivation results in less context-induced 

reinstatement (Wells et al., 2013). As with other kinases, ERK2 is involved in synaptic plasticity, 

including LTP in the BLA (Schafe et al., 2008), further demonstrating the importance for long-

term synaptic alterations in the reconsolidation of drug-cue memories. Finally, the mammalian 

target of the rapamycin signaling (mTOR) pathway, heavily characterized for its involvement in 

the cell cycle and regulation of protein translation, has also been linked to synaptic plasticity and 

reconsolidation. The mTOR pathway has been linked to the insertion of AMPAR during the 
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maintenance phase of LTP in the hippocampus and mPFC (Man et al., 2003; Stoica et al., 2011). 

Due to its LTP-promoting effects, preventing the activation of mTOR has been linked to the 

inhibition of fear- and cocaine-associated memories (Gafford et al., 2011; Jobim et al., 2012; Shi 

et al., 2014).  

Overall, because of the similarities between LTP/LTD and reconsolidation/extinction, 

many of the specific manipulations aimed at disrupting reconsolidation and/or facilitating 

extinction of drug-cue memories have targeted the same molecules that are involved in 

regulating mechanisms of LTP and LTD. The predominant process that occurs following 

memory retrieval (reconsolidation vs. extinction) appears to depend on the balance of 

intracellular signaling molecules and protein phosphorylation/dephosphorylation cascades.  It 

should be noted that much of the research to this point has dealt with reconsolidation and 

extinction separately; there are very few, if any, studies that examine the effects of a single 

manipulation on both reconsolidation and extinction. This is an important limitation because, as 

is often the case, a pharmacological manipulation that is effective at enhancing extinction of 

drug-cue memories may fail to inhibit reconsolidation, leading to unintentional memory 

strengthening effects. A better approach is to identify cellular signaling events that simultaneous 

inhibit reconsolidation and enhance extinction. 

1.2.4 Towards a bidirectional approach for targeting drug-cue memory 

To determine if there was any overlap in the specific cellular events regulating extinction and 

reconsolidation, our lab recently conducted a study aimed at identifying specific phosphoproteins 

that are oppositely regulated by extinction and reconsolidation of a memory associated with self-
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administered cocaine (Rich et al., 2016; Appendix A). Rats learned to associate self-administered 

cocaine infusions with an audiovisual cue and were later subjected to unreinforced presentations 

of the cue either 3 times to trigger reconsolidation or 120 times to trigger extinction. A 

phosphoproteomics analysis of the BLA identified a small number of signaling events that were 

oppositely regulated, including a novel phosphorylation event on calcium-calmodulin-dependent 

kinase II α (CaMKIIα) at Ser331. As described above, CaMKII is a well-characterized protein 

involved in various forms of memory and synaptic plasticity (Coultrap et al., 2014; Sanhueza & 

Lisman, 2013). Autophosphorylation of Thr286 has been implicated in numerous forms of 

learning, including those involved with drug-related memories (Easton et al., 2013, 2014). Not 

surprisingly, CaMKIIα dysfunction has been linked to neuropsychiatric disorders that involve 

changes to the number or size of dendritic spines, including schizophrenia, Angelman syndrome, 

and addiction (Müller et al., 2016a; Robison, 2014). Drugs of abuse may induce an upregulation 

of CaMKIIα, as evidenced by a reduction in amphetamine SA following NAc shell inhibition of 

CaMKIIα (Loweth et al., 2013). CaMKIIα has also been previously identified and studied as a 

potential key player in the regulation of synaptic memory associated with certain types of drug-

associated stimuli (Sanchez et al., 2010, but see Arguello et al., 2014). To further characterize 

the effects of CaMKII in drug-cue memory, we tested the effects of intra-BLA CaMKII 

inhibition on cocaine-cue memory reconsolidation and extinction, and discovered that in both 

conditions, this pharmacological manipulation resulted in a reduction in cue-induced 

reinstatement, relative to controls. Whereas CaMKII mediates LTP via phosphorylation of 

GluA1 at S831, LTD can also be evoked by CaMKII-mediated phosphorylation of GluA1 at 

S567 (Coultrap et al., 2014). Thus, the effect of CaMKII inhibitors on reconsolidation and 

extinction might be explained by differential effects on LTP vs. LTD, respectively, suggesting 
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the existence of molecular mechanisms capable of simultaneously augmenting extinction and 

disrupting reconsolidation (Rich et al., 2016; See Appendix A).  

Due to the involvement of CaMKIIα in the bidirectional control of drug-cue memories, it 

is possible that CaN (a ‘negative regulator of CaMKIIα’) may also be involved in extinction and 

reconsolidation. Whereas the inhibition of CaMKIIα may promote drug-memory amnestic 

effects, pharmacological agents that facilitate CaN activity would perhaps yield the same results. 

A series of studies by Gean and colleagues first identified a role for CaN in the regulation of 

fear-associated memories (Lin et al., 2003a; Lin et al., 2003b). Protein levels and enzymatic 

activity of CaN were increased by the extinction of a fear-associated memory. This was 

accompanied by the reversal of fear conditioning-induced phosphorylation of CaN substrates, 

including ERK. The administration of CaN inhibitors prevented this pattern of 

dephosphorylation and enhanced the resistance to fear extinction. A subsequent study showed 

that inhibitors of CaN blocked extinction-dependent decreases in CREB phosphorylation. These 

data suggest that CaN functions in a negative feedback loop and either directly or indirectly 

dephosphorylates specific substrates whose phosphorylation is required for memory 

consolidation. Several other studies have supported a role for CaN as a negative regulator of 

emotionally-salient memories (Baumgärtel et al., 2008; de la Fuente et al., 2014; Havekes et al., 

2008).  

As described above, the internal and external capsule are important signaling pathways 

that carry sensory information via thalamic and cortical routes, respectively, to the amygdala. 

Fear conditioning has been associated with potentiation of these synapses while fear extinction is 

associated with depotentiation. To model fear extinction, low-frequency stimulation (LFS) of the 

external capsule was used to elicit depotentiation in the LA following fear conditioning (Lin et 
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al., 2003a). LFS-induced depotentation was associated with an increase in CaN activity, and 

required NMDAR, LTCC, as well as CaN activation. Inhibitors of CaN prevented LFS-induced 

depotentiation in vitro and blocked LFS-induced fear extinction in vivo. Furthermore, an elegant 

study by Everitt and colleagues, investigated the molecular changes that occur during the shift 

from fear-memory reconsolidation to extinction by correlating results from biochemical assays 

with behavioral output after a various number of cue re-exposures (Merlo et al., 2014). Protein 

levels of calcineurin were shown to increase after 10 (but not fewer) presentations of a fear-

associated CS, suggesting that CaN is specifically activated during extinction memory 

consolidation, and may be important during the shift between maintenance and loss of the fear-

associated memory trace.  

Finally, CaN has recently been identified in the destabilization of a methamphetamine 

(METH)-associated contextual memory (Yu et al., 2016). In this study, authors performed 

METH-CPP followed by treatment with the protein synthesis inhibitor, anisomycin, to disrupt 

reconsolidation. Memory destabilization was associated with a decrease in phosphorylation of 

GluA1 at Ser845, a decrease in spine density, and a decrease in AMPA:NMDA ratio. Blockade 

of NMDAR with MK801 or GluN2B-specific antagonists prevented destabilization-induced 

synaptic alterations. This is likely due to a block of the downstream phosphatase effects, as both 

PP1 and CaN inhibitors prevented the effects of anisomycin (Yu et al., 2016). This study 

indicates that destabilization of a METH-associated contextual memory occurs through a cascade 

of events that are CaN-dependent. Specifically, dephosphorylation of the peptide, Inhibitor-1, by 

CaN results in the activation of PP1, which dephosphorylates GluA1 at Ser845, resulting in the 

internalization of AMPAR and LTD (Mulkey et al., 1994). Together, there is strong evidence 
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that upregulating CaN activity may be an effective strategy for reducing the strength of drug-

related memories, either via the blockade of reconsolidation or by the enhancement of extinction. 

1.3 DISSERTATION AIMS 

It has become clear that memory recall activates multiple processes that may have opposite 

effects on memory strength. That reconsolidation and extinction might be occurring 

simultaneously following memory recall makes it difficult to specifically target either 

reconsolidation or extinction via pharmacological manipulations. As described above, one 

strategy to overcome this difficulty is to develop a pharmacological agent that simultaneously 

disrupts reconsolidation and enhances extinction. A second strategy is to develop a 

methodological approach that directly and specifically manipulates neural circuits involved in 

the regulation of drug-cue memory. Studies within this dissertation examine afferent-specific 

synapses in the LA as potentially important for the bidirectional regulation of drug-cue memories 

and in mediating drug-seeking behaviors. Furthermore, these studies seek to uncover 

mechanisms by which drug-cue memories may be weakened to interfere with cue-evoked 

reinstatement. To this end, we use a combination of behavioral, physiological, optogenetics, and 

pharmacological approaches to (a) determine if drug-cue memory reconsolidation and extinction 

are encoded by LA synapses and (b) test whether circuit-specific induction of LTD in the LA 

and/or the activation of CaN is sufficient to interfere with drug-cue memories and prevent 

relapse-like behavior. The central hypothesis of this dissertation is that thalamo-amygdala 

synapses are specifically involved in the consolidation, reconsolidation, and extinction of 
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cocaine-cue memories, and that optical or pharmacological induction of depotentiation of these 

synapses is sufficient to attenuate cue-activated cocaine-seeking behavior. We test these 

hypotheses through the following experimental aims: 

 

Aim 1: To determine whether thalamic and/or cortical LA synapses are potentiated by 

cocaine-cue pairings, strengthened by reconsolidation, and depotentiated by extinction.  

Aim 2: To determine if MGN-LA synapses are specifically involved in regulating 

cocaine-cue memories, and whether optically-inducing LTD at this pathway is sufficient to 

reduce cocaine-seeking behavior.  

Aim 3: To determine if cocaine-seeking behavior can be attenuated by pharmacological 

induction of LTD at thalamo-amygdala synapses during cocaine-cue memory processes. 
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2.0  PLASTICITY AT THALAMO-AMYGDALA SYANPSES REGULATES 

COCAINE-CUE MEMORY FORMATION AND EXTINCTION 

Matthew T. Rich, Yanhua H. Huang, Mary M. Torregrossa; adapted from a version that is 

currently in submission at Cell Reports. 

 

Repeated drug use has long-lasting effects on plasticity throughout the brain’s reward and 

memory systems that promote future drug use. Environmental cues that are associated with drugs 

of abuse can elicit craving and relapse, but the neural circuits responsible have not been well 

delineated, thereby creating a major hurdle for the development of effective relapse-prevention 

therapies. In this study, we used a cocaine+cue self-administration paradigm followed by cue re-

exposure to establish that the strength of the drug-cue association corresponds to the strength of 

synapses between the medial geniculate nucleus (MGN) of the thalamus and the lateral amygdala 

(LA). Furthermore, we demonstrate, via optogenetically-induced LTD of MGN-LA synapses, 

that reversing cocaine-induced potentiation of this pathway is sufficient to inhibit cue-induced 

relapse-like behavior. 
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2.1 INTRODUCTION 

Chronic use of drugs like cocaine leads to the formation of long-term memories of the drug using 

experience and the environmental stimuli associated with that experience. Over time, exposure to 

just the drug-paired stimuli, or cues, is sufficient to induce physiological and psychological 

responses, such as craving, that drive continued use and relapse (Fuchs et al., 2008; Sinha and Li, 

2007). Thus, one potential treatment strategy is to reduce the strength of drug-cue associations, 

so that the cycle of abstinence, craving, and relapse is blocked (Childress et al., 1986; Price et al., 

2010). This may be possible by inducing extinction of the drug-cue association, a process 

whereby repeated cue exposure in the absence of the drug leads to a reduced expectation that the 

cue is predictive of drug use  (Pedreira and Maldonado, 2003; Torregrossa and Taylor, 2013). 

However, a major limitation to enacting a memory-based treatment approach is that the precise 

neural correlates underlying drug-cue memories have not been well established.  

In classical animal drug self-administration (SA) models, drug-cue associative memories 

form when an instrumental response (e.g., lever press) results in delivery of the drug 

(unconditioned stimulus; US)) together with a conditioned stimulus (CS; audiovisual cue). After 

repeated CS-US pairings, subsequent CS presentations by themselves can increase drug-seeking 

actions (lever presses). Cue-driven drug-seeking behaviors likely develop through cellular 

processes such as long-term potentiation (LTP) within neurons that are activated by the drug-cue 

experience (Cruz et al., 2014a; Shaham and Hope, 2005). On the other hand, extinction of drug-

cue memories may reverse this plasticity and/or result in new LTP that inhibits the original 

memory, yet these possibilities have not been directly tested. Rather, prior studies have focused 

on neuroadaptations associated with the drug-seeking action, as opposed to the drug-associated 
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cue memories that drive craving and relapse. Moreover, pre-clinical studies of memory-based 

interventions, such as extinction learning, have largely focused on extinction of the lever press 

response, not of the drug-cue memory (Kalivas et al., 2005; Peters et al., 2008). In contrast, most 

clinical efforts aimed at extinguishing drug memories have focused on the cues that initiate the 

craving and relapse cycle. Thus, there is a large gap in the pre-clinical literature in identifying the 

locus of drug-cue memories, and the molecular mechanisms that regulate their formation and 

extinction remains unknown.  

In contrast, numerous studies have investigated mechanisms regulating fear-conditioned 

memories, where manipulation of the cue, rather than the action, is the norm. These studies have 

shown that synaptic changes within thalamic and cortical inputs to the lateral amygdala (LA) 

underlie the formation and extinction of a conditioned fear memory (Hong et al., 2009; Kim et 

al., 2007a). Furthermore, Nabavi et al., (2014) used optogenetically induced long-term 

potentiation and depression (LTP or LTD) to demonstrate a causal link between synaptic 

modifications in the LA and the expression of a fear-associated memory. Given that, in addition 

to negatively valenced memories, the amygdala is also critical for the expression of memories 

related to positive affective value (Beyeler et al., 2016; Shabel and Janak, 2009),  it may be that 

drug-cue associative memories are encoded in the amygdala, and can be targeted for treatment.  

Here, we present the first evidence that cocaine cue-associated memory formation 

induces synaptic potentiation at medial geniculate nucleus (MGN) thalamo-amygdala, but not 

cortico-amygdala synapses, and that extinction of the cue memory, but not the lever pressing 

action, reverses this plasticity to reduce cue-induced relapse-like behavior. Furthermore, 

optogenetic LTD of MGN-LA synapses results in physiological and behavioral changes 

indicative of cue extinction. Together, these results identify a specific neural correlate and 
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cellular mechanism responsible for the acquisition and extinction of drug-cue memory, and 

present potential therapeutic approaches to prevent relapse. 

2.2 METHODS 

2.2.1 Animals 

Naïve, adult male Sprague-Dawley rats (Envigo/Harlan), weighing 275-325 g on arrival, were 

used in all studies. All rats were housed in a temperature- and humidity-controlled room, in auto-

ventilated racks with an automated watering system. Animals were housed in pairs, given ad 

libitum access to food and water, and maintained on a 12 h light-dark cycle. Prior to surgical 

procedures, rats were given at least 5 d to acclimate to the facility. Rats were food-deprived 24 h 

prior to the start of behavioral experiments and maintained at ~90% of their free-feeding body 

weight (~20 g of chow per day) for the duration of testing. All behavioral experiments were run 

during the light-cycle. Animals were allocated to groups following cocaine self-administration 

(SA) and, when applicable, instrumental extinction (IE), based on a matching procedure that 

ensured no significant differences between acquisition and IE behavior (See Figures 8 and 11).  

All procedures were conducted in accordance with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals and were approved by the University of Pittsburgh’s 

Institutional Animal Care and Use Committee. 
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2.2.2 Viral vector construct 

Adeno-associated virus serotype 5 (AAV5) vectors were constructed to deliver oChIEF, a variant 

of the blue-light sensitive opsin channelrhodopsin (ChR2). oCHIEF is a mammalian codon 

version of ChIEF, with stronger expression in mammalian cells and an additional N-terminal 

amino acid residue that can respond to both low and high frequency stimulations (Nabavi et al., 

2014; Lin et al., 2013). oChIEF was flanked downstream by the fluorescent marker tdTomato 

and expression of oChIEF was driven by the neuron-specific synapsin (hSyn) promoter (Lin et 

al., 2013). The construct was donated by Dr. Roger Tsien and processed for packaging and 

purification by the Duke Viral Vector Core.  

2.2.3 Drugs 

Cocaine hydrochloride (generously provided by the Drug Supply Program of the National 

Institute on Drug Abuse, Research Triangle Park, NC) was dissolved in sterile 0.9% saline (2 

mg/ml) and filter-sterilized for SA. 

2.2.4 Rodent intravenous catheterization 

Rats were fully anesthetized with ketamine hydrochloride (87.5-100 mg/kg, i.m.) and xylazine 

hydrochloride (5 mg/kg, i.m.) and then received an analgesic (Carprofen, 5 mg/kg, s.c.) and 5 ml 

of Lactated Ringer’s (s.c.) prior to surgery. Betadine and 70% ethanol were applied to all 

incision sites. All rats received a chronic indwelling intravenous (i.v.) catheter as described 
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previously (Rich et al., 2016). Catheters were implanted into the right jugular vein, then fed 

subcutaneously to the midscapular region, where they exited through a round incision. After 

surgery, rats recovered on a heating pad. Rats were then individually housed and given at least 7 

d to recover before behavioral training. Rimadyl (5 mg/kg; s.c.) was administered for the first 

two days after surgery and catheters were kept patent by daily infusions of sterile saline 

containing gentamicin (5 mg/ml) and heparin (30 USP/ml). 

2.2.5 Virus delivery and optic fiber implantation 

For experiments involving viral infection of MGN neurons, rats were placed in a stereotaxic 

frame immediately following catheter surgery. They were given a small injection (~0.2-0.3 ml) 

of lidocaine (Henry Schein) to the scalp as a local anesthetic. A 26-gauge stainless steel injection 

cannula connected to a Hamilton syringe was used to bilaterally inject 1 μL of concentrated 

AAV solution into the medial portion of MGN (in mm from bregma, anterior and posterior (AP): 

–5.4; medial and lateral (ML): ±3.0; dorsal and ventral (DV): –6.6) through a pump (Harvard 

Apparatus) at a flow rate of 0.1 μL/min. Cannula were left in place for 5 min after infusions were 

complete before being slowly withdrawn. For experiments involving in vivo optogenetic control 

of MGN-LA terminals, two 200-μm optic fibers  (0.5 NA, Thor Labs) were implanted (See 

Sparta et al., 2012) at the dorsal portion of the lateral amygdala (in mm from bregma, AP: -3.0; 

ML: ±5.1; DV: -7.9 mm). Fibers were lowered at a rate of 2 mm/min, then secured to the skull 

with screws, Loctite instant adhesive (Henkel Corp) and OrthoJet dental cement (Lang Dental). 
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2.2.6 Rodent cocaine or saline self-administration 

Rats were trained to SA cocaine in standard operant conditioning chambers (MedAssociates), as 

described previously (Rich et al., 2016). Rats administered saline (0.9%) or cocaine (2 mg/ml) 

during daily sessions for 1 h, on a fixed ratio 1 (FR1) schedule of reinforcement with a 10 s 

timeout. The designated active lever (counterbalanced across left and right levers) produced a 

cocaine or saline infusion paired with a 10 s compound light and tone cue. Pump durations were 

adjusted daily according to body weight in order to deliver the correct dose of drug (1.0 mg/kg of 

body weight per infusion). Responses on the other, inactive, lever were recorded, but had no 

programmed consequences. Rats underwent training for at least 10 d and until they administered 

at least 8 infusions per day over 3 consecutive days. Cocaine self-administering rats that did not 

meet acquisition criteria by 20 d were excluded from the study; saline self-administering rats 

were advanced regardless, as most do not reach acquisition criteria. The program was controlled 

by and data were collected using MedPC IV (MedAssociates). 

2.2.7 Instrumental lever extinction 

After successful acquisition of SA, rats underwent IE for at least 7 d. During these daily 1 h 

sessions, responses on both the active and inactive levers were recorded but had no programmed 

consequences. IE continued until extinction criteria had been met (an average of < 25 lever 

presses on the last two days of extinction). Throughout IE, rats received no cocaine or cocaine-

associated cue reinforcement, thus reducing responses to a stable, low rate. This reduces the 

motivational value of other cues in the SA context, so that subsequent reinstatement testing or 
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physiological assessment specifically isolates the memory for the discrete cue associated with 

cocaine infusion. 

2.2.8 Pavlovian cue re-exposure 

Cue re-exposure occurred as described previously (Rich et al., 2016). Briefly, rats were returned 

to the SA context 24 h after the final day of SA (or IE) and lasted for 1 hr. During this session, 

rats that had undergone cocaine SA received noncontingent presentations of the previously drug-

paired cues: either 0, 3, 60, or 120. A separate group of cocaine-trained rats were left in their 

home cages undisturbed as a control for re-exposure to the training context. Saline-trained 

animals were returned to the training context and did not undergo cue re-exposure (0 cue 

presentations).  During re-exposure sessions, the cocaine-associated cue was presented for 10 s, 

with each presentation separated by 30 s.  

2.2.9 Cue-induced reinstatement 

24 h after cue re-exposure, cue-induced reinstatement was assessed during a 1 h session that took 

place in the original SA context. A lever press on the active lever produced a 10-s presentation of 

the cocaine-associated cue on an FR1 schedule, but no drug reinforcement. Lever presses on the 

inactive lever were recorded but had no programmed consequences. In the optical LTD 

experiment, to measure spontaneous recovery of drug-seeking, rats underwent a second cue-

induced reinstatement test 7 d later. 
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2.2.10 Ex vivo slice preparation 

Slices were prepared as described previously (Dong et al., 2006; Huang et al., 2008b), with slight 

modifications, and using methods designed to improve neuronal health in adult rodents (Ting et 

al., 2014). Briefly, 24 h after cue re-exposure sessions, rats were deeply anesthetized with 

isoflurane. Rats were then briefly perfused with ice-cold cutting solution containing (in mM): 92 

N-methyl-d-glucamine (NMDG), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 5 

sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 10 MgSO4, and 0.5 CaCl2, saturated with 

carbogen (95% O2/5% CO2), pH adjusted to 7.4 with HCl. Rats were then decapitated and 

brains removed. Acute coronal slices of the amygdala (250 μm thick) were obtained (normally 

4–6 slices were obtained from each rat) using a VT1200S vibratome (Leica, Weltzar, Germany) 

in 4 °C cutting solution. Slices were placed in a holding chamber filled with the same cutting 

solution, and incubated at 37°C for 10-15 min before being transferred to a beaker of HEPES-

based holding solution containing (in mM): 86 NaCl, 2.5 KCl, 1.2 NaH2PO4, 35 NaHCO3, 20 

HEPES, 25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 1 MgCl2, and 2 CaCl2, 

saturated with carbogen. Slices were allowed to recover for >30 min at room temperature before 

experimentation. 

2.2.11 Ex vivo electrophysiological recordings 

Slices were transferred to an Olympus BX51WI upright microscope equipped with gradient 

contrast infrared optics. The LA was identified using a 4X objective and this region was then 

magnified for identification of neurons with a 40X water immersion lens. Whole-cell recordings 
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were obtained from individual principal neurons in the dorsal LA using glass pipettes (3–5 MΩ). 

Principal neurons are identified by morphology, and in voltage clamp, typically show low levels 

of spontaneous activity. For a subset of cells, principal neurons could be confirmed in current 

clamp by injecting current pulses to elicit action potentials, as described elsewhere (Kim et al., 

2007a; See Figure 5A). Voltage-clamp experiments used pipettes filled with a cesium-based 

internal solution [in mM, cesium methanesulfonate 108, CsCl 15, CsEGTA 0.4, TEA-Cl 5, 

HEPES 20, Mg-ATP 2.5, Na-GTP 0.25, QX-314-Cl 1, sodium phosphocreatine 7.5, and L-

glutathione 1, and pH to 7.3 with CsOH] and current-clamp experiments used pipettes filled with 

a potassium-based internal solution [in mM, potassium methanesulfonate 108, KCl 20, K-EGTA 

0.4, HEPES 10, Mg-ATP 2.5, Na-GTP 0.25, sodium phosphocreatine 7.5, L-glutathione 1, 

MgCl2 2, and pH to 7.3 with KOH]. During recordings, slices were superfused with aCSF that 

was heated to 31–33 °C by passing the solution through a feedback-controlled in-line heater 

(Warner, CT) before entering the chamber. External perfusion consisted of a modified artificial 

cerebrospinal fluid (ACSF), containing, in mM NaCl 119, KCl 2.5, NaHCO3 26, NaH2PO4 1.2, 

glucose 12.5, HEPES 5, MgSO4 1, CaCl2 2, saturated with 95% O2/5% CO2. Neurons were 

voltage-clamped at -70 mV. For experiments involving electrical stimulation, a concentric 

bipolar stimulating electrode (FHC, Bowdoin, ME) was placed over axon fibers emerging from 

the internal capsule (putative thalamic afferents) or external capsule (putative sensory cortical 

afferents). Projections to the LA were stimulated using 0.1 ms pulses at predetermined series of 

intensities (10-35 μA) using an isolated current stimulator (A-M instruments; Digitimer Ltd, 

Hertfordshire, England), and the evoked excitatory postsynaptic currents (EPSCs) were recorded. 

For paired pulse delivery, each pulse was separated by a 50 ms interpulse interval. AMPAR 

currents were elicited at ERev-70 mV holding potential and NMDAR currents were elicited at a 
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ERev+40 mV holding potential. NMDAR amplitude was operationally defined as the amplitude of 

the current 35 ms after the peak of the AMPAR current; at this time point, AMPAR-mediated 

currents have subsided (Huang et al., 2008). To elicit action potential firing, in current clamp 

mode, depolarizing current pulses of -100 to +200 pA (20 pA steps, 1 s duration) were delivered. 

For experiments involving optical stimulation, AAV-infected MGN projections were identified 

using fluorescence and then stimulated using a blue light (473 nm) DPSS laser (IkeCool), that 

was generated using the Clampex software (Molecular Devices) and a pulse generator (A-M 

Systems). Collimated laser light was coupled to a fluorescent port of the Olympus BX51WI 

microscope, allowing the blue laser light to illuminate the slice through the objective, placed 

immediately above the cell. Optical stimulations of 1 ms duration were used for paired-pulse or 

AMPA:NMDA ratio measurements. Neurons receiving input from AAV-infected MGN neurons 

exhibited reliable EPSCs in response to stimulation (See Figure 5B). Likewise, under current-

clamp conditions, AAV-infected MGN neurons generated action potentials in response to 

various frequencies of blue-light stimulations (See Figure 5C). Ex vivo LTD experiments were 

performed in current-clamp mode, with the bridge balanced routinely. Optically-evoked EPSPs 

were recorded at 0.1 Hz for 10 minutes prior to LTD induction [900 2-ms pulses of blue light, at 

1 Hz (15 min induction protocol)]. Following LTD induction, EPSPs were continuously recorded 

at 0.1 Hz for the next 60 minutes. For all experiments, series resistance was 10–25 MΩ, 

uncompensated, and monitored continuously during recording. Cells with a change in series 

resistance beyond 20% were not accepted for data analysis. Synaptic currents were recorded with 

a MultiClamp 700B amplifier (Molecular Devices), filtered at 3 kHz, amplified 5 times, and then 

digitized at 20 kHz. Picrotoxin (100 μM; dissolved in DMSO) was included in the bath solution 

to inhibit GABAA receptor-mediated currents in all experiments.  
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Figure 5. Sample electrophysiological recordings from LA and MGN neurons. 

(A) Sample current clamp recording from LA neuron. Injection of a prolonged depolarizing current (0.2 nA, 1 s) 

demonstrating action potential firing that shows spike frequency adaptation typical of principal neurons (See Kim et 

al., 2007a). Scale bars: 100 ms, 40 mV. (B) Sample voltage clamp recording from LA neuron receiving projections 

from AAV-oChIEF-infected MGN neurons. EPSCs were elicited by two brief (1 ms) pulses of blue light (473-nm) 

separated by 50 ms. Scale bars: 25 ms, 50 pA. (C) Sample current clamp recordings from AAV-oChIEF-infected 

MGN neurons. Action potentials were elicited by blue light stimulation (5-100 Hz), demonstrating the capacity for 

MGN-infected neurons to respond to both low and high frequency stimulation. Scale bars: 100 ms, 40 mV. 
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2.2.12 In vivo optogenetic procedures 

Rats were transferred to a clean standard housing cage. Bilateral optic fiber implants were 

connected to an optic fiber patch cord, which was connected to a 473-nm blue laser diode 

(IkeCool) via a rotary joint (Prismatix). The light intensity through the optical fiber, which was 

measured by a light sensor (S130A; Thor Labs), was adjusted to ~5-10mW. Rats were allowed to 

explore the environment for 3 min prior to LTD induction. LTD was induced using the paradigm 

described above (900 2-ms pulses of light delivered at 1 Hz). After induction rats remained in the 

cage for 3 min, before being placed back in their home cage. Control rats had a sham optic fiber 

patch cord attached to the head-mounted optic fiber for the same duration as the LTD induction. 

24 hours after in vivo optogenetic stimulation, rats were assessed for drug-seeking in a standard 

cue-induced reinstatement session (See above). 

2.2.13 Staining, fluorescence, and imaging 

Animals were deeply anesthetized with sodium pentobarbital (100 mg/kg, i.p.). Rats were 

perfused through the aorta with 1X PBS for 5 min followed by 4% paraformaldehyde in 1X PBS, 

pH 7.4 for 10 min. The brains were extracted, postfixed in 4% paraformaldehyde for 24 h, and 

transferred to 30% sucrose solution. Brains were sectioned at 50 μm using a cryostat (Leica). 

Slices containing the LA or MGN were mounted onto glass slides, and cover-slipped with 

Fluoroshield with DAPI (for nuclear identification) mounting media (Sigma-Aldrich). Slices 

were imaged using an Olympus BX61VS epifluorescent slide-scanning microscope to verify 

AAV-oChIEF-tdTomato expression in the MGN and its projections to the LA (See Figure 6). 
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Additionally, position of the optic fiber over the LA was verified. Rats lacking expression of 

AAV in MGN or LA and those in which the optic fiber was not correctly positioned were 

removed from the study. 

2.2.14 Data Acquisition and Statistical Analysis 

All statistical analyses were performed using GraphPadPrism for Windows and results are 

expressed as mean ± SEM. Rats were distributed into groups based on a matching procedure that 

ensured that each group had no statistical differences in their cocaine infusions acquired over 

days, or differences in instrumental extinction behavior. For behavioral experiments, 

reinstatement tests were analyzed by two-way ANOVA with repeated measures, with the within-

subjects factor being responding on the last day of instrumental extinction versus reinstatement 

responding and the between-subjects factor being cue re-exposure condition. For 

electrophysiological experiments, data were coded such that experimenters were not aware of 

treatment groups when performing data analysis, and then decoded for final results. Data were 

analyzed offline using ClampFit 10.3. For experiments in which the end points were from 

individual cells, such as EPSCs, we used the averaged value of a parameter from all cells 

recorded from an animal to represent the parameter of this animal. For electrical stimulation 

experiments, EPSC amplitude was calculated at each stimulation intensity and compared 

between groups using two-way ANOVA with repeated measures, with the within-subjects factor 

being stimulation intensity and the between-subjects factor being cue re-exposure condition. For 

correlation analyses, Pearson’s correlation coefficients were calculated, with number of infusions 

as the independent variable and EPSC amplitude as the dependent variable. Paired pulse ratio 
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(PPR) was calculated as the ratio of the peak current of the second EPSC to the first EPSC. 

AMPAR current was calculated as the peak current at Erev -70mV and NMDAR current was 

calculated as the peak current at Erev+40 mV, 35 ms after peak AMPAR current. For AMPA, 

NMDA, and PPR, comparisons were made using one-way ANOVA. All data points were an 

average of 10 trials. For optical stimulation experiments, EPSC amplitude, PPR, and 

AMPA:NMDA ratios were calculated as described above and compared using one-way ANOVA 

or unpaired t-test. For LTD experiments, peak EPSP amplitude and EPSP rise slope were 

calculated for every trial and six consecutive trials were averaged together for each data point. 

For comparisons of pre- and post-LTD comparisons, data points across the last 7 minutes of 

baseline were compared to the last 7 minutes of post-LTD recordings with a paired t-test. Each 

experiment was replicated in at least 5-6 rats (1-5 cells were recorded from each rat) for 

electrophysiological analysis and at least 6 rats for behavioral tests. For all analyses, significant 

effects were further analyzed by Tukey’s or Bonferroni’s post hoc tests, with significance set at P 

< 0.05. All data were determined to be normally distributed using the Shapiro-Wilk test, and 

Bartlett’s test was used to determine that there were no significant differences in the estimated 

variance between groups. Statistical parameters for each analysis can be found in the 

corresponding figure legends. 
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Figure 6. Histological verification of AAV injection and optic fiber placements. 

(A) Schematic showing injection of AAV-oChIEF-tdTomato throughout the anterior-posterior extent of the MGN 

(For Figures 13; n = 33 rats and 14; n = 13 rats). Dark red shading shows representation of smallest acceptable virus 

spread, and light pink shading shows representation of largest acceptable spread. Inclusion required dual hemisphere 

viral expression. (B) Schematic showing spread of AAV-oChIEF-tdTomato (corresponding to Figures 13 and 14) 

and optic fiber placements (corresponding to Figure 14) throughout the anterior-posterior extent of the LA. Light 

pink shading shows representation of AAV-infected MGN-projecting axons. There is robust expression through the 

internal capsule targeting the LA. Notably, there is also expression in auditory temporal cortex, which receives 

dense projections from the MGN. Blue circles correspond to successful optic fiber placement in both hemispheres. 

Black circles correspond to successful optic fiber placement in only one hemisphere. Black “X” corresponds to 

unsuccessful fiber placement. To be included in final analysis, rats required viral expression in the LA as well as 

successful placement of fibers in both hemispheres. Coordinates are in mm, posterior from bregma. 
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2.3 RESULTS 

2.3.1 Thalamo-amygdala synaptic modifications regulate cocaine-cue memories 

To determine how the strength of drug-cue associations impacts drug-seeking behavior, rats were 

trained on a fixed ratio 1 (FR1) schedule of reinforcement, during which a single active lever 

press was required to receive an infusion of cocaine or saline (Sal), paired with an audiovisual 

CS (Figure 7A). Cocaine- but not saline-trained animals demonstrate reliable acquisition of SA 

(Figure 7B). After the completion of at least 10 daily training sessions, and once acquisition 

criteria were met, rats underwent instrumental extinction (IE) for ~7 days, where lever pressing 

produced no consequences, and was thus reduced. 24 h following the last IE session, rats 

underwent ‘cue re-exposure sessions’ during which they received passive presentations of the CS 

(0, 3, 60, or 120 times) in the absence of cocaine reinforcement. 24 h later, the capacity of the CS 

to promote cocaine-seeking behavior was determined during a cue-induced reinstatement 

session. Increasing the number of CS presentations during cue re-exposure resulted in a 

progressive reduction in cue-elicited drug seeking (Figure 7C). Compared to non-re-exposed 

controls (0 CS presentations), 120 CS presentations significantly attenuated reinstatement, 

confirming previous studies demonstrating that relapse-promoting, drug-cue associations that 

form during cocaine SA can be extinguished by sufficient cue re-exposure in the absence of drug 

reinforcement (Torregrossa et al., 2013).  

In separate groups of animals, we next tested if drug-cue associations were regulated by 

specific synaptic modifications in the LA by performing ex vivo electrophysiological recordings 

in rats trained to SA cocaine or saline, followed by cue exposure either 24 h after the last SA  
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Figure 7. Drug-cue memory manipulations alter cue-induced reinstatement. 

(A) Experimental timeline and schematic demonstrating timepoints of each experimental phase and color-coded 

treatment groups. SA, self-administration; IE, instrumental extinction; CS, conditioned stimuli; LA, lateral 

amygdala. (B) Cocaine SA (Left, n = 50), but not saline SA (Right, n = 15) animals exhibit an increasing number of 

cocaine infusions throughout acquisition. (C) Effect of cue re-exposure on cue-induced reinstatement. All groups 

made significantly more active lever presses during reinstatement compared to the last day of IE; however, 

reinstatement is reduced by extended cue extinction (120 CS). Two-way ANOVA, main effect of group (F(3,112) = 

12.56, P < .001) and a day x group interaction (F(3, 112) = 14.69, P < .001); post hoc analysis: *p < .05, **p < .01, 

***p < .001. Error bars equal mean ±SEM, n in italics, number of rats (number of neurons). 
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Figure 8. No group differences in acquisition of cocaine self-administration. 

Acquisition data for rats from electrophysiological experiments. There were no differences in infusions earned (Left: 

F(4,49) = 1.92, P > .05), active lever presses (Middle: F(4,49) = 1.46, P > .05), or inactive lever presses (Right: F(4,49) = 

2.19, P > .05) between any cocaine SA animals (all two-way ANOVA; n in italics, number of rats), but there are 

differences between cocaine and saline SA animals. 

 

 

session or after IE sessions (described below). Importantly, the timing of recordings 

corresponded to the time when cue-induced reinstatement behavioral tests were conducted 

(Figure 7A). Additionally, rats were assigned to groups based on a random matching procedure 

to ensure no significant differences between groups for the number of infusions earned, active 

lever presses, or inactive lever presses during acquisition (Figure 8). Previous studies involving 

auditory fear conditioning revealed that the strength of thalamic and cortical synapses in the LA 

correspond to the strength of the fear memory (Hong et al., 2009; Kim et al., 2007a), suggesting 

that similar synaptic modifications may underlie drug-cue associations. To test this, electrically-

evoked EPSCs were recorded from LA principal neurons by stimulating either internal capsule 

(IC: putative thalamic afferents or external capsule (EC: putative cortical afferents (Doron and 
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Ledoux, 2000; Hong et al., 2009; Kim et al., 2007a) (Figures 9A and 12A). We tested a series of 

stimulation intensities to generate an input-output relationship, whereby EPSC amplitude is 

increased with larger stimulation intensity. These relationships have commonly been used to 

assess synaptic changes following extinction of conditioned fear memories (Hong et al., 2009; 

Kim et al., 2007a). Relative to saline-trained controls, cocaine-trained non-CS re-exposed 

animals showed significantly increased EPSC amplitudes at thalamo-amygdala (T-LA) synapses 

at given current injections, suggesting that the formation of drug-cue associations potentiates this 

synapse (Figure 9B). To determine if context re-exposure alone could account for changes in T-

LA synaptic strength, a control group of animals remained in their home cage instead of 

undergoing cue re-exposure. Although context re-exposed animals show slightly higher EPSC 

amplitudes than the home-cage controls, these differences were not significant (Figure 10). This 

reveals that synaptic strengthening is likely due to the repeated pairing of discrete and contextual 

cues in combination with cocaine SA and is not dependent on re-exposure to the drug-related 

context alone. 

We next assessed how the number of CS presentations during cue re-exposure impacted 

T-LA synaptic strength and again discovered a progressive effect of CS re-exposure (Figure 

9B). Compared to 0 CS animals, EPSC amplitude was slightly, although non-significantly 

increased in animals that underwent brief CS re-exposure (3 CS), suggesting that brief cue 

memory reactivation in the absence of cocaine does not disrupt the original drug-cue association, 

and may tend to strengthen the association through reconsolidation processes. However, EPSC 

amplitude was attenuated by increasing the number of cue presentations (60 and 120 CS). 

Animals that underwent 120 CS re-exposure exhibited average EPSC amplitudes similar to that 
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of saline-controls. This shows that long-term cue re-exposure depotentiates T-LA synapses, 

thereby reversing the synaptic changes that occur after Coc+cue SA.  

We next asked whether T-LA synaptic strength was directly affected by the strength of 

the cocaine-cue association (Figure 9C). We discovered a positive correlation between the total 

number of US-CS pairings received during SA and the average EPSC amplitude for animals that 

received no cue re-exposure. Conversely, in animals that underwent either 60 or 120 CS re- 

exposure (cue memory extinction), there was no correlation between these two factors. These 

data suggest that increased cocaine-cue pairings is associated with more strongly potentiated T-

LA synapses. However, sufficient cue re-exposure in the absence of drug reinforcement weakens 

T-LA synapses independent of prior drug-cue experience.  
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Figure 9. Cocaine-cue manipulations drive thalamo-amygdala synaptic modifications. 

(A) Image of LA coronal section, demonstrating placement of stimulating electrode above IC fibers and position of 

patch pipette. EPSCs were evoked from LA principal neurons by stimulating the IC (putative T-LA synapses). IC, 

internal capsule; EC, external capsule. (B) Cocaine SA and drug-cue manipulations alter T-LA synaptic strength. 

Left, Average EPSC amplitude for each group at various stimulation intensities. Right, Average EPSC amplitude at 

the highest stimulation intensity (35 μA). Cocaine SA increases EPSC amplitude relative to Sal SA. Brief cue re-

exposure (3 CS) does not further alter EPSC amplitude, but moderate (60 CS) and extended (120 CS) cue extinction 
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reverses the cocaine-cue-induced potentiation. Two-way ANOVA, main effect of group (F(4,40) = 13.54, P < .001) 

and a stim. intensity x group interaction (F(20,200) = 8.96, P < .001); post hoc anlaysis: *p < .05, ***p < .001. Inset: 

Sample average EPSC traces evoked at -70 mV. (C) Left, EPSC amplitude (35 μA stimulation intensity) was 

strongly correlated with the number of CS-US pairings received during acquisition for cocaine- and saline SA 

animals that did not receive cue re-exposure; r(30) = 0.532, **p < .01, n = 32. Right, EPSC amplitude was not 

correlated with number of CS-US pairings for animals that received cue extinction (60 or 120 CS); r(21) = -0.109, p 

= .619, n = 23. (D) Instrumental extinction does not alter T-LA synaptic strength. EPSC amplitude was significantly 

higher for rats that received no cue re-exposure (0 CS) compared to rats that received extended extinction (120 CS), 

independent of IE. Two-way ANOVA, main effect of group (F(3,24) = 8.38, P < .001) and a stim intensity x group 

interaction (F(15,120) = 4.87, P < .001); post hoc analysis: **p < .01, ***p < .001. Inset: Sample average EPSC traces 

from each group evoked at -70 mV. (E) Changes in T-LA synapses are driven by postsynaptic changes in AMPAR. 

Cocaine-cue memory manipulations significantly affect AMPAR (Left: F(4,34) = 12.70, P < .001) and NMDAR 

current (Middle: F(4,34) = 5.77, P = .001) but do not alter PPR (Right: F(4,40) = 1.81, P > .05); all one-way ANOVA; 

post hoc analysis: *p < .05, **p < .01. Inset: Sample average EPSC traces evoked at Erev -70 mV (AMPA, PPR) and 

Erev +40 mV (NMDA). Error bars equal mean ±SEM, n in italics, number of rats (number of neurons). All scale 

bars: 50 ms, 200 pA 
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Figure 10. Potentiation of thalamo-amygdala synapses following drug-cue learning is not context-dependent. 

(A) Experimental timeline. Rats self-administered cocaine for 10-20 d. 24 h following the last day of acquisition, 

one group of rats was returned to the operant chamber, but received 0 CS presentations, while a second group of rats 

remained undisturbed in their home cage. The following day, rats were euthanized and slices were prepared for 

electrophysiological recordings. T-LA EPSCs were elicited by stimulating fibers from the internal capsule. (B) No 

difference in EPSC amplitude between the two groups. Average EPSC amplitude for the two groups at various 

stimulation intensities. Context re-exposed animals show slightly higher, yet nonsignificant EPSC amplitude than 

home cage controls (Two-way ANOVA, F(1,12) = 0.84, P > .05; n in italics, number of rats (number of neurons)). 

Scale bars: 50 ms, 200 pA. 
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As described above, previous studies have found that extinction of a drug-seeking action 

is associated with synaptic changes throughout the brain’s reward circuitry (Kalivas et al., 2005; 

Park et al., 2002). To determine whether T-LA synapses would be differentially regulated by 

whether or not the instrumental extinction (IE) phase of the experiment was included, a separate 

group of rats underwent cocaine SA followed by 1-7 days of IE. During IE, animals had the 

opportunity to make unreinforced responses (no cocaine infusion, no CS presentation) on both 

the active and inactive levers. During the first day of IE rats demonstrate a high tendency to press 

the active lever (Figure 11B), likely in anticipation of a cocaine infusion. However, rats quickly 

adapt to the new association, resulting in extinction of the lever pressing response. Interestingly, 

IE alone was insufficient to depotentiate T-LA synapses (Figure 9D). Cocaine-trained rats that 

underwent IE followed by 0 CS re-exposure had EPSC amplitudes similar to rats that did not 

undergo IE. Similarly, rats that underwent IE plus 120 CS re-exposure exhibited depotentiated T-

LA synapses, as did the group that underwent 120 CS re-exposure in the absence of IE. These 

differences are not due to pre-existing group differences, as rats were again grouped to ensure no 

differences in SA or IE behavior (Figure 11). Together, these data demonstrate that T-LA 

synapses are regulated explicitly by the strength of drug-cue associations and not by memories of 

the drug-taking action.  

We next tested whether changes in the T-LA synaptic strength may be due to 

postsynaptic changes in glutamatergic receptors, by examining whether AMPAR and NMDAR 

currents changed as a result of cocaine SA and subsequent cue re-exposure. We determined that 

the observed synaptic changes were driven by changes in AMPAR, not NMDAR (Figure 9E).  

AMPAR current was enhanced by cocaine SA, and maintained by brief cue re-exposure;  

 



66 

 

 

 

Figure 11. No group differences in acquisition of self-administration or instrumental extinction. 

(A) Comparison of acquisition data for rats that underwent instrumental extinction (IE) prior to drug-cue re-

exposure sessions. Following IE, rats received either no cue re-exposure (0 CS) or extended cue extinction (120 CS). 

During SA, there were no differences in infusions earned (Left: F(1,11) = 0.02, P > .05), active lever presses (Middle: 

F(1,11) = 0.10, P > .05), or inactive lever presses (Right: F(1,11) = 0.45, P > .05) between the two groups (all two-way 

ANOVA; n in italics, number of rats). (B) Comparison of IE data. There were no differences in active lever presses 

(Middle: F(1,11) = 0.07, P > .05), or inactive lever presses (Right: F(1,11) = 1.99, P > .05) between the two groups (all 

two-way ANOVA). 
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however, it was decreased by cue extinction. Interestingly, changes in NMDAR may be a 

contributing factor to the potential memory-strengthening effects of brief cue reactivation, as 3-

CS re-exposed animals had significantly higher AMPAR and NMDAR current relative to saline-

trained controls and 120-CS re-exposed animals (Figure 9E). To rule out a presynaptic 

mechanism, such as changes in neurotransmitter release probability, we also compared paired 

pulse ratio (PPR), and found no significant differences between groups (Figure 9E). Together, 

these data suggest that during cocaine-cue memory formation, T-LA synapses are potentiated 

due to increased AMPAR transmission, which may promote drug-seeking behavior. Sufficient 

cue re-exposure in the absence of drug reinforcement reverses these changes, leading to an 

extinction of the drug-cue memory, and a decreased ability of the CS to promote drug-seeking. 

Finally, we sought to determine if cortico-amygdala (C-LA) synapses also encode the 

strength of drug-cue associations. To test this, we performed similar electrophysiological 

recordings from LA principal neurons, while stimulating EC afferents (Figure 12A). In contrast 

to T-LA synapses, the EPSC amplitude input-output relationship was not affected at C-LA 

synapses by cocaine SA or CS re-exposure (Figure 12B). Also, unlike T-LA synapses, AMPAR 

EPSC amplitude at C-LA synapses did not correlate with the number of CS-US pairings received 

during training. (Figure 12C). These results suggest that cortical afferents to the amygdala are 

not correlated with cocaine-cue learning. Nevertheless, instrumental extinction depotentiated 

AMPAR EPSCs at C-LA synapses, independent of cue extinction (Figure 12D). EPSC 

amplitude at C-LA synapses was significantly decreased after IE both in rats that received no cue 

re-exposure (Coc + 0 CS) and those that received extended cue re-exposure (Coc + 120 CS). 

Therefore, cortical input to the amygdala appears to be regulated not by drug-cue associations, 

but by memories of the drug-taking action.
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Figure 12. Cortico-amygdala synapses are altered by instrumental extinction, but not by drug-cue memory 

manipulation. 

(A) Image of LA coronal section, demonstrating placement of stimulating electrode above EC fibers and position of 

patch pipette. EPSCs were evoked from LA principal neurons by stimulating the EC (putative C-LA synapses). IC, 

internal capsule; EC, external capsule. All scale bars: 50 ms, 200 pA. (B) Cocaine SA and cue-memory 

manipulations have no effect on C-LA synaptic strength. Left, Average EPSC amplitude for each group at various 

stimulation intensities. Right, Average EPSC amplitude at the highest stimulation intensity, 35 μA. Two-way 

ANOVA, (F(4,31) = 0.854, P > .05). Inset: Sample average EPSC traces evoked at -70 mV. (C) EPSC amplitude (35 

μA stim intensity) was not correlated with the number of CS-US pairings received during acquisition for cocaine- 

and saline-SA animals that did not receive cue re-exposure (Left; r(12) = 0.010, p = .972, n = 14) or for those that 

received cue extinction (Right; r(13) = 0.118, p = .677, n = 15). (D) C-LA synapses are depotentiated by IE. EPSC 

amplitude was significantly lower for all rats that received IE, independent of cue re-exposure. Two-way ANOVA, 

main effect of group (F(3,22) = 5.11, P = .008) and a stim intensity x group interaction (F(15,110) = 3.69, P < .001); post 

hoc analysis: **p < .01, ***p < .001. Inset: Sample average EPSC traces evoked at -70 mV. Error bars equal mean 

±SEM, n in italics, number of rats (number of neurons). All scale bars: 50 ms, 200 pA 
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2.3.2 MGN-LA synapses are altered by cocaine-cue associations 

Projections from multiple thalamic nuclei innervate the amygdala (LeDoux et al., 1990; Nabavi 

et al., 2014; Vertes et al., 2015), and studies involving auditory fear conditioning suggest that 

connections between the MGN and LA are particularly important for mediating auditory cue-

specific memories. To test whether projections from the MGN to the LA are strengthened by 

cocaine-cue associations, we expressed a variant of channelrhodopsin in MGN neurons 

(AAV5.hSyn.oChIEF.tdTomato) (Lin et al., 2013; Nabavi et al., 2014). Approximately 2 weeks 

after viral infusions, rats underwent a similar procedure as described above (Figure 13A), where 

they were trained to SA cocaine or saline, followed by either 0 or 120 CS re-exposures. 24 h 

after cue re-exposure sessions, ex vivo slices of the amygdala were prepared and light-evoked 

(473-nm) EPSCs were recorded from LA principal neurons (Figure 13B,C). Optogenetic 

stimulation of MGN terminals within the LA revealed increased EPSC amplitude in cocaine-

trained non-CS re-exposed animals relative to saline-trained controls, whereas 120 CS re-

exposure resulted in a reversal of this potentiation (Figure 13C). Again, the changes in synaptic 

strength appear to be primarily mediated by postsynaptic changes in AMPAR. Compared to 

cocaine-trained non-CS re-exposed animals, those that underwent extended cue re-exposure had 

significantly reduced AMPAR current, but there were no group differences for either NMDAR 

current or PPR (Figure 13D). These results suggest that drug-cue associations are mediated by 

dynamic changes in AMPAR at MGN-LA synapses. 
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Figure 13. MGN-LA synapses regulate cocaine-cue associations. 

(A) Diagram and schematic demonstrating the experimental timeline and injection of oChIEF-expressing AAV5 

targeting the MGN. Scale bars in traces: 50 ms, 100 pA. (B) Diagram and images demonstrating the position in the 

MGN at which AAV-oChIEF was stereotaxically injected (Top). Injection of virus resulted in labeling of MGN 

axon terminals that synapses at the LA (Bottom). (C) EPSCs were optically-evoked from LA principal neurons by 

stimulating AAV-infected MGN axon terminals with 0.1 ms pulses of blue light (473-nm). Cocaine-trained animals 

that were not re-exposed to cues had significantly higher EPSC amplitude relative to saline-trained controls and 
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cocaine-trained 120-CS re-exposed animals. One-way ANOVA, (F(2,25) = 6.87, P = .004); post hoc analysis: *p < 

.05, one-way ANOVA). Inset: Sample average EPSC traces evoked at -70 mV. (D) Plasticity at MGN-LA synapse is 

due to postsynaptic changes in AMPAR and NMDAR, but not due to presynaptic changes. Cocaine-cue memory 

manipulations significantly affect AMPAR current (Left: F(2,25) = 3.72, P = .039) but not NMDAR current (Middle: 

F(2,25) = 2.22, P > .05) or PPR (Right: F(2,30) = 0.03, P > .05); all one-way ANOVA; post hoc analysis: *p < .05. 

Inset: Sample average EPSC traces evoked at Erev -70 mV (AMPA, PPR) and Erev +40 mV (NMDA). Error bars 

equal mean ±SEM, n in italics, number of rats (number of neurons). Scale bars: 50 ms, 200 pA. 

 

2.3.3 In vivo optogenetic induction of LTD at MGN-LA synapses attenuates relapse-like 

behavior 

We next determined if we could mimic extinction of drug-cue memories via inducing circuit-

specific LTD at MGN-LA synapses. To do this, we first demonstrated the capacity to optically 

induce LTD at MGN-LA synapses. Rats were injected with AAV-oChiEF into the MGN and 

were trained to SA cocaine or saline, followed by either 0 or 120 CS re-exposure. 24 h later, ex 

vivo electrophysiological recordings were performed. In current-clamp configuration, LA-

projecting MGN afferents were stimulated with blue light to optically-evoke excitatory 

postsynaptic potentials (EPSPs). Following LTD induction (1 Hz, 15 min), a sustained 

suppression of EPSP slope and amplitude was reliably observed in cocaine-trained 0 CS re-

exposed animals (Figure 14A,B, and 15A). However, LTD was not observed in saline-trained 

animals (Figure 14A,B), nor cocaine-trained 120 CS re-exposed animals (Figure 14A,B), 

presumably because of an occlusion effect. These results suggest not only that you can induce  
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Figure 14. In vivo optical LTD of MGN-LA circuit inhibits cue-induced reinstatement. 

(A) Scatter plots demonstrating effect of ex vivo optical LTD induction on EPSP rise slope at MGN-LA terminals. 

15 min. of 1 Hz optical stimulation induced a sustained reduction in EPSP rise slope only in cocaine-trained non-CS 

re-exposed animals. (B) Quantification of A. Bar graph demonstrating effect of 1 Hz stimulation on EPSP rise slope 

as a percent change from baseline. LTD induction significantly decreased EPSP rise slope relative to baseline only 

in cocaine-trained non-CS re-exposed animals (Paired t-test, t(6) = 3.34, *P = .016, n in bars, number of neurons. 
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Inset: Sample average EPSP traces across groups during baseline (Pre, black) and 1 hour after LTD induction 

(Post, red). Scale bars: 100 ms, 10 mV. (C) Experimental timeline and schematic for testing the effect of in vivo 

LTD of MGN-LA synapses on cue-induced reinstatement. oChIEF-expressing AAV5 was injected into the MGN 

and optical fibers were implanted at the dorsal tip of the LA. (D) Diagram and images demonstrating the position of 

virus injection in the MGN (Top) and placement of optic fibers in the LA (Bottom). (E) In vivo dual hemisphere 

LTD of MGN-LA synapses attenuates EPSC amplitude relative to SHAM-controls (Unpaired t-test, t(4) = 6.60, **P 

= .003). Inset: Sample average EPSC traces across groups. Scale bars: 50 ms, 100 pA. (F) In vivo dual hemisphere 

LTD of MGN-LA synapses attenuates reinstatement. There were no differences in active lever pressing between 

groups during the last day of IE. All groups show pronounced reinstatement to drug-associated cues, but there is a 

significant reduction in active lever presses during reinstatement in rats that previously underwent optical LTD 

relative to SHAM controls. Two-way ANOVA, main effect of group (F(1,11) = 18.16, P = .001) and a day x group 

interaction (F(1,11) = 12.76, P = .004); post hoc analysis: **p < .01. 

 

 

LTD in cocaine-trained rats, but that an LTD-like process is induced at MGN-LA synapses by 

cue-memory extinction. 

Finally, we tested if in vivo optogenetic LTD induction was sufficient to block cue-

induced cocaine-seeking. Rats were again injected with the AAV-oChIEF targeting the MGN 

and optic fibers were implanted targeting the dorsal portion of the LA (Figure 14C,D). 

Following SA and IE, rather than undergoing cue re-exposure, rats received in vivo low 

frequency optical LTD (1 Hz, 15 min 473-nm light stim) of MGN-LA terminals. A second group 

of rats was treated similarly, but did not receive laser stimulation (SHAM-controls). 24 h later, 

either ex vivo optical recordings or cue-induced reinstatement was performed. Animals that were 

exposed to optical LTD had significantly reduced MGN-LA EPSC amplitude relative to SHAM- 
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controls (Figure 14E), confirming induction of LTD by our stimulation protocol. Furthermore, 

LTD-exposed rats also made significantly fewer lever responses during reinstatement compared 

to SHAM-controls (Figure 14F). Rats subsequently underwent an additional reinstatement test 7 

days later, and LTD-exposed rats maintained a low level of responding that was lower than 

SHAM-controls (Figure 15B). These data show that induction of LTD at MGN-LA synapses is 

sufficient to reduce drug-seeking behavior, in a manner similar to drug-cue extinction, and that 

this reduction can persist across multiple reinstatement tests. Together, these results indicate that 

drug-cue memories may be malleable to circuit-specific optogenetic manipulations, presenting 

the possibility for novel therapeutic approaches. 
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Figure 15. Further characterization and behavioral effects of MGN-LA optical LTD. 

(A) Scatter plots demonstrating effect of ex vivo optical LTD induction on EPSP peak amplitude at MGN-LA 

terminals. 15 min. of 1 Hz blue light stimulation induced a sustained reduction in EPSP amplitude only in cocaine-

trained non-CS re-exposed animals, with no effect on saline-trained or cocaine-trained 120-CS re-exposed animals; 

n in bars, number of neurons. (B) In vivo dual hemisphere LTD of MGN-LA synapses effects spontaneous recovery. 

7 days after initial cue-induced reinstatement, rats underwent a second reinstatement test, revealing a significant 

reduction in active lever pressing in animals that previously underwent MGN-LA LTD relative to SHAM controls. 

Two-way ANOVA, main effect of group (F(1,18) = 12.43, P = .002), significant interaction (F(1,18) = 7.03, P = .010); 

post hoc analysis, ***p < .001; n in bars, number of rats. 
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2.4 DISCUSSION 

We have previously shown that re-exposure to cocaine-associated discrete cues in the absence of 

cocaine reinforcement can attenuate cue-elicited drug-seeking (Rich et al., 2016). In this study, 

we extend our findings and demonstrate that sensory input from the thalamus, but not cortex, is 

critical for regulating cue-driven drug-seeking behaviors. Specifically, T-LA, but not C-LA 

synapses are potentiated by the repeated pairing of cocaine with a discrete audiovisual cue 

(Figures 9B and 12B). Importantly, this drug-cue association is long-lasting, as animals that 

underwent >7 days of instrumental extinction, still showed T-LA synaptic potentiation, which 

promotes reinstatement to the cue (Figures 7C and 9D). Conversely, re-exposure to the cue in 

the absence of drug reinforcement dose-dependently depotentiates T-LA synapses, thereby 

inhibiting relapse-like behavior (Figure 7C and 9B). Furthermore, in vivo optogenetic induction 

of LTD in the MGN-LA pathway of cocaine-trained animals was sufficient to prevent 

reinstatement (Figure 14F). While optical LTD of this pathway has previously been 

demonstrated to inhibit a fear-associated memory (Nabavi et al., 2014), our work provides the 

first direct evidence of circuit-specific neuroadaptations associated with drug-cue-specific 

memories that promote craving and relapse.  

In our study, rats that underwent brief cue re-exposure (3 CS) still exhibited the drug-cue 

conditioning-induced potentiation of T-LA synapses and remained vulnerable to cue-induced 

reinstatement (Figures 7C and 9B). Brief cue re-exposure has been proposed to reactivate the 

drug-cue memory, and initiate reconsolidation, during which time the memory is vulnerable to 

disruption via pharmacological manipulation (Arguello et al., 2014; Rich et al., 2016; Sanchez et 

al., 2010). Reconsolidation is thought to strengthen or at least maintain memory, and our study 
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reveals a slight, yet nonsignificant increase in T-LA EPSC amplitude relative to cocaine-trained 

non-CS re-exposed animals. The lack of a statistical significance does not rule out a memory-

strengthening effect of brief cue re-exposure. For example, the destabilization and restabilization 

of memory that occurs after reactivation is likely to involve postsynaptic signaling, which may 

explain the significant effect at NMDAR (Figure 9E). It is important to note, however, that our 

recordings occur 24 hours after reactivation, a timepoint at which the reactivated memory is 

thought to be restabilized. Other circuits within the brain are also impacted by reconsolidation 

(Hafenbreidel et al., 2017; Liang et al., 2017; Liu et al., 2017), and depending on the way 

memory is distributed throughout the brain, there may be a cumulative effect that leads to 

persistence of the drug-cue memory. Future experiments should examine a timepoint within the 

reconsolidation window (<6 hours after reactivation) to determine if there is evidence of 

destabilization, which would indicate that reconsolidation does indeed occur following brief cue 

reactivation. Furthermore, it would be useful for future experiments to examine the effect of cue 

re-exposure on saline self-administering rats. We would predict that because these animals do 

not form a strong association between saline and the conditioned stimuli, that there would be no 

differences between cue re-exposed and non-re-exposed animals. 

The importance of experience-driven synaptic plasticity within specific amygdala circuits 

has been well documented for the regulation of other types of associative learning. For example, 

auditory fear conditioning potentiates both the T-LA and C-LA pathway, resulting in increased 

freezing in the presence of the auditory cue. Cue extinction training reverses the synaptic 

changes and blocks the expression of fear (Hong et al., 2009; Kim et al., 2007a). The importance 

of the amygdala during reward-based learning has also been demonstrated (Fuchs et al., 2006; 

Robbins et al., 2008), but the specific afferent inputs involved have not been well examined, 
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especially in the context of drugs of abuse. Tye and colleagues showed that sucrose-reward 

learning rapidly strengthens T-LA synapses, but enhancement of C-LA synapses required 

elevated dopamine, which was achieved by blocking the dopamine transporter (DAT) (Tye et al., 

2008, 2010). In our study, despite the DAT-blocking effects of Coc, we did not see training-

induced C-LA potentiation; however, procedural differences including timing of ex vivo 

recordings and absence of sucrose reward may explain this seeming discrepancy. Here, we show 

that T-LA synapse are indeed strengthened by the formation of a drug-cue association, but that 

these alterations are reversible, depending on the amount of unreinforced cue re-exposure 

(Figure 9B). Moderate cue re-exposure (60 CS) slightly reduced, while extended cue re-

exposure (120 CS) fully reversed the cocaine-cue-associated potentiation. Recent evidence 

supports dose-dependent synaptic effects of cue re-exposure. The extinction of a fear-associated 

memory has been shown to consist of two separate phases, each with distinct mechanisms (An et 

al., 2017). Early fear extinction (following a single extinction session; 20 CS presentations) 

promotes the inhibition of the original fear memory through mechanisms including enhanced 

inhibitory tone in LA neurons, enhanced CS-evoked activity in the mPFC, and enhanced 

synaptic efficacy of amygdala intercalated neurons (Amano et al., 2010; Chhatwal, 2005; Lin et 

al., 2009; Milad and Quirk, 2002). Late fear extinction (following multiple extinction sessions; 

60 CS presentations) involves erasure of the fear memory, which consists of depotentation of T-

LA synapses. Thus, our results are consistent with the data from these multiple fear extinction 

session studies. However, we do find that this large number of CS presentations (120) is 

necessary to observe consistent reductions in the reinstatement of drug seeking, which is 

different from the fear conditioning literature.  



79 

 

The lack of group effects on C-LA synapses (Figure 12B) may speak to the importance 

of bottom-up signaling during reward-motivated behaviors that is less dependent on cognitive 

influence. Previous studies have demonstrated the influence of top-down circuits in extinction, 

however, these studies primarily involve extinction of the drug-taking action (Augur et al., 2016; 

Stefanik et al., 2016). Interestingly, we did observe synaptic depotentiation of C-LA synapses in 

response to instrumental extinction (Figure 12D), suggesting a role for this circuit in learning to 

inhibit the drug-taking action when the drug is unavailable. These findings do not rule out any 

cortical influence on drug-cue memory extinction, as the C-LA pathway mostly relays input from 

auditory, (Te2/Te3), visual, and perirhinal cortex (Mcdonald, 1998), while other cortical areas 

project via separate pathways. For example, mPFC afferents synapse on LA interneurons, which 

then locally inhibit LA principal neurons (An et al., 2017). However, in our study we only 

recorded from principal neurons, and the inclusion of picrotoxin in the bath solution blocks any 

contribution from this potentially important inhibitory circuit.  

Our study identifies postsynaptic glutamatergic signaling as a mechanism responsible for 

regulating drug-cue memory (Figures 9E and 13D). Future studies should continue to expand 

upon the mechanisms and circuits involved. Calcium signaling and intracellular kinases and 

phosphatases are important for cue-associated memories (Merlo et al., 2014; Rich et al., 2016), 

and these downstream signaling mechanisms are likely involved in synaptic modifications 

following drug-cue re-exposure; for example, the internalization of AMPAR, which is necessary 

for the extinction of acquired fear (Dalton et al., 2008). Additionally, mGluR1 and mGluR2 

receptors in the amygdala are critical for depotentiation and the extinction of fear-associated 

memories (Hong et al., 2009; Kim et al., 2007b). Although our study focuses on auditory 

thalamic inputs to the LA, the mediodorsal and paraventricular nuclei of the thalamus also 
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project to the mPFC, nucleus accumbens, and the amygdala (Do-Monte et al., 2017; Vertes et al., 

2015). These circuits have been implicated in fear conditioning (Penzo et al., 2015), incubation 

of drug seeking (Li et al., 2015; Lu et al., 2005), and the regulation of reward seeking when an 

anticipated reward is omitted (Do-Monte et al., 2017), and therefore could also influence drug-

cue memory. Finally, because drugs of abuse act on the brain’s reward system, the role of 

dopaminergic inputs from the VTA in modulating LA afferent input should also be examined. 

Activation of DA receptors was previously shown to enhance Te3-evoked responses in the LA 

(Rosenkranz and Grace, 2001). Similarly, elevated dopamine during cue-sucrose learning was 

sufficient to enhance cortico-amygdala plasticity when measured 30 minutes after training (Tye 

et al., 2010), so dopamine likely influences plasticity during reconsolidation and extinction of a 

drug-cue memory as well. 

The use of optogenetics in this study helps overcome the inherent limitations of ex vivo 

recordings that involve electrical stimulation. While our electrical stimulation experiments are 

informative, stimulation of the internal capsule in this manner, may cause unintentional 

activation of neurons that do not project via the internal capsule. Optical stimulation of LA-

projecting MGN neurons yields a higher degree of specificity. However, there remains several 

important controls that should be tested in future experiments. In order to show that MGN 

neurons are specifically involved in the regulation of drug-cue memory, other nuclei from the 

thalamus, such as the medial dorsal thalamus, which also projects to subregions of amygdala, 

should also be examined. It would also be beneficial to include a control group of animals that is 

optically stimulated at a frequency that would not be predicted to induce LTD. This is a stronger 

control than the SHAM group because these animals would still be exposed to light stimulation. 

Finally, another alternative control is a group of animals that is injected with a control virus 
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targeted to the MGN that is unresponsive to blue light stimulation. These animals could then 

receive the same 1 Hz LTD induction protocol, but since they do not express channelrhodopsin, 

there should be no effect of stimulation.   

One limitation of cue extinction as a therapy is that drug-seeking often spontaneously 

returns after a period of abstinence (Peters et al., 2008; Rescorla, 2004). Interestingly, in our 

study, extended cue extinction was sufficient to reduce relapse-like behavior, even in animals 

that had extensive drug-cue experience (Figure 9C), suggesting that long-term cue re-exposure 

in the absence of drug reinforcement may be effective at preventing relapse even in chronic drug 

abusers. Optical induction of LTD in the MGN-LA pathway, which is occluded by prior cue 

extinction, results in similar decreases in reinstatement (Figure 14), suggesting that cue 

extinction occurs via a persistent depotentiation of T-LA synapses. Furthermore, this reduction 

was maintained across multiple reinstatement tests, suggesting decreased spontaneous recovery 

(Figure 15B). Together, these results support the idea that circuit-specific neuroadaptations can 

support the long-term inhibition or erasure of a drug-cue memory and offer an important 

consideration for future treatments. 
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3.0  CALCINEURIN MODULATES NEUROPLASTIC CHANGES IN THE 

AMYGDALA TO SUPPORT THE INHIBITION OF DRUG-ASSOCIATED MEMORIES 

Interfering with memory reconsolidation or inducing memory extinction are two therapeutic 

approaches for weakening maladaptive memories in disorders such as PTSD and addiction. Both 

extinction and reconsolidation are regulated by various intracellular protein kinases and 

phosphatases, and interfering with these signaling molecules can alter memory strength. The 

calcium dependent protein phosphatase, calcineurin, is one such molecule that has been 

implicated in both the consolidation and extinction of fear memories. However, the role of 

calcineurin in regulating cocaine-cue associative memories has not been investigated. Previous 

studies have indicated that the lateral amygdala (LA) is a critical locus for cocaine-cue memory 

reconsolidation and extinction. Furthermore, in Chapter 2, we demonstrated that thalamo-

amygdala (T-LA), but not cortico-amygdala (C-LA) synapses are involved in the regulation of 

cocaine-cue memories. We therefore tested the effects of LA administration of an activator of 

calcineurin, chlorogenic acid (CGA), on both behavioral and electrophysiological indices of 

cocaine cue memory extinction and reconsolidation. Rats were trained to self-administer cocaine 

paired with an audiovisual cue. The cue memory was then either briefly reactivated, 

extinguished, or not manipulated followed immediately by LA infusion of CGA. Rats were 

tested 24 hrs later for cue-induced reinstatement, or LA slices were prepared for 
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electrophysiological recordings. We found that CGA infusions in the LA following cue 

extinction or reconsolidation caused a significant reduction in both EPSC amplitude at thalamic 

inputs to the LA and cue-induced reinstatement relative to vehicle-infused controls, suggesting 

that calcineurin can affect drug-cue memory reconsolidation and extinction by altering T-LA 

synaptic strength. Therefore, calcineurin may represent a novel target for disrupting cocaine-

associated memories to reduce relapse. 

3.1 INTRODUCTION 

Addiction is characterized by a progressive switch from occasional, casual drug use to a more 

frequent, habitual pattern of use (Everitt and Robbins, 2005). With repeated drug use, originally 

neutral environmental contexts and cues become conditioned by the drug and develop emotional 

significance based on the drug-using experience (Fuchs et al., 2009; Kalivas, 2009). Re-exposure 

to the cues, even in the absence of the drug itself, can activate memories of prior drug use that 

initiate feelings of craving and promote relapse (Parvaz et al., 2016). Reducing the strength of 

drug-associated memories may therefore help establish long-term abstinence. Memory 

weakening can be accomplished in one of two manners: either interfering with drug-cue memory 

reconsolidation or by promoting drug-cue memory extinction (Bossert et al., 2013; Torregrossa 

et al., 2011). Reconsolidation is the process of restabilization of a memory after retrieval. The 

reconsolidation process involves a cascade of intracellular signaling events and requires protein 

synthesis. Thus, during this period of lability, the administration of certain pharmacological 

agents can prevent memory re-stabilization, thereby weakening or even erasing the memory 
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(Tronson and Taylor, 2007). While reconsolidation is triggered by brief re-exposure to 

conditioned stimuli, the extinction process involves the repeated presentation of a conditioned 

stimulus in the absence of the expected outcome (e.g., foot shock or drug reinforcement), which 

leads to the formation of a new association that the cue is no longer predictive of the outcome. 

Thus, if drug-related cues are repeatedly presented in the absence of drug reinforcement, this 

extinction memory can inhibit craving and relapse upon subsequent cue re-exposure. (Holmes 

and Quirk, 2010; Nader et al., 2000; Nic Dhonnchadha et al., 2010).  

The lateral amygdala (LA) has been established as a locus for the encoding and storage of 

emotionally-salient memories. The LA receives afferent input from sensory thalamic and cortical 

sources, as well as inputs from the ventral tegmental area (VTA) and medial prefrontal cortex 

(mPFC), and therefore functions to integrate information during cue-associated learning (Janak 

and Tye, 2015; Maren, 2016). The LA is activated during both fear- and drug-associated 

conditioning and during subsequent re-exposure to fear- and drug-related cues (Ciccocioppo et 

al., 2001; Neisewander et al., 2000; Schafe et al., 2001). Recent work has begun to highlight 

specific synaptic changes within the LA during the reconsolidation and extinction of cue-

associated memories. Auditory thalamic and cortical synapses (T-LA and C-LA, respectively) 

are potentiated during fear conditioning, and depotentiated following cue extinction (Hong et al., 

2009; Kim et al., 2007a). However, during reward-associated learning a different pattern 

emerges where T-LA, but not C-LA synapses are preferentially involved (Tye et al., 2008; Rich 

et al., unpublished; See Chapter 2).  

Extinction and reconsolidation both involve similar neural mechanisms, and may be 

simultaneously activated during cue re-exposure, so timing and selection of the appropriate 

molecular target for pharmacological manipulation are important considerations. Previous 
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attempts to enhance cue extinction training have inadvertently promoted reconsolidation, leading 

to a strengthened drug-cue memory (Hofmann et al., 2012; Price et al., 2013). Due to these 

unintentional effects, it is necessary to identify agents that can bidirectionally regulate drug-cue 

memory. We recently found that inhibition of CaMKII in the amygdala can indeed 

bidirectionally interfere with a drug-associated memory (Rich et al., 2016). Intra-amygdala 

infusion of CaMKII inhibitors immediately after either drug-cue memory reactivation or 

extinction caused a reduction in cue-induced reinstatement relative to vehicle-infused controls. In 

this study, we investigate the involvement of calcineurin (CaN), a calcium-dependent 

phosphatase in drug-cue memory extinction and reconsolidation. CaN is considered a negative 

regulator of CaMKII, and so it is possible that upregulating CaN activity would have the same 

effects on drug-cue memory and relapse as inhibiting CaMKII activity. Inhibition of CaN in the 

hippocampus was previously shown to enhance reconsolidation of a contextual fear memory (de 

la Fuente et al., 2014). Additionally, the shift from maintenance to inhibition of an auditory fear 

memory by cue re-exposure is correlated with increased protein levels and enzymatic activity of 

CaN in the amygdala (Lin et al., 2003a, 2003b; Merlo et al., 2014), suggesting that increasing 

CaN activity at the time of memory retrieval may have amnestic effects. The goal of the present 

study was to determine if calcineurin activation would both interfere with the reconsolidation of, 

and enhance the extinction of, a memory associated with self-administered cocaine. Based on the 

prior physiological evidence that T-LA synapses are strengthened by cue-dependent learning and 

weakened by cue extinction (Kim et al., 2007a; Tye et al., 2008) we also investigated whether 

upregulation of CaN in the LA would alter T-LA synaptic plasticity. Our physiological and 

behavioral results demonstrate a causal role for CaN activity in the inhibition of drug-cue 
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memory reconsolidation and the activation of memory extinction. Therefore, CaN represents a 

potential therapeutic target for pharmaco-behavioral relapse prevention therapies. 

3.2 METHODS 

3.2.1 Subjects 

Naïve, adult male Sprague-Dawley rats (Envigo/Harlan), weighing 275-325 g on arrival, were 

used for all experiments. Rats were housed in a temperature- and humidity-controlled room, in 

auto-ventilated racks with an automated watering system. Animals were housed in pairs, given 

ad libitum access to food and water, and maintained on a 12/12 light-dark cycle. Prior to surgical 

procedures, rats were given at least 5 days to acclimate to the facility. Rats were food-deprived 

24 h prior to the start of behavioral experiments and maintained at ~90% of their free-feeding 

body weight (~20 g of chow per day) for the duration of testing. All behavioral experiments were 

run during the light-cycle. In addition, all procedures were conducted in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the University of Pittsburgh’s Institutional Animal Care and Use Committee. 

3.2.2 Self-administration test chambers 

Rats were trained to self-administer cocaine in standard operant conditioning chambers 

(MedAssociates), described previously (Rich et al., 2016). Experiments were counterbalanced 

across one of two chamber designs. The inclusion of two chambers allows the reconsolidation 
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group of rats to undergo reactivation in a novel context. The first type of chamber consisted of 

bar floors and the second type of chamber had grid floors. All chambers contained two 

retractable levers on one wall of the chamber, a tone-generator, stimulus-light above each lever, 

house light, and infusion pump. Operant boxes were kept in sound-attenuating chambers 

equipped with a fan for background noise. 

3.2.3 Drugs 

Cocaine hydrochloride (generously provided by the National Institute on Drug Abuse, Research 

Triangle Park, NC) was dissolved in sterile 0.9% saline (2 mg/ml) and filter-sterilized for self-

administration. Chlorogenic acid (CGA, Fisher Scientific) was dissolved in 1X PBS to a 

concentation of 200 ng/μl. CaN inhibitor, FK506 (Sigma) was dissolved in DMSO to a 

concentration of 10 μg/μl. 

3.2.4 Surgical procedures 

Surgeries were performed as previously described (Rich et al., 2016). Briefly, rats were 

anesthetized with ketamine hydrochloride (87.5 mg/kg; i.m.; Henry Schein) and xylazine 

hydrochloride (5 mg/kg; i.m.; Henry Schein) and then received an analgesic (Rimadyl, 5 mg/kg; 

s.c.; Henry Schein) and 5 ml of Lactated Ringer’s (s.c.). Betadine and 70% ethanol were applied 

to all incision sites. All rats were implanted with a chronic indwelling intravenous (i.v.) catheter 

(CamCaths) into the right jugular vein that was fed subcutaneously to the midscapular region, 

where they exited through a round incision. For experiments involving intracranial infusions, rats 
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were immediately placed into a stereotaxic instrument (Stoelting) and implanted with bilateral 

stainless-steel guide cannulae (22 gauge; Plastics One) targeting the LA (AP –3.0 mm, ML ±5.1 

mm, DV –7.9 mm, relative to bregma; Paxinos and Watson, 1998). For experiments involving 

intracranial infusions prior to electrophysiological recordings, guide cannulae were implanted 

more dorsal (DV: -7.2 mm) to prevent damage to axon fibers from the internal capsule which 

pass through the lateral amygdala. Guide cannulae were secured to the skull with 3 miniature 

screws and dental acrylic resin. Rats were then placed on a heating pad for recovery. After 

surgery, rats were individually housed, and given at least 7 days to recover before the start of 

behavioral training. Carprofen (5 mg/kg; s.c.) was administered for the first two days after 

surgery. Catheters were kept patent by daily infusions of sterile saline containing gentamicin (5 

mg/ml) and heparin (30 USP/ml). 

3.2.5 Self-administration procedures 

Rats administered saline or cocaine during daily sessions for 1 h, on a fixed ratio 1 (FR1) 

schedule of reinforcement with a 10 s timeout. The designated active lever (counterbalanced 

across left and right levers) produced a cocaine infusion paired with a 10 s tone-light compound 

cue. Pump durations were adjusted daily according to body weight in order to deliver the correct 

dose of drug (1.0 mg/kg/infusion). Responses on the inactive lever were recorded, but had no 

programmed consequences. Rats underwent training for at least 10 d and until they administered 

at least 8 infusions/day over 3 consecutive days. Rats that did not meet acquisition criteria by 20 

d were excluded from the study. The program was controlled by and data were collected using 

MedPC (MedAssociates). 
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3.2.6 Instrumental lever extinction 

For behavioral experiments only, after successful acquisition of self-administration, rats 

underwent instrumental lever extinction (IE) for at least 6 d. These sessions lasted for 1 h and 

continued until extinction criteria had been met (an average of < 25 lever presses on the last two 

days of extinction). Throughout IE, rats received no cocaine or cocaine-associated cue 

reinforcement. IE was conducted to reduce responding to a stable, low rate to later assess cue-

induced reinstatement. In addition, IE reduces the motivational value of other cues in the self-

administration context, such as the levers, so that subsequent testing specifically isolates the 

memory for the discrete cue associated with cocaine infusion.  

3.2.7 Pavlovian cue re-exposure procedures 

Cue re-exposure was conducted in the SA context. The session occurred 24 h after the final day 

of SA or, when included, IE, and lasted for 1 hr. During this session, rats received noncontingent 

presentations of the previously drug-paired cues: either 0 (no extinction), 3 

(reactivation/reconsolidation), or 60 (extinction) times. 

3.2.8 Intracranial infusions 

Immediately following cue re-exposure sessions, CGA or vehicle was administered in a volume 

of 0.5 µl/hemisphere. CGA was given at a dose of 100 ng/hemisphere. CGA has not been 

commonly used for infusion experiments, but this concentration is higher than the dose used in 



90 

 

vitro to achieve maximal CaN activity (Tong et al., 2007). For FK506 experiments, rats received 

one of four infusion cocktails: Veh + Veh, CGA + Veh, Veh + FK506, or CGA + FK506. FK506 

was given at a dose of 5 μg/side, which is a dose that has previously been administered via intra-

hippocampal microinfusions to inhibit CaN activity and enhance reconsolidation of a contextual 

fear memory (de la Fuente et al., 2014). Infusions were given by removing dummy cannuale and 

inserting injection cannulae (28 gauge; Plastics One) that extended 1 mm beyond the guide 

cannulae. The injectors were connected to Hamilton syringes controlled by a syringe pump via 

polyethylene tubing. Infusions were given over the course of 2 min and injectors were left in the 

cannulae for an additional 1 min to allow for drug diffusion. 

3.2.9 Cue-induced reinstatement 

24 h after cue memory manipulations, cue-induced reinstatement was assessed during a 1 h 

session that took place in the SA context. A lever press on the active lever produced a 10 sec 

presentation of the cocaine-associated cue on an FR1 schedule, but presses were not reinforced 

with cocaine. Lever presses on the inactive lever were recorded but had no programmed 

consequences. 

3.2.10 Prepartion of ex vivo amygdala slices 

Slices were prepared as described previously (Dong et al., 2006; Huang et al., 2008a), with slight 

modifications, with methods designed to improve neuronal health in adult rodents (Ting et al., 

2014). Briefly, 24 h after cue re-exposure sessions, rats were deeply anesthetized with isoflurane. 
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Rats were then briefly perfused with ice-cold cutting solution containing (in mM): 92 N-methyl-

d-glucamine (NMDG), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 5 sodium 

ascorbate, 2 thiourea, 3 sodium pyruvate, 10 MgSO4, and 0.5 CaCl2, saturated with carbogen 

(95% O2/5% CO2), pH adjusted to 7.4 with HCl. Rats were then decapitated and brains 

removed. Acute coronal slices of the amygdala (250 μm thick) were obtained (normally 4–6 

slices were obtained from each rat) using a VT1200S vibratome (Leica, Germany) in 4 °C 

cutting solution. Slices were placed in a holding chamber filled with the same cutting solution 

and incubated at 37°C for 10-15 min before being transferred to a beaker of HEPES-based 

holding solution containing (in mM): 86 NaCl, 2.5 KCl, 1.2 NaH2PO4, 35 NaHCO3, 20 HEPES, 

25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 1 MgCl2, and 2 CaCl2, saturated 

with carbogen. Slices were allowed to recover for >30 min at room temperature before 

experimentation. 

3.2.11 Ex vivo electrophysiology 

Whole-cell recordings were obtained from individual principal neurons in the dorsal LA using 

glass pipettes (3–5 MΩ). Voltage-clamp experiments used pipettes filled with a cesium-based 

internal solution [in mM, cesium methanesulfonate 108, CsCl 15, CsEGTA 0.4, TEA-Cl 5, 

HEPES 20, Mg-ATP 2.5, Na-GTP 0.25, QX-314-Cl 1, sodium phosphocreatine 7.5, and L-

glutathione 1, at pH 7.3] and current-clamp experiments used pipettes filled with a potassium-

based internal solution [in mM, potassium methanesulfonate 108, KCl 20, K-EGTA 0.4, HEPES 

10, Mg-ATP 2.5, Na-GTP 0.25, sodium phosphocreatine 7.5, L-glutathione 1, MgCl2 2, at pH 

7.3]. During recordings, slices were superfused with aCSF that was heated to 31–33 °C by 
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passing the solution through a feedback-controlled in-line heater (Warner, CT) before entering 

the chamber. External perfusion consisted of a modified artificial cerebrospinal fluid (ACSF), 

containing, in mM NaCl 119, KCl 2.5, NaHCO3 26, NaH2PO4 1.2, glucose 12.5, HEPES 5, 

MgSO4 1, CaCl2 2, saturated with 95% O2/5% CO2. Neurons were voltage-clamped at -70 mV. 

To stimulate putative thalamic afferents, a concentric bipolar stimulating electrode (FHC, 

Bowdoin, ME) was placed over axon fibers emerging from the internal capsule. Evoked 

excitatory postsynaptic currents (EPSCs) were recorded by stimulating LA projections using 0.1 

ms pulses at a predetermined series of intensities (10-35 μA) from an isolated current stimulator 

(A-M instruments; Digitimer Ltd, Hertfordshire, England. For paired pulse recordings each pulse 

was separated by a 50 ms interpulse interval. AMPAR currents were elicited at ERev-70 mV 

holding potential and NMDAR currents were elicited at a ERev+40 mV holding potential. 

NMDAR amplitude was operationally defined as the amplitude of the current 35 ms after the 

peak of the AMPAR current; at this time point, AMPAR-mediated currents have subsided 

(Huang et al., 2008a). For all experiments, series resistance was 10–25 MΩ, uncompensated, and 

monitored continuously during recording. Cells with a change in series resistance beyond 20% 

were not accepted for data analysis. Synaptic currents were recorded with a MultiClamp 700B 

amplifier, filtered at 3 kHz, amplified 5 times, and then digitized at 20 kHz. Picrotoxin (100 μM) 

was included to inhibit GABAA receptor-mediated currents in all experiments. 

3.2.12 Histological analysis 

After the completion of behavioral experiments, rats with intracranial cannulae were sacrificed 

via decapitation. Brains were dissected and placed in 10% formalin for at least 3 d then 
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transferred to 30% sucrose for at least 3 d. Brains were then frozen and sectioned coronally 

through the BLA on a cryostat. Sections were taken at 50 µm and placed on slides for 

visualization of infusion placements (Figure 16). The investigator was blind to treatment group 

when analyzing histology, and animals with infusions outside of the BLA were removed from 

the main analysis. 

3.2.13 Statistical analyses 

All statistical analyses were performed using GraphPadPrism for Windows and results are 

expressed as mean ± SEM. Rats were distributed into groups based on a matching procedure that 

ensured that each group had no statistical differences in their cocaine infusions acquired over 

days, or differences in lever extinction behavior. For behavioral experiments, reinstatement tests 

were analyzed by two-way ANOVA with repeated measures, with the between-subjects factor 

being responding on the last day of lever extinction versus reinstatement responding and the 

within-subjects factor being CGA vs. Veh. For electrophysiological experiments, data were 

coded such that experimenters were not aware of treatment groups when performing data 

analysis, and then decoded for final results. Data were analyzed offline using ClampFit 10.3. For 

experiments in which the end points were from individual cells, such as EPSCs, we used the 

averaged value of a parameter from all cells recorded from an animal to represent the parameter 

of this animal. For electrical stimulation experiments EPSC amplitude was calculated at each 

stimulation intensity and compared between groups using two-way ANOVA with repeated 

measures. Paired pulse ratio (PPR) was calculated as the ratio of the peak current of the second 

EPSC to the peak current of the first EPSC. AMPA:NMDA ratio was calculated as the ratio of 
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peak current at -60mV to the current at +40 mV, 35 ms after stimulus. For, PPR, AMPA:NMDA 

ratio, AMPAR, and NMDAR current analyses, comparisons were made using unpaired t-tests. 

All data points are an average of 10 trials. Each experiment was replicated in at least 5-6 rats (1-

5 cells were recorded from each rat) for electrophysiological analysis and at least 7 rats for 

behavioral tests. For all analyses, significant effects were further analyzed by Tukey’s or 

Bonferroni’s post hoc tests, with significance set at P < 0.05. All data were determined to be 

normally distributed using the Shapiro-Wilk test, and Bartlett’s test was used to determine that 

there were no significant differences in the estimated variance between groups. 
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Figure 16. Histological verification of LA guide cannulae implants. 

Schematic showing guide cannulae placements throughout the anterior-posterior extent of the LA. The shaded area 

represents region of acceptable cannulae placement. Rats that received cannulae implants outside of these regions 

were excluded from analysis. Coordinates are in mm, posterior from bregma.  
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3.3 RESULTS 

To determine if CaN in the LA was involved in the regulation of cocaine-cue memory we used 

an approach that combined in vivo pharmacological activation of CaN with specific cue memory 

manipulations followed by behavioral and electrophysiological assessments. Rats were trained to 

self-administer (SA) cocaine on a fixed ratio (FR1) schedule of reinforcement, so that a single 

press on a predesignated active lever resulted in an intravenous cocaine infusion together with 

presentation of an audiovisual cue (conditioned stimulus, CS). Following SA, for reinstatement 

experiments, rats underwent instrumental lever extinction (IE) (Figure 17A,B). During IE, rats 

were allowed to perform operant responses, however, presses on the active lever were no longer 

reinforced by either cocaine or CS presentation. While this extinguishes the operant response, the 

cocaine-cue association remains, so that future presentations of the CS can promote 

reinstatement of the lever pressing response (Torregrossa and Taylor, 2013). For 

electrophysiology experiments, IE was omitted because our previous experiments show that 

thalamo-amgydala (T-LA) synaptic plasticity is not mediated by IE (Rich et al., unpublished; See 

Chapter 2). Rats were next assigned to one of three memory manipulation groups and exposed to 

passive presentations of CS: no reactivation (0 CS), cue reactivation (3 CS) or cue extinction (60 

CS) (Figure 17A,B). Immediately following these sessions, rats received intra-LA 

microinfusions of the CaN activator, chlorogenic acid (CGA; 100 ng/hemisphere) (Tong et al., 

2007), or vehicle (Veh) to determine what effect CaN activation has on cocaine-cue memory 

processes. Finally, 24 hours later, rats either received a cue-induced reinstatement test or ex vivo 
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Figure 17. Experimental design. 

Schematic demonstrating (A) timeline of each experimental phase and color-coded treatment groups (B) cartoon of 

operant chamber with visual depiction of each experimental stage, and (C) image of LA coronal section, with 

representative placement of stimulating electrode above IC fibers and position of patch pipette. EPSCs were evoked 

from LA principal neurons by stimulating the IC (putative T-LA synapses). SA, self-administration; IE, instrumental 

extinction; CS, conditioned stimuli; IC, internal capsule; EC, external capsule. 
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slices of the LA were prepared for electrophysiological recordings (Figure 17A,B). For 

reinstatement, rats returned to operant boxes and received response-contingent presentations of 

CS, but not cocaine. A high degree of lever pressing during reinstatement is suggestive of an 

intact drug-cue association, while low levels of lever pressing indicate that the drug-cue 

association has been disrupted. For electrophysiological recordings, whole-cell voltage clamp 

recordings were performed from LA principal neurons. EPSCs were evoked by stimulating 

internal capsule fibers to target T-LA synapses (Figure 17C). Using a predetermined series of 

stimulation intensities, we generated EPSC input-output relationships. We also compared 

measures of pre- and postsynaptic plasticity. This strategy enables a direct comparison between 

T-LA synaptic activity and cocaine-cue memory and allows for the assessment of the role of 

CaN-induced plasticity in mediating relapse-like behavior. 

3.3.1 Effect of Intra-LA CaN Activation in the Absence of Drug-Cue Memory Retrieval 

We first determined the effects of LA CaN activation in the absence of drug-cue memory 

retrieval (0 CS re-exposure). Previous studies have shown that amnestic agents are ineffective at 

inhibiting memories if they are not reactivated or retrieved; this prevents the memory from 

entering a destabilized, labile state, and so it cannot be interfered with pharmacologically (Rich 

et al., 2016; Tronson et al., 2006). Therefore, we predicted that CGA-induced activation of CaN 

would have no effect on reinstatement or T-LA synaptic plasticity in the absence of retrieval. For 

both experiments, rats were split into groups based on a random matching procedure that ensured 

no training differences between groups. There were no significant differences or interactions 

with day of training for active lever presses during SA or IE (Figure 18A,B; both two-way 
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ANOVA;  P > 0.05). We found that treatment with CGA following the no-reactivation control 

procedure had no significant effect on active lever responding during cue-induced reinstatement, 

indicating that pharmacological manipulation of CaN signaling has no effect on cocaine seeking 

in the absence of cue memory retrieval (Figure 18C; two-way ANOVA: P > 0.05).  

 

 

 

 

Figure 18. Calcineurin activation has no effect on cue-induced reinstatement in the absence of memory 

retrieval.  

(A,B) Mean number of active lever presses per day during self-administration (SA) and instrumental extinction (IE). 

There were no significant differences in active lever presses during (A) SA (Two-way ANOVA, F(1,20) = 0.343, P > 

0.05) or (B) IE (Two-way ANOVA, F(1,20) = 0.286, P > 0.05). Following IE, rats were placed back in training 

context and received a no-reactivation (0 CS) session followed immediately by infusion with either CGA or Veh. 

(C) Mean number of active lever presses during the last day of instrumental extinction compared to cue-induced 

reinstatement. CGA activation following 0 CS has no effect on reinstatement (two-way ANOVA, F(1,20) = 0.021, P > 

0.05). Data are expressed as mean ± SEM; n in bars, number of rats. 
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We next assessed if intra-LA infusion of CGA in the absence of memory retrieval would 

alter T-LA synaptic strength, and as expected, found no differences between CGA- and Veh-

treated animals for any measure of synaptic plasticity. EPSC input-output relationships did not 

vary between groups (Figure 19A). At the highest stimulation intensity (35 μA), CGA- and Veh-

groups had average EPSC amplitudes of 375 and 376 pA, respectively, which is consistent with 

our previous studies for animals in the no cue re-exposure condition (Rich et al., unpublished; 

See Chapter 2). Similarly, we saw no differences in PPR, AMPA:NMDA, AMPAR current, or 

NMDAR current  (Figure 19B-E; all unpaired t-test, P > 0.05). Together, these data suggest that 

in the absence of memory retrieval, attempted activation of CaN by CGA produces no alterations 

in T-LA pre- or postsynaptic plasticity, corresponding to the lack of difference in cue-elicited 

drug-seeking. 

3.3.2 Effect of Intra-LA CaN Activation during Drug-Cue Memory Reconsolidation 

We next investigated whether activating CaN in the LA immediately following drug-cue 

memory reactivation (3 CS) would alter subsequent cue-induced drug-seeking. CaN activity 

promotes LTD-like synaptic modifications (Baumgartel and Mansuy, 2012; Mulkey et al., 1994); 

because reconsolidation is regulated by opposing LTP-like mechanisms, we hypothesized that 

activating CaN following cue reactivation would interfere with reconsolidation. The resulting 

disruption of the cocaine-cue association would suppress the conditioned response (lever 

pressing) to subsequent cue presentations, thereby attenuating reinstatement. Again, rats were 

split into groups so that there were no significant differences or interactions with day of training 

for active lever presses during SA or IE (Figure 20A,B; both two-way ANOVA; P > 0.05). We 
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Figure 19. Calcineurin activation has no effect on T-LA plasticity in the absence of memory retrieval. 

Following self-administration, rats received a no-reactivation (0 CS) session followed immediately by infusion with 

either CGA or Veh. 24 h later, ex vivo recordings were performed in the LA. (A) Input-output curve demonstrating 

average evoked EPSC amplitude across various stimulation intensities. No significant differences in EPSC 

amplitude between groups were found at any of the stimulation intensities (Two-way ANOVA, F(1,9) = 0.356, P > 

0.05). (B) No significant differences in PPR between groups (Unpaired t-test, t(9) = 0.387, P > 0.05). (c-e) No 

significant differences between groups for (C) AMPA:NMDA (Unpaired t-test, t(9) = 0.188, P > 0.05), (D) AMPAR 

current (Unpaired t-test, t(9) = 0.363, P > 0.05), or (E) NMDAR current (Unpaired t-test, t(9) = 0.388, P > 0.05). Data 

are expressed as mean ± SEM; n in bars, number of rats (number of neurons). Insets: Sample average EPSC traces. 

Scale bars: 50 ms, 200 pA. 
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Figure 20. Calcineurin activation following cue reactivation inhibits reconsolidation and attenuates 

subsequent cue-induced reinstatement. 

(A,B) Mean number of active lever presses per day during self-administration (SA) and instrumental extinction (IE). 

There were no significant differences in active lever presses during (A) SA (Two-way ANOVA, F(1,20) = 0.542, P > 

0.05) or (B) IE (Two-way ANOVA, F(1,20) = 0.152, P > 0.05). Following IE, rats were placed back in training 

context and received a brief cue-reactivation (3 CS) session followed immediately by infusion with either CGA or 

Veh. (C) Mean number of active lever presses during the last day of instrumental extinction compared to cue-

induced reinstatement. CGA activation following 0 CS reduces active lever responding during reinstatement. Two-

way ANOVA, significant group x day interaction (F(1,20) = 4.79, P = 0.041); post hoc analysis: *p < 0.05. Data are 

expressed as mean ± SEM; n in bars, number of rats 

 

 

 

 

 



103 

 

found that treatment with CGA following cue reactivation did indeed reduce active lever 

responding during cue-induced reinstatement, indicating that pharmacological manipulation of 

CaN signaling disrupts reconsolidation (Figure 20C; two-way ANOVA; significant group x day 

interaction; F(1,20) = 4.79, P = 0.041). 

We next determined if the suppression in cue-induced reinstatement was caused by CaN-

dependent alterations at T-LA synapses. Unlike the non-reactivation condition, there were 

differences in measures of synaptic plasticity between CGA- and Veh-treated animals. First, we 

found that CGA-induced activation of CaN caused a reduction in the EPSC input-output 

relationship at T-LA synapses (Figure 21A; two-way ANOVA, significant group x stimulation 

intensity interaction, F(5,60) = 2.39, P = 0.048, P = 0.048). At the highest stimulation intensity (35 

μA), Veh-treated animals had an average EPSC amplitude of 497 pA, while CGA-treated 

animals had an average EPSC amplitude of 405 pA. These data suggest a synaptic basis for the 

disruption in reconsolidation produced by CGA that suppressed drug-seeking behavior. Next, we 

further examined measures of synaptic plasticity to determine if a pre- or postsynaptic 

mechanism could explain the reduced synaptic strength.  We again saw no group differences in 

PPR (Figure 21B; unpaired t-test, P > 0.05). However, AMPA:NMDA was reduced by CGA 

infusion at a trend level (Figure 21C; unpaired t-test, t(12) = 2.16, P = 0.052). Upon further 

examination, it became apparent that this reduction was driven by changes in AMPAR, as 

average AMPAR current was significantly reduced by CGA (Figure 21E; unpaired t-test, t(12) = 

3.02, P = 0.011) while there was no difference in NMDAR current (Figure 21E; unpaired t-test, 

P > 0.05).  Together, these data suggest that following drug-cue memory reactivation, CGA 

infusion leads to postsynaptic reductions in AMPAR that interfere with reconsolidation. 
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Figure 21. Calcineurin activation during reconsolidation alters synaptic plasticity through a postsynaptic 

reduction in AMPAR current. 

Following self-administration, rats received a brief cue reactivation (3 CS) session followed immediately by infusion 

with either CGA or Veh. 24 h later, ex vivo recordings were performed in the LA. (A) Input-output curve 

demonstrating average evoked EPSC amplitude across various stimulation intensities. Intra-LA CaN activation by 

CGA alters EPSC amplitude. Two-way ANOVA, significant group x stim intensity interaction (F(5,60) = 2.39, P = 

0.048). (B) No significant differences in PPR between groups (Unpaired t-test, t(12) = 0.111, P > 0.05). (C) CaN 

activation by CGA altered AMPA:NMDA at a trend level (Unpaired t-test, t(12) = 2.16, P = 0.052) (D) CaN 

activation by CGA significantly reduced AMPAR current (Unpaired t-test, t(12) = 3.02, P = 0.011), but had no effect 

on (E) NMDAR current (Unpaired t-test, t(12) = 0.623, P > 0.05). Data are expressed as mean ± SEM; n in bars, 

number of rats (number of neurons). *p < .05; #p < 0.10. Insets: Sample average EPSC traces. Scale bars: 50 ms, 

200 pA. 
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3.3.3 Effect of Intra-LA CaN Activation during Drug-Cue Memory Extinction 

Finally, we tested the effects of CGA-induced CaN activation following drug-cue memory 

extinction (60 CS). We hypothesized that we would observe CGA-induced enhancement of 

extinction. Specifically, we predicted that cue extinction is mediated by CaN activity, so an 

upregulation of CaN activity would further suppress the original drug-cue association, leading to 

an even more pronounced attenuation in active lever pressing during cue-induced reinstatement. 

Further, we predicted that these reductions would again be mediated by postsynaptic changes in 

AMPAR. As with the other experiments, rats were again split into groups so that there were no 

significant differences or interactions with day of training for active lever presses during SA or 

IE (Figure 22A,B; both two-way ANOVA; P > 0.05). As with reconsolidation, we found that 

CGA-induced CaN activation following cue extinction did indeed attenuate reinstatement 

relative to Veh-treated animals (Figure 22C; two-way ANOVA; F(1,17) = 6.89, P = 0.018), 

suggesting that upregulating CaN activity enhances cue extinction. To rule out any nonspecific 

effects of CGA, we next performed an experiment in which we combined intra-LA CGA 

infusions with a known inhibitor of CaN, FK-506 (de la Fuente et al., 2014). Rats again received 

cue extinction, but this time received one of four infusions (Veh-Veh, CGA-Veh, Veh-FK-506, 

CGA-FK-506) after the session, and were tested for reinstatement the following day. Results 

revealed that active lever responding during reinstatement depended on the compound that was 

infused (Figure 22D; two-way ANOVA, main effect of group; F(3,33) = 3.04, P = 0.043). CGA-

infusion alone resulted in a reduction in reinstatement, replicating our findings from the from 

Figure 22C. Additionally, we found that the CGA-induced reductions in reinstatement were  
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Figure 22. Calcineurin activation enhances cue extinction causing a reduction in subsequent cue-induced 

reinstatement. 

(A,B) Mean number of active lever presses per day during self-administration (SA) and instrumental extinction (IE). 

There were no significant differences in active lever presses during (A) SA (Two-way ANOVA, F(1,17) = 0.179, P > 

0.05) or (B) IE (Two-way ANOVA, F(1,17) = 1.35, P > 0.05). Following IE, rats were placed back in training context 

and received a cue-extinction (60 CS) session followed immediately by infusion with either CGA or Veh. (C) Mean 

number of active lever presses during the last day of instrumental extinction compared to cue-induced reinstatement. 

CGA activation following 0 CS reduces active lever responding during reinstatement. Two-way ANOVA, main 

effect of group (F(1,17) = 6.89, P = 0.018) (D) Effect of CGA on extinction is blocked by co-infusion of CaN 

inhibitor, FK-506. Two-way ANOVA, main effect of group (F(3,33) = 3.04, P = 0.043)  post hoc analysis: *p < 0.05, 

**p < .01. Data are expressed as mean ± SEM; n in bars, number of rats. 
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blocked by the addition of FK-506, suggesting that CGA does indeed exert its effects through 

activation of CaN, and that this upregulated activity is blocked by FK-506. 

We then determined if the CaN-dependent enhancements in drug-cue memory extinction 

were due to T-LA synaptic alterations. We found that CGA-induced activation of CaN during 

cue extinction caused a reduction in the EPSC input-output relationship at T-LA synapses 

(Figure 23A; two-way ANOVA, significant group x stimulation intensity interaction, F(5,65) = 

2.64, P = 0.031, P = 0.031). Interestingly, at the highest stimulation intensity (35 μA), both 

CGA- and Veh-infused animals had noticeably lower EPSC amplitudes than the 0 CS or 3 CS 

experiments. Veh-treated animals had an average EPSC amplitude of 311 pA; however, CGA-

treated animals were significantly lower than Veh-animals, with an average EPSC amplitude of 

just 239 pA. These data are consistent with previous results, in which 60 CS re-exposure reduces 

T-LA plasticity (Rich et al., unpublished, see Chapter 2). These data suggest a T-LA synaptic 

mechanism for both extincton learning and the enhancement in extinction by CGA that 

suppressed relapse-like behavior. Next, we further examined measures of synaptic plasticity to 

determine if a pre- or postsynaptic mechanisms could explain the reduced synaptic strength.  

Surprisingly, CGA-induced activation of CaN during cue extinction increased PPR (Figure 23B; 

unpaired t-test, t(13) = 2.75P = 0.031). Additionally, AMPA:NMDA was reduced by CGA 

infusion at a trend level (Figure 23C; unpaired t-test, t(12) = 1.99, P = 0.070), but further 

examination determined that this reduction was not driven by specific changes in AMPAR or 

NMDAR, as neither AMPAR current (Figure 23D; unpaired t-test, P > 0.05) nor NMDAR 

current (Figure 23E; unpaired t-test, P > 0.05) were significantly altered by CGA infusion. 

Together these data suggest that a presynaptic signaling mechanism (ie. change in glutamate 

release) is primarily responsible for CaN-induced reductions in synaptic strength that correlate 
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with enhanced drug-cue memory extinction. Additionally, there may be a combination of effects 

at AMPAR and NMDAR that together lead to slight changes at the postsynaptic membrane that 

contribute to reduced excitatory synaptic strength. 



109 

 

 

Figure 23. Calcineurin activation during cue extinction alters synaptic plasticity through a presynaptic 

mechanism. 

Following self-administration, rats received a cue-extinction (60 CS) session followed immediately by infusion with 

either CGA or Veh. 24 h later, ex vivo recordings were performed in the LA. (A) Input-output curve demonstrating 

average evoked EPSC amplitude across various stimulation intensities. Intra-LA CaN activation by CGA alters 

EPSC amplitude. Two-way ANOVA, significant group x stim intensity interaction (F(5,65) = 2.64, P = 0.031). (B) 

CGA infusion significantly increases PPR (Unpaired t-test, t(13) = 2.75, P = 0.12). CaN activation by CGA altered 

(C) AMPA:NMDA at a trend level (Unpaired t-test, t(12) = 1.99, p = 0.070), but had no effect on (D) AMPAR 

current (Unpaired t-test, t(12) = 0.972, P > 0.05) or (E) NMDAR current (Unpaired t-test, t(12) = 0.368, P > 0.05). Data 

are expressed as mean ± SEM; n in bars, number of rats (number of neurons). *p < .05; #p < 0.10. Insets: Sample 

average EPSC traces. Scale bars: 50 ms, 200 pA.  
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3.4 DISCUSSION 

The present study identifies a causal relationship between CaN-induced activity at T-LA 

synapses and the suppression of cue-elicited cocaine-seeking. Specifically, activation of CaN, 

during either reconsolidation or extinction of a memory associated with cocaine self-

adminsitration led to synaptic modifications that resulted in a reduction in cue-induced 

reinstatement (Figures 20C and 22C), effectively disrupting the drug-associated memory. These 

results are consistent with both a partial inhibition of reconsolidation of the original cocaine-cue 

memory and an enhancement in the new cocaine-cue extinction memory. Importantly, in the 

absence of memory retrieval, CaN activation had no memory-interfering effects, confirming that 

the memory trace must be reactivated in order to achieve pharmacologically-induced disruption 

(Figure 18C). We have previously found similar behavioral effects following intra-BLA 

infusion of CaMKII inhibitors (Rich et al., 2016; See Appendix A), suggesting that CaN and 

CaMKII within the BLA have opposing actions on drug-associated memory processes. We have 

also shown that T-LA synapses are an important locus for drug-cue memory, and that these 

synapses are differentially regulated by consolidation/reconsolidation and extinction (See 

Chapter 2). However, to our knowledge this study is the first report of pharmacologically-

induced changes in synaptic activity that are directly associated with changes in the conditioned 

response to drug-associated cues. Upregulation of CaN activity following cue retrieval induces 

postsynaptic changes, perhaps driven by activity at AMPAR that prevents the memory-

maintenance/strengthening effects of reconsolidation and results in less reinstatement (Figure 

21). Similarly, upregulation of CaN activity following cue extinction also induces synaptic 

changes, although this may be a combination of pre- and postsynaptic effects; for instance, a 
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decreased glutamate release probability along with AMPAR and NMDAR-mediated effects 

(Figure 23). Together, these synaptic changes appear to enhance the consolidation of drug-cue 

extinction, which further reduces the propensity of cues to trigger relapse-like behaviors. 

3.4.1 Targeting memory processes as a strategy for relapse prevention 

Interfering with memories that trigger drug-seeking in addicted individuals is hypothesized to 

assist in the maintenance of long-term abstinence, however, this strategy has had limited success 

in preventing relapse (Koob and Volkow, 2010). Clinical studies have attempted to use cue 

extinction as a means to interfere with drug-related memories. In these experiments, individuals 

were re-exposed to multimodal cues in an effort to decrease subsequent craving and relapse 

when the drug-associated cues were re-encountered (Price et al., 2013). This idea is taken from 

research on fear-associated memories, including PTSD, where cue exposure therapy has been 

quite successful at limiting the detrimental effects of maladaptive memories in both animals and 

humans (Hofmann et al., 2012; Monfils et al., 2009; Ressler et al., 2004). Unfortunately, unlike 

fear memories, extinction of drug-associated memories has not met with clinical success. 

However, it may be possible to combine behavioral therapies, like extinction, with 

pharmacological treatments. Indeed, this approach has been demonstrated to have the highest 

success rates (Carroll and Onken, 2005); however, it is becoming clear from preclinical studies 

that the best medications would be those that both block drug-cue memory reconsolidation and 

augment extinction learning (Cleva et al., 2010; Rich et al., 2016; Sorg, 2012; Torregrossa and 

Taylor, 2016).  Our current study investigating CaN activation further validates this theory. A 

bidirectional effect on memory overcomes previous limitations of pharmacological agents, such 
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as glutamatergic agonists like DCS (Lee et al., 2009; Price et al., 2013). The efficacy of DCS is 

dependent upon effective extinction training, and in the absence of memory extinction, DCS can 

cause unintentional, reconsolidation-associated memory-strengthening effects, limiting its 

usefulness as an adjunctive treatment (Lee et al., 2009).  As we have demonstrated with CaMKII 

inhibition (Rich et al., 2016), activating CaN signaling pathways in conjunction with exposure 

therapy may therefore be a viable treatment strategy, as memory weakening occurs under both 

memory reactivation and extinction conditions.  

In the current study, we demonstrate potential therapeutic effects of CaN activation 

following 3 (reconsolidation) or 60 (extinction) presentations of cocaine-associated cues. In our 

previous work we have shown that 120 presentations of cues during re-exposure results in an 

even more pronounced AMPAR-associated depotentiation at T-LA synapses that correlates with 

a further suppression of cue-induced reinstatement. That the number of unreinforced cue 

presentations is a critical determinant of extinction efficacy is not altogether a novel premise 

(Price et al., 2013; Unrod et al., 2014). However, we did not examine the effects of CaN 

activation following this extended extinction duration because we previously failed to observe 

pharmacological enhancement via CaMKII inhibtion, due to a potential floor effect (Rich et al., 

2016). Still, it would be interesting for future studies to examine what, if any, changes occur at 

T-LA synapses following the activation of CaN immediately after more extensive extinction. 

Furthermore, it would be interesting to see if the combination of extinction and CaN activation 

together prevents either context-dependent renewal or spontaneous recovery of drug-seeking, 

both of which have proven to limit the therapeutic potential of cue re-exposure. 
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3.4.2 Mechanisms of calcineurin action at the synapse 

CaN is a Ca2+/calmodulin-dependent phosphatase that has a high affinity for Ca2+ and can 

therefore be activated by a relatively low concentration of intracellular Ca2+.  When synaptic 

activity is sparse (ie. low frequency LTD induction), the primary means of Ca2+ entry is through 

L-type voltage-gated calcium channels (LTCC), which allow for a sustained, but low increase in 

Ca2+ that results in activation of CaN (Bi and Poo, 1998; Ghosh et al., 2017). CaN is a 

heterodimer composed of a catalytic A subunit and a regulatory B subunit (Mumby and Walter, 

1993). Sequential conformational changes following binding of Ca2+ and calmodulin to CaNB 

activates the phosphatase via displacement of the CaNA autoinhibitory domain (Shen et al., 

2008). CaN then directly dephosphorylates GluA1 at Ser845, which prevents kinase-induced 

membrane insertion of AMPAR (Beattie et al., 2000; Man et al., 2007; Roche et al., 1996). CaN 

also initiates a phosphatase cascade (via protein phosphatase 1 and protein phosphatase 2A) that 

ultimately leads to the inactivation of LTP-promoting kinases as well as downstream actions at 

AMPAR and other synaptic proteins (Baumgartel and Mansuy, 2012; Mulkey et al., 1994). CaN-

induced internalization of AMPAR causes changes in spine morphology, decreased spine density 

and decreased AMPA:NMDA (Beattie et al., 2000; Lu et al., 2000; Sanderson et al., 2016). 

These changes are consistent with our present results in which CaN activation following drug-

cue memory reactivation and extinction has effects on plasticity through a postsynaptic 

mechanism, including alterations in AMPAR (Figures 21 and 23).  

CaN has also been shown to have effects at the presynaptic membrane. For example, in 

the cortex, CaN is enriched at presynaptic terminals (Shields et al., 1985) and application of CaN 

inhibitors increases both the rate of spontaneous action potential firing and the frequency of 
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EPSCs (Victor et al., 1995). These data are suggestive of an inhibitory role of CaN in 

glutamatergic transmission and is consistent with the increase in PPR (decrease in release 

probability) that we observe following the activation of CaN during cue extinction (Figure 23B). 

Previous studies involving fear conditioning have found that activation of presynaptic group II 

metabotropic glutamate receptors (mGluRII) reduces T-LA synaptic transmission and reduces 

the expression of conditioned fear (Heinbockel and Pape, 2000; Lin et al., 2005). However, it 

should be noted that our previous experiments involving drug-cue memory extinction did not 

uncover any presynaptic-based changes in T-LA synaptic plasticity. Therefore, the implications 

of CaN-induced presynaptic plasticity, as well as the precise mechanisms by which this occurs, 

remain to be determined. 

3.4.3 Role for calcineurin in cue-dependent memory processes 

CaN has long been established as a negative regulator of emotionally-salient memories 

(Baumgärtel et al., 2008; Havekes et al., 2008; de la Fuente et al., 2014). CaN was first identified 

to play a role in the regulation of fear-associated memories, specifically the establishment of fear 

extinction. Fear extinction was shown to evoke increases in protein levels and enzymatic activity 

of CaN within the amygdala that were accompanied by the reversal of fear conditioning-induced 

protein phosphorylation (Lin et al., 2003a, 2003b). These effects were blocked by the 

administration of CaN inhibitors, suggesting that CaN either directly or indirectly 

dephosphorylates specific substrates whose phosphorylation is required for the consolidation of 

fear-associated memories. These investigators next attempted to model fear extinction via low-

frequency stimulation (LFS) of amygdala-projecting sensory cortical afferents, a manipulation 
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that elicited depotentiation in the LA following fear conditioning (Lin et al., 2003b). As with cue 

extinction, LFS-induced depotentiation was associated with an increase in CaN activity that was 

dependent on NMDAR and LTCC. Administration of CaN inhibitors blocked LFS-induced 

depotentiation in vitro and LFS-induced fear extinction in vivo. The fear extinction-associated 

effects of CaN appear to be dependent on the amount or duration of cue re-exposure. Everitt and 

colleagues demonstrated that protein levels of calcineurin increase after 10 (but not fewer) 

presentations of a fear-associated CS, suggesting that CaN is likely important for the switch 

between maintenance and loss of fear memory (Merlo et al., 2014).  

Finally, there is evidence that CaN is also involved in the regulation of drug-related 

memories, specifically the destabilization of a contextual memory associated with 

methamphetamine (METH) (Yu et al., 2016). In this study, authors performed conditioned place 

preference for METH and used a protein synthesis inhibitor (anisomycin) to disrupt the 

reconsolidation of the contextual memory. Destabilization was confirmed by observations of , 

reduced phosphorylation of GluA1 at Ser845, decreased spine density, and smaller 

AMPA:NMDA. When authors combined anisomycin treatment with inhibitors of either CaN or 

protein phosphatase 1, the destabilization-associated deficits were prevented, suggesting that 

destabilization of drug-related contextual memory occurs through a CaN-dependent 

dephosphorylation cascade that results in AMPAR internalization and LTD (Mulkey et al., 1994; 

Yu et al., 2016). Together with the results from the present study, there is strong evidence that 

upregulating CaN activity may be an effective strategy for reducing the strength of drug-related 

memories, either via the blockade of reconsolidation or by the enhancement of extinction. 
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4.0  GENERAL DISCUSSION 

The work presented in this dissertation focused on cellular and molecular mechanisms involved 

in the regulation of a memory associated with self-administered cocaine. We investigated 

whether specific afferent inputs to the LA were involved in the formation, maintenance, and 

modification of a cocaine-cue associative memory We also investigated whether modification of 

LA synapses (either through behavioral cue re-exposure, optogenetics, or site-specific infusion 

of a pharmacological agent), could suppress future drug-seeking behavior. Our primary 

conclusions are that cocaine-cue memories are encoded, at least in part, by the strengthening of 

thalamo-amygdala (specifically MGN), but not cortico-amygdala, synapses. Brief cue 

reactivation initiates a reconsolidation event that maintains the cocaine-cue association and 

promotes drug-seeking behavior. More extensive cue re-exposure, in the absence of cocaine 

reinforcement, extinguishes the cocaine-cue association by engaging cellular mechanisms that 

depotentiate T-LA synapses, thereby attenuating cue-elicited drug-seeking. Finally, we propose 

that cocaine-cue memories can be interfered with by promoting synaptic activity that mirrors cue 

extinction, either through optically-induced LTD of MGN-LA synapses (Chapter 2), or by 

administration of pharmacological agents that either activate the CaN signaling pathway 

(Chapter 3) or inhibit the CaMKIIα signaling pathway (See Appendix A). In this discussion, we 

will describe how our findings lead toward a better understanding of drug-related memories and 
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addiction in general, as well as potential therapeutic implications of a circuit- and pharmacology-

based approach for relapse prevention. 

4.1 UNDERSTANDING THE CELLULAR MECHANISMS OF 

RECONSOLIDATION AND EXTINCTION 

The results of this dissertation support the notion that drug-cue memory reconsolidation and 

extinction are separate and competing processes that likely co-occur following memory 

reactivation. We also demonstrate the involvement of competing neural mechanisms: cellular 

events that enhance synaptic strength promote reconsolidation and prevent extinction while 

cellular events that weaken synaptic strength support extinction and inhibit reconsolidation. 

Moreover, we have uncovered an opposing intracellular phosphatase/kinase pathway 

(CaN/CaMKII) that bidirectionally regulates the two processes. Activating CaN signaling and/or 

inhibiting CaMKII signaling simultaneously blocks reconsolidation and promotes extinction. 

Pharmacological manipulation of this molecular pathway overcomes limitations of previous 

pharmacotherapies that, in attempting to enhance extinction, inadvertently enhanced 

reconsolidation, thus unintentionally strengthening the memory.  

The amount of cue re-exposure appears to be a major determinant in the outcome of the 

memory, although this is not surprising when one considers the differences between LTP and 

LTD induction. Whereas LTP occurs following brief, phasic bouts of synaptic activity that lead 

to large increases in intracellular Ca2+, LTD occurs following synaptic activity that induces only 

moderate increases in Ca2+. Similarly, reconsolidation occurs following brief cue re-exposure (3 
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CS presentations), while extinction is induced after extensive cue re-exposure (60-120 CS 

presentations). Presumably, this is due to similar mechanistic differences, such that brief 

reactivation results in large Ca2+ increases, kinase activation, and AMPAR trafficking to the 

membrane, and longer exposure results in smaller, but sustained Ca2+ increases that 

preferentially activate phosphatases, leading to AMPAR internalization (Baumgartel and 

Mansuy, 2012; Mulkey et al., 1994). Future experiments could examine differences in Ca2+ 

transients during reconsolidation vs. extinction using in vivo Ca2+ imaging (Grienberger and 

Konnerth, 2012; Resendez et al., 2016). Injection of a GCaMP calcium indicator under control of 

the CaMKII promoter would enable viral expression in the LA that can then allow Ca2+ imaging 

in real time through an implanted microendoscope. These techniques can even be combined with 

traditional optogenetic approaches to add additional circuit-specific control over behavior. 

In our experiments, we often fail to demonstrate a “strengthening” of the cocaine-cue 

association following brief cue reactivation, as assessed by behavioral or physiological measures. 

However, this does not necessarily correspond to a lack of reconsolidation. In fact, several 

studies have consistently shown that cue reactivation fails to alter behavior or induce synaptic 

potentiation. For example, novel object recognition training induces a facilitation of CA3-CA1 

field potentials, but there was no further potentiation following reconsolidation (Clarke et al., 

2010). Interestingly, the field potentials were transiently depotentiated when measured 

immediately after reactivation. Similarly, the long-term facilitation of auditory-evoked field 

potentials in the LA was prevented when protein synthesis was inhibited (Doyère et al., 2007). 

Furthermore, reactivation of thalamic and cortical inputs to the LA does not cause further 

facilitation of field potentials (Li et al., 2013). While not indicative of a reconsolidation-

dependent synaptic enhancement, these studies demonstrate that brief reactivation triggers a 
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transient depotentiation (that corresponds with memory destabilization) that is followed by a 

protein synthesis-dependent restabilization (reconsolidation). Therefore, the lack of 

reconsolidation effects in our studies (increased reinstatement, enhanced synaptic potentiation) 

does not imply a fundamental absence of reconsolidation. Our studies involving pharmacological 

manipulation of CaN and CaMKII, suggest that reconsolidation does occur. For example, 

activation of CaN following brief cue reactivation (3 CS re-exposure) leads to a decrease in T-

LA synaptic strength and a decrease in cue-induced reinstatement that is not observed if the 

memory is not reactivated (0 CS re-exposure). Similar effects on reinstatement are observed 

following CaMKII inhibition, but again, only if the memory is reactivated. To fully rule out the 

possibility that brief reactivation fails to modify the drug-cue memory, future experiments should 

include a group of animals that is tested for reinstatement within the reconsolidation window (ie. 

1 hour after reactivation). Evidence for this possibility stems from previous studies that have 

identified GluA2 endocytosis as a mechanism for reactivation-induced depotentiation, with 

reconsolidation then dependent on the insertion of GluA2-lacking Ca2+-permeable AMPAR 

(Rao-Ruiz et al., 2011). Thus, we might predict that animals tested shortly after reactivation 

would exhibit a reduction in T-LA EPSC amplitude concurrent with a reduction in cue-induced 

reinstatement. It would also be useful for future studies to determine if drug-cue memory 

reconsolidation and extinction depend on AMPAR subunit specificity. During extinction of fear-

associated memories there is a specific internalization of Ca2+-permeable AMPAR (Clem and 

Huganir, 2010), but it is unclear if this extends to the extinction of drug-cue memories. 

Electrophysiological experiments could utilize subunit specific antagonists, such as Naspm, an 

antagonist for GluA2-lacking AMPAR (Ma et al., 2016). If EPSC amplitude was sensitive to 

Naspm, it would suggest that extinction does not internalize these specific receptors. 
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Recent experiments have taken advantage of the fact that memory reactivation initiates a 

transient depotentiation prior to reconsolidation in attempts to induce a persistent weakening of 

CS-US associations. Monfils and colleagues utilized a behavioral design in which they 

destabilized a fear memory via an isolated cue reactivation trial prior to a standard cue extinction 

session (Monfils et al., 2009). This retrieval-extinction paradigm creates a long-term disruption 

of fear memory that is resistant to reactivation, renewal, and spontaneous recovery. This and 

similar procedures have since been used to study the extinction of drug-associated memories. For 

example, CS-US retrieval-extinction in rats trained to self-administer heroin had long-lasting 

memory disruption effects (Xue et al., 2012). The same study also demonstrated clinical 

relevance, as this procedure also attenuated cue-induced craving of heroin for up to 180 days in 

abstinent heroin addicts. Retrieval-extinction has also been used to inhibit a cocaine-associated 

contextual memory (Sartor and Aston-Jones, 2014). Most recently, a slight modification to the 

procedure showed that brief US reactivation (drug re-exposure) prior to extinction of the CS can 

also inhibit drug-seeking (Luo et al., 2015). Overall, these procedures have promise as 

nonpharmacological methods to reduce drug-seeking behaviors; however, it should be noted that 

attempts by other labs to replicate the initial study by Monfils and colleagues have been 

unsuccessful (Goode et al., 2017; Ishii et al., 2015; Luyten and Beckers, 2017). Additionally, 

there is evidence that multiple reconsolidation events can make memories resistant to extinction 

(Dȩbiec et al., 2011), so the time course of reactivation and extinction is an important 

consideration if retrieval-extinction strategies are to be implemented as a therapeutic strategy.  

Finally, future optogenetics experiments could continue to build towards identifying the 

specific synaptic mechanisms underlying reconsolidation and extinction. We have not yet 

examined whether cue reactivation/reconsolidation results in an increase in the amplitude of 
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optically-evoked MGN-LA EPSCs. A related experiment could test whether in vivo high 

frequency optical stimulation of MGN-LA terminals is sufficient to induce an LTP-like state 

(increased EPSC amplitude, AMPAR current) that enhances cue-induced reinstatement. These 

experiments would help validate LTP as a mechanism for drug-cue memory reconsolidation, a 

result that has potential therapeutic implications. Additional experiments should also consider the 

role of NMDAR in optically-induced LTP/LTD. In Chapter 2 we demonstrate that ex vivo 

optical LTD is occluded in slices from animals that have already undergone cue extinction. 

MGN-LA synapses in these animals are already depotentiated, as indicated by decreased EPSC 

amplitude and AMPAR current relative to non-extinguished controls. If the extinction-induced 

depotentiation is dependent on NDMAR activation, then administration of an NMDAR 

antagonist such as APV or MK801 prior to cue extinction would block the extinction effects and 

allow for the generation of ex vivo LTD. Additionally, we show that brief cue reactivation 

induces significant increases in NMDAR current, suggesting enhanced expression and/or 

function at T-LA synapses. Future studies should continue to elucidate the potential role of 

NMDAR in drug-cue memory reconsolidation.  

4.2 ROLE OF NEURAL ENSEMBLES IN DRUG-CUE MEMORY 

In this dissertation we demonstrate that the formation of a cocaine-cue association results in 

potentiation of T-LA synapses and that extinction of the cocaine-cue association depotentiates T-

LA synapses. Larger EPSC amplitudes were observed in slices from cocaine-trained animals 

relative to saline-trained controls, and this increase was reversed by cue extinction. On average, 
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for cocaine-trained non-extinguished animals, EPSC amplitude was correlated to the number of 

CS-US pairings received during SA. While there is some degree of variability both between 

individual neurons and between animals, most neurons tested exhibited relatively large EPSC 

amplitudes compared to both the saline and extinction groups. This is interesting, and perhaps 

somewhat surprising, given the concepts of Hebbian learning that were described above. Based 

on this theory, it has been proposed that sparsely distributed patterns of neurons called neuronal 

ensembles, may be responsible for the encoding of learned associations, such as those that 

underlie cue-dependent drug-seeking (Buzsáki and Moser, 2013; Pennartz et al., 2004). Reports 

suggest that only 1-5% of neurons within a brain region make up an ensemble, but there may be 

several ensembles within a given region, and individual neurons can contribute to more than one 

ensemble (Bossert et al., 2011a; Chawla et al., 2005; Schwindel & McNaughton, 2011). It is 

generally believed that the subset of neurons that receive the strongest, most persistent afferent 

input will be the ones recruited into any given ensemble. In our studies we fail to fully 

demonstrate the existence of distinct neuronal subsets that do not participate in the given 

memory processes. This may be due to a few reasons, including inherent limitations of our 

experimental approach. Unfortunately, with the use of whole-cell slice electrophysiology our 

data set is limited by the number of neurons that can be recorded from during a small timeframe, 

while the slices remain healthy. It is difficult to gauge whether such a small sample size is a true 

representation of all neurons in a brain region. We are left with the possibility that there are 

indeed neurons or at least individual synapses that are not affected by the memory process. This 

limitation can be overcome by correlating electrophysiology with Fos imaging from activated 

neurons (Cruz et al., 2015). Strong, correlated activity generates Ca2+ influx, which influences 
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plasticity at dendritic spines, but also activates the ERK/MAPK pathway, which stimulates c-fos 

promoter activity in the nucleus (Brami-Cherrier et al., 2005; Lüscher et al., 2000).  

A novel approach known as the Daun02 inactivation procedure has been utilized to 

demonstrate the involvement of specific neuronal ensembles in mediating drug-seeking 

behaviors (Bossert et al., 2011; Cruz et al., 2014; Koya et al., 2009). In these experiments, c-fos-

lacZ transgenic rats are used, in which translation of β-galactosidase occurs in strongly activated, 

c-fos-expressing neurons. Daun02 is then injected and catalyzed to daunorubicin by β-

galactosidase, which is believed to then induce apoptotic cell death of only the previously 

activated neurons (Farquhar et al., 2002). Thus, the neural ensemble activated by a particular 

behavior would be eliminated. Unlike studies where entire brain regions are inactivated, this 

approach targets a small number of neurons and allows the investigation of how neuronal 

ensembles regulate drug-associated behaviors. For example, the elimination of a neuronal 

ensemble within the dorsolateral striatum can prevent context-induced seeking of 

methamphetamine, while inactivation of an ensemble within the dorsomedial striatum prevents 

incubation of methamphetamine craving (Caprioli et al., 2017; Rubio et al., 2015). This 

technique could be useful to confirm if ensembles of amygdala neurons are indeed involved in 

drug-cue memory formation, reconsolidation, and extinction. Future experiments could also 

utilize Fos-GFP transgenic rats so that electrophysiological recordings can be limited to Fos-

activated neurons, which would be useful in determining if reconsolidation and extinction 

triggered LTP/LTD in an ensemble-specific manner. It is entirely likely that different sets of 

neuronal ensembles are activated during reconsolidation versus extinction and therefore the same 

molecular events in the same brain region may occur during reconsolidation and extinction, but 

in different populations of neurons (Gore et al., 2015; Suto et al., 2016; Warren et al., 2016). The 
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possibility exists that activating or inhibiting the same molecular processes in distinct neuronal 

ensembles could lead to opposing outcomes. This is one potential explanation for how a common 

biochemical manipulation (i.e., activating CaN; inhibiting CaMKII) in the same brain region can 

simultaneously interfere with reconsolidation and promote extinction. 

4.3 CONTRIBUTION OF ADDITIONAL AMYGDALA AFFERENT PROJECTIONS 

In addition to sensory thalamic and cortical glutamatergic projections, the amygdala receives 

input from a diverse collection of brain regions. Those that are most important for controlling 

memory-related behaviors include glutamatergic input from the mPFC and hippocampus, 

dopaminergic input from the VTA, serotoninergic input from the dorsal raphe, and adrenergic 

input from the locus coeruleus, among others (Giustino and Maren, 2015; Loh and Roberts, 

1990; Pelloux et al., 2012; Quirk and Mueller, 2008; Wise, 2004). Local inhibitory projections 

from GABAergic interneurons and intercalated cells also have important effects (Asede et al., 

2015b; Lucas et al., 2016; Pinard et al., 2012). While most of these are outside the scope of this 

dissertation, it is worthwhile to contemplate the impact that this input may have, thus providing a 

deeper insight into the role of the amygdala in regulating drug-cue memories. 

As described, acute drug exposure increases dopaminergic transmission throughout the 

mesocorticolimbic system, including in the amygdala. When discrete cues are predictive of drug 

use, subsequent presentations of the cues alone cause DA neurons in the VTA to fire, increasing 

DA release (Phillips et al., 2003; Weiss et al., 2000). Although the precise impact of DA on 

reconsolidation and extinction of drug-cue memories has not been elucidated, one could 
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hypothesize that T-LA or C-LA synaptic activity would be modulated in a D1- or D2-specific 

manner. VTA DA has been shown to directly modulate the amygdala neuronal activity during 

Pavlovian conditioning. For instance, enhancements in activity that are observed by pairing a 

footshock with a particular odor can be blocked by administration of the nonspecific DA receptor 

antagonist, haloperidol (Rosenkranz and Grace, 2002). Furthermore, DA receptor activation 

increases kinase activity and downstream phosphorylation. For example, D1-receptor activation 

upregulates PKA, which can phosphorylate DARPP-32 (DA and cAMP-regulated 

phosphoprotein, 32kDa). DARPP-32 subsequently regulates excitatory transmission through 

effects at L-type voltage-gated calcium channels, AMPAR, and NMDAR (Bibb et al., 1999; 

Flores-Hernandez, 2002; Nishi et al., 1997). Conversely, D2-like receptor activation inhibits 

phosphorylation of DARPP-32, and a recent study showed that antagonism of D2 receptors in 

the amygdala impaired the extinction of a fear-associated memory (Nishi et al., 1997; Shi et al., 

2017). Interestingly, antagonism of D1 receptors was found to attenuate methylphenidate-

induced enhancements of cue-reward learning, while D2 antagonism increased task-irrelevant 

behavior, suggesting that D2 receptor activation suppresses this activity (Tye et al., 2010). 

Furthermore, the activation of presynaptically-located D2 receptors activates G-protein-coupled 

inwardly rectifying potassium (GIRK) channels, which can inhibit subsequent DA release, 

serving as an important feedback mechanism (Martel et al., 2011; Michaeli and Yaka, 2010). 

Future studies should investigate the role of D1- and D2-specificity during the reconsolidation 

and extinction of drug-associated memories. Finally, it is possible that DA could be modulating 

amygdala activity through indirect projections to the thalamus or mPFC. Studies have shown that 

the MGN has very low expression of DAT, suggesting that this subregion does not receive much 

dopaminergic input (García-Cabezas et al., 2009). However, other regions of the thalamus, 
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including mediodorsal and paraventricular nuclei (PVN), which also project to the amygdala, do 

express DAT, and could therefore play a role in drug-associated memory (Vertes et al., 2015). 

The PVN has already been associated with aspects of addiction; PVN projections to the NAc 

were shown to mediate the expression of physical symptoms and memory deficits during opiate 

withdrawal (Zhu et al., 2016). Midline thalamic subregions are spatially distinct from the MGN, 

removing the possibility that we accidentally targeted medial thalamus with our optogenetics 

experiments. Still, midline thalamic subregions may be important sites to investigate in future 

studies of drug-related memory.  

Another circuit of interest involves reciprocal connections between the mPFC and the 

amygdala. Hypofunction of the mPFC can result in the loss of inhibitory control over drug 

seeking (Goldstein and Volkow, 2011; Jentsch and Taylor, 1999). Initially, evidence suggested 

that amygdala projections from the IL and PL had opposing roles in the control of fear-related 

memories, likely through differential recruitment of amygdala subregions (Arruda-Carvalho and 

Clem, 2015; Courtin et al., 2013). IL activity promotes fear extinction, possibly through 

projections to intercalated cell masses (Pinard et al., 2012; Quirk et al., 2000) while PL 

activation is associated with cue-elicted freezing, perhaps through direct projections to the basal 

nucleus or indirect projections to the PVN (Arruda-Carvalho and Clem, 2014; Do-Monte et al., 

2015; Milad et al., 2004). The development of optogenetics techniques have allowed the further 

characterization of this circuitry and should be considered in future studies of drug-associated 

learning and memory. Notably, in this dissertation, the presence of a GABAA antagonist during 

electrophysiological recordings removes a likely important contribution from GABAergic 

projections. Because of evidence suggesting that PFC projects heavily to GABAergic neurons, 

future studies should assess the impact of inhibitory signaling. 
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4.4 IMPLICATIONS FOR ADDICTION THERAPY 

In Chapter 2 and Appendix A of this dissertation, we present two targets (CaN and CaMKII) 

for a pharmacology-based treatment that can simultaneously interfere with drug-cue memory 

reconsolidation and promote drug-cue memory extinction. Manipulation of these signaling 

pathways presents the possibility for eventual development of a medication that can consistently 

reduce craving and drug-seeking behaviors by targeting molecules that are important for T-LA 

synaptic regulation. This is supported by our electrophysiological experiments from Chapters 1 

and 2, in which we demonstrate specific synaptic mechanisms that are at least partly responsible 

for the encoding of drug-related memories and show that evoking depotentiation of specific 

synapses can lead to a suppression of the conditioned drug-seeking response. Importantly, we 

also uncovered different synaptic modifications that were associated with one of two specific 

types of drug-related memories. Depotentiation of thalamo-amygdala synapses was driven by 

extinction of drug-cue specific memories while depotentiation at cortico-amygdala synapses was 

associated with extinction of the drug-seeking action. This is importantly clinically, as cue 

exposure therapy involves extinction of memories that are evoked by drug-associated stimuli, so 

pharmacological agents that induce depotentiation of thalamo-amygdala synapses may indeed 

prolong the therapeutic efficacy of cue exposure therapy. If a treatment were also to have 

nonspecific effects (e.g., at cortico-amygdala synapses) then other drug-related memories 

associated with drug taking may also be disrupted, which could have added benefit.  

It should be noted that all of our experiments were performed on adult rats. However, 

there is evidence in both humans and rodents that adolescence represents a period of 

vulnerability to drugs of abuse. Epidemiological studies show that experimentation with drugs of 
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abuse is highest during adolescence or young adulthood, while reward-related brain circuits are 

still developing (Chambers et al., 2003; Dayan et al., 2010; Stanis and Andersen, 2014). In 

general, risk-taking behavior is elevated during this period, which can contribute to a relatively 

early onset of substance use disorders. Indeed, preclinical models have shown that greater risk 

taking during adolescence is predictive of greater cocaine use during adulthood as well as 

changes in dopaminergic signaling in the striatum (Mitchell et al., 2014). Furthermore, studies 

from our lab show that adolescent rodents will willingly self-administer a synthetic cannabinoid 

agonist (Kirschmann et al., 2017). However, specific components of drug-related memories have 

not been well elucidated in adolescent rats. It is possible that key differences in the neural 

circuitry might exist, so it would be beneficial for future studies to examine drug-cue memory 

processes (extinction and reconsolidation) during adolescence. 

Although pharmacotherapy is one potential method to induce relapse-blocking synaptic 

changes, an alternative approach, which is supported by our optogenetics experiment from 

Chapter 1, involves stimulating affected brain regions to modulate or normalize neuronal firing. 

Clinically, two separate methods of brain stimulation have been utilized: deep brain stimulation 

(DBS) and repetitive transcranial magnetic stimulation (rTMS). DBS involves the surgical 

implantation of bipolar electrodes within specific subcortical brain regions in which a pulse 

generator delivers high-frequency stimulation that depolarizes or hyperpolarizes local neurons 

(McIntyre, et al., 2004). The mechanism of action remains unclear, but studies indicate that 

normal brain function can be reestablished by a synchronization or desynchronization of brain-

wide circuits (Murrow, 2014). While DBS has been successful at improving outcomes for 

several neurological and psychiatric disorders, including Parkinson’s disease and depression 

(Riva-Posse et al., 2014; Wagenbreth et al., 2015), relatively few studies have directly assessed 
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the effects of DBS on addictive behaviors. In animal studies, DBS has transiently suppressed 

cocaine-induced locomotor sensitization, reduced ethanol consumption, and attenuated cocaine-

primed reinstatement (Creed et al., 2015; Knapp et al., 2009; Vassoler et al., 2013). Most 

addiction-related DBS findings in humans come from case reports or poorly controlled studies, 

but the results have yielded optimism. Studies have shown the effectiveness of DBS for alcohol, 

nicotine, and heroin. In a small clinical study of 5 alcohol-dependent individuals, bilateral DBS 

in the NAc resulted in the remission of craving in all individuals, and long-term abstinence in 2 

of the 5 (Müller et al., 2016b). Similar results were achieved in a study of smokers, where rates 

of smoking cessation 30 months post-DBS were higher than rates of unaided smoking cessation 

in the general population (30% vs 8.7%) (Kuhn et al., 2009). Finally, two case reports of heroin-

abusing individuals also yielded complete remission of drug use following DBS in the NAc 

(Valencia-Alfonso et al., 2012; Zhou, Xu, & Jiang, 2011). Together, these studies demonstrate 

the potential relapse-preventing potential of DBS and evidence from this dissertation suggests 

the amygdala as a novel target for stimulation-based therapy. 

rTMS is a noninvasive form of brain stimulation in which magnetic pulses are delivered 

on top of the skull to indirectly generate electrical currents (Gorelick et al., 2014; Rossini et al., 

2015). The frequency of stimulation can be varied, whereby low frequency stimulation (< 1 Hz) 

reduces neuronal activity and high frequency stimulation (between 5 and 20 Hz) enhances 

activity (Salling and Martinez, 2016; Speer et al., 2000). As with DBS, the mechanisms of action 

are not completely understood, but evidence suggests that TMS acts to locally alter blood flow, 

neuronal excitability and firing frequency, and neurotransmitter release (Grall-Bronnec and 

Sauvaget, 2014). Glutamatergic signaling appears to be involved, as NMDAR antagonists block 

the long-term effects of high frequency TMS (Huang et al., 2008a). Most clinical rTMS studies 
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of addiction have utilized high-frequency stimulation in the dorsolateral PFC (dlPFC), which is 

involved in cognitive processing, working memory, and impulse control (Barbey et al., 2013; 

Steinbeis et al., 2012). Although the effects of rTMS are generally limited to cortical tissue, there 

are reports of possible downstream effects in deeper brain structures (Fox et al., 1997). Studies of 

rTMS have produced mixed results in drug-dependent individuals; some have demonstrated 

acute reductions in craving and drug use (Eichhammer et al., 2003; Johann et al., 2003; Mishra et 

al., 2010; Politi et al., 2008), whereas others have shown no effect on craving (Herremans et al., 

2012). Recently, Bonci and colleagues have suggested that rTMS rescues drug-induced 

hypoactivity of the PFC (Chen et al., 2013; Terraneo et al., 2016). In a rodent model, long-term 

cocaine self-administration decreased excitability of PL pyramidal neurons, while in vivo 

optogenetic PL stimulation prevented compulsive drug seeking (Chen et al., 2013). In a clinical 

study of cocaine abusers, rTMS-driven stimulation of the DLPFC resulted in a significantly 

higher number of cocaine-negative drug tests as well as significantly lower levels of craving 

compared to a control group (Terraneo et al., 2016).  

Despite the mixed results of brain stimulation for the treatment of addiction, these 

techniques do offer promise for targeting neuroplasticity in the long-term prevention of craving 

and relapse. It is important to continue to study the mechanisms responsible for the 

normalization of drug-induced brain deficits. Circuit-specific approaches, like the ones presented 

in this dissertation may prove helpful at determining appropriate stimulation parameters and 

specific brain regions to target. 
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4.5 SUMMARY AND CONCLUSIONS 

In summary, this dissertation describes a previously unstudied thalamo-amygdala circuit in the 

regulation of a memory associated with self-administered cocaine. Collectively, we have shown 

that MGN specific thalamic projections to the amygdala are recruited during cocaine self-

administration leading to the formation of a cocaine-cue association. Subsequent re-exposure to 

the cocaine-associated cues can either initiate reconsolidation or extinction, depending on the 

amount of unreinforced cue re-exposure. Reconsolidation maintains, while extinction, which is 

associated with a reversal in thalamo-amygdala synaptic potentiation, inhibits the original 

cocaine-cue association. Furthermore, optically-induced depotentiation of the MGN-LA 

projection mimics cue extinction and suppresses cue-evoked reinstatement of drug-seeking. 

Finally, pharmacological agents that promote depotentiation of this circuit (CaMKII inhibitors, 

CaN activators) present with high therapeutic potential. We propose a model for the bidirectional 

regulation of cocaine-cue memories (Figure 24). Brief cue re-exposure initiates a relatively large 

increase in Ca2+ that activate kinases such as CaMKII, leading to AMPAR phosphorylation and 

expression at the synapse that strengthens or maintains the cocaine-cue association 

(reconsolidation). Longer cue re-exposure is accompanied by lower Ca2+ influx, preferential 

activation of phosphatases such as CaN, AMPAR dephosphorylation and internalization, and a 

weakening of the cocaine-cue association. Manipulation of these events, either by pharmacology 

or circuit-specific stimulation can affect memory outcome and have potentially beneficial effects 

that prevent relapse. 
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Figure 24. Model summarizing major conclusions. 

Simplified schematic showing the cellular mechanisms involved in the formation, reconsolidation, and extinction of 

a cocaine-cue memory within the LA. Initial formation of a cocaine-cue association involves enhanced thalamo-

amygdala synaptic activity, including MGN-specific activity, likely through increased postsynaptic AMPAR. Brief 

re-exposure to drug-related cues triggers increased CaMKII activity/decreased CaN activity, likely because of a 

large increase in Ca2+. CaMKII phosphorylates synaptic targets that further increases/stabilizes AMPAR at the 

postsynaptic membrane and strengthens/maintains the original drug-cue association and leads to increased drug 

seeking, possibly by enhanced NAc/CeA activity. Extended cue re-exposure results in a smaller influx of Ca2+ that 

activates CaN and inhibits CaMKII. CaN dephosphorylates synaptic targets, resulting in internalization of AMPAR. 

This weakens the original drug-cue association and decreases subsequent cue-evoked drug-seeking, possibly by 

decreased downstream activity at the NAc/CeA.  
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APPENDIX A 

PHOSPHOPROTEOMIC ANALYSIS REVEALS A NOVEL MECHANISM OF CAMKII 

ALPHA REGULATION INVERSELY INDUCED BY COCAINE MEMORY 

EXTINCTION VERSUS RECONSOLIDATION 

Matthew T. Rich, Thomas B. Abbott, Lisa Chung, Erol E. Gulcicek, Kathryn L. Stone, 

Christopher M. Colangelo, TuKiet T. Lam, Angus C. Nairn, Jane R. Taylor, Mary M Torregrossa 

(Adapted from J Neurosci. 36(29):7589-7600, (2016)) 

 

Successful addiction treatment depends on maintaining long-term abstinence, making relapse 

prevention an essential therapeutic goal. However, exposure to environmental cues associated 

with drug use often thwarts abstinence efforts by triggering drug using memories that drive 

craving and relapse. We sought to develop a dual approach for weakening cocaine memories 

through phosphoproteomic identification of targets regulated in opposite directions by memory 

extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to 

self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely-

regulated, memory-dependent phosphorylation event on calcium-calmodulin dependent kinase II 

alpha (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation 
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inhibited CaMKIIα activity. Intra-BLA inhibition of CaMKII promoted memory extinction and 

disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. 

CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. 

Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction 

treatment that leverages both extinction enhancement and reconsolidation disruption to reduce 

relapse-like behavior. 

A.1 INTRODUCTION 

The successful treatment of addictive disorders requires maintaining long-term abstinence from 

drug use (Kalivas and Volkow, 2005; Milton and Everitt, 2010). However, individuals frequently 

encounter environmental cues previously associated with drug use that can increase craving and 

the likelihood of relapse (Fuchs et al., 2009; Kalivas, 2009). The ability of drug-associated 

memories to induce relapse is perhaps the greatest obstacle to overcome for the successful 

treatment of addictive disorders (Bossert et al., 2013; Torregrossa et al., 2011). Thus, reducing 

the strength of drug-associated memories has therapeutic potential for individuals struggling with 

addiction. 

Behavioral and pharmacological interventions can disrupt or weaken drug-associated 

memories through two primary mechanisms. The first is to pharmacologically prevent 

reconsolidation of the memory into long-term storage after the memory is retrieved or 

reactivated (Taylor et al., 2009; Torregrossa and Taylor, 2013). It is possible to disrupt 

reconsolidation because when a memory is retrieved it can enter a labile state that requires 
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protein synthesis-dependent restabilization (reconsolidation) for the memory to be maintained in 

long-term storage. During the period of lability, memories are susceptible to interference, and 

can be weakened or strengthened with specific pharmacological manipulations (Tronson and 

Taylor, 2007). The second mechanism for weakening drug-associated memories is through the 

process of extinction. Extinction involves repeatedly presenting drug-associated cues in the 

absence of the drug. In this situation, the individual learns that the cues are no longer predictive 

of drug availability, and thus, subsequent encounters with the cue produce less craving and 

relapse. Extinction memories undergo their own consolidation and reconsolidation processes that 

can also be enhanced or inhibited with pharmacological manipulations (Holmes and Quirk, 2010; 

Nic Dhonnchadha et al., 2010; Vurbic and Bouton, 2011). Disrupting reconsolidation and 

enhancing extinction have long been proposed as potential strategies to disrupt aversive 

memories that form the basis of anxiety disorders (Agren et al., 2012; Gamache et al., 2012; 

Monfils et al., 2009), and these strategies have been extended to the addiction field (Arguello et 

al., 2014; Torregrossa et al., 2010; Tronson et al., 2012b). However, clinical application of 

extinction- or reconsolidation-based treatments has met with limited success, likely because both 

processes involve overlapping molecular mechanisms, making selective targeting of one or the 

other challenging. Indeed, previous attempts to disrupt drug-associated memories using 

pharmacological agents combined with extinction training may have been unsuccessful due to 

unintentional memory strengthening (Hofmann et al., 2012; Price et al., 2013). 

Therefore, the goal of the present study was to identify cellular signaling events that are 

regulated in opposition by extinction relative to reconsolidation of a memory associated with 

self-administered cocaine. Such molecules, once identified, could represent targets for the 

development of a single medication that can enhance extinction while inhibiting reconsolidation 
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to ensure memory weakening and a reduction in relapse. We used a discovery-based 

phosphoproteomics strategy to identify proteins that exhibit a divergent pattern of 

phosphorylation following reconsolidation relative to extinction, as initial memory consolidation 

events involve the activation of kinase and phosphatase cascades (Merlo et al., 2014; Sanchez et 

al., 2010). The basolateral amygdala (BLA) was analyzed as it is the locus for associative 

learning and mediates the encoding of drug-associated memories (Fuchs et al., 2006; Nic 

Dhonnchadha et al., 2013; Sanchez et al., 2010). The proteomics analysis found a small number 

of opposing signaling events, including identification of a novel phosphorylation event on 

calcium-calmodulin dependent kinase II alpha (CaMKIIα) on serine (S) 331. Although CaMKIIα 

phosphorylation events on the highly characterized autophosphorylation site at threonine (T) 286 

have been previously linked to drug-related learning (Easton et al., 2013, 2014; Salling et al., 

2016), the role of S331 phosphorylation has not been investigated. Here, we report a functional 

role for S331 phosphorylation in vitro and describe the behavioral effects of CaMKII inhibition 

on both the reconsolidation and extinction of a cocaine-associated memory in vivo. Our findings 

suggest that molecular mechanisms exist that could allow for the combined enhancement of 

extinction and disruption of reconsolidation. 
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A.2 MATERIALS AND METHODS 

A.2.1 Subjects 

Naïve, adult male Sprague-Dawley rats, weighing 275-325 g on arrival, were used in all studies. 

All rats were housed in a temperature- and humidity-controlled room. Animals were housed in 

pairs, given ad libitum access to food and water, and maintained on a 12 h light-dark cycle. Rats 

were given at least 5 days to acclimate to the facility before undergoing surgical procedures. 

Following surgery, rats were individually housed and given at least 1 week to recover before the 

start of behavioral training. Rats were food-deprived 24 h prior to the start of behavioral 

experiments and maintained at ~90% of their free-feeding body weight (~20 g of chow per day) 

for the duration of testing. All behavioral experiments were run during the light-cycle. The 

experiments used to generate samples for proteomic analysis were conducted at Yale University 

in the Connecticut Mental Health Center, while all subsequent experiments were conducted at 

the University of Pittsburgh. Sprague-Dawley rats were obtained from Charles River (Kingston, 

NY) at Yale and from Harlan (Frederick, MD) at the University of Pittsburgh. We used different 

vendors to minimize animal shipping time to both facilities. At Yale rats were housed in shoebox 

cages with water bottles on standard racks, while at the University of Pittsburgh, rats were 

housed in auto-ventilated racks with an automated watering system. All other housing and 

procedural parameters were the same between the two universities, unless otherwise noted. In 

addition, all procedures were conducted in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and were approved by each institution’s 

Institutional Animal Care and Use Committee. 
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A.2.2 Self-administration test chambers 

Rats were trained to self-administer cocaine in standard operant conditioning chambers 

(MedAssociates, St. Albans, VT). Experiments were counterbalanced across one of two chamber 

designs, providing two distinct contexts. The first type of chamber consisted of bar floors and 2 

nosepoke apertures. The second type of chamber consisted of grid floors and 5 nosepoke 

apertures. All chambers contained two retractable levers on one wall of the chamber, a tone-

generator, stimulus-light above each lever, house light, and infusion pump. Operant boxes were 

kept in sound-attenuating chambers equipped with a fan for background noise. 

A.2.3 Drugs 

Cocaine hydrochloride (generously provided by the National Institute on Drug Abuse, Research 

Triangle Park, NC) was dissolved in sterile 0.9% saline (2 mg/ml) and filter-sterilized for self-

administration. KN-62 (Tocris, Bristol, UK) was dissolved in 0.9% saline + 62% DMSO. KN-93 

(Tocris) was dissolved in 1X PBS + 10% DMSO. 

A.2.4 Surgical procedures 

Rats were fully anesthetized with ketamine hydrochloride (87.5 mg/kg; i.m.) and xylazine 

hydrochloride (5 mg/kg; i.m.) and then received an analgesic (Rimadyl, 5 mg/kg; s.c.) and 5 ml 

of Lactated Ringer’s (s.c.) prior to surgery. Betadine and 70% ethanol were applied to all 

incision sites. All rats were implanted with a chronic indwelling intravenous (i.v.) catheter 
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(CamCaths, Cambridge, UK) into the right jugular vein, as described previously (Torregrossa 

and Kalivas, 2008; Torregrossa et al., 2010). Catheters were fed subcutaneously to the 

midscapular region, where they exited through a round incision. For experiments involving 

intracranial infusions, rats were immediately placed into a stereotaxic instrument (Stoelting, Kiel, 

WI), and implanted with bilateral stainless steel guide cannulae (22 gauge; Plastics One) 

targeting the area just dorsal to the BLA (AP –3.0 mm, ML ±5.3 mm, DV –7.9 mm, relative to 

bregma; Paxinos and Watson, 1998). Guide cannulae were secured to the skull with 3 miniature 

screws and dental acrylic resin. Dummy cannulae were inserted the length of the guide cannulae 

to maintain patency. Rimadyl (5 mg/kg; s.c.) was administered for the first two days after 

surgery. Catheters were kept patent by daily infusions of 0.1 ml of an antibiotic solution of 

cefazolin (10.0 mg/ml) dissolved in heparinized saline (30 USP heparin/ml). 

A.2.5 Cocaine self-administration procedures 

Rats administered cocaine during daily sessions for 1 h, on a fixed ratio 1 (FR1) schedule of 

reinforcement with a 10 s timeout. The designated active lever (counterbalanced across left and 

right levers) produced a cocaine infusion paired with a 10 s tone-light conditioned stimulus (CS). 

Pump durations were adjusted daily according to body weight in order to deliver the correct dose 

of drug (1.0 mg/kg of body weight per infusion). Responses on the other, inactive, lever were 

recorded, but had no programmed consequences. Rats underwent training for at least 10 d and 

until they administered at least 8 infusions per day over 3 consecutive days. Rats that did not 

meet acquisition criteria by 14 d were excluded from the study. The program was controlled by 

and data were collected using MedPC (MedAssociates). 
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A.2.6 Instrumental lever extinction 

After successful acquisition of self-administration, rats underwent instrumental lever extinction 

for at least 7 d. During these daily 1 h sessions, responses on both the active and inactive levers 

were recorded, but had no programmed consequences. Lever extinction continued until 

extinction criteria had been met (an average of < 25 lever presses on the last two days of 

extinction). Throughout lever extinction, rats received no cocaine or cocaine-associated cue 

reinforcement. Lever extinction was conducted to reduce responding to a stable, low rate to later 

assess cue-induced reinstatement. In addition, lever extinction reduces the motivational value of 

other cues in the self-administration context, such as the levers, so that subsequent testing 

specifically isolates the memory for the discrete cue associated with cocaine infusion. 

A.2.7 Identification of cellular signaling events regulated by cocaine-associated memory 

extinction and reconsolidation 

Memory manipulations. Following cocaine self-administration and instrumental lever extinction, 

rats were assigned to a memory manipulation group (extinction, memory reactivation, or no 

manipulation controls) based on a matching procedure that ensured that each group had no 

statistical differences in their cocaine infusions acquired over days, or differences in lever 

extinction behavior. All groups were placed in the opposite context from which they received 

self-administration training (different in flooring texture, shape, and smell), for a 30 min session 

on 2 consecutive days. During these sessions, rats had no opportunity for instrumental 

responding, i.e., the levers were retracted.  
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Extinction: For cue extinction, the cocaine-associated CS was presented for 10 s, 60 times, with 

each presentation separated by 30 s, on each of the two days. Thus, the rats were exposed to a 

total of 120 CS presentations, which we have previously shown to significantly reduce cue-

induced reinstatement on a subsequent test day (Torregrossa et al., 2010). 

Memory Reactivation:  For cue reactivation, the CS was presented 3 times at the end of the last 

session on the second day, with each CS presentation separated by 1 min. Previous work from 

our lab has shown that 3 CS presentations is sufficient to induce memory reactivation and 

reconsolidation, but is not sufficient to produce extinction (Sanchez et al., 2010; Wan et al., 

2014).   

No Memory Manipulation Control: The control group was placed in the operant chambers for the 

same amount of time as rats in the cue extinction and reactivation groups, but with no CS 

presentations. Thus, the time spent in the operant boxes and the type of operant box was 

equivalent between groups prior to sacrifice. Fifteen minutes following memory manipulations, 

rats were lightly anesthetized with isofluorane to minimize stress prior to euthanasia by focused 

microwave irradiation. Focused microwave irradiation was used to preserve the phosphorylation 

state of proteins. Importantly, because no group had the opportunity to make instrumental 

responses prior to sacrifice, differences in behavioral activity should not substantially affect 

levels of protein phosphorylation. The brains were immediately dissected and individual brain 

regions, including the basolateral amygdala complex were obtained and stored at -80 C until 

processing. 

Label-free quantitative proteomics: sample preparation. Brain regions of interest, including the 

amygdala reported here, were homogenized by sonication in a buffer containing urea (8 M), 

ammonium bicarbonate (0.4 M), and phosphatase inhibitor cocktails (Sigma). Samples from 2 
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rats in each experimental group were randomly pooled to create a total of 4-5 sample pools per 

group. The extinction group included one sample “pool” that consisted of just one rat due to an 

odd number of rats meeting acquisition criteria. Pooled samples were then analyzed by the 

Yale/NIDA Neuroproteomics Center at Yale. 20 µL of 45 mM DTT was added to each sample 

and incubated at 37 ºC for 20 min to reduce Cys residues. Samples were cooled and 20 µL of 100 

mM iodoacetamide (IAM) was added to each sample and incubated at RT in the dark for 20 min 

for alkylation of the reactive free sulfhydro of the reduced Cys. Dual enzymatic digestion was 

carried out by adding 600 µL of dH2O and 30 µL of 1 mg/mL Lys C followed by incubation at 

37 ºC for 4 hrs, with subsequent digestion by incubation with 30 µL of 1 mg/mL trypsin 

overnight at 37 ºC. Samples were macrospin desalted and dried by speedvac. Pellets were 

dissolved in 50 µL of a solution containing 0.5% TFA and 50% acetonitrile. Samples were then 

subjected to titanium dioxide (TiO2) phosphopeptide enrichment using TopTips (Glygen, 

Columiba, MD). The TopTip was washed 3 times at 2000 rpm for 1 min with 40 µL 100% 

acetonitrile, then 0.2 M sodium phosphate (pH 7.0), 0.5% TFA, and 50% acetonitrile.  The 

acidified digest supernatants were loaded into the TopTip, spun at 1,000 rpm for 1 min, and then 

at 3,000 rpm for 2 min. The flow through from these washes (less phosphorylated fraction) was 

saved for analysis by LC-MS/MS as described below. Phosphopeptides were eluted from each 

TopTip by 3 washes with 30 µL of 28% ammonium hydroxide. Both the flow through and eluted 

fractions were dried by speedvac. Enriched fractions were dissolved in 10 µL of 70% formic acid 

and 30 µL of 50 mM sodium phosphate. Peptide concentrations were determined by Nanodrop to 

load 0.3 µg/5µL of each sample. 

LC/MS-MS. 5 µL of each sample was injected onto a LTQ Orbitrap LC-MS/MS system. Peptide 

separation was performed on the nanoACQUITY™ ultra-high pressure liquid chromatography 
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(UPLC™) system (Waters, Milford, MA), using a Waters Symmetry® C18 180 µm x 20 mm 

trap column and a 1.7 µm, 75 µm x 250 mm nanoACQUITY™ UPLC™ column (35 ºC). 

Trapping was done at 15 µL/min, with 99% Buffer A (0.1% formic acid in water) for 1 min. 

Peptide separation was performed over 120 min at a flow rate of 300 nL/min beginning with 

95% Buffer A and 5% Buffer B (0.075% formic acid in acetonitrile) to 40% B from 1–9 min, to 

85% B from 9-91 min, held at 85% B from 91-95 min, then returned to 5% B from 95-96 min. 

Two washes were made between each sample run to ensure no carry over (1. 100% acetonitrile, 

2. Buffer A). The LC was in-line with an LTQ-Orbitrap mass spectrometer. MS was acquired in 

the Orbitrap using 1 microscan, and a maximum inject time of 900 ms followed by 3-6 data 

dependent MS/MS acquisitions in the ion trap (with precursor ion threshold of >3000). The total 

cycle time for both MS and MS/MS fragmentation by collision induced dissociation (CID) were 

first isolated with a 2 Da window followed by normalized collision energy of 35%. Dynamic 

exclusion was activated where former target ions were excluded for 30 sec. Three technical 

replicates were injected for each sample and all samples and replicates were randomized across 

an entire run time.  

Data analyses.  Feature extraction, chromatographic/spectral alignment, data filtering, and 

statistical analysis used Nonlinear Dynamics Progenesis LC-MS software (www.nonlinear.com). 

Raw data files were imported into the program and detected mass spectral features were aligned 

based on retention time of the detected m/z peaks based on a randomly selected reference run. 

All other runs were automatically aligned to the reference run to minimize retention time (RT) 

variability between runs. No adjustments were necessary in the m/z dimension due to high mass 

accuracy of the spectrometer (typically < 3 ppm). All runs were selected for detection with an 

automatic detection limit. Features within retention time ranges of 0-5 min were filtered out, as 
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were features with charge state greater than +6 or singly charged peptides (as no MS/MS 

fragmentations were taken for these charge states during data collection) for reduction of false 

positive peptide assignments.  A normalization factor was then calculated for each run to account 

for differences in sample load between injections. The experimental design grouped multiple 

injections from each condition. The algorithm then calculated and tabulated raw and normalized 

abundances, max fold change, and Anova p values for each feature in the data set. Stringent 

conditions were set in MASCOT to filter out low scoring identified peptides by imposing a 

confidence probability score (p) of < 0.05.  Additionally a positively identified protein that was 

quantified contained at least two unique identified tryptic peptides. The filtered MS/MS spectral 

features along with their precursor spectra were exported in the form of an .mgf file (Mascot 

generic file) for database searching using the Mascot algorithm (Hirosawa et al., 1993). The data 

was searched against the Uniprot (Rattus norvegicus) database. The confidence level was set to 

95% within the MASCOT search engine for peptides assigned hits based on randomness. 

MS/MS analysis was based on the use of trypsin and the following variable modifications: 

carboamidomethyl (Cys), Oxidation (Met), Phospho (Ser, Thr, Tyr). Other search parameters 

included peptide mass tolerance of ± 15 ppm, fragment mass tolerance of ± 0.5 Da, and 

maximum missed cleavages of 3. A decoy search (based on the reverse sequence search) was 

performed to estimate False Discovery Rate (FDR), with setting of acceptable protein ID having 

FDR of 2%. Using the Mascot database search algorithm, a protein is considered identified when 

Mascot lists it as significant (bold red) and more than 2 unique peptides match the same protein. 

The Mascot significance score match is based on a MOWSE score and relies on multiple 

matches to more than one peptide from the same protein. The Mascot search results were 

exported to an .xml file using a significance cutoff of < 0.05, and ion score cutoff of 28, and a 
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requirement of at least one bold (first time any match to the spectrum has appeared in the report) 

and red (top scoring peptide match for this spectrum) peptide. The .xml file was then imported 

into the Progenesis LCMS software, where search hits were assigned to corresponding detected 

features, identified as described above. 

SRM proteomics. Identified peptides and their modifications were mined to a list of 

approximately 80 unique peptides for quantitative analysis between groups by selective reaction 

monitoring (SRM). The list was created based on ionization signal quality and to reduce the 

number of high abundance, highly modified phosphoproteins (e.g., neurofilament proteins) and 

proteins with unclear function. Analyses were carried out on a 5500 Q-TRAP instrument coupled 

online to a Waters nanoACQUITY™ UPLC™ system. Four µL of each sample was loaded onto 

a 5 µm, 180 µm x 20 mm Symmetry C18 nanoAcquity trapping column with 100% water/0.1% 

formic acid at a flow rate of 15 µL/min for 1 min. Peptides were then separated on a 1.7 µm, 75 

µm x 100 mm BEH130 C18 nanoAcquity column with a 30 min, 2-40% acetonitrile/0.1% formic 

acid linear gradient at a flow rate of 0.75 µL/min. SRM scanning was conducted using 211 

transitions and a cycle time of 2.4 s with a 5 ms dwell time per transition (5 transitions/peptide) 

in positive polarity. Data were processed using MRMPilot 2.0, Analyst 1.5 with MIDAS, and 

Multiquant 2.0 software. Peptide identification was further confirmed using MASCOT. Data 

were analyzed using nested linear models with transition nested within peptide. Interaction 

effects were included in the model and significant group x transition effects within a peptide 

were used to identify outlying transitions for exclusion from further analysis. Statistics were 

calculated using SRMstats with restricted scope (freely available in R (Chang et al., 2012). We 

report phosphopeptides with significantly different abundances in either the extinction or 

reactivation group relative to control with P < 0.05 considered significant after correcting for 
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multiple comparisons. The statistical methods used here, as described by Chang et al., are robust 

in detecting statistical differences from SRM experiments, particularly when there is little 

underlying biological variability in the protein abundance. This statistical method was chosen for 

hypothesis generation, as the primary aim of the present study was to identify phosphorylation 

events that are bi-directionally regulated by the extinction vs. reconsolidation of cocaine-

associated memories. The analysis was therefore biased towards potentially identifying false 

positives rather than creating false negatives. We also include analytical results using a more 

conservative linear mixed effects model for comparison in Table 1. Within the table, the first 

column lists the Uniprot defined protein abbreviations (not gene names), the second column 

shows the peptide sequence identified with lower case “p”s indicating sites of phosphorylation 

and “ox” indicating oxidation of Methionine. The next set of 6 columns (orange) gives data for 

the extinction group relative to control, and the next 6 columns (purple) represent data from the 

reactivation group relative to controls. Within in each group, the green columns are the results 

from the SRM stats analysis, while the blue columns are the linear mixed effects model analysis. 

Each analysis includes the unadjusted p-value, the estimated fold change from controls, and the 

p-value after correcting for multiple comparisons. 

A.2.8 Assessment of effect of CaMKIIα phosphorylation at S331 on catalytic activity 

Site-directed mutagenesis. CaMKIIα phospho-deficient (serine 331 to alanine; S331A) and 

phospho-mimetic (serine 331 to glutamate; S331E) mutants were created using the QuikChange 

II XL Site-Directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA). The PCR mixture 
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contained 50 ng template plasmid DNA (pCMV6-CaMKIIα-Myc-DDK plasmid; Origene, 

RR201121), 125 ng of each oligonucleotide 

(For: GGCGTGAAGGAATCCGCTGAGAGCACCAACACC) 

(Rev: GGTGTTGGTGCTCTCAGCGGATTCCTTCACGCC),  

1 μL dNTP mix, 2.5 U PfuUltra DNA polymerase, 5 μL 10X Reaction buffer, and 3 μL 

Quiksolution reagent in a final volume of 50 μL. PCR was performed under the following 

conditions; denaturation at 95°C for 50 sec, annealing at 60°C for 50 sec and extension at 68°C 

for 1 min/kb. The PCR product was digested with 10 U of DpnI for 1 h at 37°C and then 

transformed into 45 μL of XL10-Gold Ultracompetent E. coli cells. Presence of the mutation was 

confirmed by DNA sequencing of the construct.  

Cell culture and plasmid transfection. HEK293T cells were maintained in culture in a humidified 

5% CO2 atmosphere at 37°C in medium consisting of DMEM/F12 supplemented with 10% fetal 

bovine serum, and penicillin-streptomycin. Transfections were carried out using the 

Lipofectamine 2000 Reagent (Invitrogen, Carlsbad, CA). HEK293T cells were seeded in 6-well 

plates at 3 X 105 cells per well, grown for 24h and then incubated overnight with 2 mL of serum-

free medium containing 5 μg wildtype (WT) or mutant pCMV6-CaMKIIα expression vectors, 

and 7.5 μg Lipofectamine. Control cells were incubated with a plasmid-free mixture of medium 

and Lipofectamine. After overnight incubation, the medium was replaced by fresh medium 

supplemented with 500 μg/μL geneticin (Invitrogen) to select for transfected-cells. To determine 

basal levels of CaMKIIα expression in HEK293T cultures, a subset of the control cells did not 

receive geneticin treatment. 

Immunoblot and kinase activity assay. HEK293T whole-cell lysates were prepared by washing 

cultures with ice-cold 1X PBS followed by treatment with ice-cold lysis buffer containing 
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protease inhibitors (1:100). Cells were collected and incubated on ice for 30 min, then 

centrifuged at 16,000 g for 20 min at 4°C. Supernatants from two 6-well plates were collected 

and pooled together, and protein content was quantified using the Pierce BCA assay kit. 

Supernatants with equal amounts of protein (10 μg) were resolved via sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes. 

Membranes were blocked with 5% nonfat dairy milk in PBST (phosphate-buffered saline + 0.1% 

Tween 20). Membranes were then probed with the following primary antibodies: Rabbit Anti-

CaMKII (Millipore07-1496, 1:500; Millipore, Billerica, MA) and Mouse Anti-GAPDH 

(Millipore MAB374, 1:1000). Goat Anti-Rabbit IgG (Li-Cor 926-32211, 1:5000; Li-Cor, Licoln, 

NE) and Goat Anti-Mouse IgG (Li-Cor 926-68070, 1:5000) secondary antibodies were used. 

Odyssey Infrared Imager (Li-Cor) was used for the detection of protein bands. Kinase activity 

was quantified following the instructions of the ADP-GloTM Kinase Assay (Promega, Madison, 

WI) in the presence of CaCl2, MgCl2, calmodulin, and the CaMKII selective substrate, 

Autocamtide-2. For each reaction, relative amounts of protein supernatant (~2.5 μg) were loaded 

based on total protein levels in the lysate, corrected for loading of GAPDH. Reactions were 

initiated by the addition of 250 μM ATP then incubated for 15 min at 30°C. Reactions were 

terminated and the unconsumed ATP depleted by the addition of ADP-Glo Reagent, then 

incubated for 40 min at RT. Kinase Detection Reagent was then added to each reaction to 

convert ADP back to ATP while also introducing luciferase and luciferin to detect ATP. This 

was followed by another 40 min incubation at RT. Luminescence was measured using the 

FLx800 Multi-Detection Microplate Reader (BioTek, Winooski, VT) Using a linear standard 

curve, the amount of depleted ADP was determined, and these values were converted to specific 

kinase activity. 
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A.2.9 CaMKII inhibition and reinstatement of cocaine seeking 

Memory manipulations. Memory manipulations took place as described in the proteomics 

experiment above with the following differences. Pavlovian cue extinction was conducted in the 

same context in which rats received self-administration training, and took place for either a 

single 30 min session (moderate extinction) or a 30 min session on 2 consecutive days (extended 

extinction). For cue reactivation, rats were placed in operant chambers, in the opposite context 

from which they were trained, for a single memory reactivation session. During this session, the 

cocaine-associated cue was presented for 10 sec, 3 times, with each presentation separated by 1 

min. Control rats were again placed in the opposite context form which they were trained, but 

were never presented with the cocaine-associated cues.  

Intracranial infusions. Drugs were administered in a volume of 0.5 µl/hemisphere. KN-62 was 

given at one of two doses: 340 or 680 ng/side. KN-93 was given at either 5 or 10 µg/side. These 

doses were based on effective doses in prior publications using intracranial infusions (Rodrigues, 

2004; Sakurai et al., 2007). Infusions were given immediately following the memory 

manipulations, by removing dummy cannuale and inserting injection cannulae (28 gauge; 

Plastics One; Roanoke, VA) that extended 1 mm beyond the guide cannulae. The injectors were 

connected to Hamilton syringes (Hamilton Robotics, Reno, NV) controlled by a syringe pump 

via polyethylene tubing. Infusions were given over the course of 2 min and injectors were left in 

the cannulae for an additional 1 min to allow for drug diffusion.  

Cue-induced reinstatement. 24 h after the final Pavlovian cue extinction session or memory 

reactivation session, cue-induced reinstatement was assessed during a 1 h session that took place 

in the original self-administration context. A lever press on the active lever produced a 10 sec 
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presentation of the cocaine-associated cue on an FR1 schedule, but no drug reinforcement. Lever 

presses on the inactive lever were recorded but had no programmed consequences. 

Histological analysis. After the completion of experiments, rats with intracranial cannulae were 

sacrificed via decapitation. Brains were dissected and placed in 10% formalin for at least 3 d 

then transferred to 30% sucrose for at least 3 d. Brains were then frozen and sectioned coronally 

through the BLA on a cryostat. Sections were taken at 50 µm and placed on slides for 

visualization of infusion placements. The investigator was blind to treatment group when 

analyzing histology, and animals with infusions outside of the BLA were removed from the main 

analysis. Schematic of acceptable infusion locations is seen in Figure 25. 
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Figure 25. Histological representation of infusion locations in the BLA. 

The black squares represent the outermost range in the medial-lateral and dorsal-ventral planes that were considered 

a hit in the BLA, all other placements were located within these bounds. Numbers by each section represent 

millimeters from bregma. 
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A.2.10 Code availability 

All behavioral training and testing was conducted using custom MedPC programs. The computer 

code used is available to researchers upon request. 

A.2.11 Statistical analyses 

Behavioral and kinase activity data were analyzed using GraphPadPrism for Windows. For 

proteomic data, the normalized average intensity across transitions for each phosphopeptide was 

computed for each sample and these values were averaged within groups. Group averages were 

compared statistically using a SRMstats restricted analysis and p-values corrected for multiple 

comparisons. For immunoblot data, intensities of protein bands were quantified using Odyssey 

Imaging Software ver 3.0. Total CaMKII amount was normalized based on the signal intensity of 

GAPDH and expressed as %WT. For kinase activity data, samples were run in duplicate. 

Luminescence was normalized to a ‘no-substrate control’ and converted to kinase specific 

activity based on a standard conversion curve. Data was analyzed using a one-way ANOVA. 

Reinstatement tests were analyzed by two-way ANOVA with repeated measures, with the 

between-subjects factor being responding on the last day of lever extinction versus reinstatement 

responding and the within-subjects factor being the dose of drug. For the no reactivation control 

group, vehicle groups were statistically similar, and therefore collapsed across treatment groups. 

For the anatomical control experiment, data were analyzed using an independent samples t-test. 

For all analyses, significant effects were further analyzed by Bonferroni’s post hoc tests, with 

significance set at P < 0.05. All data were determined to be normally distributed using the 
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Shapiro-Wilk test, and Bartlett’s test was used to determine that there were no significant 

differences in the estimated variance between groups. 

A.3 RESULTS 

A.3.1 Identification of novel signaling events that are regulated by cocaine-cue memory 

extinction and reconsolidation 

To identify candidate signaling events that are regulated in opposition by extinction vs. 

reconsolidation of a memory associated with self-administered cocaine, we employed a high 

resolution tandem mass spectrometry-based phosphoproteomics approach, where we examined 

differential protein phosphorylation events after memory manipulations as an index of increased 

or decreased protein activity. Rats were trained to self-administer cocaine paired with an 

audiovisual cue (conditioned stimulus (CS)) for 10 days, followed by 5-7 days of extinction of 

instrumental lever responding (Figure 26A). Each rat was assigned to a memory manipulation 

group in a random manner that ensured no training differences between groups. There were no 

significant differences or interactions with day of training for infusions earned (Figure 26B) or 

active lever presses during extinction (Figure 26C; two way repeated-measures ANOVA: P > 

0.05, n = 7-10 rats per group). No statistical differences were observed for active lever presses 

during acquisition or inactive lever presses at any stage (data not shown). Following lever 

extinction, rats were exposed to one of three memory conditions: reactivation, extinction, or  
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Figure 26. Self-administration and extinction training data from rats used for phosphoproteomic analysis. 

(A) Timeline for proteomics experiments. (B) Mean number of cocaine infusions per day during acquisition and (C) 

mean number of active lever presses per day during instrumental extinction in rats prior to memory manipulations. 

There were no differences in acquisition or instrumental extinction between manipulation groups (both p > 0.05, n = 

7, 9, and 10 rats, respectively, for control, extinction, and reconsolidation). Data are expressed as mean + s.e.m. 
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control context exposure. Fifteen min following the memory manipulation, rats were euthanized 

by focused microwave irradiation to maintain protein post-translational modifications, and the 

brains were dissected for proteomics analysis. Fifteen min was chosen as it is thought to 

represent the time when many of the intracellular signaling cascades regulating the extinction or 

reconsolidation of a memory would be active. Here we describe results from the analysis of the 

BLA, as it is the locus for associative learning and mediates the encoding of drug-associated 

memories (Schafe and LeDoux, 2000; See, 2005). 

Total homogenates were enriched for phosphopeptides, and discovery-based, label free 

quantitative analysis was used to identify putative memory-regulated proteins. A large number of 

phosphopeptides were detected corresponding to 355 unique proteins. From this list of 

phosphopeptides, we pseudorandomly chose ~80 phosphopeptides for quantitative validation by 

selective reaction monitoring (SRM) mass spectrometry. We prioritized the phosphopeptides to 

be chosen by selecting those with robust ionization intensity that were likely to provide clear MS 

signals and to exclude highly abundant, heavily phosphorylated proteins, such as neurofilaments 

and microtubule associated proteins. Phosphorylation of these proteins are potentially relevant to 

memory processes, but because of their abundance and high degree of phosphorylation, they may 

be over-represented in the analysis. A total of 72 unique phosphopeptides had sufficient data 

quality from the SRM experiment for data analysis. Table 1 contains the statistical analysis, as 

described in the methods, and estimated fold change in the level of phosphopeptides in the 

extinction and reactivation groups relative to the control. Figure 27 summarizes the data from all 

phosphopeptides that showed a significant change from control when analyzed using SRMstats 

with a significance cut-off of p < 0.05 after correction for multiple comparisons. Each panel is 

organized to illustrate the phosphopeptides significantly regulated by both extinction and 
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Figure 27. Identification of signaling pathways regulated by cocaine-associated memory extinction and 

reconsolidation. 

(A-D) Phosphoproteomic analysis from tissue collected 15 min following memory manipulations reveals several 

phosphopeptides that were significantly regulated (A) in the opposite direction by extinction vs. reconsolidation, (B) 

in the same direction by both memory conditions, (C) by memory extinction only (only red bars significantly 

different from control), or (D) by memory reconsolidation only (only blue bars significantly different from control). 

The y-axes list the Uniprot database protein abbreviation. The number in parenthesis following an abbreviation is 

the ID we assigned when multiple unique phosphopeptides were identified from the same protein. Bars represent the 

estimated fold change in phosphopeptide abundance relative to non-memory manipulated controls. Positive values 

indicate significant increases in the abundance of the phosphopeptide, and negative values decreased abundance. All 

p < 0.05 relative to control after correction for multiple comparisons using SRMstats for statistical analysis of SRM 

data (Chang et al., 2012). 
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reconsolidation in the opposite direction (Figure 27A); those significantly regulated in the same 

direction by both conditions (Figure 27B); those only significantly regulated in the extinction 

condition (Figure 27C); and those only significantly regulated in the reactivation condition 

(Figure 27D).  Of greatest interest for our study were the 5 phosphopeptides regulated in the 

opposite direction by extinction vs. reconsolidation, as these could represent targets that can both 

enhance extinction while inhibiting reconsolidation to ensure sufficient weakening of a drug-

associated memory. These phosphopeptides included CaMKIIα (KCC2A, pS331), c-Jun N-

terminal kinase 3 (JNK3 or MK10, pT221+Y223), the gap junction protein connexin 43 (CXA1, 

pS328+pS330), the GABAB receptor subunit 2 (GABR2, pS883), and phospholipase C beta 1 

(PLCB1, pS988). Interestingly, CaMKIIα, phospholipase C, and GABAB receptors are 

important regulators of Ca2+ signaling (Chalifoux and Carter, 2011; Lyon and Tesmer, 2013), 

and JNK3 activation can be regulated by PLC (Buckley et al., 2004), indicating a convergence of 

opposing calcium-related cellular events dependent on whether a cocaine memory is 

reconsolidated or extinguished. 

A.3.2 Phosphorylation of CaMKII at S331 decreases catalytic activity 

CaMKIIα is known to be an important regulator of learning and memory (Coultrap and Bayer, 

2012; Sanhueza and Lisman, 2013), and is an abundant protein, thus it is not surprising that 

CaMKIIα was identified in our analysis.  Yet, somewhat surprisingly, the differentially regulated 

phosphorylation event on CaMKIIα was on residue S331. S331 phosphorylation was 

significantly increased after memory extinction, but was significantly decreased after memory 

reactivation (Figure 28A). To our knowledge, S331 phosphorylation has never been previously 
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Figure 28. Phosphorylation of CaMKIIα at S331 inhibits enzyme activity. 

(A) Schematic representation of site-directed mutagenesis of CaMKIIα at S331 to generate phospho-deficient 

(S331A) or phospho-mimetic (S331E) mutants. (B) Wild-type (WT), S331A, and S331E plasmids were expressed in 

HEK293T cells. Supernatants were collected and CaMKIIα expression was quantified via immunoblot, normalized 

to GAPDH, and expressed as %WT. Results indicate a lack of CaMKIIα in the non-transfected control (No Tfx) 

condition, but similar expression of all recombinant forms of CaMKIIα (n = 8 samples per group). Representative 

immunoblots are shown in the upper panel. (C) Quantification of CaMKII activity from whole cell lysates. Kinase 

activity was regulated by the phospho-mimetic mutation of S331 (n = 8 samples per group). Catalytic activity of the 

CaMKIIα S331E mutant was significantly lower than that of the S331A mutant . Data are expressed as mean + 

s.e.m. *p < 0.05.   
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reported in relation to learning and memory or any other biological process. However, one recent 

study has found that S331 is a potential autophosphorylation site (Baucum et al., 2015). 

Therefore, we proceeded to determine if phosphorylation of S331 regulates the enzymatic 

activity of CaMKIIα. Phospho-deficient (S331A) and phospho-mimetic (S331E) forms of 

CaMKIIα DNA were generated (Figure 28A) and, along with a wild-type (WT) form, expressed 

in HEK293T cells. The absence of endogenous CaMKIIα in HEK293T cells, as previously 

reported (Jenkins et al., 2010; Tsui et al., 2005), was confirmed by immunoblot analysis, while 

expression of all recombinant forms of CaMKIIα was comparable (Figure 28B; one-way 

ANOVA: F(3,28) = 25.84, P < 0.001, n = 8 samples per group). CaMKIIα activity in whole-cell 

lysates was measured in the presence of Ca2+, calmodulin, ATP, and the CaMKIIα selective 

substrate, autocamtide-2. Kinase activity differed across plasmid types (Figure 28C; one-way 

ANOVA: F(3,28) = 8.714, P < 0.001, n = 8 samples per group). The catalytic activity of phospho-

mimetic CaMKIIα (S331E) was significantly lower than that of the S331A mutant enzymes (P < 

0.05). The kinase activity of WT CaMKIIα was between the levels observed for S331A- and 

S331E-mutated lysates. Although the phosphorylation state of the WT CaMKIIα at S331 is 

unknown, it is likely that the total protein contains a mixture of phosphorylated and non-

phosphorylated S331, and as an autophosphorylation site, had the potential to be phosphorylated 

in the presence of Ca2+, calmodulin, and ATP. However, our results suggest that in HEK293 

cells, WT CaMKIIα is predominantly not phosphorylated, as kinase activity more closely 

mimicked that of the phospho-deficient mutant. 
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A.3.3 Inhibition of CaMKII in the BLA enhances drug-cue memory extinction 

Based on the apparent increase in an inhibitory phosphorylation event at S331 on CaMKIIα after 

extinction, and a decrease in phosphorylation after reactivation, we hypothesized that memory 

reconsolidation must require active CaMKIIα in the BLA, while extinction requires a 

deactivation of CaMKIIα. Therefore, we investigated if CaMKII inhibition could both inhibit 

drug-cue memory reconsolidation and enhance extinction to reduce relapse-like cue-induced 

reinstatement. For this set of experiments, rats again underwent standard cocaine self-

administration and lever extinction training before placement into memory manipulation groups. 

Following memory manipulations rats received immediate infusion of one of two doses of two 

related CaMKII inhibitors (KN-93 or KN-62) or the vehicle directly into the BLA, and the 

propensity to reinstate cocaine-seeking in response to the cue was assessed 24 h later (Figure 

29A). For all experiments involving CaMKII inhibition, there were no pre-existing differences 

between drug-treatment groups in number of reinforcers earned, active lever responding, or 

inactive lever responding during acquisition or lever extinction (KN-93: Figure 29B; KN-62: 

Figure 29C; all P > 0.05, n = 5-11 rats/group). This ensures that any memory manipulation or 

drug effect on cue-induced reinstatement was not due to pre-existing differences in propensity to 

self-administer drug or extinguish drug seeking.  

 Pavlovian cue extinction has previously been demonstrated as an effective method for 

reducing drug-cue motivated behavior (Torregrossa et al., 2010, 2013)). To determine if the 

effects of cue extinction on reinstatement could be amplified by inhibiting CaMKII, rats were 

given intra-BLA infusions of a CaMKII inhibitor immediately following two types of extinction 

training: 60 vs. 120 CS presentations. In this manner, we could determine if CaMKII inhibition 
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Figure 29. No differences in training data between groups prior to memory manipulations/BLA infusions. 

(A) Experimental timeline. Rats received bilateral infusions of one of two CaMKII inhibitors (KN-93 or KN-62) or 

vehicle into the BLA immediately following memory manipulation sessions. 24 h later, rats were tested for cue-

induced reinstatement under drug free conditions.  Data are displayed separately for groups treated with the CaMKII 

inhibitor KN-93 (B) or KN-62 (C). Left panels: Mean number of cocaine infusions per day during acquisition. 

Center panels: Mean number of active (solid shapes) and inactive (open shapes) lever presses per day during 

acquisition. Right panels: Mean number of active and inactive lever presses per day during instrumental extinction. 

For simplicity, data is grouped via dose of CaMKII inhibitor, collapsed across memory manipulation. There are no 

differences, in any measures, during acquisition or instrumental extinction between treatment groups for any of the 

memory manipulations (all p > 0.05). Data are expressed as mean + s.e.m. 
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could facilitate sub-optimal (moderate), as well as extended, extinction training. All cue 

extinction and reinstatement testing occurred in the same context to specifically understand 

extinction consolidation processes, rather than contextual encoding or renewal. CaMKII 

inhibition with either KN-93 or KN-62 following moderate cue extinction reduced subsequent 

cue-induced reinstatement (Figure 30A; KN-93: F(2,15) = 6.671, P = 0.009, n = 5-7 rats per 

group; KN-62: F(2,17) = 5.036, P = 0.019, n = 6-7 rats per group; both two-way ANOVAs). These 

data suggest that CaMKII inhibition after extinction training can enhance the effects of moderate 

cue extinction training to reduce reinstatement. On the other hand, an extended cue extinction-

duration protocol (120 cues) immediately followed by infusion of the CaMKII inhibitor KN-62, 

failed to reduce reinstatement relative to vehicle-treated controls. As a whole, all rats that 

experienced extended cue extinction in the self-administration context exhibited the expected 

extinction-induced reduction in reinstatement that could not be further potentiated by CaMKII 

inhibition (Figure 30A; two way ANOVA: P > 0.05, n = 6-8 rats per group), indicating that 120 

CS presentations likely produces a floor effect. These results are similar to previously published 

work demonstrating that extended cue extinction in the self-administration context could not be 

potentiated by treatment with D-cycloserine (DCS), even though DCS can promote extinction 

learning under other conditions (Torregrossa et al., 2010). 

A.3.4 Inhibition of CaMKII in the BLA interferes with drug-cue memory reconsolidation 

We then tested if CaMKII inhibition in the BLA following reactivation of the cocaine cue 

memory (3 CS presentations) could disrupt reconsolidation. After cocaine self-administration 

and lever extinction training, the cocaine-associated cue memory was reactivated in a novel  
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Figure 30. CaMKII inhibition enhances drug-cue memory extinction and disrupts memory reconsolidation to 

reduce cue-induced reinstatement. 

(A) Mean number of active lever presses during cue-induced reinstatement, 24 h after extinction manipulations. 

CaMKII inhibition by KN-93 (left panel) and KN-62 (middle panel) enhanced the effects of a single (moderate) cue 

extinction session. Both doses of KN-93 and the 680 ng/side dose of KN-62 significantly decreased reinstatement in 

the moderate extinction condition. CaMKII inhibition by KN-62 (right panel) had no effect after extended extinction 

training (p > 0.05). (B) Mean number of active lever presses during cue-induced reinstatement, 24 h after memory 

reactivation manipulations. CaMKII inhibition by KN-93 (left panel) and KN-62 (right panel) disrupted drug-cue 

memory reconsolidation. Both doses of KN-93, but only the 340 ng/side dose of KN-62 reduced reinstatement. Data 

are expressed as mean + s.e.m.; number of rats per group indicated by number inside bars. *P < 0.05 versus vehicle. 
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context, followed by immediate infusion of CaMKII inhibitors into the BLA. Rats were then 

tested for cue-induced reinstatement of cocaine seeking 24 h later.  KN-93 at both doses 

decreased active lever responding during reinstatement relative to VEH-treated controls, while 

only the low dose of KN-62 significantly reduced reinstatement (Figure 30B; KN-93: main 

effect: F(2,20) = 3.587, P = 0.047, n = 7-9 rats per group; KN-62: significant interaction between 

treatments: F(2,23) = 4.413, P = 0.024, n = 6-11 rats per group; both two-way ANOVA). Due to 

the consistency of effects with both doses of KN-93 and the low dose of KN-62, we suspect that 

the high dose of KN-62 produced non-specific effects that occluded any influence of CaMKII 

inhibition; however, we cannot rule out the possibility that there is a U-shaped dose effect 

function in the ability of CaMKII inhibition to interfere with memory reconsolidation. 

Nevertheless, together these data suggest that CaMKII may be important for the reconsolidation 

(restabilization) of the drug-cue memory following reactivation, and inhibition of CaMKII has 

the potential to interfere with this reconsolidation. 

A.3.5 Intra-BLA CaMKII Inhibition does not affect reinstatement in the absence of 

memory manipulations  

Finally, we wanted to confirm that the effects of CaMKII inhibition were selective to memory 

manipulations rather than non-specific effects on locomotion or motivation, and that inhibitor 

actions were mediated within the BLA.  First, we determined whether the highest dose of either 

CaMKII inhibitor could affect cue induced reinstatement if it was given following placement of 

rats in a novel operant context without cue presentation or the opportunity to make an 

instrumental response (i.e., a no reactivation control experiment). Post-session treatment with the 
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high dose of either KN-93 or KN-62 had no significant effect on active responding during cue-

induced reinstatement, indicating no effect on cocaine seeking in the absence of a memory 

manipulation (Figure 31A; Two-way ANOVA: P > 0.05, n = 5-9 rats per group). Therefore, 

effects of CaMKII inhibition on cue-induced reinstatement are likely due to specific actions on 

extinction and reconsolidation processes. Next, we determined if infusions of CaMKII inhibitors 

outside of the BLA had any effect on subsequent cue-induced reinstatement. We analyzed the 

data from animals whose vehicle or inhibitor infusion locations were found to lie outside of the 

BLA after histological analysis.  We included rats whose infusion locations were dorsal, lateral, 

and medial to the BLA. We found no significant effect of CaMKII inhibitors infused after 

extinction or reactivation of the cocaine memory on cue-induced reinstatement if the infusions 

were outside of the BLA, suggesting that drug spread into other regions does not explain our 

behavioral results (Figure 31B,C; both unpaired t-test: P > 0.05, n = 5-8 rats per group). 
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Figure 31. CaMKII inhibition has no effect on cue-induced reinstatement if the memory was not reactivated 

or infusions occurred outside of the BLA. 

(A) Cue-induced reinstatement in animals that did not receive drug-cue memory extinction or reactivation. For this 

control, rats were placed back in self-administration chambers, but received 0 CS presentations. There were no 

effects of CaMKII inhibition on active lever presses during the cue-induced reinstatement test. (left bar: vehicle, 

middle bar: KN-93, right bar: KN-62). (B-C) Cue-induced reinstatement in animals with infusions outside of the 

BLA. There were no effects of CaMKII inhibition on active lever presses during the cue-induced reinstatement test 

in rats that received infusions outside of the boundaries of the BLA after (B) a single (moderate) cue extinction 

session or (C) reactivation. Reinstatement data is from rats infused with either the effective dose of KN-93 or KN-62 

(5 μg/side and 680 ng/side, respectively). Rats were pooled due to the low numbers of animals in each individual 

inhibitor condition, and because there was no difference in reinstatement behavior between the compounds. Data are 

expressed as mean + s.e.m.; number of rats per group indicated by number inside bars. 
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A.4 DISCUSSION 

The present study identified brain-region specific protein phosphorylation events that occur in 

response to the reactivation or extinction of cocaine-cue-specific memories. Our proteomic 

analysis indicated that several cellular signaling cascades were activated in the same manner by 

both extinction and reconsolidation, including increased phosphorylation of extracellular 

regulated kinase 2 (ERK2) and 60S ribosomal subunits, which regulate protein synthesis. These 

results are consistent with prior findings in the literature indicating that ERK activity and protein 

synthesis are required for both the reconsolidation and extinction of memory (Cestari et al., 

2006; Duvarci et al., 2005; Tronson and Taylor, 2007). The proteomic analysis also revealed 

several phosphorylation events that were selective to one memory condition or the other, and 

importantly, identified 5 proteins that exhibited opposing directions of phosphorylation under 

extinction vs. reactivation conditions. Thus, we report the identification of several signaling 

pathways that may be viable targets for developing medications to be used in conjunction with 

memory-based behavioral interventions. In particular, phospholipase C and c-jun N-terminal 

kinase 3 are two proteins that have been associated with memory regulation in other paradigms, 

and deserve further study. It should be noted that it is possible that some of the protein 

phosphorylation changes observed are not related to memory, but rather could be associated with 

a change in motivational state. Nonetheless, use of this discovery-based approach represents a 

novel method for determining signaling events involved in specific memory processes.  

Specifically, we found a novel residue on CaMKIIα, S331, where phosphorylation was 

increased after extinction and decreased after reactivation.  Mutagenesis experiments indicated 

that phosphorylation of S331 reduced enzymatic activity of CaMKIIα. Additionally, we found 
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that pharmacological inhibition of CaMKII within the BLA can lead to a reduction in drug-cue 

motivated behavior if the inhibition occurs immediately following either memory reactivation or 

memory extinction. This is consistent with both a partial impairment in the reconsolidation of the 

original drug-cue memory and an enhancement in the learning/consolidation of the new cue-

extinction memory, effectively weakening the drug-associated memory trace. 

A.4.1 Targeting memory processes as a therapeutic strategy 

Manipulations that inhibit drug-cue memory reconsolidation and promote extinction have high 

therapeutic potential for relapse prevention in addiction (Sorg, 2012; Torregrossa et al., 2011). 

Despite a remarkable effort to develop pharmacotherapies for drug addiction, there has been little 

success in helping addicted individuals maintain long-term abstinence (Koob and Volkow, 

2010). Currently, clinical efforts that combine treatment medications with behavioral therapies 

have demonstrated the highest success rates (Carroll and Onken, 2005). A common behavioral 

approach involves exposing individuals to multimodal cues in an extinction-based therapy to 

decrease subsequent craving and relapse when drug-associated cues are re-encountered (Price et 

al., 2013). Previous research has demonstrated some effectiveness of this approach to inhibit 

fear-associated memories in rodent models and in humans (Hofmann et al., 2012; Monfils et al., 

2009; Ressler et al., 2004). In the present study, we show that a single cue extinction session is 

mildly effective in reducing responding for cocaine during a cue-induced reinstatement session, 

but that this reduction is amplified by the addition of a second cue extinction session, consistent 

with the fact that the number of unreinforced cue presentations is a critical determinant of 

extinction efficacy (Price et al., 2013; Unrod et al., 2014).  
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Although cue extinction therapy can have moderate success (Kantak and Nic 

Dhonnchadha, 2011; Price et al., 2010), developing medications that can be given in conjunction 

with exposure therapy to augment extinction learning will likely improve treatment outcomes. In 

particular, intra-BLA CaMKII inhibition immediately following a single cue-extinction session 

(moderate extinction) potentiated the reduction in cue-induced reinstatement observed 24 h later. 

CaMKII inhibition also disrupted reconsolidation, indicating that insufficient extinction training 

would not prevent efficacy, as may be the case for glutamatergic agonists like DCS (Lee et al., 

2009; Price et al., 2013). Therefore, inhibiting CaMKII signaling pathways in conjunction with 

exposure therapy may be a viable treatment strategy. However, CaMKII inhibition had no 

additional benefit after extended cue-extinction indicating a potential floor effect. Extended 

extinction alone was sufficient to drastically reduce levels of responding during reinstatement, 

even in VEH-treated animals, suggesting that sufficient exposure therapy could be beneficial, 

though the addition of CaMKII inhibition may have been able to inhibit renewal of cocaine 

seeking after a change of context or reduce spontaneous recovery, which could be tested in future 

experiments. 

A.4.2 Mechanisms of CaMKII action in memory processes 

Identifying CaMKIIα as an important component in the maintenance of drug-associated 

memories is not altogether surprising. It is well established that CaMKII activity is necessary for 

NMDAR-dependent forms of long-term potentiation (LTP) and synaptic modifications (Coultrap 

and Bayer, 2012; Lisman et al., 2012; Sanhueza et al., 2011). However, the identification of a 

phosphorylation event that is bidirectionally regulated by reconsolidation relative to extinction of 
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a memory is novel. CaMKII is activated by Ca2+ influx through NMDAR or voltage-gated Ca2+ 

channels, resulting in its autophosphorylation at T286. CaMKII then translocates to synapses, 

initiating a biochemical cascade, including phosphorylation of glutamatergic receptors that 

potentiates synaptic transmission (Barria, 1997; Bayer, 2006; Coultrap et al., 2014; El Gaamouch 

et al., 2012; Lemieux et al., 2012; Lu et al., 2010; Raveendran et al., 2009; Sanhueza and 

Lisman, 2013). Moreover, CaMKIIα knockout mice have deficits in LTP(Silva et al., 1992a), 

and in learning a hippocampus-dependent spatial task (Silva et al., 1992b), further demonstrating 

that CaMKIIα is necessary for memory formation. On the other hand, CaMKII activity, 

including phosphorylation of T286, is also needed for some forms of long-term depression 

(LTD) (Pi et al., 2010). Whereas CaMKII mediates LTP via phosphorylation of GluA1 at S831, 

LTD is likely evoked by CaMKII-mediated phosphorylation of GluA1 at S567 (Coultrap et al., 

2014). Thus, in our study, the effect of CaMKII inhibitors on reconsolidation and extinction 

might be explained by differential effects on LTP vs. LTD, respectively. 

Consistent with this possibility, it has been shown that increased activation of CaMKIIα 

can impair an NMDAR-dependent form of synaptic depotentiation in mice lacking cytoplasmic 

polyadenylation element binding protein 3 (CPEB3) (Huang et al., 2014). Coupled with the 

finding that CPEB3 KO mice exhibit deficits in the extinction of contextual fear memory (Chao 

et al., 2013), this further supports the notion that CaMKII inhibition could enhance extinction 

learning, and highlights a potential involvement of an LTD-like synaptic mechanism in this 

process. Additionally, there are a few reports that CaMKII also regulates memory 

reconsolidation. For example, reconsolidation of an amphetamine-conditioned place preference 

was disrupted by infusion of KN-93 into the hippocampus prior to re-exposure to the conditioned 

context (Sakurai et al., 2007). Likewise, CaMKII activity in the hippocampus is important for the 
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maintenance of a spatial memory after retrieval (Da Silva et al., 2013). On the other hand, the 

reconsolidation of a cocaine-associated contextual memory was not affected by intra-BLA 

CaMKII inhibition (Arguello et al., 2014). Although inconsistent with our results, the procedural 

differences between the two studies, including manipulating contextual rather than discrete cue 

memories, likely explains the differential findings. 

A.4.3 Role of CaMKII signaling in regulating drug-associated behaviors 

CaMKIIα phosphorylation events have recently been linked to drug-related learning (Easton et 

al., 2013, 2014; Salling et al., 2016). For example, mice without the capacity for CaMKIIα 

autophosphorylation (T286A mice) exhibited a delay in the establishment of a preference for 

cocaine, (Easton et al., 2014), and increased phosphorylation of CaMKIIα at T286 was observed 

in the amygdala after rats lever press for alcohol (Salling et al., 2016). In addition, reduction of 

CaMKIIα function in the NAc shell prevented amphetamine-associated plasticity and reduced 

self-administration (Loweth et al., 2013). Together these studies are consistent with our 

conclusions that CaMKIIα activity is a critical component of drug-related memory processes. 

Our proteomics results further suggest a very precise and novel, memory-specific regulation of 

CaMKIIα at S331. Phosphorylation of S331 has not been previously reported to change in a 

biological context, but a recent study has found S331 to be a putative autophosphorylation site 

that exists in vivo (Baucum et al., 2015). Interestingly, S331 is located within the linker region of 

CaMKIIα, and the linker region has the potential to regulate the function of CaMKII via multiple 

mechanisms in addition to kinase activity (Chao et al., 2011; Stratton et al., 2013). The present 

study is the first to report that S331 phosphorylation may inhibit kinase activity, suggesting that 
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CaMKIIα may have the ability to autoinhibit, potentially providing a negative feedback 

mechanism and/or a mechanism for mediating LTD. Future studies will further explore how and 

when this novel phosphorylation site on CaMKIIα is regulated, if memory manipulation-specific 

phosphorylation events occur in distinct sub-populations of BLA neurons, and how CaMKIIα 

S331 phosphorylation affects synaptic plasticity. 

A.4.4 Summary 

Taken together, the present study identified several signaling cascades regulated by the 

extinction and reconsolidation of a memory associated with self-administered cocaine. In 

particular, we identified a novel mechanism by which CaMKIIα can regulate both memory 

processes. Furthermore, our results suggest that inhibiting CaMKII or related signaling cascades 

could be a novel approach for combined behavioral and pharmacological therapy in the treatment 

of addictive disorders. 
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Table 1. Results from SRM Proteomics Analysis 

  Extinction vs. Control 

  SRM Stats Restricted 
Scope 

Linear Mixed Effects 
Model 

Protein Peptide Sequence + 
Modification(s) 

non 
adjusted 
pval 

Fold 
Change-
estimate 

adjusted 
pval 

non 
adjusted 
pval 

Fold 
Change-
estimate 

adjuste
d pval 

ADCY9  GQGTASpPGSpVSDLAQT
VK  0.2413  0.3017  0.3475  0.5004  0.3017  0.7506 

AKA12 ALGSpLGGSpPSLPDQDK 0.0172 -0.5640 0.0403 0.3275 -0.5640 0.7284 
ARHG7 MSpGFIYQGK 0.4373 0.0582 0.5524 0.6516 0.0582 0.8530 
BAIP2 SSSpMAAGLER 0.7626 0.0362 0.8133 0.8628 0.0362 0.9557 
BSN SPQVLYSpPVSpPLSPHR 0.0118 0.2460 0.0340 0.1478 0.2460 0.7284 
CKD18 RASpLSDIGFGK 0.0000 -0.2172 0.0000 0.4012 -0.2172 0.7284 
CSKI1 KVPLPGPGSpPEVK 0.0173 -0.2256 0.0403 0.1374 -0.2256 0.7284 

CTNA1 SRTpSpVQTpEDDQLIAGQ
SAR 0.0144 -0.2016 0.0370 0.1565 -0.2016 0.7284 

CTNA1 SRTSpVQTpEDDQLIAGQS
AR 0.0345 0.1416 0.0653 0.3944 0.1416 0.7284 

CTNB1 RTSMGGTpQQQFVEGVR 0.2586 -0.0518 0.3581 0.8423 -0.0518 0.9557 
CTND2 ALQSpPEHHIDPIYEDR 0.9798 -0.0032 0.9798 0.9794 -0.0032 0.9925 

CXA1 M(ox)GQAGSTISpNSpHAQ
PFDFPDDNQNAK 0.3219 -0.0462 0.4292 0.8552 -0.0462 0.9557 

CXA1 MGQAGSTISpNSpHAQPF
DFPDDNQNAK 0.0152 -0.3070 0.0377 0.3096 -0.3070 0.7284 

CXA1 VAAGHELQPLAIVDQRPS
SpRASpSpR 0.0000 -0.5198 0.0000 0.0540 -0.5198 0.7284 

DGKB GAITpPPRSSpPANTCSPEV
IHLK 0.0032 -0.1344 0.0117 0.5449 -0.1344 0.7846 

EF1D ATAPQTQHVSpPMR 0.7508 -0.1949 0.8133 0.7508 -0.1949 0.8862 
FAK2 RNSpLPQIPTLNLESR 0.0000 0.2027 0.0000 0.2270 0.2027 0.7284 
FGF12 EPSpLHEIGEK 0.2060 -0.1028 0.3027 0.4973 -0.1028 0.7506 
GABR1 HPPTpPPDPSGGLPR 0.0002 0.1330 0.0011 0.4323 0.1330 0.7284 
GABR1 RHPPTpPPDPSGGLPR 0.0556 0.1371 0.1002 0.3379 0.1371 0.7284 
GABR2 DPIEDINSpPEHIQR 0.0035 0.2341 0.0119 0.2114 0.2341 0.7284 

GIT1 HGSpGAESDYENTQSGEP
LLGLEGK 0.0000 -0.2619 0.0002 0.0726 -0.2619 0.7284 

GIT1 NQSDLDDQHDYDSpVASp
DEDTDQEPLPSAGATR 0.1288 0.0910 0.2065 0.3636 0.0910 0.7284 

IF3M LLYLTpSpAK 0.5401 0.2342 0.6418 0.5401 0.2342 0.7846 
IPP2 EQESpSpGEEDNDLSPEER 0.9515 0.0051 0.9787 0.9830 0.0051 0.9925 
KCC2A ESSESTpNTpTpIEDEDTK 0.5437 0.0698 0.6418 0.8973 0.0698 0.9762 
KCC2A ESSpESTNTTIEDEDTK 0.0000 0.3596 0.0004 0.0737 0.3596 0.7284 
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KCNQ2 HGTSpPVGDHGSLVR 0.1291 -0.2891 0.2065 0.1291 -0.2891 0.7284 
KPCB HPPVLTpPPDQEVIR 0.0000 -0.1477 0.0002 0.5564 -0.1477 0.7855 
KPCG AAPALTpPPDR 0.5667 -0.2324 0.6535 0.5902 -0.2324 0.8058 

KPCG TpFCGTPDYIAPEIIAYQPY
GK 0.0008 -0.1151 0.0034 0.4350 -0.1151 0.7284 

        

MARCS EAAEAEPAEPGSpPSAETE
GASASSTSSPK 0.0000 0.2408 0.0000 0.1891 0.2408 0.7284 

MARCS GEAAAERPGEAAVASpSP
SK 0.3813 0.2147 0.4992 0.3813 0.2147 0.7284 

MARK2 DQQNLPFGVTPASpPSGH
SQGR 0.0020 0.1821 0.0075 0.0738 0.1821 0.7284 

MINK1 SDSVLPASHGHLPQAGSp
LER 0.0001 0.1289 0.0005 0.2101 0.1289 0.7284 

MK01 VADPDHDHTGFLTpEYpV
ATR 0.0002 0.1278 0.0014 0.3636 0.1278 0.7284 

MK10 TAGTSFMMTpPYpVVTR 0.0236 -0.4020 0.0499 0.4244 -0.4020 0.7284 

NBEA EIEDLSQSQSpPESpETDYP
VSTDTR 0.2533 0.0973 0.3576 0.4144 0.0973 0.7284 

NBEA TPLENVPGNLSpPIKDPDR 0.0180 -0.1595 0.0406 0.3981 -0.1595 0.7284 
NCAM1 DESpKEPIVEVR 0.9721 0.0015 0.9798 0.9925 0.0015 0.9925 

NCAM2 ITNHEDGSpPVNEPNETTP
LTEPEK 0.0423 0.1622 0.0781 0.2935 0.1622 0.7284 

NCAM2 ITNHEDGSpPVNEPNETTp
PLTEPEK 0.3886 0.4858 0.4996 0.3886 0.4858 0.7284 

NMDE2 HSQLSDLYpGK 0.9273 0.0241 0.9676 0.9608 0.0241 0.9925 

PAK1 TVSETPAVPPVSpEDEDD
DDDATPPPVIAPRPEHTK 0.7681 0.0103 0.8133 0.9220 0.0103 0.9762 

PEA15 QPSpEEEIIK 0.7666 -0.0792 0.8133 0.8489 -0.0792 0.9557 

PLCB1 SEPSSPDHGSSpAIEQDLA
ALDAEMTQK 0.0129 -0.1209 0.0344 0.4324 -0.1209 0.7284 

PLCB1 VNLKSpPSpSEEVQGENA
GR 0.1122 0.1155 0.1878 0.3816 0.1155 0.7284 

PP1R7 HGGGIVADLSpQQSpLK 0.0211 0.1865 0.0460 0.3519 0.1865 0.7284 

PPR1B IAESHLQTISNLSENQASp
EEEDELGELR 0.0000 -0.3538 0.0001 0.5932 -0.3538 0.8058 

PTPRN LPEEGGSSpRAEDSSpEGH
EEEVLGGHGEK 0.0263 0.2670 0.0513 0.4188 0.2670 0.7284 

RLA1 KEESpEESpEDDM(ox)GFG
LFD 0.0002 0.2178 0.0013 0.1795 0.2178 0.7284 

RLA2 KEESpEESpDDDM(ox)GFG
LFD 0.0003 0.3184 0.0016 0.1069 0.3184 0.7284 

RP3A WHQLQNENHVSSpD 0.4637 -0.2760 0.5757 0.4625 -0.2760 0.7506 
SCN2A RFSSpPHQSpLLSIR 0.0005 0.1191 0.0021 0.6348 0.1191 0.8464 
SHAN2 RAPSpPVVSpPTELSK 0.0002 0.2541 0.0014 0.3608 0.2541 0.7284 

SHAN3 SRSpPSpPSpPLPSPSPGSGP
SAGPR 0.0263 0.2147 0.0513 0.3748 0.2147 0.7284 

SRBS2 SESpMGSpLLCDEGSK 0.0068 0.4027 0.0204 0.1111 0.4027 0.7284 

Table 1. Results from SRM Proteomics Analysis 



175 

 

SRCN1 DSGSSSVFAESpPGGK 0.0051 0.1440 0.0161 0.2492 0.1440 0.7284 
SRCN1 KAESpEELEIQKPQVK 0.6499 0.0178 0.7312 0.9149 0.0178 0.9762 
SRCN1 RFSpNVGLVHTSER 0.0005 -0.2261 0.0021 0.0394 -0.2261 0.7284 
SRCN1 RGSpDELTVPR 0.1518 -0.0512 0.2377 0.6823 -0.0512 0.8773 

SRCN1 SSpGATpPVSGPPPPAVSS
TPAGQPTAVSR 0.3208 0.1193 0.4292 0.4850 0.1193 0.7506 

STMN1 DLSpLEEIQK 0.2030 0.0679 0.3027 0.7102 0.0679 0.8862 
STMN1 ESVPEFPLSpPPK 0.0251 -0.0784 0.0513 0.7438 -0.0784 0.8862 
STMN1 RASpGQAFELILSpPR 0.0123 0.2622 0.0340 0.3793 0.2622 0.7284 
STX1A HSAILASpPNPDEK 0.0676 -0.1172 0.1187 0.3204 -0.1172 0.7284 

STX1A TAKDSpDDDDDVTVTVD
R 0.0004 0.1918 0.0020 0.1052 0.1918 0.7284 

SYPH LHQVYpFDAPSCVK 0.0847 0.0850 0.1452 0.7301 0.0850 0.8862 

SYT1 DQALKDDDAETGLTpDG
EEK 0.4814 0.1493 0.5875 0.4814 0.1493 0.7506 

TNIK SEGSpPVLPHEPSK 0.1999 -0.0503 0.3027 0.3956 -0.0503 0.7284 
VIAAT GGAPLPPSGSpK 0.5718 -0.0553 0.6535 0.7363 -0.0553 0.8862 

 
  Reactivation vs. Control 
  SRM Stats Restricted 

Scope 
Linear Mixed Effects 
Model 

Protein Peptide Sequence + 
Modification(s) 

non 
adjusted 
pval 

Fold 
Change-
estimate 

adjusted 
pval 

non 
adjusted 
pval 

Fold 
Change-
estimate 

adjuste
d pval 

ADCY9 GQGTASpPGSpVSDLAQT
VK 0.0041 0.5934 0.0084 0.1647 0.5934 0.4146 

AKA12 ALGSpLGGSpPSLPDQDK 0.7666 -0.0604 0.8119 0.9193 -0.0604 0.9734 
ARHG7 MSpGFIYQGK 0.0030 0.3177 0.0065 0.1157 0.3177 0.3783 
BAIP2 SSSpMAAGLER 0.7281 0.0759 0.8119 0.8649 0.0759 0.9730 
BSN SPQVLYSpPVSpPLSPHR 0.0063 0.2866 0.0120 0.0908 0.2866 0.3783 
CKD18 RASpLSDIGFGK 0.1156 -0.0447 0.1734 0.8288 -0.0447 0.9730 
CSKI1 KVPLPGPGSpPEVK 0.0305 -0.3568 0.0500 0.0260 -0.3568 0.2341 

CTNA1 SRTpSpVQTpEDDQLIAGQ
SAR 0.0604 -0.1133 0.0945 0.5393 -0.1133 0.7949 

CTNA1 SRTSpVQTpEDDQLIAGQS
AR 0.0000 0.2878 0.0000 0.0124 0.2878 0.1491 

CTNB1 RTSMGGTpQQQFVEGVR 0.6712 0.0640 0.7922 0.8436 0.0640 0.9730 
CTND2 ALQSpPEHHIDPIYEDR 0.7668 0.0369 0.8119 0.7588 0.0369 0.9419 

CXA1 M(ox)GQAGSTISpNSpHAQ
PFDFPDDNQNAK 0.0000 0.3038 0.0000 0.1234 0.3038 0.3783 

CXA1 MGQAGSTISpNSpHAQPF
DFPDDNQNAK 0.0000 0.3992 0.0001 0.1918 0.3992 0.4359 

CXA1 VAAGHELQPLAIVDQRPS
SpRASpSpR 0.0000 -0.3599 0.0000 0.0198 -0.3599 0.2037 

DGKB GAITpPPRSSpPANTCSPEV 0.9499 -0.0044 0.9738 0.9901 -0.0044 0.9901 

Table 1. Results from SRM Proteomics Analysis 
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IHLK 
EF1D ATAPQTQHVSpPMR 0.7183 -0.2315 0.8119 0.7183 -0.2315 0.9403 
FAK2 RNSpLPQIPTLNLESR 0.0000 0.2167 0.0001 0.1670 0.2167 0.4146 
FGF12 EPSpLHEIGEK 0.0000 -0.8485 0.0000 0.2585 -0.8485 0.5444 
GABR1 HPPTpPPDPSGGLPR 0.5901 -0.0188 0.7201 0.9144 -0.0188 0.9734 
GABR1 RHPPTpPPDPSGGLPR 0.4862 -0.0397 0.6251 0.8359 -0.0397 0.9730 
GABR2 DPIEDINSpPEHIQR 0.0054 -0.2011 0.0105 0.3330 -0.2011 0.5994 

GIT1 HGSpGAESDYENTQSGEP
LLGLEGK 0.3029 -0.0707 0.4194 0.5410 -0.0707 0.7949 

GIT1 NQSDLDDQHDYDSpVASp
DEDTDQEPLPSAGATR 0.0002 0.2143 0.0005 0.0370 0.2143 0.2661 

IF3M LLYLTpSpAK 0.7412 0.1111 0.8119 0.7412 0.1111 0.9419 
IPP2 EQESpSpGEEDNDLSPEER 0.0052 0.3180 0.0104 0.2948 0.3180 0.5736 
KCC2A ESSESTpNTpTpIEDEDTK 0.0003 0.4759 0.0008 0.0322 0.4759 0.2578 
KCC2A ESSpESTNTTIEDEDTK 0.0000 -0.6186 0.0001 0.4973 -0.6186 0.7949 
KCNQ2 HGTSpPVGDHGSLVR 0.1937 -1.4748 0.2847 0.1937 -1.4748 0.4359 
KPCB HPPVLTpPPDQEVIR 0.0000 -0.1782 0.0000 0.6023 -0.1782 0.8339 
KPCG AAPALTpPPDR 0.3605 -0.3204 0.4806 0.3961 -0.3204 0.6633 

KPCG TpFCGTPDYIAPEIIAYQPY
GK 0.0000 -0.2607 0.0000 0.1253 -0.2607 0.3783 

MARCS EAAEAEPAEPGSpPSAETE
GASASSTSSPK 0.0000 0.3923 0.0000 0.0730 0.3923 0.3726 

MARCS GEAAAERPGEAAVASpSP
SK 0.2646 -1.9668 0.3736 0.2646 -1.9668 0.5444 

MARK2 DQQNLPFGVTPASpPSGH
SQGR 0.0000 0.2598 0.0001 0.0023 0.2598 0.0559 

MINK1 SDSVLPASHGHLPQAGSp
LER 0.0085 0.1011 0.0153 0.3707 0.1011 0.6509 

MK01 VADPDHDHTGFLTpEYpV
ATR 0.0004 0.1374 0.0008 0.3844 0.1374 0.6590 

MK10 TAGTSFMMTpPYpVVTR 0.0002 0.7296 0.0004 0.1492 0.7296 0.4132 

NBEA EIEDLSQSQSpPESpETDYP
VSTDTR 0.0088 0.2889 0.0155 0.0659 0.2889 0.3648 

NBEA TPLENVPGNLSpPIKDPDR 0.0003 -0.2541 0.0006 0.1069 -0.2541 0.3783 
NCAM1 DESpKEPIVEVR 0.4820 -0.0317 0.6251 0.8555 -0.0317 0.9730 

NCAM2 ITNHEDGSpPVNEPNETTP
LTEPEK 0.9769 -0.0021 0.9769 0.9894 -0.0021 0.9901 

NCAM2 ITNHEDGSpPVNEPNETTp
PLTEPEK 0.5354 -0.3821 0.6763 0.5354 -0.3821 0.7949 

NMDE2 HSQLSDLYpGK 0.9603 0.0113 0.9738 0.9690 0.0113 0.9901 

PAK1 TVSETPAVPPVSpEDEDD
DDDATPPPVIAPRPEHTK 0.2036 -0.0521 0.2932 0.6999 -0.0521 0.9383 

PEA15 QPSpEEEIIK 0.7288 0.0539 0.8119 0.8991 0.0539 0.9734 

Table 1. Results from SRM Proteomics Analysis 
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PLCB1 SEPSSPDHGSSpAIEQDLA
ALDAEMTQK 0.0348 0.1013 0.0558 0.7037 0.1013 0.9383 

PLCB1 VNLKSpPSpSEEVQGENA
GR 0.5520 -0.1562 0.6853 0.5302 -0.1562 0.7949 

PP1R7 HGGGIVADLSpQQSpLK 0.0001 0.4104 0.0002 0.0546 0.4104 0.3275 

PPR1B IAESHLQTISNLSENQASp
EEEDELGELR 0.0000 -0.4040 0.0000 0.5816 -0.4040 0.8211 

PTPRN LPEEGGSSpRAEDSSpEGH
EEEVLGGHGEK 0.0001 0.4983 0.0003 0.1004 0.4983 0.3783 

RLA1 KEESpEESpEDDM(ox)GFG
LFD 0.0000 0.3790 0.0000 0.0048 0.3790 0.0868 

RLA2 KEESpEESpDDDM(ox)GFG
LFD 0.0001 0.4373 0.0003 0.0009 0.4373 0.0559 

RP3A WHQLQNENHVSSpD 0.0067 -0.4470 0.0124 0.5687 -0.4470 0.8189 
SCN2A RFSSpPHQSpLLSIR 0.0000 0.4239 0.0000 0.0446 0.4239 0.2922 
SHAN2 RAPSpPVVSpPTELSK 0.0000 0.3424 0.0000 0.2148 0.3424 0.4686 

SHAN3 SRSpPSpPSpPLPSPSPGSGP
SAGPR 0.0009 0.5152 0.0019 0.1261 0.5152 0.3783 

SRBS2 SESpMGSpLLCDEGSK 0.0002 0.6422 0.0005 0.0801 0.6422 0.3726 
SRCN1 DSGSSSVFAESpPGGK 0.0000 0.2076 0.0001 0.1560 0.2076 0.4146 
SRCN1 KAESpEELEIQKPQVK 0.0146 -0.1133 0.0250 0.4970 -0.1133 0.7949 
SRCN1 RFSpNVGLVHTSER 0.0000 -0.3600 0.0001 0.0083 -0.3600 0.1191 
SRCN1 RGSpDELTVPR 0.0001 -0.2053 0.0004 0.1774 -0.2053 0.4259 

SRCN1 SSpGATpPVSGPPP
PAVSSTPAGQPTAVSR 0.9596 0.0141 0.9738 0.9630 0.0141 0.9901 

STMN1 DLSpLEEIQK 0.6268 0.0313 0.7522 0.8983 0.0313 0.9734 
STMN1 ESVPEFPLSpPPK 0.3329 -0.0552 0.4523 0.7488 -0.0552 0.9419 

STMN1 RASpGQAFELILSp
PR 0.0000 0.5433 0.0001 0.1049 0.5433 0.3783 

STX1A HSAILASpPNPDEK 0.0193 -0.1344 0.0323 0.3284 -0.1344 0.5994 

STX1A TAKDSpDDDDDVT
VTVDR 0.7533 -0.0147 0.8119 0.8233 -0.0147 0.9730 

SYPH LHQVYpFDAPSCV
K 0.0037 -0.4914 0.0079 0.2792 -0.4914 0.5583 

SYT1 DQALKDDDAETG
LTpDGEEK 0.0828 -0.2498 0.1269 0.0828 -0.2498 0.3726 

TNIK SEGSpPVLPHEPSK 0.0000 -0.3677 0.0001 0.0019 -0.3677 0.0559 
VIAAT GGAPLPPSGSpK 0.0002 -0.4927 0.0005 0.3042 -0.4927 0.5763 

 
 
 

Table 1. Results from SRM Proteomics Analysis 



178 

 

BIBLIOGRAPHY 

Abel, T., Nguyen, P. V., Barad, M., Deuel, T.A.S., Kandel, E.R., and Bourtchouladze, R. 
(1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-
based long-term memory. Cell 88, 615–626. 

Agren, T., Engman, J., Frick, A., Bjorkstrand, J., Larsson, E.-M., Furmark, T., and 
Fredrikson, M. (2012). Disruption of Reconsolidation Erases a Fear Memory Trace in the Human 
Amygdala. Science (80-. ). 337, 1550–1552. 

Amano, T., Unal, C.T., and Paré, D. (2010). Synaptic correlates of fear extinction in the 
amygdala. Nat. Neurosci. 13, 489–494. 

An, B., Kim, J., Park, K., Lee, S., Song, S., and Choi, S. (2017). Amount of fear 
extinction changes its underlying mechanisms. Elife 6. 

Andrade-Talavera, Y., Duque-Feria, P., Paulsen, O., and Rodríguez-Moreno, A. (2016). 
Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus. 
Cereb. Cortex 26, 3637–3654. 

Arguello, A.A., Hodges, M.A., Wells, A.M., Lara, H., Xie, X., and Fuchs, R.A. (2014). 
Involvement of amygdalar protein kinase A, but not calcium/calmodulin-dependent protein 
kinase II, in the reconsolidation of cocaine-related contextual memories in rats. 
Psychopharmacology (Berl). 231, 55–65. 

Arguello, A.A., Richardson, B.D., Hall, J.L., Wang, R., Hodges, M.A., Mitchell, M.P., 
Stuber, G.D., Rossi, D.J., and Fuchs, R.A. (2017). Role of a Lateral Orbital Frontal Cortex-
Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior. 
Neuropsychopharmacology 42, 727–735. 

Arruda-Carvalho, M., and Clem, R.L. (2014). Pathway-Selective Adjustment of 
Prefrontal-Amygdala Transmission during Fear Encoding. J. Neurosci. 34, 15601–15609. 

Arruda-Carvalho, M., and Clem, R.L. (2015). Prefrontal-amygdala fear networks come 
into focus. Front. Syst. Neurosci. 9, 1–5. 

Artinian, J., McGauran, A.-M.T., De Jaeger, X., Mouledous, L., Frances, B., and Roullet, 
P. (2008). Protein degradation, as with protein synthesis, is required during not only long-term 



179 

 

spatial memory consolidation but also reconsolidation. Eur. J. Neurosci. 27, 3009–3019. 

Asede, D., Bosch, D., Lüthi, A., Ferraguti, F., and Ehrlich, I. (2015a). Sensory inputs to 
intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 
86, 541–554. 

Asede, D., Bosch, D., Ferraguti, F., Ehrlich, I., Asede, D., Bosch, D., and Lu, A. (2015b). 
Sensory Inputs to Intercalated Cells Provide Fear- Learning Modulated Inhibition to the 
Basolateral Article Sensory Inputs to Intercalated Cells Provide Fear-Learning Modulated 
Inhibition to the Basolateral Amygdala. 541–554. 

Augur, I.F., Wyckoff, A.R., Aston-Jones, G., Kalivas, P.W., and Peters, J. (2016). 
Chemogenetic Activation of an Extinction Neural Circuit Reduces Cue-Induced Reinstatement 
of Cocaine Seeking. J. Neurosci. 36, 10174–10180. 

Back, S.E., Gros, D.F., McCauley, J.L., Flanagan, J.C., Cox, E., Barth, K.S., and Brady, 
K.T. (2014). Laboratory-induced cue reactivity among individuals with prescription opioid 
dependence. Addict. Behav. 39, 1217–1223. 

Barbey, A.K., Koenigs, M., and Grafman, J. (2013). Dorsolateral prefrontal contributions 
to human working memory. Cortex 49, 1195–1205. 

Barea-Rodríguez, E.J., Rivera, D.T., Jaffe, D.B., and Martinez, J.L. (2000). Protein 
synthesis inhibition blocks the induction of mossy fiber long-term potentiation in vivo. J. 
Neurosci. 20, 8528–8532. 

Barria, A. (1997). Regulatory Phosphorylation of AMPA-Type Glutamate Receptors by 
CaM-KII During Long-Term Potentiation. Science (80-. ). 276, 2042–2045. 

Baucum, A.J., Shonesy, B.C., Rose, K.L., and Colbran, R.J. (2015). Quantitative 
Proteomics Analysis of CaMKII Phosphorylation and the CaMKII Interactome in the Mouse 
Forebrain. ACS Chem. Neurosci. 6, 615–631. 

Baumgartel, K., and Mansuy, I.M. (2012). Neural functions of calcineurin in synaptic 
plasticity and memory. Learn. Mem. 19, 375–384. 

Baumgärtel, K., Genoux, D., Welzl, H., Tweedie-Cullen, R.Y., Koshibu, K., Livingstone-
Zatchej, M., Mamie, C., and Mansuy, I.M. (2008). Control of the establishment of aversive 
memory by calcineurin and Zif268. Nat. Neurosci. 11, 572–578. 

Bayer, K.U. (2006). Transition from Reversible to Persistent Binding of CaMKII to 
Postsynaptic Sites and NR2B. J. Neurosci. 26, 1164–1174. 

Beattie, E.C., Carroll, R.C., Yu, X., Morishita, W., Yasuda, H., von Zastrow, M., and 
Malenka, R.C. (2000). Regulation of AMPA receptor endocytosis by a signaling mechanism 
shared with LTD. Nat. Neurosci. 3, 1291–1300. 



180 

 

Beaulieu, J.-M., and Gainetdinov, R.R. (2011). The Physiology, Signaling, and 
Pharmacology of Dopamine Receptors. Pharmacol. Rev. 63, 182–217. 

Berridge, K.C., and Kringelbach, M.L. (2015). Pleasure Systems in the Brain. Neuron 86, 
646–664. 

Bertholomey, M.L., Nagarajan, V., and Torregrossa, M.M. (2016). Sex differences in 
reinstatement of alcohol seeking in response to cues and yohimbine in rats with and without a 
history of adolescent corticosterone exposure. Psychopharmacology (Berl). 233, 2277–2287. 

Besnard, A., Caboche, J., and Laroche, S. (2012). Reconsolidation of memory: a decade 
of debate. Prog. Neurobiol. 99, 61–80. 

Beyeler, A., Namburi, P., Glober, G.F., Simonnet, C., Calhoon, G.G., Conyers, G.F., 
Luck, R., Wildes, C.P., and Tye, K.M. (2016). Divergent Routing of Positive and Negative 
Information from the Amygdala during Memory Retrieval. Neuron 90, 348–361. 

Bi, G., and Poo, M. (1999). Distributed synaptic modification in neural networks induced 
by patterned stimulation. Nature 401, 792–796. 

Bi, G., and Poo, M. (2001). SYNAPTIC M ODIFICATION BY C ORRELATED A 
CTIVITY : Hebb ’ s Postulate Revisited. Annu. Rev. Neurosci. 24, 139–166. 

Bi, G.Q., and Poo, M.M. (1998). Synaptic modifications in cultured hippocampal 
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 
18, 10464–10472. 

Bibb, J. a, Snyder, G.L., Nishi,  a, Yan, Z., Meijer, L., Fienberg,  a a, Tsai, L.H., Kwon, 
Y.T., Girault, J. a, Czernik,  a J., et al. (1999). Phosphorylation of DARPP-32 by Cdk5 
modulates dopamine signalling in neurons. Nature 402, 669–671. 

Blum, K., Febo, M., Smith, D.E., Roy, A.K., Demetrovics, Z., Cronjé, F.J., Femino, J., 
Agan, G., Fratantonio, J.L., Pandey, S.C., et al. (2015). Neurogenetic and Epigenetic Correlates 
of Adolescent Predisposition to and Risk for Addictive Behaviors as a Function of Prefrontal 
Cortex Dysregulation. J. Child Adolesc. Psychopharmacol. 25, 286–292. 

Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., 
Christensen, C.H., Adrover, M.F., and Alvarez, V.A. (2013). Strengthening the accumbal 
indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci. 16, 632–638. 

Boehm, J., Kang, M.G., Johnson, R.C., Esteban, J., Huganir, R.L., and Malinow, R. 
(2006). Synaptic Incorporation of AMPA Receptors during LTP Is Controlled by a PKC 
Phosphorylation Site on GluR1. Neuron 51, 213–225. 

Bonin, R.P., and De Koninck, Y. (2015). Reconsolidation and the regulation of plasticity: 
moving beyond memory. Trends Neurosci. 38, 336–344. 



181 

 

Bosch, M., Castro, J., Saneyoshi, T., Matsuno, H., Sur, M., and Hayashi, Y. (2014). 
Structural and molecular remodeling of dendritic spine substructures during long-term 
potentiation. Neuron 82, 444–459. 

Bossert, J.M., Stern, A.L., Theberge, F.R.M., Cifani, C., Koya, E., Hope, B.T., and 
Shaham, Y. (2011a). Ventral medial prefrontal cortex neuronal ensembles mediate context-
induced relapse to heroin. Nat. Neurosci. 14, 420–422. 

Bossert, J.M., Stern, A.L., Theberge, F.R.M., Cifani, C., Koya, E., Hope, B.T., and 
Shaham, Y. (2011b). Ventral medial prefrontal cortex neuronal ensembles mediate context-
induced relapse to heroin. Nat. Neurosci. 14, 420–422. 

Bossert, J.M., Stern, A.L., Theberge, F.R.M., Marchant, N.J., Wang, H.-L., Morales, M., 
and Shaham, Y. (2012). Role of Projections from Ventral Medial Prefrontal Cortex to Nucleus 
Accumbens Shell in Context-Induced Reinstatement of Heroin Seeking. J. Neurosci. 32, 4982–
4991. 

Bossert, J.M., Marchant, N.J., Calu, D.J., and Shaham, Y. (2013). The reinstatement 
model of drug relapse: Recent neurobiological findings, emerging research topics, and 
translational research. Psychopharmacology (Berl). 229, 453–476. 

Bouton, M.E., and Moody, E.W. (2004). Memory processes in classical conditioning. 
Neurosci. Biobehav. Rev. 28, 663–674. 

Brami-Cherrier, K., Valjent, E., Hervé, D., Darragh, J., Corvol, J.-C., Pages, C., Arthur, 
S.J., Simon, A.J., Girault, J.-A., and Caboche, J. (2005). Parsing molecular and behavioral 
effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J. Neurosci. 
25, 11444–11454. 

Britt, J.P., Benaliouad, F., McDevitt, R.A., Stuber, G.D., Wise, R.A., and Bonci, A. 
(2012). Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus 
Accumbens. Neuron 76, 790–803. 

Brog, J.S., Salyapongse, A., Deutch, A.Y., and Zahm, D.S. (1993). The patterns of 
afferent innervation of the core and shell in the ?Accumbens? part of the rat ventral striatum: 
Immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338, 
255–278. 

Buckley, C.T., Sekiya, F., Kim, Y.J., Rhee, S.G., and Caldwell, K.K. (2004). 
Identification of Phospholipase C-?1 as a Mitogen-activated Protein Kinase Substrate. J. Biol. 
Chem. 279, 41807–41814. 

Buzsáki, G., and Moser, E.I. (2013). Memory, navigation and theta rhythm in the 
hippocampal-entorhinal system. Nat. Neurosci. 16, 130–138. 

Cador, M., Robbins, T.W., and Everitt, B.J. (1989). Involvement of the amygdala in 
stimulus-reward associations: Interaction with the ventral striatum. Neuroscience 30, 77–86. 



182 

 

Cahill, E., Salery, M., Vanhoutte, P., and Caboche, J. (2014). Convergence of dopamine 
and glutamate signaling onto striatal ERK activation in response to drugs of abuse. Front. 
Pharmacol. 4, 172. 

Caprioli, D., Venniro, M., Zhang, M., Bossert, J.M., Warren, B.L., Hope, B.T., and 
Shaham, Y. (2017). Role of Dorsomedial Striatum Neuronal Ensembles in Incubation of 
Methamphetamine Craving after Voluntary Abstinence. J. Neurosci. 37, 1014–1027. 

Carlin, R.K., Grab, D.J., Cohen, R.S., and Siekevitz, P. (1980). Isolation and 
characterization of postsynaptic densities from various brain regions: enrichment of different 
types of postsynaptic densities. J. Cell Biol. 86, 831–845. 

Carroll, K.M., and Onken, L.S. (2005). Behavioral therapies for drug abuse. Am. J. 
Psychiatry 162, 1452–1460. 

Cestari, V., Costanzi, M., Castellano, C., and Rossi-Arnaud, C. (2006). A role for ERK2 
in reconsolidation of fear memories in mice. Neurobiol. Learn. Mem. 86, 133–143. 

Chalifoux, J.R., and Carter, A.G. (2011). Glutamate Spillover Promotes the Generation of 
NMDA Spikes. J. Neurosci. 31, 16435–16446. 

Chambers, R.A., Taylor, J.R., and Potenza, M.N. (2003). Developmental Neurocircuitry 
of Motivation in Adolescence: A Critical Period of Addiction Vulnerability. Am. J. Psychiatry 
160, 1041–1052. 

Chang, C.-Y., Picotti, P., Hüttenhain, R., Heinzelmann-Schwarz, V., Jovanovic, M., 
Aebersold, R., and Vitek, O. (2012). Protein significance analysis in selected reaction monitoring 
(SRM) measurements. Mol. Cell. Proteomics 11, M111.014662. 

Chao, H.-W., Tsai, L.-Y., Lu, Y.-L., Lin, P.-Y., Huang, W.-H., Chou, H.-J., Lu, W.-H., 
Lin, H.-C., Lee, P.-T., and Huang, Y.-S. (2013). Deletion of CPEB3 Enhances Hippocampus-
Dependent Memory via Increasing Expressions of PSD95 and NMDA Receptors. J. Neurosci. 
33, 17008–17022. 

Chao, L.H., Stratton, M.M., Lee, I.H., Rosenberg, O.S., Levitz, J., Mandell, D.J., 
Kortemme, T., Groves, J.T., Schulman, H., and Kuriyan, J. (2011). A mechanism for tunable 
autoinhibition in the structure of a human Ca 2+/calmodulin-dependent kinase II holoenzyme. 
Cell 146, 732–745. 

Chawla, M.K., Guzowski, J.F., Ramirez-Amaya, V., Lipa, P., Hoffman, K.L., Marriott, 
L.K., Worley, P.F., McNaughton, B.L., and Barnes, C.A. (2005). Sparse, environmentally 
selective expression ofArc RNA in the upper blade of the rodent fascia dentata by brief spatial 
experience. Hippocampus 15, 579–586. 

Chen, B.-S., and Roche, K.W. (2007). Regulation of NMDA receptors by 
phosphorylation. Neuropharmacology 53, 362–368. 



183 

 

Chen, B.T., Bowers, M.S., Martin, M., Hopf, F.W., Guillory, A.M., Carelli, R.M., Chou, 
J.K., and Bonci, A. (2008). Cocaine but Not Natural Reward Self-Administration nor Passive 
Cocaine Infusion Produces Persistent LTP in the VTA. Neuron 59, 288–297. 

Chen, B.T., Yau, H.-J., Hatch, C., Kusumoto-Yoshida, I., Cho, S.L., Hopf, F.W., and 
Bonci, A. (2013). Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive 
cocaine seeking. Nature 496, 359–362. 

Cheng, G.L.F., and Lee, T.M.C. (2016). Altering risky decision-making: Influence of 
impulsivity on the neuromodulation of prefrontal cortex. Soc. Neurosci. 11, 353–364. 

Chergui, K., and Lacey, M.G. (1999). Modulation by dopamine D1-like receptors of 
synaptic transmission and NMDA receptors in rat nucleus accumbens is attenuated by the protein 
kinase C inhibitor Ro 32-0432. Neuropharmacology 38, 223–231. 

Chhatwal, J.P. (2005). Regulation of Gephyrin and GABAA Receptor Binding within the 
Amygdala after Fear Acquisition and Extinction. J. Neurosci. 25, 502–506. 

Childress, A.R., McLellan, A.T., and O’Brien, C.P. (1986). Abstinent Opiate Abusers 
Exhibit Conditioned Craving, Conditioned Withdrawal and Reductions in both through 
Extinction. Br. J. Addict. 81, 655–660. 

Childress, A.R., Mozley, P.D., McElgin, W., Fitzgerald, J., Reivich, M., and O’Brien, 
C.P. (1999). Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–
18. 

Cho, J.-H., Rendall, S.D., and Gray, J.M. (2017). Brain-wide maps of Fos expression 
during fear learning and recall. Learn. Mem. 24, 169–181. 

Di Ciano, P., and Everitt, B.J. (2003). Differential control over drug-seeking behavior by 
drug-associated conditioned reinforcers and discriminative stimuli predictive of drug availability. 
Behav. Neurosci. 117, 952–960. 

Ciccocioppo, R., Sanna, P.P., and Weiss, F. (2001). Cocaine-predictive stimulus induces 
drug-seeking behavior and neural activation in limbic brain regions after multiple months of 
abstinence: reversal by D1 antagonists. Proc. Natl. Acad. Sci. U. S. A. 98, 1976–1981. 

Ciranna, L. (2006). Serotonin as a modulator of glutamate- and GABA-mediated 
neurotransmission: implications in physiological functions and in pathology. Curr. 
Neuropharmacol. 4, 101–114. 

Clarke, J.R., Cammarota, M., Gruart, A., Izquierdo, I., and Delgado-Garcia, J.M. (2010). 
Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S 
A 107, 2652–2657. 

Clem, R.L., and Huganir, R.L. (2010). Calcium-Permeable AMPA Receptor Dynamics 
Mediate Fear Memory Erasure. Science (80-. ). 330, 1108–1112. 



184 

 

Cleva, R.M., Gass, J.T., Widholm, J.J., and Olive, M.F. (2010). Glutamatergic targets for 
enhancing extinction learning in drug addiction. Curr. Neuropharmacol. 8, 394–408. 

Collin, C., Miyaguchi, K., and Segal, M. (1997). Dendritic spine density and LTP 
induction in cultured hippocampal slices. J.Neurophysiol. 77, 1614–1623. 

Coultrap, S.J., and Bayer, K.U. (2012). CaMKII regulation in information processing and 
storage. Trends Neurosci. 35, 607–618. 

Coultrap, S.J., Freund, R.K., O’Leary, H., Sanderson, J.L., Roche, K.W., Dell’Acqua, 
M.L., and Bayer, K.U. (2014). Autonomous CaMKII mediates both LTP and LTD using a 
mechanism for differential substrate site selection. Cell Rep. 6, 431–437. 

Courtin, J., Bienvenu, T.C.M., Einarsson, E.Ö., and Herry, C. (2013). Medial prefrontal 
cortex neuronal circuits in fear behavior. Neuroscience 240, 219–242. 

Creed, M., Pascoli, V.J., and Luscher, C. (2015). Refining deep brain stimulation to 
emulate optogenetic treatment of synaptic pathology. Science (80-. ). 347, 659–664. 

Creed, M., Kaufling, J., Fois, G.R., Jalabert, M., Yuan, T., Lüscher, C., Georges, F., and 
Bellone, C. (2016). Cocaine Exposure Enhances the Activity of Ventral Tegmental Area 
Dopamine Neurons via Calcium-Impermeable NMDARs. J. Neurosci. 36, 10759–10768. 

Crespo, J.A., Stöckl, P., Ueberall, F., Jenny, M., Saria, A., and Zernig, G. (2012). 
Activation of PKCzeta and PKMzeta in the nucleus accumbens core is necessary for the 
retrieval, consolidation and reconsolidation of drug memory. PLoS One 7, e30502. 

Crombag, H.S., Bossert, J.M., Koya, E., and Shaham, Y. (2008). Context-induced relapse 
to drug seeking: a review. Philos. Trans. R. Soc. B Biol. Sci. 363, 3233–3243. 

Cruz, F.C., Babin, K.R., Leao, R.M., Goldart, E.M., Bossert, J.M., Shaham, Y., and 
Hope, B.T. (2014a). Role of Nucleus Accumbens Shell Neuronal Ensembles in Context-Induced 
Reinstatement of Cocaine-Seeking. J. Neurosci. 34, 7437–7446. 

Cruz, F.C., Babin, K.R., Leao, R.M., Goldart, E.M., Bossert, J.M., Shaham, Y., and 
Hope, B.T. (2014b). Role of Nucleus Accumbens Shell Neuronal Ensembles in Context-Induced 
Reinstatement of Cocaine-Seeking. J. Neurosci. 34, 7437–7446. 

Cruz, F.C., Javier Rubio, F., and Hope, B.T. (2015). Using c-fos to study neuronal 
ensembles in corticostriatal circuitry of addiction. Brain Res. 1628, 157–173. 

Dalton, G.L., Wang, Y.T., Floresco, S.B., and Phillips, A.G. (2008). Disruption of 
AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. 
Neuropsychopharmacology 33, 2416–2426. 

Davis, M., Schlesinger, L.S., and Sorenson, C.A. (1989). Temporal specificity of fear 
conditioning: effects of different conditioned stimulus-unconditioned stimulus intervals on the 



185 

 

fear-potentiated startle effect. J. Exp. Psychol. Anim. Behav. Process. 15, 295–310. 

Dayan, J., Bernard, A., Olliac, B., Mailhes, A.-S., and Kermarrec, S. (2010). Adolescent 
brain development, risk-taking and vulnerability to addiction. J. Physiol. 104, 279–286. 

Debiec, J., LeDoux, J.E., and Nader, K. (2002). Cellular and systems reconsolidation in 
the hippocampus. Neuron 36, 527–538. 

Dȩbiec, J., Bush, D.E.A., and LeDoux, J.E. (2011). Noradrenergic enhancement of 
reconsolidation in the amygdala impairs extinction of conditioned fear in rats - A possible 
mechanism for the persistence of traumatic memories in PTSD. Depress. Anxiety 28, 186–193. 

Deisseroth, K., and Tsien, R.W. (2002). Dynamic multiphosphorylation passwords for 
activity-dependent gene expression. Neuron 34, 179–182. 

Do-Monte, F.H., Quiñones-Laracuente, K., and Quirk, G.J. (2015). A temporal shift in 
the circuits mediating retrieval of fear memory. Nature 519, 460–463. 

Do-Monte, F.H., Minier-Toribio, A., Quiñones-Laracuente, K., Medina-Colón, E.M., and 
Quirk, G.J. (2017). Thalamic Regulation of Sucrose Seeking during Unexpected Reward 
Omission. Neuron 94, 388–400.e4. 

Dong, Y. (2005). Cocaine-Induced Plasticity of Intrinsic Membrane Properties in 
Prefrontal Cortex Pyramidal Neurons: Adaptations in Potassium Currents. J. Neurosci. 25, 936–
940. 

Dong, Y., Green, T., Saal, D., Marie, H., Neve, R., Nestler, E.J., and Malenka, R.C. 
(2006). CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477. 

Doron, N.N., and Ledoux, J.E. (2000). Cells in the posterior thalamus project to both 
amygdala and temporal cortex: A quantitative retrograde double-labeling study in the rat. J. 
Comp. Neurol. 425, 257–274. 

Doyère, V., Dębiec, J., Monfils, M.-H., Schafe, G.E., and LeDoux, J.E. (2007). Synapse-
specific reconsolidation of distinct fear memories in the lateral amygdala. Nat. Neurosci. 

Drevets, W.C., Gautier, C., Price, J.C., Kupfer, D.J., Kinahan, P.E., Grace, A.A., Price, 
J.L., and Mathis, C.A. (2001). Amphetamine-induced dopamine release in human ventral 
striatum correlates with euphoria. Biol. Psychiatry 49, 81–96. 

Dudai, Y. (2012). The Restless Engram: Consolidations Never End. Annu. Rev. 
Neurosci. 35, 227–247. 

Duvarci, S., Nader, K., and LeDoux, J.E. (2005). Activation of extracellular signal-
regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for 
memory reconsolidation of auditory fear conditioning. Eur. J. Neurosci. 21, 283–289. 



186 

 

Duvarci, S., Nader, K., and LeDoux, J.E. (2008). De novo mRNA synthesis is required 
for both consolidation and reconsolidation of fear memories in the amygdala. Learn. Mem. 15, 
747–755. 

Easton, A.C., Lucchesi, W., Mizuno, K., Fernandes, C., Schumann, G., Giese, K.P., and 
Müller, C.P. (2013). αCaMKII autophosphorylation controls the establishment of alcohol-
induced conditioned place preference in mice. Behav. Brain Res. 252, 72–76. 

Easton, A.C., Lourdusamy, A., Havranek, M., Mizuno, K., Solati, J., Golub, Y., Clarke, 
T.-K., Vallada, H., Laranjeira, R., Desrivi?res, S., et al. (2014). ?CaMKII controls the 
establishment of cocaine’s reinforcing effects in mice and humans. Transl. Psychiatry 4, e457. 

Effting, M., and Kindt, M. (2007). Contextual control of human fear associations in a 
renewal paradigm. Behav. Res. Ther. 45, 2002–2018. 

Eichhammer, P., Johann, M., Kharraz, A., Binder, H., Pittrow, D., Wodarz, N., and 
Hajak, G. (2003). High-frequency repetitive transcranial magnetic stimulation decreases cigarette 
smoking. J. Clin. Psychiatry 64, 951–953. 

Engblom, D., Bilbao, A., Sanchis-Segura, C., Dahan, L., Perreau-Lenz, S., Balland, B., 
Parkitna, J.R., Luj?n, R., Halbout, B., Mameli, M., et al. (2008). Glutamate Receptors on 
Dopamine Neurons Control the Persistence of Cocaine Seeking. Neuron 59, 497–508. 

Epstein, D.H., and Preston, K.L. (2003). The reinstatement model and relapse prevention: 
a clinical perspective. Psychopharmacology (Berl). 168, 31–41. 

Everitt, B.J., and Robbins, T.W. (2005). Neural systems of reinforcement for drug 
addiction: From actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489. 

Fanous, S., Goldart, E.M., Theberge, F.R.M., Bossert, J.M., Shaham, Y., and Hope, B.T. 
(2012). Role of Orbitofrontal Cortex Neuronal Ensembles in the Expression of Incubation of 
Heroin Craving. J. Neurosci. 32, 11600–11609. 

Farquhar, D., Pan, B.F., Sakurai, M., Ghosh, A., Mullen, C.A., and Nelson, J.A. (2002). 
Suicide gene therapy using E. coli beta-galactosidase. Cancer Chemother. Pharmacol. 50, 65–70. 

Feltenstein, M.W., and See, R.E. (2007). NMDA receptor blockade in the basolateral 
amygdala disrupts consolidation of stimulus-reward memory and extinction learning during 
reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol. Learn. Mem. 88, 
435–444. 

Feltenstein, M.W., Ghee, S.M., and See, R.E. (2012). Nicotine self-administration and 
reinstatement of nicotine-seeking in male and female rats. Drug Alcohol Depend. 121, 240–246. 

Finnie, P.S.B., and Nader, K. (2012). The role of metaplasticity mechanisms in regulating 
memory destabilization and reconsolidation. Neurosci. Biobehav. Rev. 36, 1667–1707. 



187 

 

Flores-Hernandez, J. (2002). Dopamine Enhancement of NMDA Currents in Dissociated 
Medium-Sized Striatal Neurons: Role of D1 Receptors and DARPP-32. J. Neurophysiol. 88, 
3010–3020. 

Fonseca, R., Vabulas, R.M., Hartl, F.U., Bonhoeffer, T., and Nägerl, U.V. (2006). A 
Balance of Protein Synthesis and Proteasome-Dependent Degradation Determines the 
Maintenance of LTP. Neuron 52, 239–245. 

Fox, P., Ingham, R., George, M.S., Mayberg, H., Ingham, J., Roby, J., Martin, C., and 
Jerabek, P. (1997). Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 
8, 2787–2791. 

Fuchs, R.A., Feltenstein, M.W., and See, R.E. (2006). The role of the basolateral 
amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent 
conditioned cued reinstatement of cocaine seeking. Eur. J. Neurosci. 23, 2809–2813. 

Fuchs, R.A., Ramirez, D.R., and Bell, G.H. (2008). Nucleus accumbens shell and core 
involvement in drug context-induced reinstatement of cocaine seeking in rats. 
Psychopharmacology (Berl). 200, 545–556. 

Fuchs, R.A., Bell, G.H., Ramirez, D.R., Eaddy, J.L., and Su, Z.I. (2009). Basolateral 
amygdala involvement in memory reconsolidation processes that facilitate drug context-induced 
cocaine seeking. Eur. J. Neurosci. 30, 889–900. 

Fucich, E.A., Paredes, D., and Morilak, D.A. (2016). Therapeutic Effects of Extinction 
Learning as a Model of Exposure Therapy in Rats. Neuropsychopharmacology 41, 3092–3102. 

Fukami, K., Inanobe, S., Kanemaru, K., and Nakamura, Y. (2010). Phospholipase C is a 
key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog. 
Lipid Res. 49, 429–437. 

Fukushima, H., Zhang, Y., Archbold, G., Ishikawa, R., Nader, K., and Kida, S. (2014). 
Enhancement of fear memory by retrieval through reconsolidation. Elife 3, e02736. 

El Gaamouch, F., Buisson, A., Moustie, O., Lemieux, M., Labrecque, S., Bontempi, B., 
De Koninck, P., and Nicole, O. (2012). Interaction Between  CaMKII and GluN2B Controls 
ERK-Dependent Plasticity. J. Neurosci. 32, 10767–10779. 

Gafford, G.M., Parsons, R.G., and Helmstetter, F.J. (2011). Consolidation and 
reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent 
translation in the dorsal hippocampus. Neuroscience 182, 98–104. 

Gallistel, C.R. (1978). Self-stimulation in the rat: quantitative characteristics of the 
reward pathway. J. Comp. Physiol. Psychol. 92, 977–998. 

Gamache, K., Pitman, R.K., and Nader, K. (2012). Preclinical evaluation of 
reconsolidation blockade by clonidine as a potential novel treatment for posttraumatic stress 



188 

 

disorder. Neuropsychopharmacology 37, 2789–2796. 

Garavan, H., Pankiewicz, J., Bloom, A., Cho, J.K., Sperry, L., Ross, T.J., Salmeron, B.J., 
Risinger, R., Kelley, D., and Stein, E.A. (2000). Cue-induced cocaine craving: Neuroanatomical 
specificity for drug users and drug stimuli. Am. J. Psychiatry 157, 1789–1798. 

García-Cabezas, M.Á., Martínez-Sánchez, P., Sánchez-González, M.Á., Garzón, M., and 
Cavada, C. (2009). Dopamine innervation in the thalamus: Monkey versus rat. Cereb. Cortex 19, 
424–434. 

Gawin, F.H., and Kleber, H.D. (1986). Abstinence symptomatology and psychiatric 
diagnosis in cocaine abusers. Clinical observations. Arch. Gen. Psychiatry 43, 107–113. 

Geisler, S., and Zahm, D.S. (2005). Afferents of the ventral tegmental area in the rat-
anatomical substratum for integrative functions. J. Comp. Neurol. 490, 270–294. 

Ghosh, A., Carew, S.J., Chen, X., and Yuan, Q. (2017). The Role of L-type Calcium 
Channels in Olfactory Learning and Its Modulation by Norepinephrine. Front. Cell. Neurosci. 
11, 394. 

Gibson, G.D., Prasad, A.A., Jean-Richard-dit-Bressel, P., Yau, J.O.Y., Millan, E.Z., Liu, 
Y., Campbell, E.J., Lim, J., Marchant, N.J., Power, J.M., et al. (2018). Distinct Accumbens Shell 
Output Pathways Promote versus Prevent Relapse to Alcohol Seeking. Neuron 98, 512–520.e6. 

Gipson, C.D., Kupchik, Y.M., and Kalivas, P.W. (2014). Rapid, transient synaptic 
plasticity in addiction. Neuropharmacology 76, 276–286. 

Giustino, T.F., and Maren, S. (2015). The Role of the Medial Prefrontal Cortex in the 
Conditioning and Extinction of Fear. Front. Behav. Neurosci. 9, 1–20. 

Goldman-Rakic, P.S. (1987). Circuitry of the frontal association cortex and its relevance 
to dementia. Arch. Gerontol. Geriatr. 6, 299–309. 

Goldstein, R.Z., and Volkow, N.D. (2011). Dysfunction of the prefrontal cortex in 
addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669. 

Goode, T.D., Holloway-Erickson, C.M., and Maren, S. (2017). Extinction after fear 
memory reactivation fails to eliminate renewal in rats. Neurobiol. Learn. Mem. 142, 41–47. 

Gore, F., Schwartz, E.C., Brangers, B.C., Aladi, S., Stujenske, J.M., Likhtik, E., Russo, 
M.J., Gordon, J.A., Salzman, C.D., and Axel, R. (2015). Neural Representations of 
Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses. Cell 
162, 134–145. 

Gorelick, D.A., Zangen, A., and George, M.S. (2014). Transcranial magnetic stimulation 
in the treatment of substance addiction. Ann. N. Y. Acad. Sci. 1327, n/a-n/a. 



189 

 

Grall-Bronnec, M., and Sauvaget, A. (2014). The use of repetitive transcranial magnetic 
stimulation for modulating craving and addictive behaviours: A critical literature review of 
efficacy, technical and methodological considerations. Neurosci. Biobehav. Rev. 47, 592–613. 

Grienberger, C., and Konnerth, A. (2012). Imaging Calcium in Neurons. Neuron 73, 862–
885. 

Gutierrez-Arenas, O., Eriksson, O., and Hellgren Kotaleski, J. (2014). Segregation and 
Crosstalk of D1 Receptor-Mediated Activation of ERK in Striatal Medium Spiny Neurons upon 
Acute Administration of Psychostimulants. PLoS Comput. Biol. 10. 

Hafenbreidel, M., Rafa Todd, C., and Mueller, D. (2017). Infralimbic GluN2A-
Containing NMDA Receptors Modulate Reconsolidation of Cocaine Self-Administration 
Memory. Neuropsychopharmacology 42, 1113–1125. 

Hamilton, T.J., Wheatley, B.M., Sinclair, D.B., Bachmann, M., Larkum, M.E., and 
Colmers, W.F. (2010). Dopamine modulates synaptic plasticity in dendrites of rat and human 
dentate granule cells. Proc. Natl. Acad. Sci. 107, 18185–18190. 

Harris, J.E., and Baldessarini, R.J. (1973). Uptake of (3H)-catecholamines by 
homogenates of rat corpus striatum and cerebral cortex: effects of amphetamine analogues. 
Neuropharmacology 12, 669–679. 

Hasegawa, S., Sakuragi, S., Tominaga-Yoshino, K., and Ogura, A. (2015). Dendritic 
spine dynamics leading to spine elimination after repeated inductions of LTD. Sci. Rep. 5, 7707. 

Haubrich, J., Crestani, A.P., Cassini, L.F., Santana, F., Sierra, R.O., Alvares, L. de O., 
and Quillfeldt, J.A. (2015). Reconsolidation Allows Fear Memory to Be Updated to a Less 
Aversive Level through the Incorporation of Appetitive Information. Neuropsychopharmacology 
40, 315–326. 

Havekes, R., Nijholt, I.M., Visser, A.K.D., Eisel, U.L.M., and Van der Zee, E.A. (2008). 
Transgenic inhibition of neuronal calcineurin activity in the forebrain facilitates fear 
conditioning, but inhibits the extinction of contextual fear memories. Neurobiol. Learn. Mem. 
89, 595–598. 

Hayashi, Y. (2000). Driving AMPA Receptors into Synapses by LTP and CaMKII: 
Requirement for GluR1 and PDZ Domain Interaction. Science (80-. ). 287, 2262–2267. 

Hebb, D.O. (1949). The organization of behavior. Organ. Behav. 911, 335. 

Heinbockel, T., and Pape, H.C. (2000). Input-specific long-term depression in the lateral 
amygdala evoked by theta frequency stimulation. J. Neurosci. 20, RC68 (1--5). 

Heinrichs, S.C., Leite-Morris, K.A., Guy, M.D., Goldberg, L.R., Young, A.J., and 
Kaplan, G.B. (2013). Dendritic structural plasticity in the basolateral amygdala after fear 
conditioning and its extinction in mice. Behav. Brain Res. 248, 80–84. 



190 

 

Heinsbroek, J.A., Neuhofer, D.N., Griffin, W.C., Siegel, G.S., Bobadilla, A.-C., Kupchik, 
Y.M., and Kalivas, P.W. (2017). Loss of Plasticity in the D2-Accumbens Pallidal Pathway 
Promotes Cocaine Seeking. J. Neurosci. 37, 757–767. 

Hernandez, P.J., Sadeghian, K., and Kelley, A.E. (2002). Early consolidation of 
instrumental learning requires protein synthesis in the nucleus accumbens. Nat. Neurosci. 5, 
1327–1331. 

Herremans, S.C., Baeken, C., Vanderbruggen, N., Vanderhasselt, M.A., Zeeuws, D., 
Santermans, L., and De Raedt, R. (2012). No influence of one right-sided prefrontal HF-rTMS 
session on alcohol craving in recently detoxified alcohol-dependent patients: Results of a 
naturalistic study. Drug Alcohol Depend. 120, 209–213. 

Hiroi, N., and White, N.M. (1991). The lateral nucleus of the amygdala mediates 
expression of the amphetamine-produced conditioned place preference. J. Neurosci. 11, 2107–
2116. 

Hirosawa, M., Hoshida, M., Ishikawa, M., and Toya, T. (1993). Mascot: Multiple 
alignment system for protein sequences based on three-way dynamic programming. 
Bioinformatics 9, 161–167. 

Hofmann, S.G., Pollack, M.H., and Otto, M.W. (2006). Augmentation Treatment of 
Psychotherapy for Anxiety Disorders with D-Cycloserine. CNS Drug Rev. 12, 208–217. 

Hofmann, S.G., Asnaani, A., Vonk, I.J.J., Sawyer, A.T., and Fang, A. (2012). The 
Efficacy of Cognitive Behavioral Therapy: A Review of Meta-analyses. Cognit. Ther. Res. 36, 
427–440. 

Holmes, A., and Quirk, G.J. (2010). Pharmacological facilitation of fear extinction and 
the search for adjunct treatments for anxiety disorders - the case of yohimbine. Trends 
Pharmacol. Sci. 31, 2–7. 

Hong, I., Song, B., Lee, S., Kim, J., Kim, J., and Choi, S. (2009). Extinction of cued fear 
memory involves a distinct form of depotentiation at cortical input synapses onto the lateral 
amygdala. Eur. J. Neurosci. 30, 2089–2099. 

Hosokawa, T., Saito, T., Asada, A., Ohshima, T., Itakura, M., Takahashi, M., Fukunaga, 
K., and Hisanaga, S.-I. (2006). Enhanced activation of Ca2+/calmodulin-dependent protein 
kinase II upon downregulation of cyclin-dependent kinase 5-p35. J. Neurosci. Res. 84, 747–754. 

Howell, K.K., Monk, B.R., Carmack, S.A., Mrowczynski, O.D., Clark, R.E., and 
Anagnostaras, S.G. (2014). Inhibition of PKC disrupts addiction-related memory. Front. Behav. 
Neurosci. 8, 70. 

Huang, W.-H., Chao, H.-W., Tsai, L.-Y., Chung, M.-H., and Huang, Y.-S. (2014). 
Elevated activation of CaMKIIÎ± in the CPEB3-knockout hippocampus impairs a specific form 
of NMDAR-dependent synaptic depotentiation. Front. Cell. Neurosci. 8, 1–12. 



191 

 

Huang, Y.-Z., Rothwell, J.C., Edwards, M.J., and Chen, R.-S. (2008a). Effect of 
Physiological Activity on an NMDA-Dependent Form of Cortical Plasticity in Human. Cereb. 
Cortex 18, 563–570. 

Huang, Y.H., Lin, Y., Brown, T.E., Han, M.H., Saal, D.B., Neve, R.L., Zukin, R.S., Sorg, 
B.A., Nestler, E.J., Malenka, R.C., et al. (2008b). CREB modulates the functional output of 
nucleus accumbens neurons: A critical role of N-methyl-D-aspartate glutamate receptor 
(NMDAR) receptors. J. Biol. Chem. 283, 2751–2760. 

Hyman, S.E., Malenka, R.C., and Nestler, E.J. (2006). NEURAL MECHANISMS OF 
ADDICTION: The Role of Reward-Related Learning and Memory. Annu. Rev. Neurosci. 29, 
565–598. 

Ishii, D., Matsuzawa, D., Matsuda, S., Tomizawa, H., Sutoh, C., and Shimizu, E. (2015). 
An isolated retrieval trial before extinction session does not prevent the return of fear. Behav. 
Brain Res. 287, 139–145. 

Ito, R., Robbins, T.W., and Everitt, B.J. (2004). Differential control over cocaine-seeking 
behavior by nucleus accumbens core and shell. Nat. Neurosci. 7, 389–397. 

Janak, P.H., and Tye, K.M. (2015). From circuits to behaviour in the amygdala. Nature 
517, 284–292. 

Jasinska, A.J., Stein, E.A., Kaiser, J., Naumer, M.J., and Yalachkov, Y. (2014). Factors 
modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. 
Neurosci. Biobehav. Rev. 38, 1–16. 

Jenkins, M.A., Christel, C.J., Jiao, Y., Abiria, S., Kim, K.Y., Usachev, Y.M., Obermair, 
G.J., Colbran, R.J., and Lee, A. (2010). Ca2+-Dependent Facilitation of Cav1.3 Ca2+ Channels 
by Densin and Ca2+/Calmodulin-Dependent Protein Kinase II. J. Neurosci. 30, 5125–5135. 

Jentsch, J.D., and Taylor, J.R. (1999). Impulsivity resulting from frontostriatal 
dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. 
Psychopharmacology (Berl). 146, 373–390. 

Jobim, P.F.C., Pedroso, T.R., Werenicz, A., Christoff, R.R., Maurmann, N., Reolon, 
G.K., Schr?der, N., and Roesler, R. (2012). Impairment of object recognition memory by 
rapamycin inhibition of mTOR in the amygdala or hippocampus around the time of learning or 
reactivation. Behav. Brain Res. 228, 151–158. 

Johann, M., Wiegand, R., Kharraz, A., Bobbe, G., Sommer, G., Hajak, G., Wodarz, N., 
and Eichhammer, P. (2003). [Transcranial magnetic stimulation for nicotine dependence]. 
Psychiatr. Prax. 30 Suppl 2, S129-31. 

Johansen, J.P., Cain, C.K., Ostroff, L.E., and Ledoux, J.E. (2011). Molecular mechanisms 
of fear learning and memory. Cell 147, 509–524. 



192 

 

Jones, F.N., and Skinner, B.F. (1939). The Behavior of Organisms: An Experimental 
Analysis. Am. J. Psychol. 52, 659. 

Joyal, J.L., Burks, D.J., Pons, S., Matter, W.F., Vlahos, C.J., White, M.F., and Sacks, 
D.B. (1997). Calmodulin activates phosphatidylinositol 3-kinase. J. Biol. Chem. 272, 28183–
28186. 

Jung, S.-C., Kim, J., and Hoffman, D.A. (2008). Rapid, Bidirectional Remodeling of 
Synaptic NMDA Receptor Subunit Composition by A-type K+ Channel Activity in 
Hippocampal CA1 Pyramidal Neurons. Neuron 60, 657–671. 

Kalivas, P.W. (2009). The glutamate homeostasis hypothesis of addiction. Nat. Rev. 
Neurosci. 10, 561–572. 

Kalivas, P.W., and Volkow, N.D. (2005). The Neural Basis of Addiciton: A Pathology of 
Motivation and Choice. Am J Psychiatry 162, 1403–1413. 

Kalivas, P.W., Volkow, N., and Seamans, J. (2005). Unmanageable motivation in 
addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron 45, 647–650. 

Kantak, K.M., and Nic Dhonnchadha, B.Á. (2011). Pharmacological enhancement of 
drug cue extinction learning: Translational challenges. Ann. N. Y. Acad. Sci. 1216, 122–137. 

Kassani, A., Niazi, M., Hassanzadeh, J., and Menati, R. (2015). Survival Analysis of 
Drug Abuse Relapse in Addiction Treatment Centers. Int. J. High Risk Behav. Addict. 4, 
e23402. 

Katz, J.L., and Higgins, S.T. (2003). The validity of the reinstatement model of craving 
and relapse to drug use. Psychopharmacology (Berl). 168, 21–30. 

Katz, L.C., and Shatz, C.J. (1996). Synaptic activity and the construction of cortical 
circuits. Science (80-. ). 274, 1133–1138. 

Kauer, J.A., and Malenka, R.C. (2007). Synaptic plasticity and addiction. Nat. Rev. 
Neurosci. 8, 844–858. 

Kelamangalath, L., Seymour, C.M., and Wagner, J.J. (2009). d-Serine facilitates the 
effects of extinction to reduce cocaine-primed reinstatement of drug-seeking behavior. 
Neurobiol. Learn. Mem. 92, 544–551. 

Kesner, R.P., and Churchwell, J.C. (2011). An analysis of rat prefrontal cortex in 
mediating executive function. Neurobiol. Learn. Mem. 96, 417–431. 

Kim, J., Lee, S., Park, K., Hong, I., Song, B., Son, G., Park, H., Kim, W.R., Park, E., 
Choe, H.K., et al. (2007a). Amygdala depotentiation and fear extinction. Proc. Natl. Acad. Sci. 
104, 20955–20960. 



193 

 

Kim, J., Lee, S., Park, H., Song, B., Hong, I., Geum, D., Shin, K., and Choi, S. (2007b). 
Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. 
Biochem. Biophys. Res. Commun. 355, 188–193. 

Kirschmann, E.K., Pollock, M.W., Nagarajan, V., and Torregrossa, M.M. (2017). Effects 
of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and 
Working Memory. Neuropsychopharmacology 42, 989–1000. 

Klann, E., Chen, S.J., and Sweatt, J.D. (1991). Persistent protein kinase activation in the 
maintenance phase of long-term potentiation. J. Biol. Chem. 266, 24253–24256. 

Kleschevnikov, A.M., Sokolov, M. V, Kuhnt, U., Dawe, G.S., Stephenson, J.D., and 
Voronin, L.L. (1997). Changes in paired-pulse facilitation correlate with induction of long-term 
potentiation in area CA1 of rat hippocampal slices. Neuroscience 76, 829–843. 

Knapp, C.M., Tozier, L., Pak, A., Ciraulo, D.A., and Kornetsky, C. (2009). Deep brain 
stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol. Biochem. 
Behav. 92, 474–479. 

Koob, G.F. (2000). Neurobiology of addiction. Toward the development of new 
therapies. Ann. N. Y. Acad. Sci. 909, 170–185. 

Koob, G.F., and Volkow, N.D. (2010). Neurocircuitry of Addiction. 
Neuropsychopharmacology 35, 217–238. 

Koya, E., Golden, S.A., Harvey, B.K., Guez-Barber, D.H., Berkow, A., Simmons, D.E., 
Bossert, J.M., Nair, S.G., Uejima, J.L., Marin, M.T., et al. (2009). Targeted disruption of 
cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat. 
Neurosci. 12, 1069–1073. 

Kravitz, A. V, Tye, L.D., and Kreitzer, A.C. (2012). Distinct roles for direct and indirect 
pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818. 

Kristensen, A.S., Jenkins, M.A., Banke, T.G., Schousboe, A., Makino, Y., Johnson, R.C., 
Huganir, R., and Traynelis, S.F. (2011). Mechanism of Ca2+/calmodulin-dependent kinase II 
regulation of AMPA receptor gating. Nat. Neurosci. 14, 727–735. 

Kuhn, J., Bauer, R., Pohl, S., Lenartz, D., Huff, W., Kim, E.H., Klosterkoetter, J., and 
Sturm, V. (2009). Observations on unaided smoking cessation after deep brain stimulation of the 
nucleus accumbens. Eur. Addict. Res. 15, 196–201. 

de la Fuente, V., Federman, N., Fustiñana, M.S., Zalcman, G., and Romano, A. (2014). 
Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: Control on 
nuclear factor-??B signaling in consolidation and reconsolidation. Hippocampus 24, 1549–1561. 

Ledgerwood, L., Richardson, R., and Cranney, J. (2004). D-Cycloserine and the 
Facilitation of Extinction of Conditioned Fear: Consequences for Reinstatement. Behav. 



194 

 

Neurosci. 118, 505–513. 

LeDoux, J.E., Sakaguchi, A., and Reis, D.J. (1984). Subcortical efferent projections of 
the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J. 
Neurosci. 4, 683–698. 

LeDoux, J.E., Farb, C., and Ruggiero, D. a (1990). Topographic organization of neurons 
in the acoustic thalamus that project to the amygdala. J. Neurosci. 10, 1043–1054. 

Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F., and Huganir, R.L. (2000). 
Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic 
plasticity. Nature 405, 955–959. 

Lee, J.L.C., Di Ciano, P., Thomas, K.L., and Everitt, B.J. (2005). Disrupting 
reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47, 795–801. 

Lee, J.L.C., Milton, A.L., and Everitt, B.J. (2006). Reconsolidation and Extinction of 
Conditioned Fear: Inhibition and Potentiation. J. Neurosci. 26, 10051–10056. 

Lee, J.L.C., Gardner, R.J., Butler, V.J., and Everitt, B.J. (2009). D-cycloserine potentiates 
the reconsolidation of cocaine-associated memories. Learn. Mem. 16, 82–85. 

Lemieux, M., Labrecque, S., Tardif, C., Labrie-Dion, É., LeBel, É., and De Koninck, P. 
(2012). Translocation of CaMKII to dendritic microtubules supports the plasticity of local 
synapses. J. Cell Biol. 198, 1055–1073. 

Levy, W.B., and Steward, O. (1983). Temporal contiguity requirements for long-term 
associative potentiation/depression in the hippocampus. Neuroscience 8, 791–797. 

Li, C., and Rainnie, D.G. (2014). Bidirectional regulation of synaptic plasticity in the 
basolateral amygdala induced by the D1-like family of dopamine receptors and group II 
metabotropic glutamate receptors. J. Physiol. 592, 4329–4351. 

Li, X., Zeric, T., Kambhampati, S., Bossert, J.M., and Shaham, Y. (2015). The Central 
Amygdala Nucleus is Critical for Incubation of Methamphetamine Craving. 
Neuropsychopharmacology 40, 1297–1306. 

Li, Y., Meloni, E.G., Carlezon, W.A., Milad, M.R., Pitman, R.K., Nader, K., and 
Bolshakov, V.Y. (2013). Learning and reconsolidation implicate different synaptic mechanisms. 
Proc. Natl. Acad. Sci. 110, 4798–4803. 

Liang, J., Li, J.-L., Han, Y., Luo, Y.-X., Xue, Y.-X., Zhang, Y., Zhang, Y., Zhang, L.-B., 
Chen, M.-L., Lu, L., et al. (2017). Calpain-GRIP Signaling in Nucleus Accumbens Core 
Mediates the Reconsolidation of Drug Reward Memory. J. Neurosci. 37, 8938–8951. 

Lin, C.-H., Yeh, S.-H., Leu, T.-H., Chang, W.-C., Wang, S.-T., and Gean, P.-W. (2003a). 
Identification of calcineurin as a key signal in the extinction of fear memory. J. Neurosci. 23, 



195 

 

1574–1579. 

Lin, C.-H., Lee, C.-C., and Gean, P.-W. (2003b). Involvement of a calcineurin cascade in 
amygdala depotentiation and quenching of fear memory. Mol. Pharmacol. 63, 44–52. 

Lin, C.-H., Lee, C.-C., Huang, Y.-C., Wang, S.-J., and Gean, P.-W. (2005). Activation of 
group II metabotropic glutamate receptors induces depotentiation in amygdala slices and reduces 
fear-potentiated startle in rats. Learn. Mem. 12, 130–137. 

Lin, H.C., Mao, S.C., and Gean, P.W. (2009). Block of γ-Aminobutyric Acid-A Receptor 
Insertion in the Amygdala Impairs Extinction of Conditioned Fear. Biol. Psychiatry 66, 665–673. 

Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D., and Tsien, R.Y. (2013). ReaChR: a 
red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. 
Neurosci. 16, 1499–1508. 

Lisman, J., Yasuda, R., and Raghavachari, S. (2012). Mechanisms of CaMKII action in 
long-term potentiation. Nat. Rev. Neurosci. 

Liu, C., Sun, X., Wang, Z., Le, Q., Liu, P., Jiang, C., Wang, F., and Ma, L. (2017). 
Retrieval-Induced Upregulation of Tet3 in Pyramidal Neurons of the Dorsal Hippocampus 
Mediates Cocaine-Associated Memory Reconsolidation. Int. J. Neuropsychopharmacol. 

Loh, E.A., and Roberts, D.C. (1990). Break-points on a progressive ratio schedule 
reinforced by intravenous cocaine increase following depletion of forebrain serotonin. 
Psychopharmacology (Berl). 101, 262–266. 

Loweth, J.A., Li, D., Cortright, J.J., Wilke, G., Jeyifous, O., Neve, R.L., Bayer, K.U., and 
Vezina, P. (2013). Persistent Reversal of Enhanced Amphetamine Intake by Transient CaMKII 
Inhibition. J. Neurosci. 33, 1411–1416. 

Lu, L., Hope, B.T., Dempsey, J., Liu, S.Y., Bessert, J.M., and Shaham, Y. (2005). Central 
amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat. Neurosci. 8, 
212–219. 

Lu, W., Isozaki, K., Roche, K.W., and Nicoll, R.A. (2010). Synaptic targeting of AMPA 
receptors is regulated by a CaMKII site in the first intracellular loop of GluA1. Proc. Natl. Acad. 
Sci. 107, 22266–22271. 

Lu, Y.M., Mansuy, I.M., Kandel, E.R., and Roder, J. (2000). Calcineurin-Mediated LTD 
of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with 
LTP. Neuron 26, 197–205. 

Lucas, E.K., Jegarl, A.M., Morishita, H., and Clem, R.L. (2016). Multimodal and Site-
Specific Plasticity of Amygdala Parvalbumin Interneurons after Fear Learning. Neuron 91, 629–
643. 



196 

 

Luo, Y., Xue, Y., Liu, J., Shi, H., Jian, M., Han, Y., Zhu, W., Bao, Y., Wu, P., Ding, Z., 
et al. (2015). A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug 
seeking. Nat. Commun. 6, 7675. 

Lüscher, C., and Malenka, R.C. (2011). Drug-Evoked Synaptic Plasticity in Addiction: 
From Molecular Changes to Circuit Remodeling. Neuron 69, 650–663. 

Lüscher, C., and Malenka, R.C. (2012). NMDA receptor-dependent long-term 
potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, 1–15. 

Lüscher, C., Nicoll, R. a, Malenka, R.C., and Muller, D. (2000). Synaptic plasticity and 
dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3, 545–550. 

Luyten, L., and Beckers, T. (2017). A preregistered, direct replication attempt of the 
retrieval-extinction effect in cued fear conditioning in rats. Neurobiol. Learn. Mem. 144, 208–
215. 

Lynch, W.J., and Taylor, J.R. (2005). Persistent changes in motivation to self-administer 
cocaine following modulation of cyclic AMP-dependent protein kinase A (PKA) activity in the 
nucleus accumbens. Eur. J. Neurosci. 22, 1214–1220. 

Lyon, A.M., and Tesmer, J.J.G. (2013). Structural Insights into Phospholipase C-  
Function. Mol. Pharmacol. 84, 488–500. 

Ma, X.-M., Kiraly, D.D., Gaier, E.D., Wang, Y., Kim, E.-J., Levine, E.S., Eipper, B.A., 
and Mains, R.E. (2008). Kalirin-7 Is Required for Synaptic Structure and Function. J. Neurosci. 
28, 12368–12382. 

Ma, Y.-Y., Lee, B.R., Wang, X., Guo, C., Liu, L., Cui, R., Lan, Y., Balcita-Pedicino, J.J., 
Wolf, M.E., Sesack, S.R., et al. (2014). Bidirectional Modulation of Incubation of Cocaine 
Craving by Silent Synapse-Based Remodeling of Prefrontal Cortex to Accumbens Projections. 
Neuron 83, 1453–1467. 

Ma, Y.-Y., Wang, X., Huang, Y., Marie, H., Nestler, E.J., Schlüter, O.M., and Dong, Y. 
(2016). Re-silencing of silent synapses unmasks anti-relapse effects of environmental 
enrichment. Proc. Natl. Acad. Sci. 113, 5089–5094. 

Magee, J.C., and Johnston, D. (1997). A synaptically controlled, associative signal for 
Hebbian plasticity in hippocampal neurons. Science 275, 209–213. 

Malenka, R.C., and Bear, M.F. (2004). LTP and LTD: An embarrassment of riches. 
Neuron 44, 5–21. 

Malenka, R.C., Kauer, J. a, Perkel, D.J., and Nicoll, R. a (1989). The impact of 
postsynaptic calcium on synaptic transmission--its role in long-term potentiation. Trends 
Neurosci. 12, 444–450. 



197 

 

Malenka, R.C., Nicoll, R.A., Bliss, T.V.P., Lomo, T., Teyler, T.J., DiScenna, P., 
Gustafsson, B., Wigstrom, H., Nicoll, R.A., Kauer, J.A., et al. (1999). Long-term potentiation--a 
decade of progress? Science 285, 1870–1874. 

Malinow, R., and Malenka, R.C. (2002). AMPA receptor trafficking and synaptic 
plasticity. Annu. Rev. Neurosci. 25, 103–126. 

Malinow, R., Schulman, H., and Tsien, R. (1989). Inhibition of postsynaptic PKC or 
CaMKII blocks induction but not expression of LTP. Science (80-. ). 245, 862–866. 

Mameli, M., Bellone, C., Brown, M.T.C., and L?scher, C. (2011). Cocaine inverts rules 
for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat. Neurosci. 14, 
414–416. 

Man, H.-Y., Wang, Q., Lu, W.-Y., Ju, W., Ahmadian, G., Liu, L., D’Souza, S., Wong, 
T.P., Taghibiglou, C., Lu, J., et al. (2003). Activation of PI3-kinase is required for AMPA 
receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38, 611–
624. 

Man, H.-Y., Sekine-Aizawa, Y., and Huganir, R.L. (2007). Regulation of {alpha}-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA 
phosphorylation of the Glu receptor 1 subunit. Proc. Natl. Acad. Sci. U. S. A. 104, 3579–3584. 

Marchant, N.J., Li, X., and Shaham, Y. (2013). Recent developments in animal models of 
drug relapse. Curr. Opin. Neurobiol. 23, 675–683. 

Marchant, N.J., Kaganovsky, K., Shaham, Y., and Bossert, J.M. (2015). Role of 
corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res. 1628, 219–
232. 

Maren, S. (2016). Parsing Reward and Aversion in the Amygdala. Neuron 90, 209–211. 

Maren, S., and Quirk, G.J. (2004). Neuronal signalling of fear memory. Nat. Rev. 
Neurosci. 5, 844–852. 

Marin, M.F., Lonak, S.F., and Milad, M.R. (2015). Augmentation of Evidence-Based 
Psychotherapy for PTSD With Cognitive Enhancers. Curr. Psychiatry Rep. 17. 

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic 
efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215. 

Martel, P., Leo, D., Fulton, S., B??rard, M., and Trudeau, L.E. (2011). Role of Kv1 
potassium channels in regulating dopamine release and presynaptic D2 receptor function. PLoS 
One 6. 

Matsuyama, S., Higashi, H., Maeda, H., Greengard, P., and Nishi, A. (2002). Neurotensin 
regulates DARPP-32 Thr34 phosphorylation in neostriatal neurons by activation of dopamine 



198 

 

D1-type receptors. J. Neurochem. 81, 325–334. 

Mcdonald, A.J. (1998). Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 
55, 257–332. 

McIntyre, C.C., Grill, W.M., Sherman, D.L., and Thakor, N. V (2004). Cellular Effects of 
Deep Brain Stimulation: Model-Based Analysis of Activation and Inhibition. J. Neurophysiol. 
91, 1457–1469. 

Meil, W.M., and See, R.E. (1997). Lesions of the basolateral amygdala abolish the ability 
of drug associated cues to reinstate responding during withdrawal from self- administered 
cocaine. Behav. Brain Res. 87, 139–148. 

Merlo, E., Milton, A.L., Goozee, Z.Y., Theobald, D.E., and Everitt, B.J. (2014). 
Reconsolidation and Extinction Are Dissociable and Mutually Exclusive Processes: Behavioral 
and Molecular Evidence. J. Neurosci. 34, 2422–2431. 

Meyer, D., Bonhoeffer, T., and Scheuss, V. (2014). Balance and Stability of Synaptic 
Structures during Synaptic Plasticity. Neuron 82, 430–443. 

Michaeli, A., and Yaka, R. (2010). Dopamine inhibits GABAA currents in ventral 
tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-
rectifying potassium channels. Neuroscience 165, 1159–1169. 

Milad, M.R.R., and Quirk, G.J.J. (2002). Neurons in medial prefrontal cortex signal 
memory for fear extinction. Nature 420, 70–74. 

Milad, M.R., Vidal-Gonzalez, I., and Quirk, G.J. (2004). Electrical Stimulation of Medial 
Prefrontal Cortex Reduces Conditioned Fear in a Temporally Specific Manner. Behav. Neurosci. 
118, 389–394. 

Miller, C.A., and Marshall, J.F. (2005). Molecular substrates for retrieval and 
reconsolidation of cocaine-associated contextual memory. Neuron 47, 873–884. 

Miller, M., Chen, A.L.C., Stokes, S.D., Silverman, S., Bowirrat, A., Manka, M., Manka, 
D., Miller, D.K., Perrine, K., Chen, T.J.H., et al. (2012). Early intervention of intravenous 
KB220IV--neuroadaptagen amino-acid therapy (NAAT) improves behavioral outcomes in a 
residential addiction treatment program: a pilot study. J. Psychoactive Drugs 44, 398–409. 

Milton, A.L., and Everitt, B.J. (2010). The psychological and neurochemical mechanisms 
of drug memory reconsolidation: Implications for the treatment of addiction. Eur. J. Neurosci. 
31, 2308–2319. 

Milton, A.L., Lee, J.L.C., Butler, V.J., Gardner, R., and Everitt, B.J. (2008). Intra-
Amygdala and Systemic Antagonism of NMDA Receptors Prevents the Reconsolidation of 
Drug-Associated Memory and Impairs Subsequently Both Novel and Previously Acquired Drug-
Seeking Behaviors. J. Neurosci. 28, 8230–8237. 



199 

 

Mishra, B.R., Nizamie, S.H., Das, B., and Praharaj, S.K. (2010). Efficacy of repetitive 
transcranial magnetic stimulation in alcohol dependence: a sham-controlled study. Addiction 
105, 49–55. 

Mitchell, M.R., Weiss, V.G., Beas, B.S., Morgan, D., Bizon, J.L., and Setlow, B. (2014). 
Adolescent Risk Taking, Cocaine Self-Administration, and Striatal Dopamine Signaling. 
Neuropsychopharmacology 39, 955–962. 

Moczulska, K.E., Tinter-Thiede, J., Peter, M., Ushakova, L., Wernle, T., Bathellier, B., 
and Rumpel, S. (2013). Dynamics of dendritic spines in the mouse auditory cortex during 
memory formation and memory recall. Proc. Natl. Acad. Sci. 110, 18315–18320. 

Monfils, M.-H., Cowansage, K.K., Klann, E., and LeDoux, J.E. (2009). Extinction-
Reconsolidation Boundaries: Key to Persistent Attenuation of Fear Memories. Science (80-. ). 
324, 951–955. 

Montague, P.R., Hyman, S.E., and Cohen, J.D. (2004). Computational roles for dopamine 
in behavioural control. Nature 431, 760–767. 

Morgan, D., Liu, Y., and Roberts, D.C.S. (2006). Rapid and persistent sensitization to the 
reinforcing effects of cocaine. Neuropsychopharmacology 31, 121–128. 

Morgan, M.A., Romanski, L.M., and LeDoux, J.E. (1993). Extinction of emotional 
learning: Contribution of medial prefrontal cortex. Neurosci. Lett. 163, 109–113. 

Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994). Involvement of a 
calcineurin/ inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 
486–488. 

Müller, C.P., Quednow, B.B., Lourdusamy, A., Kornhuber, J., Schumann, G., and Giese, 
K.P. (2016a). CaM Kinases: From Memories to Addiction. Trends Pharmacol. Sci. 37, 153–166. 

Müller, U., Sturm, V., Voges, J., Heinze, H.-J., Galazky, I., Büntjen, L., Heldmann, M., 
Frodl, T., Steiner, J., and Bogerts, B. (2016b). Nucleus Accumbens Deep Brain Stimulation for 
Alcohol Addiction – Safety and Clinical Long-term Results of a Pilot Trial. Pharmacopsychiatry 
49, 170–173. 

Mumby, M.C., and Walter, G. (1993). Protein serine/threonine phosphatases: structure, 
regulation, and functions in cell growth. Physiol. Rev. 73, 673–699. 

Murrow, R.W. (2014). Penfieldâ€TMs Prediction: A Mechanism for Deep Brain 
Stimulation. Front. Neurol. 5, 213. 

Nabavi, S., Fox, R., Proulx, C.D., Lin, J.Y., Tsien, R.Y., and Malinow, R. (2014). 
Engineering a memory with LTD and LTP. Nature 511, 348–352. 

Nader, K., Schafe, G.E., and Le Doux, J.E. (2000). Fear memories require protein 



200 

 

synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726. 

Neisewander, J.L., Baker, D. a, Fuchs, R. a, Tran-Nguyen, L.T., Palmer, A., and 
Marshall, J.F. (2000). Fos protein expression and cocaine-seeking behavior in rats after exposure 
to a cocaine self-administration environment. J. Neurosci. 20, 798–805. 

Nestler, E.J. (2004). Molecular mechanisms of drug addiction. Neuropharmacology 47, 
24–32. 

Nic Dhonnchadha, B.A., Lin, A., Leite-Morris, K.A., Kaplan, G.B., Man, H.Y., and 
Kantak, K.M. (2013). Alterations in expression and phosphorylation of GluA1 receptors 
following cocaine-cue extinction learning. Behav. Brain Res. 238, 119–123. 

Nic Dhonnchadha, B.Á., Szalay, J.J., Achat-Mendes, C., Platt, D.M., Otto, M.W., 
Spealman, R.D., and Kantak, K.M. (2010). D-cycloserine Deters Reacquisition of Cocaine Self-
Administration by Augmenting Extinction Learning. Neuropsychopharmacology 35, 357–367. 

Nishi, A., Snyder, G.L., and Greengard, P. (1997). Bidirectional regulation of DARPP-32 
phosphorylation by dopamine. J. Neurosci. 17, 8147–8155. 

Norrholm, S.D., Jovanovic, T., Gerardi, M., Breazeale, K.G., Price, M., Davis, M., 
Duncan, E., Ressler, K.J., Bradley, B., Rizzo, A., et al. (2016). Baseline psychophysiological and 
cortisol reactivity as a predictor of PTSD treatment outcome in virtual reality exposure therapy. 
Behav. Res. Ther. 82, 28–37. 

Nugent, F.S., Penick, E.C., and Kauer, J.A. (2007). Opioids block long-term potentiation 
of inhibitory synapses. Nature 446, 1086–1090. 

O’Brien, C.P., Childress, A.R., McLellan, A.T., and Ehrman, R. (1992). Classical 
conditioning in drug-dependent humans. Ann. N. Y. Acad. Sci. 654, 400–415. 

Oh, W.C., Hill, T.C., and Zito, K. (2013). Synapse-specific and size-dependent 
mechanisms of spine structural plasticity accompanying synaptic weakening. Proc. Natl. Acad. 
Sci. 110, E305–E312. 

Ortinski, P.I., Briand, L.A., Pierce, R.C., and Schmidt, H.D. (2015). Cocaine-seeking is 
associated with PKC-dependent reduction of excitatory signaling in accumbens shell D2 
dopamine receptor-expressing neurons. Neuropharmacology 92, 80–89. 

Osten, P., Valsamis, L., Harris, A., and Sacktor, T.C. (1996). Protein synthesis-dependent 
formation of protein kinase Mzeta in long-term potentiation. J. Neurosci. 16, 2444–2451. 

Otani, S., Blond, O., Desce, J.M., and Crépel, F. (1998). Dopamine facilitates long-term 
depression of glutamatergic transmission in rat prefrontal cortex. Neuroscience 85, 669–676. 

Otani, S., Bai, J., and Blot, K. (2015). Dopaminergic modulation of synaptic plasticity in 
rat prefrontal neurons. Neurosci. Bull. 31, 183–190. 



201 

 

Park, W.K., Bari, A.A., Jey, A.R., Anderson, S.M., Spealman, R.D., Rowlett, J.K., and 
Pierce, R.C. (2002). Cocaine administered into the medial prefrontal cortex reinstates cocaine-
seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus 
accumbens. J. Neurosci. 22, 2916–2925. 

Parvaz, M.A., Moeller, S.J., and Goldstein, R.Z. (2016). Incubation of Cue-Induced 
Craving in Adults Addicted to Cocaine Measured by Electroencephalography. JAMA Psychiatry 
73, 1127–1134. 

Pavlov, I.P. (1927). Conditioned Reflexes. 

Pedreira, M.E., and Maldonado, H. (2003). Protein synthesis subserves reconsolidation or 
extinction depending on reminder duration. Neuron 38, 863–869. 

Pelloux, Y., Dilleen, R., Economidou, D., Theobald, D., and Everitt, B.J. (2012). 
Reduced forebrain serotonin transmission is causally involved in the development of compulsive 
cocaine seeking in rats. Neuropsychopharmacology 37, 2505–2514. 

Pennartz, C.M.A., Lee, E., Verheul, J., Lipa, P., Barnes, C.A., and McNaughton, B.L. 
(2004). The Ventral Striatum in Off-Line Processing: Ensemble Reactivation during Sleep and 
Modulation by Hippocampal Ripples. J. Neurosci. 24, 6446–6456. 

Penzo, M.A., Robert, V., Tucciarone, J., De Bundel, D., Wang, M., Van Aelst, L., 
Darvas, M., Parada, L.F., Palmiter, R.D., He, M., et al. (2015). The paraventricular thalamus 
controls a central amygdala fear circuit. Nature 519, 455–459. 

Peter, M., Scheuch, H., Burkard, T.R., Tinter, J., Wernle, T., and Rumpel, S. (2012). 
Induction of immediate early genes in the mouse auditory cortex after auditory cued fear 
conditioning to complex sounds. Genes, Brain Behav. 11, 314–324. 

Peters, J., LaLumiere, R.T., and Kalivas, P.W. (2008). Infralimbic Prefrontal Cortex Is 
Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. J. Neurosci. 28, 6046–6053. 

Peters, J., Kalivas, P.W., and Quirk, G.J. (2009). Extinction circuits for fear and addiction 
overlap in prefrontal cortex. Learn. Mem. 16, 279–288. 

Phillips, P.E.M., Stuber, G.D., Heien, M.L.A. V., Wightman, R.M., and Carelli, R.M. 
(2003). Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618. 

Pi, H.J., Otmakhov, N., El Gaamouch, F., Lemelin, D., De Koninck, P., and Lisman, J. 
(2010). CaMKII control of spine size and synaptic strength: Role of phosphorylation states and 
nonenzymatic action. Proc. Natl. Acad. Sci. 107, 14437–14442. 

Piazza, P.V., and Deroche-Gamonet, V. (2013). A multistep general theory of transition 
to addiction. Psychopharmacology (Berl). 229, 387–413. 

Pierce, R.C., and Kumaresan, V. (2006). The mesolimbic dopamine system: The final 



202 

 

common pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30, 
215–238. 

Pinard, C.R., Mascagni, F., and McDonald, A.J. (2012). Medial prefrontal cortical 
innervation of the intercalated nuclear region of the amygdala. Neuroscience 205, 112–124. 

Politi, E., Fauci, E., Santoro, A., and Smeraldi, E. (2008). Daily Sessions of Transcranial 
Magnetic Stimulation to the Left Prefrontal Cortex Gradually Reduce Cocaine Craving. Am. J. 
Addict. 17, 345–346. 

Price, K.L., Saladin, M.E., Baker, N.L., Tolliver, B.K., DeSantis, S.M., McRae-Clark, 
A.L., and Brady, K.T. (2010). Extinction of drug cue reactivity in methamphetamine-dependent 
individuals. Behav. Res. Ther. 48, 860–865. 

Price, K.L., Baker, N.L., McRae-Clark, A.L., Saladin, M.E., Desantis, S.M., Santa Ana, 
E.J., and Brady, K.T. (2013). A randomized, placebo-controlled laboratory study of the effects of 
d-cycloserine on craving in cocaine-dependent individuals. Psychopharmacology (Berl). 226, 
739–746. 

Quirk, G.J., and Mueller, D. (2008). Neural mechanisms of extinction learning and 
retrieval. Neuropsychopharmacology 33, 56–72. 

Quirk, G.J., Russo, G.K., Barron, J.L., and Lebron, K. (2000). The role of ventromedial 
prefrontal cortex in the recovery of extinguished fear. J. Neurosci. 20, 6225–6231. 

Quirk, G.J., Pare, D., Richardson, R., Herry, C., Monfils, M.H., Schiller, D., and 
Vicentic, A. (2010). Erasing Fear Memories with Extinction Training. J. Neurosci. 30, 14993–
14997. 

Rao-Ruiz, P., Rotaru, D.C., Van Der Loo, R.J., Mansvelder, H.D., Stiedl, O., Smit, A.B., 
and Spijker, S. (2011). Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive 
reconsolidation of contextual fear. Nat. Neurosci. 14, 1302–1308. 

Raveendran, R., Devi Suma Priya, S., Mayadevi, M., Steephan, M., Santhoshkumar, 
T.R., Cheriyan, J., Sanalkumar, R., Pradeep, K.K., James, J., and Omkumar, R. V. (2009). 
Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with 
calcium/calmodulin-dependent protein kinase II. J. Neurochem. 110, 92–105. 

Ren, Z.-Y., Liu, M.-M., Xue, Y.-X., Ding, Z.-B., Xue, L.-F., Zhai, S.-D., and Lu, L. 
(2013). A Critical Role for Protein Degradation in the Nucleus Accumbens Core in Cocaine 
Reward Memory. Neuropsychopharmacology 38, 778–790. 

Rescorla, R. a (2004). Spontaneous recovery varies inversely with the training-extinction 
interval. Learn. Behav.  a Psychon. Soc. Publ. 32, 401–408. 

Rescorla, R.A., and Heth, C.D. (1975). Reinstatement of fear to an extinguished 
conditioned stimulus. J. Exp. Psychol. Anim. Behav. Process. 1, 88–96. 



203 

 

Resendez, S.L., Jennings, J.H., Ung, R.L., Namboodiri, V.M.K., Zhou, Z.C., Otis, J.M., 
Nomura, H., Mchenry, J.A., Kosyk, O., and Stuber, G.D. (2016). Visualization of cortical, 
subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with 
head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597. 

Ressler, K.J., Rothbaum, B.O., Tannenbaum, L., Anderson, P., Graap, K., Zimand, E., 
Hodges, L., and Davis, M. (2004). Cognitive Enhancers as Adjuncts to Psychotherapy. Arch. 
Gen. Psychiatry 61, 1136. 

Rich, M.T., Abbott, T.B., Chung, L., Gulcicek, E.E., Stone, K.L., Colangelo, C.M., Lam, 
T.T., Nairn, A.C., Taylor, J.R., and Torregrossa, M.M. (2016). Phosphoproteomic Analysis 
Reveals a Novel Mechanism of CaMKII  Regulation Inversely Induced by Cocaine Memory 
Extinction versus Reconsolidation. J. Neurosci. 36, 7613–7627. 

Riva-Posse, P., Choi, K.S., Holtzheimer, P.E., McIntyre, C.C., Gross, R.E., Chaturvedi, 
A., Crowell, A.L., Garlow, S.J., Rajendra, J.K., and Mayberg, H.S. (2014). Defining Critical 
White Matter Pathways Mediating Successful Subcallosal Cingulate Deep Brain Stimulation for 
Treatment-Resistant Depression. Biol. Psychiatry 76, 963–969. 

Robbins, T.W., and Everitt, B.J. (2002). Limbic-striatal memory systems and drug 
addiction. Neurobiol. Learn. Mem. 78, 625–636. 

Robbins, T.W., Ersche, K.D., and Everitt, B.J. (2008). Drug addiction and the memory 
systems of the brain. Ann. N. Y. Acad. Sci. 1141, 1–21. 

Robinson, T.E., and Berridge, K.C. The neural basis of drug craving: an incentive-
sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291. 

Robison, A.J. (2014). Emerging role of CaMKII in neuropsychiatric disease. Trends 
Neurosci. 37, 653–662. 

Roche, K.W., O’Brien, R.J., Mammen, A.L., Bernhardt, J., and Huganir, R.L. (1996). 
Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. 
Neuron 16, 1179–1188. 

Rodrigues, S.M. (2004). Pavlovian Fear Conditioning Regulates Thr286 
Autophosphorylation of Ca2+/Calmodulin-Dependent Protein Kinase II at Lateral Amygdala 
Synapses. J. Neurosci. 24, 3281–3288. 

Rodrigues, S.M., Schafe, G.E., and LeDoux, J.E. (2001). Intra-amygdala blockade of the 
NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear 
conditioning. J. Neurosci. 21, 6889–6896. 

Rodriguez, W.A., Rodriguez, S.B., Phillips, M.Y., and Martinez, J.L. (1993). Post-
reactivation cocaine administration facilitates later acquisition of an avoidance response in rats. 
Behav. Brain Res. 59, 125–129. 



204 

 

Roggenhofer, E., Fidzinski, P., Bartsch, J., Kurz, F., Shor, O., and Behr, J. (2010). 
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term 
potentiation at hippocampal output synapses. Eur. J. Neurosci. 32, 598–605. 

Romanski, L.M., and LeDoux, J.E. (1992). Equipotentiality of thalamo-amygdala and 
thalamo-cortico-amygdala circuits in auditory fear conditioning. J. Neurosci. 12, 4501–4509. 

Rosenkranz, J.A., and Grace, A.A. (2001). Dopamine Attenuates Prefrontal Cortical 
Suppression of Sensory Inputs to the Basolateral Amygdala of Rats. J. Neurosci. 21, 4090–4103. 

Rosenkranz, J.A., and Grace, A.A. (2002). Dopamine-mediated modulation of odour-
evoked amygdala potentials during pavlovian conditioning. Nature 417, 282–287. 

Rossini, P.M., Burke, D., Chen, R., Cohen, L.G., Daskalakis, Z., Di Iorio, R., Di Lazzaro, 
V., Ferreri, F., Fitzgerald, P.B., George, M.S., et al. (2015). Non-invasive electrical and magnetic 
stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures 
for routine clinical and research application. An updated report from an I.F.C.N. Committee. 
Clin. Neurophysiol. 126, 1071–1107. 

Rubio, F.J., Liu, Q.-R., Li, X., Cruz, F.C., Leao, R.M., Warren, B.L., Kambhampati, S., 
Babin, K.R., McPherson, K.B., Cimbro, R., et al. (2015). Context-Induced Reinstatement of 
Methamphetamine Seeking Is Associated with Unique Molecular Alterations in Fos-Expressing 
Dorsolateral Striatum Neurons. J. Neurosci. 35, 5625–5639. 

Sagara, H., Sendo, T., and Gomita, Y. (2010). Evaluation of motivational effects induced 
by intracranial self-stimulation behavior. Acta Med. Okayama 64, 267–275. 

Sajikumar, S., and Frey, J.U. (2003). Anisomycin inhibits the late maintenance of long-
term depression in rat hippocampal slices in vitro. Neurosci. Lett. 338, 147–150. 

Sakurai, S., Yu, L., and Tan, S.E. (2007). Roles of hippocampal N-methyl-D-aspartate 
receptors and calcium/calmodulin-dependent protein kinase II in amphetamine-produced 
conditioned place preference in rats. Behav Pharmacol 18, 497–506. 

Salling, M.C., and Martinez, D. (2016). Brain Stimulation in Addiction. 
Neuropsychopharmacology 41, 2798–2809. 

Salling, M.C., Faccidomo, S.P., Li, C., Psilos, K., Galunas, C., Spanos, M., Agoglia, 
A.E., Kash, T.L., and Hodge, C.W. (2016). Moderate alcohol drinking and the amygdala 
proteome: Identification and validation of calcium/calmodulin dependent kinase II and AMPA 
receptor activity as novel molecular mechanisms of the positive reinforcing effects of alcohol. 
Biol. Psychiatry 79, 430–442. 

Sanchez, H., Quinn, J.J., Torregrossa, M.M., and Taylor, J.R. (2010). Reconsolidation of 
a Cocaine-Associated Stimulus Requires Amygdalar Protein Kinase A. J. Neurosci. 30, 4401–
4407. 



205 

 

Sanderson, J.L., Gorski, J.A., and Dell’Acqua, M.L. (2016). NMDA Receptor-Dependent 
LTD Requires Transient Synaptic Incorporation of Ca2+-Permeable AMPARs Mediated by 
AKAP150-Anchored PKA and Calcineurin. Neuron 89, 1000–1015. 

Sanhueza, M., and Lisman, J. (2013). The CaMKII/NMDAR complex as a molecular 
memory. Mol. Brain 6, 10. 

Sanhueza, M., Fernandez-Villalobos, G., Stein, I.S., Kasumova, G., Zhang, P., Bayer, 
K.U., Otmakhov, N., Hell, J.W., and Lisman, J. (2011). Role of the CaMKII/NMDA Receptor 
Complex in the Maintenance of Synaptic Strength. J. Neurosci. 31, 9170–9178. 

Santa Ana, E.J., Rounsaville, B.J., Frankforter, T.L., Nich, C., Babuscio, T., Poling, J., 
Gonsai, K., Hill, K.P., and Carroll, K.M. (2009). d-Cycloserine attenuates reactivity to smoking 
cues in nicotine dependent smokers: A pilot investigation. Drug Alcohol Depend. 104, 220–227. 

Santini, E. (2004). Consolidation of Fear Extinction Requires Protein Synthesis in the 
Medial Prefrontal Cortex. J. Neurosci. 24, 5704–5710. 

Sartor, G.C., and Aston-Jones, G. (2014). Post-Retrieval Extinction Attenuates Cocaine 
Memories. Neuropsychopharmacology 39, 1059–1065. 

Schafe, G.E., and LeDoux, J.E. (2000). Memory Consolidation of Auditory Pavlovian 
Fear Conditioning Requires Protein Synthesis and Protein Kinase A in the Amygdala. J. 
Neurosci. 20, RC96 LP-RC96. 

Schafe, G.E., Nader, K., Blair, H.T., and LeDoux, J.E. (2001). Memory consolidation of 
Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24, 540–546. 

Schafe, G.E., Swank, M.W., Rodrigues, S.M., Debiec, J., and Doyere, V. (2008). 
Phosphorylation of ERK/MAP kinase is required for long-term potentiation in anatomically 
restricted regions of the lateral amygdala in vivo. Learn. Mem. 15, 55–62. 

Schoenbaum, G., Chiba, A.A., and Gallagher, M. (1998). Orbitofrontal cortex and 
basolateral amygdala encode expected outcomes during learning. Nat. Neurosci. 1, 155–159. 

Schoenbaum, G., Chiba,  a a, and Gallagher, M. (1999). Neural encoding in orbitofrontal 
cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–
1884. 

Schultz, W., Tremblay, L., and Hollerman, J.R. (2000). Reward processing in primate 
orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272–284. 

Schwindel, C.D., and McNaughton, B.L. (2011). Hippocampal–cortical interactions and 
the dynamics of memory trace reactivation. In Progress in Brain Research, pp. 163–177. 

See, R.E. (2002). Neural substrates of conditioned-cued relapse to drug-seeking behavior. 
Pharmacol. Biochem. Behav. 71, 517–529. 



206 

 

See, R.E. (2005). Neural substrates of cocaine-cue associations that trigger relapse. Eur. 
J. Pharmacol. 526, 140–146. 

Self, D.W., and Choi, K.-H. (2004). Extinction-induced Neuroplasticity Attenuates 
Stress-induced Cocaine Seeking: A State-dependent Learning Hypothesis. Stress 7, 145–155. 

Sesack, S.R., and Grace, A.A. (2010). Cortico-Basal Ganglia reward network: 
microcircuitry. Neuropsychopharmacology 35, 27–47. 

Sesack, S.R., Deutch, A.Y., Roth, R.H., and Bunney, B.S. (1989). Topographical 
organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde 
tract-tracing study withPhaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213–242. 

Shabel, S.J., and Janak, P.H. (2009). Substantial similarity in amygdala neuronal activity 
during conditioned appetitive and aversive emotional arousal. Proc. Natl. Acad. Sci. 106, 15031–
15036. 

Shaham, Y., and Hope, B.T. (2005). The role of neuroadaptations in relapse to drug 
seeking. Nat. Neurosci. 8, 1437–1439. 

Shaham, Y., Shalev, U., Lu, L., De Wit, H., and Stewart, J. (2003). The reinstatement 
model of drug relapse: History, methodology and major findings. Psychopharmacology (Berl). 
168, 3–20. 

Shalev, U., Grimm, J.W., and Shaham, Y. (2002). Neurobiology of relapse to heroin and 
cocaine seeking: a review. Pharmacol. Rev. 54, 1–42. 

Shen, H., Moussawi, K., Zhou, W., Toda, S., and Kalivas, P.W. (2011). Heroin relapse 
requires long-term potentiation-like plasticity mediated by NMDA2b-containing receptors. Proc. 
Natl. Acad. Sci. 108, 19407–19412. 

Shen, X., Li, H., Ou, Y., Tao, W., Dong, A., Kong, J., Ji, C., and Yu, S. (2008). The 
secondary structure of calcineurin regulatory region and conformational change induced by 
calcium/calmodulin binding. J. Biol. Chem. 283, 11407–11413. 

Shi, X., Miller, J.S., Harper, L.J., Poole, R.L., Gould, T.J., and Unterwald, E.M. (2014). 
Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and 
can be disrupted by GSK3 inhibition. Psychopharmacology (Berl). 231, 3109–3118. 

Shi, Y.-W., Fan, B.-F., Xue, L., Wen, J.-L., and Zhao, H. (2017). Regulation of Fear 
Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered 
GluR1, GluR1-Ser845 and NR2B Levels. Front. Behav. Neurosci. 11, 116. 

Shields, S.M., Ingebritsen, T.S., and Kelly, P.T. (1985). Identification of protein 
phosphatase 1 in synaptic junctions: dephosphorylation of endogenous calmodulin-dependent 
kinase II and synapse-enriched phosphoproteins. J. Neurosci. 5, 3414–3422. 



207 

 

Silva, A.J., Stevens, C.F., Tonegawa, S., and Wang, Y. (1992a). Deficient hippocampal 
long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 201–
206. 

Silva,  a J., Paylor, R., Wehner, J.M., and Tonegawa, S. (1992b). Impaired spatial 
learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211. 

Da Silva, W.C., Cardoso, G., Bonini, J.S., Benetti, F., and Izquierdo, I. (2013). Memory 
reconsolidation and its maintenance depend on L-voltage-dependent calcium channels and 
CaMKII functions regulating protein turnover in the hippocampus. Pnas 110, 6566–6570. 

Sinha, R., and Li, C.S.R. (2007). Imaging stress- and cue-induced drug and alcohol 
craving: Association with relapse and clinical implications. Drug Alcohol Rev. 26, 25–31. 

Sinha, R., Shaham, Y., and Heilig, M. (2011). Translational and reverse translational 
research on the role of stress in drug craving and relapse. Psychopharmacology (Berl). 218, 69–
82. 

Sorg, B.A. (2012). Reconsolidation of drug memories. Neurosci. Biobehav. Rev. 36, 
1400–1417. 

Sotres-Bayon, F., Bush, D.E.A., and LeDoux, J.E. (2007). Acquisition of Fear Extinction 
Requires Activation of NR2B-Containing NMDA Receptors in the Lateral Amygdala. 
Neuropsychopharmacology 32, 1929–1940. 

Sparta, D.R., Stamatakis, A.M., Phillips, J.L., Hovelsø, N., Van Zessen, R., and Stuber, 
G.D. (2012). Construction of implantable optical fibers for long-term optogenetic manipulation 
of neural circuits. Nat. Protoc. 7, 12–23. 

Speer, A.M., Kimbrell, T.A., Wassermann, E.M., D Repella, J., Willis, M.W., 
Herscovitch, P., and Post, R.M. (2000). Opposite effects of high and low frequency rTMS on 
regional brain activity in depressed patients. Biol. Psychiatry 48, 1133–1141. 

Stanis, J.J., and Andersen, S.L. (2014). Reducing substance use during adolescence: a 
translational framework for prevention. Psychopharmacology (Berl). 231, 1437–1453. 

Stefanik, M.T., and Kalivas, P.W. (2013). Optogenetic dissection of basolateral amygdala 
projections during cue-induced reinstatement of cocaine seeking. Front. Behav. Neurosci. 7, 1–6. 

Stefanik, M.T., Moussawi, K., Kupchik, Y.M., Smith, K.C., Miller, R.L., Huff, M.L., 
Deisseroth, K., Kalivas, P.W., and Lalumiere, R.T. (2013). Optogenetic inhibition of cocaine 
seeking in rats. Addict. Biol. 18, 50–53. 

Stefanik, M.T., Kupchik, Y.M., and Kalivas, P.W. (2016). Optogenetic inhibition of 
cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient 
synaptic potentiation and cocaine-seeking behavior. Brain Struct. Funct. 221, 1681–1689. 



208 

 

Steinbeis, N., Bernhardt, B.C., and Singer, T. (2012). Impulse Control and Underlying 
Functions of the Left DLPFC Mediate Age-Related and Age-Independent Individual Differences 
in Strategic Social Behavior. Neuron 73, 1040–1051. 

Stewart, J. (1992). Neurobiology of conditioning to drugs of abuse. Ann. N. Y. Acad. Sci. 
654, 335–346. 

Stoica, L., Zhu, P.J., Huang, W., Zhou, H., Kozma, S.C., and Costa-Mattioli, M. (2011). 
Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) 
blocks long-term synaptic plasticity and memory storage. Proc. Natl. Acad. Sci. U. S. A. 108, 
3791–3796. 

Stratton, M.M., Chao, L.H., Schulman, H., and Kuriyan, J. (2013). Structural studies on 
the regulation of Ca2+/calmodulin dependent protein kinase II. Curr. Opin. Struct. Biol. 23, 292–
301. 

Stuber, G.D., Klanker, M., de Ridder, B., Bowers, M.S., Joosten, R.N., Feenstra, M.G., 
and Bonci, A. (2008). Reward-Predictive Cues Enhance Excitatory Synaptic Strength onto 
Midbrain Dopamine Neurons. Science (80-. ). 321, 1690–1692. 

Stuber, G.D., Sparta, D.R., Stamatakis, A.M., van Leeuwen, W.A., Hardjoprajitno, J.E., 
Cho, S., Tye, K.M., Kempadoo, K.A., Zhang, F., Deisseroth, K., et al. (2011). Excitatory 
transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 
377–380. 

Sun, X., Zhao, Y., and Wolf, M.E. (2005). Dopamine receptor stimulation modulates 
AMPA receptor synaptic insertion in prefrontal cortex neurons. J. Neurosci. 25, 7342–7351. 

Suto, N., Laque, A., De Ness, G.L., Wagner, G.E., Watry, D., Kerr, T., Koya, E., 
Mayford, M.R., Hope, B.T., and Weiss, F. (2016). Distinct memory engrams in the infralimbic 
cortex of rats control opposing environmental actions on a learned behavior. Elife 5. 

Sutton, M.A., Schmidt, E.F., Choi, K.-H., Schad, C.A., Whisler, K., Simmons, D., 
Karanian, D.A., Monteggia, L.M., Neve, R.L., and Self, D.W. (2003). Extinction-induced 
upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75. 

Taylor, J.R., Olausson, P., Quinn, J.J., and Torregrossa, M.M. (2009). Targeting 
extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. 
Neuropharmacology 56, 186–195. 

Terraneo, A., Leggio, L., Saladini, M., Ermani, M., Bonci, A., and Gallimberti, L. (2016). 
Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot 
study. Eur. Neuropsychopharmacol. 26, 37–44. 

Thewissen, R., Snijders, S.J.B.D., Havermans, R.C., van den Hout, M., and Jansen, A. 
(2006). Renewal of cue-elicited urge to smoke: Implications for cue exposure treatment. Behav. 
Res. Ther. 44, 1441–1449. 



209 

 

Tiffany, S.T., and Conklin, C.A. (2002). The promise and pitfalls of animal and human 
models of relapse: Comment on Leri and Stewart (2002). Exp. Clin. Psychopharmacol. 10, 361–
363. 

Ting, J.T., Daigle, T.L., Chen, Q., and Feng, G. (2014). Acute brain slice methods for 
adult and aging animals: Application of targeted patch clamp analysis and optogenetics. Methods 
Mol. Biol. 1183, 221–242. 

Todd, T.P., Vurbic, D., and Bouton, M.E. (2014). Behavioral and neurobiological 
mechanisms of extinction in Pavlovian and instrumental learning. Neurobiol. Learn. Mem. 108, 
52–64. 

Tomasi, D., Wang, G.-J., Wang, R., Caparelli, E.C., Logan, J., and Volkow, N.D. (2015). 
Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association 
to striatal D2/D3 receptors. Hum. Brain Mapp. 36, 120–136. 

Tong, L., Song, Y., Jia, Z., Zhang, W., and Wei, Q. (2007). Calmodulin-dependent 
activation of calcineurin by chlorogenic acid. IUBMB Life 59, 402–407. 

Torregrossa, M.M., and Kalivas, P.W. (2008). Neurotensin in the ventral pallidum 
increases extracellular gamma-aminobutyric acid and differentially affects cue- and cocaine-
primed reinstatement. J Pharmacol Exp Ther 325, 556–566. 

Torregrossa, M.M., and Taylor, J.R. (2013). Learning to forget: Manipulating extinction 
and reconsolidation processes to treat addiction. Psychopharmacology (Berl). 226, 659–672. 

Torregrossa, M.M., and Taylor, J.R. (2016). Neuroscience of learning and memory for 
addiction medicine: from habit formation to memory reconsolidation. In Progress in Brain 
Research, pp. 91–113. 

Torregrossa, M.M., Sanchez, H., and Taylor, J.R. (2010). D-Cycloserine Reduces the 
Context Specificity of Pavlovian Extinction of Cocaine Cues through Actions in the Nucleus 
Accumbens. J. Neurosci. 30, 10526–10533. 

Torregrossa, M.M., Corlett, P.R., and Taylor, J.R. (2011). Aberrant learning and memory 
in addiction. Neurobiol. Learn. Mem. 96, 609–623. 

Torregrossa, M.M., Gordon, J., and Taylor, J.R. (2013). Double Dissociation between the 
Anterior Cingulate Cortex and Nucleus Accumbens Core in Encoding the Context versus the 
Content of Pavlovian Cocaine Cue Extinction. J. Neurosci. 33, 8370–8377. 

Tronson, N.C., and Taylor, J.R. (2007). Molecular mechanisms of memory 
reconsolidation. Nat. Rev. Neurosci. 8, 262–275. 

Tronson, N.C., Wiseman, S.L., Olausson, P., and Taylor, J.R. (2006). Bidirectional 
behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat. 
Neurosci. 9, 167–169. 



210 

 

Tronson, N.C., Corcoran, K.A., Jovasevic, V., and Radulovic, J. (2012a). Fear 
conditioning and extinction: Emotional states encoded by distinct signaling pathways. Trends 
Neurosci. 35, 145–155. 

Tronson, N.C., Wiseman, S.L., Neve, R.L., Nestler, E.J., Olausson, P., and Taylor, J.R. 
(2012b). Distinctive roles for amygdalar CREB in reconsolidation and extinction of fear 
memory. Learn. Mem. 19, 178–181. 

Tsui, J., Inagaki, M., and Schulmann, H. (2005). Calcium/calmodulin-dependent protein 
kinase II (CaMKII) localization acts in concert with substrate targeting to create spatial 
restriction for phosphorylation. J. Biol. Chem. 280, 9210–9216. 

Tye, K.M., and Janak, P.H. (2007). Amygdala Neurons Differentially Encode Motivation 
and Reinforcement. J. Neurosci. 27, 3937–3945. 

Tye, K.M., Stuber, G.D., de Ridder, B., Bonci, A., and Janak, P.H. (2008). Rapid 
strengthening of thalamo-amygdala synapses mediates cue–reward learning. Nature 453, 1253–
1257. 

Tye, K.M., Tye, L.D., Cone, J.J., Hekkelman, E.F., Janak, P.H., and Bonci, A. (2010). 
Methylphenidate facilitates learning-induced amygdala plasticity. Nat. Neurosci. 13, 475–481. 

Ungless, M.A., Whistler, J.L., Malenka, R.C., and Bonci, A. (2001). Single cocaine 
exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–7. 

Unrod, M., Drobes, D.J., Stasiewicz, P.R., Ditre, J.W., Heckman, B., Miller, R.R., 
Sutton, S.K., and Brandon, T.H. (2014). Decline in cue-provoked craving during cue exposure 
therapy for smoking cessation. Nicotine Tob. Res. 16, 306–315. 

Valencia-Alfonso, C.-E., Luigjes, J., Smolders, R., Cohen, M.X., Levar, N., Mazaheri, 
A., van den Munckhof, P., Schuurman, P.R., van den Brink, W., and Denys, D. (2012). Effective 
deep brain stimulation in heroin addiction: a case report with complementary intracranial 
electroencephalogram. Biol. Psychiatry 71, e35-7. 

Vassoler, F.M., White, S.L., Hopkins, T.J., Guercio, L.A., Espallergues, J., Berton, O., 
Schmidt, H.D., and Pierce, R.C. (2013). Deep Brain Stimulation of the Nucleus Accumbens 
Shell Attenuates Cocaine Reinstatement through Local and Antidromic Activation. J. Neurosci. 
33, 14446–14454. 

Vertes, R.P., Linley, S.B., and Hoover, W.B. (2015). Limbic circuitry of the midline 
thalamus. Neurosci. Biobehav. Rev. 54, 89–107. 

Victor, R.G., Thomas, G.D., Marban, E., and O’Rourke, B. (1995). Presynaptic 
modulation of cortical synaptic activity by calcineurin. Proc. Natl. Acad. Sci. U. S. A. 92, 6269–
6273. 

Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011). Inhibitory 



211 

 

Plasticity Balances Excitation and Inhibition in Sensory Pathways and Memory Networks. 
Science (80-. ). 334, 1569–1573. 

Volkow, N.D., Fowler, J.S., Wang, G.J., Baler, R., and Telang, F. (2009). Imaging 
dopamine’s role in drug abuse and addiction. Neuropharmacology 56, 3–8. 

Vurbic, D., and Bouton, M.E. (2011). Secondary extinction in pavlovian fear 
conditioning. Learn. Behav. 39, 202–211. 

Wagenbreth, C., Zaehle, T., Galazky, I., Voges, J., Guitart-Masip, M., Heinze, H.-J., and 
Düzel, E. (2015). Deep brain stimulation of the subthalamic nucleus modulates reward 
processing and action selection in Parkinson patients. J. Neurol. 262, 1541–1547. 

Walikonis, R.S., Oguni, A., Khorosheva, E.M., Jeng, C.J., Asuncion, F.J., and Kennedy, 
M.B. (2001). Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-
dependent protein kinase II and (alpha)-actinin. J. Neurosci. 21, 423–433. 

Wan, X., Torregrossa, M.M., Sanchez, H., Nairn, A.C., and Taylor, J.R. (2014). 
Activation of exchange protein activated by cAMP in the rat basolateral amygdala impairs 
reconsolidation of a memory associated with self-administered cocaine. PLoS One 9. 

Warren, B.L., Mendoza, M.P., Cruz, F.C., Leao, R.M., Caprioli, D., Rubio, F.J., 
Whitaker, L.R., McPherson, K.B., Bossert, J.M., Shaham, Y., et al. (2016). Distinct Fos-
Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward 
and Extinction Memories. J. Neurosci. 36, 6691–6703. 

Weiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid 
complex in monkeys. J. Comp. Physiol. Psychol. 49, 381–391. 

Weiss, F., Maldonado-Vlaar, C.S., Parsons, L.H., Kerr, T.M., Smith, D.L., and Ben-
Shahar, O. (2000). Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects 
on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala 
and nucleus accumbens. Proc. Natl. Acad. Sci. U. S. A. 97, 4321–4326. 

Wells, A.M., Arguello, A.A., Xie, X., Blanton, M.A., Lasseter, H.C., Reittinger, A.M., 
and Fuchs, R.A. (2013). Extracellular Signal-Regulated Kinase in the Basolateral Amygdala, but 
not the Nucleus Accumbens Core, is Critical for Context-Response-Cocaine Memory 
Reconsolidation in Rats. Neuropsychopharmacology 38, 753–762. 

Wen, Z., Guirland, C., Ming, G.L., and Zheng, J.Q. (2004). A CaMKII/calcineurin switch 
controls the direction of Ca 2+-dependent growth cone guidance. Neuron 43, 835–846. 

Whitehead, G., Jo, J., Hogg, E.L., Piers, T., Kim, D.-H., Seaton, G., Seok, H., Bru-
Mercier, G., Son, G.H., Regan, P., et al. (2013). Acute stress causes rapid synaptic insertion of 
Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus. Brain 
136, 3753–3765. 



212 

 

Wilensky,  a E., Schafe, G.E., and LeDoux, J.E. (1999). Functional inactivation of the 
amygdala before but not after auditory fear conditioning prevents memory formation. J. 
Neurosci. 19, RC48. 

Wise, R.A. (2004). Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494. 

Wise, R. a (1987). The role of reward pathways in the development of drug dependence. 
Pharmacol. {&} Ther. 35, 227–263. 

Wong, F.K., and Stanley, E.F. (2010). Rab3a interacting molecule (RIM) and the 
tethering of pre-synaptic transmitter release site-associated CaV2.2 calcium channels. J. 
Neurochem. 112, 463–473. 

Xue, Y.-X., Luo, Y.-X., Wu, P., Shi, H.-S., Xue, L.-F., Chen, C., Zhu, W.-L., Ding, Z.-
B., Bao, Y. -p., Shi, J., et al. (2012). A Memory Retrieval-Extinction Procedure to Prevent Drug 
Craving and Relapse. Science (80-. ). 336, 241–245. 

Yeh, S.Y., and Haertzen, C.A. (1991). Cocaine-induced locomotor activity in rats. 
Pharmacol. Biochem. Behav. 39, 723–727. 

Yu, Y.-J., Huang, C.-H., Chang, C.-H., and Gean, P.-W. (2016). Involvement of protein 
phosphatases in the destabilization of methamphetamine-associated contextual memory. Learn. 
Mem. 23, 486–493. 

Zhang, K., Xu, T., Yuan, Z., Wei, Z., Yamaki, V.N., Huang, M., Huganir, R.L., and Cai, 
X. (2016). Essential roles of AMPA receptor GluA1 phosphorylation and presynaptic HCN 
channels in fast-acting antidepressant responses of ketamine. Sci. Signal. 9, ra123-ra123. 

Zhou, W., and Kalivas, P.W. (2008). N-Acetylcysteine Reduces Extinction Responding 
and Induces Enduring Reductions in Cue- and Heroin-Induced Drug-Seeking. Biol. Psychiatry 
63, 338–340. 

Zhou, H., Xu, J., and Jiang, J. (2011). Deep Brain Stimulation of Nucleus Accumbens on 
Heroin-Seeking Behaviors: A Case Report. Biol. Psychiatry 69, e41–e42. 

Zhu, Y., Wienecke, C.F.R., Nachtrab, G., and Chen, X. (2016). A thalamic input to the 
nucleus accumbens mediates opiate dependence. Nature 530, 219–222. 

Zimmerman, J.M., and Maren, S. (2010). NMDA receptor antagonism in the basolateral 
but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats. Eur. J. 
Neurosci. 31, 1664–1670. 

 

 


	TITLE PAGE
	COMMITTEE MEMBER PAGE
	ABSTRACT
	TABLE OF CONTENTS
	 LIST OF COMMON ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	PREFACE
	1.0  INTRODUCTION: ADDICTION AS A DISORDER OF LEARNING AND MEMORY SYSTEMS
	1.1 NEURAL MECHANISMS OF LEARNING AND MEMORY
	1.1.1 Synaptic and molecular mechanisms of learning and memory
	Figure 1. Mechanisms of excitatory synaptic plasticity.

	1.1.2 Consolidation, reconsolidation, and extinction of memories

	1.2 NEURAL SUBSTRATES UNDERLYING DRUG-CUE MEMORY
	Figure 2. Schematic representing events that follow re-exposure to drug-associated cues.
	1.2.1 Central circuitry governing reward-related behavior
	1.2.2 Control of cue-dependent memory by the amygdala
	Figure 3. Afferent and efferent projections of the amygdala.

	1.2.3 Synaptic and molecular mechanisms underlying drug-associated memories
	Figure 4. Pharmacological agents that weaken drug-associated memories.

	1.2.4 Towards a bidirectional approach for targeting drug-cue memory

	1.3 DISSERTATION AIMS

	2.0  PLASTICITY AT THALAMO-AMYGDALA SYANPSES REGULATES COCAINE-CUE MEMORY FORMATION AND EXTINCTION
	2.1 INTRODUCTION
	2.2 METHODS
	2.2.1 Animals
	2.2.2 Viral vector construct
	2.2.3 Drugs
	2.2.4 Rodent intravenous catheterization
	2.2.5 Virus delivery and optic fiber implantation
	2.2.6 Rodent cocaine or saline self-administration
	2.2.7 Instrumental lever extinction
	2.2.8 Pavlovian cue re-exposure
	2.2.9 Cue-induced reinstatement
	2.2.10 Ex vivo slice preparation
	2.2.11 Ex vivo electrophysiological recordings
	Figure 5. Sample electrophysiological recordings from LA and MGN neurons.

	2.2.12 In vivo optogenetic procedures
	2.2.13 Staining, fluorescence, and imaging
	2.2.14 Data Acquisition and Statistical Analysis
	Figure 6. Histological verification of AAV injection and optic fiber placements.


	2.3 RESULTS
	2.3.1 Thalamo-amygdala synaptic modifications regulate cocaine-cue memories
	Figure 7. Drug-cue memory manipulations alter cue-induced reinstatement.
	Figure 8. No group differences in acquisition of cocaine self-administration.
	Figure 9. Cocaine-cue manipulations drive thalamo-amygdala synaptic modifications.
	Figure 10. Potentiation of thalamo-amygdala synapses following drug-cue learning is not context-dependent.
	Figure 11. No group differences in acquisition of self-administration or instrumental extinction.
	Figure 12. Cortico-amygdala synapses are altered by instrumental extinction, but not by drug-cue memory manipulation.

	2.3.2 MGN-LA synapses are altered by cocaine-cue associations
	Figure 13. MGN-LA synapses regulate cocaine-cue associations.

	2.3.3 In vivo optogenetic induction of LTD at MGN-LA synapses attenuates relapse-like behavior
	Figure 14. In vivo optical LTD of MGN-LA circuit inhibits cue-induced reinstatement.
	Figure 15. Further characterization and behavioral effects of MGN-LA optical LTD.


	2.4 DISCUSSION

	3.0  CALCINEURIN MODULATES NEUROPLASTIC CHANGES IN THE AMYGDALA TO SUPPORT THE INHIBITION OF DRUG-ASSOCIATED MEMORIES
	3.1 INTRODUCTION
	3.2 METHODS
	3.2.1 Subjects
	3.2.2 Self-administration test chambers
	3.2.3 Drugs
	3.2.4 Surgical procedures
	3.2.5 Self-administration procedures
	3.2.6 Instrumental lever extinction
	3.2.7 Pavlovian cue re-exposure procedures
	3.2.8 Intracranial infusions
	3.2.9 Cue-induced reinstatement
	3.2.10 Prepartion of ex vivo amygdala slices
	3.2.11 Ex vivo electrophysiology
	3.2.12 Histological analysis
	3.2.13 Statistical analyses
	Figure 16. Histological verification of LA guide cannulae implants.


	3.3 RESULTS
	Figure 17. Experimental design.
	3.3.1 Effect of Intra-LA CaN Activation in the Absence of Drug-Cue Memory Retrieval
	Figure 18. Calcineurin activation has no effect on cue-induced reinstatement in the absence of memory retrieval. 

	3.3.2 Effect of Intra-LA CaN Activation during Drug-Cue Memory Reconsolidation
	Figure 19. Calcineurin activation has no effect on T-LA plasticity in the absence of memory retrieval.
	Figure 20. Calcineurin activation following cue reactivation inhibits reconsolidation and attenuates subsequent cue-induced reinstatement.
	Figure 21. Calcineurin activation during reconsolidation alters synaptic plasticity through a postsynaptic reduction in AMPAR current.

	3.3.3 Effect of Intra-LA CaN Activation during Drug-Cue Memory Extinction
	Figure 22. Calcineurin activation enhances cue extinction causing a reduction in subsequent cue-induced reinstatement.
	Figure 23. Calcineurin activation during cue extinction alters synaptic plasticity through a presynaptic mechanism.


	3.4 DISCUSSION
	3.4.1 Targeting memory processes as a strategy for relapse prevention
	3.4.2 Mechanisms of calcineurin action at the synapse
	3.4.3 Role for calcineurin in cue-dependent memory processes


	4.0  GENERAL DISCUSSION
	4.1 UNDERSTANDING THE CELLULAR MECHANISMS OF RECONSOLIDATION AND EXTINCTION
	4.2 ROLE OF NEURAL ENSEMBLES IN DRUG-CUE MEMORY
	4.3 CONTRIBUTION OF ADDITIONAL AMYGDALA AFFERENT PROJECTIONS
	4.4 IMPLICATIONS FOR ADDICTION THERAPY
	4.5 SUMMARY AND CONCLUSIONS
	Figure 24. Model summarizing major conclusions.


	APPENDIX A: PHOSPHOPROTEOMIC ANALYSIS REVEALS A NOVEL MECHANISM OF CAMKII ALPHA REGULATION INVERSELY INDUCED BY COCAINE MEMORY EXTINCTION VERSUS RECONSOLIDATION
	Figure 25. Histological representation of infusion locations in the BLA.
	Figure 26. Self-administration and extinction training data from rats used for phosphoproteomic analysis.
	Figure 27. Identification of signaling pathways regulated by cocaine-associated memory extinction and reconsolidation.
	Figure 28. Phosphorylation of CaMKIIα at S331 inhibits enzyme activity.
	Figure 29. No differences in training data between groups prior to memory manipulations/BLA infusions.
	Figure 30. CaMKII inhibition enhances drug-cue memory extinction and disrupts memory reconsolidation to reduce cue-induced reinstatement.
	Figure 31. CaMKII inhibition has no effect on cue-induced reinstatement if the memory was not reactivated or infusions occurred outside of the BLA.
	Table 1. Results from SRM Proteomics Analysis

	BIBLIOGRAPHY



