
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� 
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/20729

https://www.erts2018.org/authors_detail_inverted_Hugues Jérôme.html

Honvault, Christophe and Hugues, Jérôme and Pagetti, Claire Model-Based Design, Analysis and Synthesis for TSP

Multi-Core Space systems. (2018) In: 9th European Congress Embedded Real Time Software and Systems (ERTSS), 31

January 2018 - 2 February 2018 (Toulouse, France).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/160114561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Model-Based Design, Analysis and Synthesis
for Multi-Core and TSP Avionics Targets

Jérôme Hugues ∗, Christophe Honvault†, Claire Pagetti∗
∗ ISAE - France † ESA - The Netherlands ‡ONERA - France

Abstract—Multi-core, and Time and Space Partitionnong sys-
tems are two emerging paradigms for architecting avionics
systems. They impose new steps in the development process:
capturing configuration attributes, analysing their correctness,
or guaranteeing performance. In this context, model-based tech-
niques provide a framework to design, analyse and synthesize
these systems while automating much steps.

In this paper, we report on a set of extenstions of TASTE
to support multi-core and TSP systems. We first present the
key architectural elements of these systems, and then detail how
these have been support as part of the generation toolchain. We
then present experiments realized on two case studies and two
hardware targets, both provided with the XtratuM hypervisor.

I. INTRODUCTION

A. Context

One major output of the FP6 ASSERT project [1], [2] was
the TASTE (The ASSERT Set of Tools for Engineering) tool
suite. This open-source tool chain, dedicated to the develop-
ment of embedded real-time systems, particularly addresses
the modelling and deployment of distributed systems com-
posed of heterogeneous software and hardware components.
From such a model, TASTE provides automation of tedious
and error-prone validation and integration tasks.

Since the former project, multi-core processors have
emerged as good candidates for the space domain. In particular
qualified and hardened processors have been developed, such
as the dual core processor GR712RC [3] already available and
the quad core processor GR740 [4] under development.

On top of these hardware, qualified executive layers, such
as RTOS (real-time operating systems) or hypervisors, must be
developed. Currently, no such qualified layer is yet available
even though several studies are on going, among which we
could mention RTEMS (EDISOFT RTEMS 4.8), XtratuM [5],
pikeOS (http://www.pikeos.com/) or LVCUGEN [6].

B. Moving towards TASTE multi-core

During a one-year project funded by ESA, we evaluated
potential extensions of TASTE to support multi-core in some
pre-defined configurations. More precisely, we decided to
focus on IMA (Integrated Modular Avionics) / TSP (Time and
Space Partitioning) set up.

For that, we extended the TASTE environment with funda-
mental principles and that lead to the definition of design pat-
tern definitions. To validate the approach, we considered two
use cases and implemented them first manually with XtratuM
on the ZYNQ board [7] and the LEON processors. And then

we compared those implementation with the generated ones
from TASTE tool chain.

This project focused on minimal extensions to support
multi-core and TSP. We applied it for TASTE, but it can serve
as a general approach for other frameworks such as the Space
Component Model [8], ECOA [9] or others as they all share
similar separation of concerns approach between high-level
description of components, their combination and finally their
deployment on top of an executive and hardware platform.

In the following, we present both TASTE mono-core and
TSP principles in section II. In section III, we detailed the
extensions of TASTE, both in terms of modelling with patterns
and of code generation. The experimental part is described in
section IV.

II. STARTING POINTS

The purpose of the project was to provide some multi-core
extension to TASTE. The targetted TRL was very low due to
the duration (1 year) and the allocated budget effort.

A. TASTE

TASTE features TASTE aims at automating the software
development process of space-critical application. It supports
the following system operational requirements: limited re-
sources (memory, processor);real-time constraints (deadlines);
applications of very different natures (control laws, resource
management, protocols, fault detection); communication with
hardware (sensors, actuators, FPGA); heterogeneous hard-
ware (e.g. processors with different endianness); distribution
over several physically independent platforms; may run au-
tonomously for years; may not be physically accessible for
maintenance (satellites).

Hence, the quality of the generated code, along with the
capacity to validate the system early are of prime interest.
The TASTE process is shown in Figure 1.

Step 1: functional architecture The philosophy is to let
the user only focus on his functional code, letting him write it
in the language of his choice, may it be a modelling language
or a low-level implementation language. To achieve this,
TASTE relies on the AADL [10] and ASN.1 [11] text-based
modelling languages that give sufficient power of expression to
capture all the essential elements of a system that are required
to generate the tasks, communication middleware and glue
around the user functional code.

http://www.pikeos.com/


Figure 1: TASTE overview.

Step 2: internal function code Once a set of carefully
selected system properties has been captured using these two
languages, the core of the system’s subcomponents can be
developed using C, Ada, SDL, SCADE, Simulink, or VHDL.

Step 3: automatic code generation TASTE tools are
responsible for putting everything together, including drivers
and communication means and ensuring that the execution at
runtime is compliant with the specification of the system real-
time constraints. Without any major overhead in the code,
TASTE will produce binaries that can be directly executed
on several supported targets: native Linux, Real-time Linux
(Xenomai), RTEMS, and Ada bare-board targets.

TASTE benefits TASTE evolved since 2007, it now sup-
ports the integration of several input languages for the func-
tional part, multiple targets and enables both massive code
generation, but also scheduling analysis, simulation capabil-
ities. These capabilities have been validated through ESA-
funded studies, but also partners.

B. TASTE TSP and multicore extensions

In the study, partners investigated various strategies to
leverage configurations with multiple processing units such
as multi-core systems or multi-processor systems. We partic-
ularly analysed requirements associated to AMP (Asymmetric
multiprocessing), SMP (symmetric multiprocessing) and TSP
settings, most definitions of which can be found in the book
by Hennessy and Patterson [12].

Note: in the following, we restrict our abstract to the TSP
paradigm because the space domain has defined TSP-based
building blocks, such as XtratuM and LVCUGEN. The full
paper would also cover the SMP case and RTEMS.

C. TSP principles and XtratuM hypervisor

a) TSP principles: Space domain refers as time and
space partitioning while avionic domain refers to IMA (Inte-
grated Modular Avionics). IMA proposes an integrated archi-
tecture with application software portable across an assembly
of common hardware modules. It is partially captured in
document DO-297 [13]. IMA is also used as a generic term
within Airbus to denote a line of CPU, network and OS
together. In the scope of this project, we will restrict IMA to

RTOS kernels with time and space isolation capabilities. The
later are made available thanks to new generation of CPU
architectures that support both time (round-robin scheduling
strategy) and space (memory segregation) strategies.

Compliant IMA platforms follow thee IMA guidance docu-
ment, with the extension for Multi-core Platform. It mandates
that the platform provides robust resource and time partitioning
not only between software applications hosted on the same
core, but also between applications hosted on different cores
or between applications hosted on several cores.

Time-wise, AMP was the first proposed technology in the
60’s, followed by SMP and then IMA in the 90’s. In terms
of adoption for safety-critical systems, or space system, AMP
using multiple physical processors has been supported in real-
time operating systems like RTEMS for many years. The
introduction of SMP or IMA type of platforms is more recent,
and largely delayed due to inherent difficulty to ensure strict
determinism, and similar levels of safety assurance.

b) Quick overview of XtratuM: XtratuM is a TSP real-
time hypervisor developed by Fentiss, a spin-off from the
University of Valencia. In its current version, XtratuM supports
Leon3 mono-core and Leon3 multi-core (GR712RC) as well as
LEON4 multi-core. XtratuM is still being developed through
various R&D projects (CNES, ESA, Thales Alenia Space
and Airbus Defence and Space). XtratuM is able to host
various guest OS (Linux, RTEMS, LithOS) and comes with a
builtin support of the XtratuM Abstraction Layer (XAL) which
enables the development of baremetal like partitions.

As a TSP kernel XtratuM has builtin support for spatial and
temporal isolation of the software partitions with scheduling
capabilities inspired from ARINC 653. XtratuM has support
for Ethernet, SpaceWire and MIL-STD1553 devices.

Definition 1: An application is defined as a set of periodic or
sporadic tasks app = {τi = (Ci, Ti)} where Ci is the WCET
(Worst Case Execution Time) and Ti is the period or minimal
inter-arrival time. The deadline is equal to the period.

An application is mapped as a set of partitions and a
partition is defined by one or multiple slots, each with a start
time and a length. Inside a slot, several tasks can be executed.
Both the partitions slots and the schedule of tasks inside a
slot are computed off-line, for instance with Xoncrete [14]
the mapping and scheduling tool provided with XtratuM. This
off-line information is called plan in the XtratuM terminology.

Definition 2 (Plan): A plan consists of:
• a major frame (MAF), representing the hyperperiod of

the schedule, MAF length;
• a set of slots sli distributed over the cores and the MAF.

A slot is defined as sli = ([si, ei], ni) where si is the
start time, ei is the end time and ni is the number of
core where the slot is allocated;

• a mapping of the jobs of critical applications in the slots.
Jobs are unrolled on the MAF and we know for all job
τi,j in which slot slk it belongs to. We know moreover
in which order are executed the jobs inside a slot;

• a mapping of best-effort applications in the slots. For
instance, appi is executed in the slots slj1 , . . . , sljp .



III. PATTERNS

IV. APPLICATION TO TWO USE CASES

A. ROSACE

The ROSACE– Research Open-Source Avionics and Control
Engineering – has been developed as a collaboration between
ONERA, ISAE and Polytech Montréal and its initial speci-
fication has been published in [?]. Although of modest size,
this controller is representative of real avionics applications by
introducing typical characteristics such as a data-flow design
or complex multi-periodic execution patterns.

a) Specification: The application is composed of

altitude hold

vz control

az filter

vz filter

h filter

q filter

va filter

va control

Aircraft
h f

h c

Va c

vz c az f

vz f

q f

va f

δ ec

δ thc

vz

h

az

q

va

period = 40 ms period = 20 ms period = 10 ms

Figure 2: ROSACE architecture

b) Implementation in XtratuM: We chose the base time
unit to be in milliseconds, the period of some functions is
of 5ms and thus there could be at most 5 partition slots in
the first 5ms. We compared two XtratuM implementations.
The first was uni-processor for which wes defined 3 partitions
(P0, P1 and P2) communicating via sampling channel. In the
second, we made a dual core schedule with 5 partitions.

B. GCU case study

The second case study is extracted from the French national
project Spacify. More precisely, we rely on the CNES case
study detailed in [] that models the Payload Data Management
System (GCU – Gestionnaire de Charge Utile in French) of
a satellite. The purpose of the system is to apply commands
from the ground to move in a given mode and to confirm to
the ground that requests have been correctly applied.

a) Specification:
b) Implementation in XtratuM:

C. Experiments

REFERENCES

[1] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and J. Hugues,
“The TASTE toolset: turning human designed heterogeneous systems
into computer built homogeneous software,” in Proceedings of the 5th
Conference on Embedded Real Time Software and Systems (ERTS’10),
2010.

[2] C. H. Julien Delange and J. Windsor, “Model-based engineering ap-
proach for system architecture exploration,” in Proceedings of the 6th
Conference on Embedded Real Time Software and Systems (ERTS’12),
2012.

[3] COBHAM, “GR712RC Dual-Core LEON3-FT SPARC V8 Processor,”
2016, http://www.gaisler.com/doc/gr712rc-datasheet.pdf.

[4] ——, “GR740 Quad Core LEON4 SPARC V8 Processor,” 2017, http:
//www.gaisler.com/doc/gr740/GR740-UM-DS.pdf.

[5] M. Masmano, I. Ripoll, A. Crespo, J. Metge, and P. Arberet, “Xtratum:
An open source hypervisor for TSP embedded systems in aerospace,”
in DASIA 2009. DAta Systems In Aerospace., May. Istanbul 2009.

[6] J. Galizzi, J.-J. Metge, P. Arberet, E. Morand, F. Vigeant, A. Crespo,
M. Masmano, J. Coronel, I. Ripoll, V. Brocal, F. Roubert, C. Scuri,
V. Tedesco, and N. Thomasson, “LVCUGEN (TSP-based solution)
and first porting feedback,” in Proceedings of the 6th Conference on
Embedded Real Time Software and Systems (ERTS’12), 2012.

[7] Xilinx, “Zynq-7000 All Programmable SoC ZC702 Evaluation
Kit,” 201, https://www.xilinx.com/support/documentation/boards and
kits/zc702 zvik/xtp310-zc702-quickstart.pdf.

[8] M. Panunzio and T. Vardanega, “A component-based process with
separation of concerns for the development of embedded real-time
software systems,” Journal of Systems and Software, vol. 96, pp. 105 –
121, 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121214001381

[9] J. Fenn, T. Cornilleau, Y. Oakshott, and A. Britto, “A pragmatic approach
to capturing safety and security relevant information for reusable euro-
pean component oriented architecture software components,” in 9th IET
International Conference on System Safety and Cyber Security (2014),
Oct 2014, pp. 1–6.

[10] SAE, Architecture Analysis & Design Language v2.1 (AS5506B). SAE,
sep 2012.

[11] “REC. X680-X.683, ISO/IEC: Abstract Syntax Notation (ASN.1),” ITU-
T, Tech. Rep., 2002.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
1990.

[13] Radio Technical Commission for Aeronautics (RTCA) and EURopean
Organisation for Civil Aviation Equipment (EUROCAE), DO-297:
Software, Electronic, Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations, Std.

[14] V. Brocal, M. Masmano, I. Ripoll, A. Crespo, P. Balbastre, and J.-J.
Metge, “Xoncrete,” in Proceedings of the 5th Conference on Embedded
Real Time Software and Systems (ERTS’10), 2010, http://www.fentiss.
com/documents/xoncrete overview.pdf.

http://www.gaisler.com/doc/gr712rc-datasheet.pdf
http://www.gaisler.com/doc/gr740/GR740-UM-DS.pdf
http://www.gaisler.com/doc/gr740/GR740-UM-DS.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/xtp310-zc702-quickstart.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/xtp310-zc702-quickstart.pdf
http://www.sciencedirect.com/science/article/pii/S0164121214001381
http://www.sciencedirect.com/science/article/pii/S0164121214001381
http://www.fentiss.com/documents/xoncrete_overview.pdf
http://www.fentiss.com/documents/xoncrete_overview.pdf

	Introduction
	Context
	Moving towards TASTE multi-core

	Starting points
	TASTE
	TASTE TSP and multicore extensions
	TSP principles and XtratuM hypervisor

	Patterns
	Application to two use cases
	rosace
	GCU case study
	Experiments

	References

