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Abstract – Functionally graded adhesive (FGA) joints involve a continuous variation of the 

adhesive properties along the overlap allowing for the homogenization of the stress 

distribution and load transfer, in order to increase the joint strength. The use of FGA joints 

made of dissimilar adherends under combined mechanical and thermal loads could then be an 

attractive solution. This paper aims at presenting a 1D-bar and a 1D-beam simplified stress 

analyses of such multimaterial joints, in order to predict the adhesive stress distribution along 

the overlap, as a function of the adhesive graduation. The graduation of the adhesive 

properties leads to differential equations which coefficients can vary the overlap length. For 

the 1D-bar analyses, two different resolution schemes are employed. The first one makes use 

of Taylor expansion power series (TEPS) as already published under pure mechanical load. 

The second one is based on the macro-element (ME) technique. For the 1D-beam analysis, the 

solution is only based on the ME technique. A comparative study against balanced and 
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unbalanced joint configurations under pure mechanical and/or thermal loads involving 

constant or graduated adhesive properties are provided to assess the presented stress analyses. 

The mathematical description of the analyses is provided. 

 

Key words: functionally graded adhesive; single-lap bonded joint; stress analysis; macro-

element; thermoelasticity; dissimilar adherend. 
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NOMENCLATURE AND UNITS  

Aj extensional stiffness (N) of adherend j 

Bj extensional and bending coupling stiffness (N.mm) of adherend j 

Dj bending stiffness (N.mm
2
) of adherend j 

Ea adhesive peel modulus (MPa) 

Ea,min adhesive shear modulus (MPa) 

Ea,max adhesive shear modulus (MPa) 

Ej adherend Young’s modulus (MPa) of adherend j 

F magnitude of applied force (N) 

Fe element nodal force vector 

Fe,therm element nodal force vector equivalent to thermal load 

Ga adhesive shear modulus (MPa) 

Ga,max maximal adhesive shear modulus (MPa) 

Ga,min minimal adhesive shear modulus (MPa) 

KBBa elementary stiffness matrix of a bonded-bars element 

KBBe elementary stiffness matrix of a bonded-beams element 

Kbar,j elementary stiffness matrix of a bar for the adherend j 

L length (mm) of bonded overlap 

Me element matrix linking the element nodal displacement to the constant integration 

vector 

Mj bending moment (N.mm) in adherend j around the z direction 

Me element matrix linking the element nodal force to the constant integration vector 

𝑀𝑗
Δ𝑇 thermal bending moment (N.mm) in adherend j around the z direction 

Nj normal force (N) in adherend j in the x direction 

𝑁𝑗
Δ𝑇 thermal normal force (N) in adherend j in the x direction 
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S adhesive peel stress (MPa) 

T adhesive shear stress (MPa) 

Tmax maximal adhesive shear stress (MPa) 

Ue element nodal displacement vector 

Vj shear force (N) in adherend j in the y direction 

b width (mm) of the adherends 

c half-length (mm) of bonded overlap 

ea thickness (mm) of the adhesive layer 

hj half thickness (mm) of adherend j  

kI adhesive elastic stiffness (MPa/mm) in peel  

kII adhesive elastic stiffness (MPa/mm) in shear  

n_max order of truncation 

n_ME number of macro-elements 

p power of the graduation law 

uj displacement (mm) of adherend j in the x direction 

vj displacement (mm) of adherend j in the y direction 

 overlap length (mm) of a macro-element 

T variation of temperature (K) 

u slipping displacement (mm)

j characteristic parameter (N
2
.mm

2
) of adherend j 

j coefficient of thermal expansion (K
-1

) of adherend j 

j bending angle (rad) of the adherend j around the z direction 

𝜒𝐴 adherend stiffness unbalance parameter (-) 

𝜒𝛼 adherend thermal unbalance parameter (-) 

(X,Y,Z) element reference system of axes 
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(x,y,z) global reference system of axes 

BBa Bonded-bars  

BBE Bonded-beams  

CTE coefficient of thermal expansion 

FE Finite Element 

FGA functionally graded adhesive 

GM general model 

ISLM improved shear-lap model 

JE joint element 

ME macro-element 

ODE ordinary differential equation 

TC test case 

TEPS Taylor expansion in power series 
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1. Introduction 

In the frame of structural design, the proper choice of joining technology is decisive for the 

integrity of the manufactured structure. Mechanical fastening, such as riveting or screwing, 

appears to be a reliable solution for the designers. Nevertheless, alone or in combination with 

mechanical fastening, the adhesive bonding technology may offer significantly improved 

mechanical performance in terms of stiffness, static strength and fatigue strength [1-3]. 

Indeed, unlike the discrete load transfer of mechanical fasteners, the load transfer between 

structural bonded components is continuous all along the overlap. This higher level of 

mechanical performance allows for lighter joints. In other words, adhesive bonding offers the 

possibility to reduce the structural mass while ensuring the mechanical strength. The 

optimization of the strength-to-weight ratio is a challenge for several industrial sectors, such 

as aerospace, automotive, rail or naval transport industries.  

Nevertheless, stress gradients at both overlap ends appear in bonded joints, due to the relative 

deformation of the adhesive layer with regards to the adherends. It leads to a load transfer 

restricted on a small length at the overlap ends. In order to increase the load capability of 

bonded joints, the reduction of adhesive peak stresses is wanted. The specimen design for the 

thick adherend shear test [4]  leads to both a homogenization of the adhesive shear stress and 

a drastic reduction the adhesive peel stress, all the more when care is taken to reduce the edge 

effects [5]. Another approach is to make the material and/or geometrical properties of the 

adherends and/or the adhesive layer vary along the overlap. Several design solutions have 

been published [3]. For example, a solution is the tapering of adherends at overlap ends, 

which allows for a progressive increase of the neutral line lag and a reduction of adhesive peel 

stress [6-7]. A more local solution is the rounding of adherend corner associated with 

adhesive spew fillets [8-9]. The mixed adhesive solution which is a rough version of a graded 

joint consists in the use of various different adhesives along the overlap to increase the joint 
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strength [10-13]. In recent past years, functionally graded adhesive (FGA) have been more 

and more considered [14-15]. FGA joints involve a continuous variation of the adhesive 

properties along the overlap allowing for the homogenization of the stress distribution and 

load transfer. When dissimilar adherends have to be bonded, the adhesive stress distribution is 

asymmetrical, so that one of the overlap ends is overstressed. Moreover, this overstressing is 

magnified under thermal loads due to the mismatch in coefficient of thermal expansion (CTE) 

of adherends. The capability of a local graduation of the adhesive stiffness is a promising 

solution to optimize the strength of multimaterial joints under severe loads, such as combined 

thermal and mechanical. This situation occurs very often in multi-material structures found in 

the transport industry. That is why the development of dedicated stress analyses to predict the 

stress distribution is fundamental. The Finite Element (FE) method is able to address the 

stress analysis of FGA joints [12,14]. Nevertheless, since analyses based on FE models are 

computationally costly, it would be profitable both to restrict them to refined analyses and to 

develop simplified approaches, enabling extensive parametric studies and optimization 

processes. Moreover, numerous simplified stress analyses of bonded joints are available and 

provide accurate predictions [16-18]. In 2014, Carbas et al. published a first analytical 

approach for 1D-bar stress analysis of FGA joints [19]. This stress analysis is based on the 

shear-lag approach by Volkersen [20] associated with a resolution scheme making use of 

Taylor expansion in power series (TEPS) to solve the involved differential equations. This 

stress analysis is restricted to half of the overlap length of balanced joints with a linear 

graduation of the adhesive shear modulus. Stein et al. presented a 1D-bar analysis using TEPS 

resolution able to address unbalanced bonded joints under any adhesive properties graduations 

[21-22]. This analysis is called by the authors Improved Shear Lag Model (ISLM). Moreover, 

Stein et al. provided a sandwich-type analysis using TEPS resolution, taking into accounts 

both in-plane and out-of-plane load, termed General Model (GM). The sandwich-type 
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analysis concept comes from the analysis methodology by Goland and Reissner [23] who 

provided the first closed-form solution for the adhesive stress distribution for simply 

supported balanced joint made of adherends undergoing cylindrically bending. Goland and 

Reissner took into account the geometrical non linearity due to the lag of neutral line to assess 

the bending moment at both overlap ends through a bending moment factor. This 

methodology was then employed by other researchers to improve the initial model [24-32] 

leading to various forms of the bending moment factor [33]. In 2017, Stapleton et al. used a 

joint element (JE) for the stress analysis of FGA joints under various geometrical 

configurations, including in-plane and out-of-plane load as well as non-linear material 

behavior [34]. A JE is a 4-nodes brick element allowing for the modelling of two bonded 

adherends [34-35]. Over a similar period of time, the first and third authors of the present 

papers and co-workers have been working on the development of the macro-element (ME) 

technique for the simplified stress analysis of bonded, bolted and hybrid (bonded/bolted) 

joints [36-43]. Dedicated 4-nodes Bonded-bars (BBa) and Bonded-beams (BBe) have been 

formulated. As for the JE model, only one BBa or BBe, depending on the chosen kinematics, 

is sufficient to be representative for an entire bonded overlap in the frame of a linear elastic 

analysis (see Figure 1). When the geometrical or material properties of the adherends or the 

adhesive layer vary along the overlap a mesh is necessary along the overlap length direction 

only. The ME technique is inspired by the FE method and differs in the sense that the 

interpolation functions are not assumed. Indeed, they take the shape of solutions of the 

governing ordinary differential equations (ODEs) system, coming from the constitutive 

equations of the adhesive and adherends and from the local equilibrium equations, related to 

the simplifying hypotheses. The main work is thus the formulation of the elementary stiffness 

matrix of the ME. Once the stiffness matrix of the complete structure is assembled from the 

elementary matrices and the boundary conditions are applied, the minimization of the 
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potential energy provides the solution, in terms of adhesive stress distributions along the 

overlap, internal forces and displacements in the adherends. The ME technique can be 

regarded as mathematical procedure allowing for the resolution of the system of ODE, under a 

less restricted application field of simplifying hypotheses, in terms of geometry, material 

behaviours, kinematics, boundary conditions and loads. 

Stress analyses of bonded joints under thermal loads can be found in the literature linked to 

the aerospace [44] or to the emergence of the industry of electronic packaging [45-48]. 

However, to the best knowledge of authors, there is not any published stress analyses of FGA 

joints under thermal load. The present paper aims at presenting simplified stress analysis of 

FGA single-lap joints under combined mechanical and thermal loads. Under the 1D-bar 

kinematics, the resolution scheme by TEPS and by ME is used. As the 1D-bar TEPS and ME 

analyses provide the same predictions, the resolution scheme by ME under the 1D-beam 

kinematics is employed only. Indeed, the ME technique offers the possibility to extend the 

application field to analyses involving nonlinear material behaviors, various geometries and 

various applied boundary conditions [39-43]. The developed stress analyses are then assessed 

against reference stress analyses for bonded and FGA joints on several test cases. The three 

stress analyses presented need dedicated computer codes, which are provided as 

supplementary materials with the present papers. These codes run on the MATLAB 

commercial software. Moreover, for the comfort of readers, this paper provides the useful 

mathematical steps, even if some elements have eventually been published elsewhere. 
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Figure 1. Modelling of a bonded overlap by a macro-element. 

 

2. Description of simplified stress analyses of FGA single-lap joints 

2.1. Under 1D-bar kinematics 

2.1.1 Hypotheses 

The following hypotheses are taken (i) the adherends are linear elastic materials simulated as 

bars, (ii) the adhesive layer is simulated by an infinite number of linear elastic shear springs 

linking both adherends, and (iii) the shape of graduation of the adhesive layer shear modulus 

is considered. As a result, it is supposed that all the adhesive stress components vanish except 

the in-plane shear. The case of a single-lap joint subjected to combined mechanical and 

thermal loads is considered. The geometrical parametrization is provided in Figure 2. The 

subscript 1 (2) refers to the upper (lower) adherend. The origin of the global reference system 

is taken at the centre of the overlap, with the x-axis along the overlap length direction, the 

only axis according to which displacements u are possible. The joint is submitted to an 

uniform variation of temperature T, to a tensile force F at one extremity and is fixed at the 

other one. The stress analysis is conducted in force but could similarly be made in tensile flow 

F/b. 

bonded overlap 

macro-element 

neutral axis of adherend 1 

neutral axis of adherend 2 

adhesive layer 
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Figure 2. Geometrical parametrization of the single-lap joint, boundary conditions and applied 

loads (1D-bar analysis). 

 

2.1.2 Governing equations 

The local equilibrium of both adherends (see Figure 3) provides the following equations: 

𝑑𝑁𝑗

𝑏𝑑𝑥
= (−1)𝑗𝑇(𝑥), 𝑗 = 1,2              (1) 

where b is the overlap width, Nj the normal force in the adherend j and T the adhesive shear 

stress.    

 

Figure 3. Free body diagram of infinitesimal pieces included between x and x+dx of both 

adherends in the overlap region. Subscript 1 (2) refers to the upper (lower) adherend. 

The total strain is equal to the mechanical strain plus the thermal strain such as: 

𝑑𝑢𝑗

𝑑𝑥
=
𝑁𝑗

𝐴𝑗
+ 𝛼𝑗Δ𝑇 , 𝑗 = 1,2             (2) 

where j is the coefficient of thermal expansion of the adherend j. Aj is the membrane 

stiffness of the adherend j, given by: 

𝐴𝑗 = 𝐸𝑗𝑏𝑒𝑗               (3) 

F 
x,u 

y 

c=L/2 c=L/2 

e1 

e
2
 

width: b 
T 

ea 

u=0 

neutral lines 

l2 l
1
 

N1(x+dx) N1(x) 

T.bdx 

N2(x+dx) N2(x) 
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where ej is the thickness of the adherend j and Ej the Young’s modulus of the adherend. The 

displacement uj(x) is the normal displacement of points located at the abscissa x on the neutral 

line of adherend j (see Figure 2). 

The constitutive equation for the adhesive layer is provided by: 

𝑇 = 𝐺𝑎
𝑢2−𝑢1

𝑒𝑎
= 𝑘𝐼𝐼Δ𝑢             (4) 

with: 

Δ𝑢 = 𝑢2 − 𝑢1               (5) 

where ea is the adhesive thickness, Ga the adhesive shear modulus and kII=Ga/ea the adhesive 

shear relative stiffness. u is the differential displacement of the adherend interface. The 

stress analyses presented use kII andu, so that they can be directly applied when the 

thickness of the adhesive layer varies along the overlap. 

                       

2.1.3 TEPS resolution 

The approach using TEPS resolution scheme is firstly used. The differentiation of Eq. (2) with 

respect to x provides: 

𝑑2𝑢𝑗

𝑑𝑥2
=

1

𝐴𝑗

𝑑𝑁𝑗

𝑑𝑥
, 𝑗 = 1,2             (6) 

By using the local equilibrium equation Eq. (1) and the adhesive constitutive equation Eq. (4), 

it comes: 

𝑑2𝑢𝑗

𝑑𝑥2
=

1

𝐴𝑗
(−1)𝑗𝑏𝑇(𝑥) =

𝑏

𝐴𝑗
(−1)𝑗𝑘𝐼𝐼Δ𝑢, 𝑗 = 1,2          (7) 

As a result, a second order differential equation in the slipping displacement (relative 

horizontal displacement of the interface) can be written: 

𝑑²Δ𝑢

𝑑𝑥²
− �̃�2𝑘𝐼𝐼Δ𝑢 = 0                   (8) 

with: 
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�̃�2 =
1

𝑒1𝐸1
+

1

𝑒2𝐸2
=
1+𝜒𝐴

𝐴′2
                (9) 

𝜒𝐴 =
𝐴′2

𝐴′1
=
𝑒2𝐸2

𝑒1𝐸1
=
𝐴2

𝐴1
                           (10) 

A’j is the membrane stiffness of the adherend j per unit of width. 𝜒𝐴 is representative for the 

stiffness unbalance of the joint. The differential equation Eq. (8) is relevant to the one 

obtained by Stein et al. for the ISLM – which does not consider any thermal load – but written 

in slipping displacement instead of shear strain [22]. A solution is then searched for any x 

included between –c and c under the shape of TESP: 

Δ𝑢(𝑥) = ∑ 𝑢𝑛𝑥
𝑛∞

𝑛=0                            (11) 

For the series terms to have the same unit as the function approximated, the following 

variable change is made in the present analysis:  

ζ =
𝑥

𝑐
                             (12) 

As result, the solution is searched for any X included between –1 and 1 under the shape: 

Δ𝑢(𝑥) = ∑ 𝑢𝑛(𝑐ζ)
𝑛∞

𝑛=0 = ∑ 𝑢𝑛𝑐
𝑛ζ𝑛∞

𝑛=0 = ∑ 𝑈𝑛ζ
𝑛∞

𝑛=0                     (13) 

with: 

∀𝑛, 𝑈𝑛 = 𝑐
𝑛𝑢𝑛                          (14) 

The m
th

 derivative of u is then assessed as follows 

𝑑𝑚Δ𝑢

𝑑𝑥𝑚
=

1

𝑐𝑚
𝑑𝑚Δ𝑢

𝑑ζ2
=

1

𝑐𝑚
∑ ∏ (𝑛 + 𝑖)𝑚

𝑖=1 𝑈𝑛+2ζ
𝑛∞

𝑛=0                 (15) 

The graduation of adhesive properties is then described under the shape of a TESP: 

𝑘𝐼𝐼(ζ) = ∑ 𝐾𝑛ζ
𝑛∞

𝑛=0 = ∑ 𝑘𝑛𝑥
𝑛∞

𝑛=0 = 𝑘𝐼𝐼(ζ)       (16) 

with: 

∀𝑛, 𝐾𝑛 = 𝑐
𝑛𝑘𝑛                          (17) 

The expressions for u and kII are then replaced in the second order differential equation Eq. 

(8) leading to: 

∑ (𝑛 + 1)(𝑛 + 2)𝑈𝑛+2ζ
𝑛∞

𝑛=0 − 𝑐2�̃�2∑ 𝑈𝑛𝑋
𝑛∞

𝑛=0 ∑ 𝐾𝑙ζ
𝑙∞

𝑙=0 = 0                                      (18) 
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Equating each term to zero, the following recursive relationship is then obtained: 

∀𝑛, 𝑈𝑛+2 =
𝑐2�̃�2

(𝑛+1)(𝑛+2)
∑ 𝑈𝑙𝐾𝑛−𝑙
𝑛
𝑙=0                     (19) 

This recursion relationship is of course similar to the one obtained by Stein et al. [22]. Two 

boundary conditions have to be applied to be able to determine the terms of the series. In this 

paper, the values of the normal forces in the lower adherend are used, which reads: 

𝑁2(𝑥 = −𝑐) = 0 = 𝑁2(𝑋 = −1)                    (20) 

𝑁2(𝑥 = 𝑐) = 𝐹 = 𝑁2(𝑋 = 1)                    (21) 

A relationship between the sipping displacement and the normal force in the lower adherend 

is then established as follows. From Eq. (2) and since the sum of the normal force of the upper 

adherend and that of the lower adherend is equal to F at any position along the overlap, the 

slipping displacement is written such as: 

𝑑Δ𝑢

𝑑𝑥
= (1 + 𝜒𝐴)

𝑁2

𝐴2
− 𝜒𝐴

𝐹

𝐴2
+ (1 −

1

𝜒𝛼
)𝛼2Δ𝑇                 (22) 

where the adherend thermal unbalance is characterized by: 

𝜒𝛼 =
𝛼2

𝛼1
                            (23) 

As a result, from the application of boundary conditions in Eq. (20) and Eq. (21), both last 

required equations are obtained. 

∑ (𝑛 + 1)𝑈𝑛+1
∞
𝑛=0 = 𝑐

𝐹

𝐴2
+ 𝑐 (1 −

1

𝜒𝛼
)𝛼2Δ𝑇                       (24) 

∑ (𝑛 + 1)(−1)𝑛𝑈𝑛+1
∞
𝑛=0 = −𝑐𝜒𝐴

𝐹

𝐴2
+ 𝑐 (1 −

1

𝜒𝛼
)𝛼2Δ𝑇                   (25) 

These last equations allow for the introduction of the thermal load in the model. The solution 

is finally obtained by truncation of the series at an order n_max. Equations Eq. (19), Eq. (24) 

and Eq. (25) allow for the writing of a linear system, the size of which is (n_max+1)², which 

can be solved using a mathematical programming software such as MATLAB. 

 

2.1.4 ME resolution 
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Firslty, the elementary stiffness matrix of a BBa element is formulated. The length of the BBa 

is , on which the material and geometrical properties are supposed constant. The element 

reference system of axis is denoted (X,Y,Z). The elementary stiffness matrix of the BBa, 

termed KBBa, describes the interaction between the four nodal forces and the force nodal 

displacements (see Figure 4), such as: 

(

 

−𝑁1(0)

−𝑁2(0)

𝑁1(Δ)

𝑁2(Δ) )

 = 𝐾𝐵𝐵𝑎

(

 

𝑢1(0)

𝑢2(0)

𝑢1(Δ)

𝑢2(Δ))

 ⟺ 𝐹𝑒 = 𝐾𝐵𝐵𝑎𝑈𝑒                       (26) 

where Fe (Ue) is the nodal force (displacement) vector of the BBa element. 

 

Figure 4. Free body diagram of infinitesimal pieces included between x and x+dx of both 

adherends in the overlap region. Subscript 1 (2) refers to the upper (lower) adherend. 

In the frame of the 1D-bar analysis, the closed-form expressions for each component of KBBa 

can be obtained [36-37]. Even if the mathematical description has already published under 

another shape, it provided in Appendix A. 

As expected, the obtained stiffness matrix is the same as the one obtained without considering 

the thermal load. The method to take into account a linear variation of shear stress in the 

adherend thickness following [28] is described in Appendix D. 

Since the material properties of the adhesive vary along the overlap, the approach using the 

ME technique consists in regularly meshing the overlap with BBa elements with n_ME BBa 

elements (see Figure 5). Each BBa element has a length =L/n_ME, on which the material 

  

X 
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node j 

node k 
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ui 

uj 
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properties are constant. The actual graduation of the adhesive shear relative stiffness has then 

to be approximated by a stepped function. In this work, it is supposed that the adhesive shear 

relative stiffness for the n
th

 BBa is equal to its value at the centre of the BBa. The elementary 

stiffness matrices of the each BBa can then be assessed. The bars outside the overlap are 

simulated as bar elements associated with the elementary stiffness matrix Kbar,j for  adherend j 

given in Appendix A. From the elementary stiffness matrices, the stiffness matrix of the joint, 

termed Ks, is then built. The boundary conditions are applied using the classical FE rules. In 

particular, the thermal load is replaced by an equivalent mechanical one, such that the 

equivalent nodal force vector provides the same nodal displacement as the thermal load. The 

potential energy leading to the classical linear system Fs=KsUs, the size of which is 

(2n_ME+4)², where Fs is the nodal force of the structure and Us the nodal vector. 

 

 

Figure 5. ME model of the FGA single lap joint. 

 

2.2. Under 1D-beam kinematics 

2.1.1 Hypotheses 

The model is based on the following hypotheses: (i) the thickness of the adhesive layer is 

constant along the overlap, (ii) the adherends are simulated by linear elastic Euler-Bernoulli 

laminated beams and (iii) the adhesive layer is simulated by an infinite number of elastic 

shear and transverse springs linking both adherends.  

n_ME 

u=0 

F 


T
 

bar element bar element 
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Similarly to the 1D-bar analysis, the case of a single-lap joint subjected to combined 

mechanical and thermal loads is considered, for which the geometrical parametrization is 

provided in Figure 6. The joint is simply supported at both extremities and submitted to a 

uniform variation of temperature T and to a tensile force F. It is indicated that any boundary 

conditions could be applied when the ME technique is applied, even if simply supported is 

chosen in this paper. The stress analysis is conducted in force but could similarly be made in 

tensile flow F/b. 

 
 

Figure 6. Geometrical parametrization of the single-lap joint, boundary condition and applied 

loads (1D-beam analysis). 

 

2.2.2 Governing Equation  

The local equilibrium selected for the formulation of the presented BBe element is related to 

the one used by Luo and Tong [31] and allows for a coupling between the in-plane and out-of-

plane load. Moreover, the formulation presented can be easily modified to correspond to the 

Goland and Reissner [23] or to the Hart-Smith [24] local equilibrium.  

The local equilibrium of both adherends (see Figure 7) provides the six following equations: 

𝑑𝑁𝑗

𝑑𝑋
= (−1)𝑗 cos 𝜃𝑗 𝑏𝑇,   𝑗 = 1,2                      (27) 

𝑑𝑉𝑗

𝑑𝑋
= (−1)𝑗+1𝑏𝑆 + (−1)𝑗 sin 𝜃𝑗 𝑏𝑇, 𝑗 = 1,2          (28) 

𝑑𝑀𝑗

𝑑𝑋
+ 𝑉𝑗 + cos 𝜃𝑗 𝑏 (ℎ𝑗 +

𝑒𝑎

2
)𝑇 − sin 𝜃𝑗 𝑁𝑗 = 0,   𝑗 = 1,2               (29) 

F 
x,u 

y,v 
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with: 

ℎ𝑗 =
𝑒𝑗

2
, 𝑗 = 1,2                     (30) 

where Vj is the shear force in the adherend j, Mj the bending moment in the adherend j, j the 

bending angle in the adherend j and S is the adhesive peel stress.    

 

Figure 7. Free body diagram of infinitesimal pieces included between x and x+dx of both 

adherends in the overlap region. Subscript 1 (2) refers to the upper (lower) adherend. 

 

The constitutive equations can then be written as: 

𝑁𝑗 = 𝐴𝑗
𝑑𝑢𝑗

𝑑𝑋
− 𝐵𝑗

𝑑𝜃𝑗

𝑑𝑋
− 𝑁𝑗

Δ𝑇 , 𝑗 = 1,2                   (31) 

𝑀𝑗 = −𝐵𝑗
𝑑𝑢𝑗

𝑑𝑋
+ 𝐷𝑗

𝑑𝜃𝑗

𝑑𝑋
+𝑀𝑗

Δ𝑇 , 𝑗 = 1,2                   (32) 

𝜃𝑗 =
𝑑𝑣𝑗

𝑑𝑋
                         (33) 

where (see Appendix A) Aj is the membrane stiffness of adherend j, Bj the coupling 

membrane-bending stiffness of adherend j, Dj the bending stiffness of adherend j, 𝑁𝑗
Δ𝑇 the 

X 
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thermal normal force in the adherend j and 𝑀𝑗
Δ𝑇 is the thermal bending moment in the 

adherend j. In the case of a lay-up characterized by a mirror symmetry, Bj=0 and 𝑀𝑗
Δ𝑇 = 0. 

The constitutive equations for the adhesive layer are provided by: 

𝑆 =
𝐸𝑎

𝑒𝑎
[𝑣1 − 𝑣2] = 𝑘𝐼Δ𝑣                (34) 

𝑇 =
𝐺𝑎

𝑒𝑎
[𝑢2 − ℎ2𝜃2 − (𝑢1 + ℎ1𝜃1)] = 𝑘𝐼𝐼Δ𝑢         (35) 

with: 

Δ𝑢 = 𝑢2 − 𝑢1 − ℎ2𝜃2 − ℎ1𝜃1                     (36) 

Δ𝑣 = 𝑣1 − 𝑣2             (37) 

where Ea is the adhesive peel modulus and kI=Ea/ea the adhesive peel relative stiffness. v is 

representative of the opening displacement of the adherend interface. Contrary to the 1D-bar 

analysis, the presented analysis cannot be directly applied when the thickness of the adhesive 

layer varies along the overlap. Indeed, the variation of the thickness induces a lag of the 

neutral axis, which has to be taken into account because of the deflection. Nevertheless, it is 

indicated that the variation of the adhesive thickness could be easily taken into account when 

using the ME technique.  

 

2.2.3 ME resolution  

The resolution scheme follows the same part as for the 1D-bar analysis (see section 2.1.4). 

The single-lap joint is meshed in BBe elements along the overlap and beam elements for the 

parts outside the overlap. The boundary conditions, the mechanical and thermal loads are then 

applied. Similarly to the 1D-bar analysis, the thermal load is applied under the shape of an 

equivalent nodal force vector given by: 
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𝐹𝑡ℎ =

(

 
 
 
 
 
 
 
 
 
 
 
 

−𝑁1
Δ𝑇

−𝑁2
Δ𝑇

𝑁1
Δ𝑇

𝑁2
Δ𝑇

0
0
0
0

𝑀1
Δ𝑇

𝑀2
Δ𝑇

−𝑀1
Δ𝑇

−𝑀2
Δ𝑇)

 
 
 
 
 
 
 
 
 
 
 
 

                        (38) 

Contrary to the 1D-bar analysis, it is not possible to simply obtain closed-form expressions for 

the components of the stiffness matrix of the BBe element. An approach for the formulation 

of the stiffness matrix of BBe element under Goland and Reissner equilibrium has already 

been described in detail in previous papers [36-43]. Nevertheless, this approach could be long 

to set up. In this paper, a new approach is provided for a fast and easy implementation within 

mathematical software such as MATLAB for example. The present formulation ME has never 

been published. The element reference system (X,Y,Z) of axes is considered. Following Luo 

and Tong approach [31], a first approximation is made. The bending angle is supposed very 

small. The six local equilibrium equations become then: 

𝑑𝑁𝑗

𝑑𝑋
= (−1)𝑗𝑏𝑇,   𝑗 = 1,2                         (39) 

𝑑𝑉𝑗

𝑑𝑋
= (−1)𝑗+1𝑏𝑆 + (−1)𝑗𝜃𝑗𝑏𝑇, 𝑗 = 1,2           (40) 

𝑑𝑀𝑗

𝑑𝑋
+ 𝑉𝑗 + 𝑏 (ℎ𝑗 +

𝑒𝑎

2
)𝑇 − 𝜃𝑗𝑁𝑗 = 0,   𝑗 = 1,2                (41) 

A second approximation is made. It consists in neglecting the product of the adhesive shear 

stress with the bending angle 𝑇𝜃𝑗 ≪ 1,   𝑗 = 1,2. The six local equilibrium equations become 

then: 

𝑑𝑁𝑗

𝑑𝑋
= (−1)𝑗𝑏𝑇,   𝑗 = 1,2                         (42) 
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𝑑𝑉𝑗

𝑑𝑋
= (−1)𝑗+1𝑏𝑆, 𝑗 = 1,2              (43) 

𝑑𝑀𝑗

𝑑𝑋
+ 𝑉𝑗 + 𝑏 (ℎ𝑗 +

𝑒𝑎

2
)𝑇 − 𝜃𝑗𝑁𝑗 = 0,   𝑗 = 1,2                (44) 

Compared to the local equilibrium by Hart-Smith [24] only the bending moment is modified, 

involving a coupling between normal forces and bending moment. The following quotation is 

introduced for any functions f: 

(
𝑓+
𝑓−
) = (

1 1
1 −1

) (
𝑓1
𝑓2
)                  (45) 

A third and last approximation is made which reads 
𝑁−

2
(𝜃1 ∓ 𝜃2) ≪ 1. Under this 

approximation and taking into account that the sum of normal forces at any abscissa is equal 

to the applied force F, a system of twelve first order linear ODEs is obtained: 

𝑑𝑢+

𝑑𝑋
=
1

2
(
𝐷1

Δ1
+
𝐷2

Δ2
)𝑁+ +

1

2
(
𝐷1

Δ1
−
𝐷2

Δ2
)𝑁− +

1

2
(
𝐵1

Δ1
+
𝐵2

Δ2
)𝑀+ +

1

2
(
𝐵1

Δ1
−
𝐵2

Δ2
)𝑀−       (46) 

𝑑𝑣+

𝑑𝑋
= 𝜃+                (47) 

𝑑𝜃+

𝑑𝑋
=
1

2
(
𝐵1

Δ1
+
𝐵2

Δ2
)𝑁+ +

1

2
(
𝐵1

Δ1
−
𝐵2

Δ2
)𝑁− +

1

2
(
𝐴1

Δ1
+
𝐴2

Δ2
)𝑀+ +

1

2
(
𝐴1

Δ1
−
𝐴2

Δ2
)𝑀−      (48) 

𝑑𝑢−

𝑑𝑋
=
1

2
(
𝐷1

Δ1
−
𝐷2

Δ2
)𝑁+ +

1

2
(
𝐷1

Δ1
+
𝐷2

Δ2
)𝑁− +

1

2
(
𝐵1

Δ1
−
𝐵2

Δ2
)𝑀+ +

1

2
(
𝐵1

Δ1
+
𝐵2

Δ2
)𝑀−      (49) 

𝑑𝑣−

𝑑𝑋
= 𝜃−                (50) 

𝑑𝜃−

𝑑𝑋
=
1

2
(
𝐵1

Δ1
−
𝐵2

Δ2
)𝑁+ +

1

2
(
𝐵1

Δ1
+
𝐵2

Δ2
)𝑁− +

1

2
(
𝐴1

Δ1
−
𝐴2

Δ2
)𝑀+ +

1

2
(
𝐴1

Δ1
+
𝐴2

Δ2
)𝑀−      (51) 

𝑑𝑁+

𝑑𝑋
= 0                (52) 

𝑑𝑉+

𝑑𝑋
= 0                (53) 

𝑑𝑀+

𝑑𝑋
= −𝑉+ +

𝐺

𝑒
𝑏ℎ+. 𝑢− + (

𝐺

2𝑒
𝑏(ℎ+ + 𝑒𝑎)

2 +
𝐹

2
) 𝜃+ + (

𝐺

2𝑒
𝑏(ℎ+ + 𝑒𝑎)ℎ−) 𝜃−                (54) 

𝑑𝑁−

𝑑𝑋
= 2𝑘𝐼𝐼𝑏. 𝑢− + 𝑘𝐼𝐼𝑏(ℎ+ + 𝑒𝑎)𝜃+ + 𝑘𝐼𝐼𝑏ℎ−𝜃−           (55) 

𝑑𝑉−

𝑑𝑋
= 2𝑘𝐼𝑏.𝑤−              (56) 

𝑑𝑀−

𝑑𝑋
= −𝑉− +

𝐺

𝑒
𝑏ℎ−. 𝑢− + (

𝐺

2𝑒
𝑏(ℎ+ + 𝑒𝑎)ℎ−) 𝜃+ + (

𝐺

2𝑒
𝑏ℎ−

2 +
𝐹

2
) 𝜃−        (57) 
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where j=AjDj-BjBj≠0. By letting F=0, the stress analysis of the sandwich by Hart-Smith is 

deduced [24]. In addition, by letting ea=0, it corresponds to the one by Goland and Reissner 

[23]. This system can be written as  
𝑑𝑉

𝑑𝑋
= 𝐴𝑉 where A is 12x12 matrix with real constant 

components and the unknown vector V is such that  
t
V=(u1 u2 v1 v2 1 2 N1 N2 V1 V2 M1 M2). 

But the elementary stiffness matrix corresponds to the relationship between the vector of 

nodal forces and the vector of nodal displacements, such as: 

(

 
 
 
 
 
 
 
 
 
 

−𝑁1(0)

−𝑁2(0)

𝑁1(Δ)

𝑁2(Δ)

−𝑉1(0)

−𝑉2(0)

𝑉1(Δ)

𝑉2(Δ)

−𝑀1(0)

−𝑀2(0)

𝑀1(Δ)

𝑀2(Δ) )

 
 
 
 
 
 
 
 
 
 

= 𝐾𝐵𝐵𝑒

(

 
 
 
 
 
 
 
 
 
 

𝑢1(0)

𝑢2(0)

𝑢1(Δ)

𝑢2(Δ)

𝑣1(0)

𝑣2(0)

𝑣1(Δ)

𝑣2(Δ)

𝜃1(0)

𝜃2(0)

𝜃1(Δ)

𝜃2(Δ))

 
 
 
 
 
 
 
 
 
 

          (58) 

The fundamental matrix of A, termed A, is computed at X=0 and X=; using the MATLAB 

software, the associated command is “expm”: 

{
Φ𝐴(𝑋 = 0) = 𝑒𝑥𝑝𝑚(𝐴. 0) 

Φ𝐴(𝑋 = Δ) = 𝑒𝑥𝑝𝑚(𝐴. Δ) 
           (59) 

From these two 12*12 matrices, two matrices M’ and N’ are extracted. M’ (N’) is composed 

of the lines related to the nodal displacements (forces). For each, a first block of six lines and 

twelve rows comes from A(X=0) and the second block of six lines and twelve rows comes 

from A(X=), such that: 

 {
𝑀′ = Φ𝑈(0, Δ) = (

[Φ𝐴(𝑋=0)]𝑖=1,2,3,4,5,6 ;𝑗=1:12
[Φ𝐴(𝑋=Δ)]𝑖=1,2,3,4,5,6 ;𝑗=1:12

) 

𝑁′ = Φ𝐹(0, Δ) = (
[Φ𝐴(𝑋=0)]𝑖=7,8,9,10,11,12 ;𝑗=1:12
[Φ𝐴(𝑋=Δ)]𝑖=7,8,9,10,11,12 ;𝑗=1:12

) 
                   (60) 

where i (j) indicates the line (row) number. As KBBe is defined according to ([u1(0) u2(0) u1() 

u2() v1(0) v2(0) v1() v2() 1(0)  2(0)  1() 2()]), a simple rearrangement of the order of 
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lines of M’ is performed to produce the matrix M. Similarly, the matrix N’ is subjected to the 

same operation. In a similar way, the terms related to nodal forces at X=0 are multiplied by -1 

to follow the arrangement ([-N1(0) -N2(0) N1() N2() -V1(0) -V2(0) V1() V2() -1(0) - 

2(0)  1() 2()]). It leads to the definition of the matrix N. The elementary stiffness matrix 

KBBe is equal to the product of N and the inverse of M: KBBe=N.M
-1

.The stiffness matrix of the 

beam element under a local equilibrium coupling the in-plane and out-of-plane load is 

described in Appendix C. As for the 1D-bar analysis, the minimization of the potential energy 

leads to a linear system the size of which is (6n_ME+12)². 

Even if it is not the topic of this paper, it is obvious that this previous approach can be easily 

used to develop ME including different number of layers of adhesives and adherends (e.g. 

double lap joint configuration), various beam models (e.g. Timoshenko beam model, see 

Appendix D) or taking into account for a linear variation of shear stress in the adherend 

thickness following [28] (see Appendix D). 

 

3. Comparative study 

3.1. Overview 

A comparative study of the ISLM by Stein et al. [22], the present 1D-bar TEPS, 1D-bar ME 

and 1D-beam ME analysis is presented in this section, starting with a convergence study. This 

study is performed against three test cases (TCs): 

(i) TC#1: a balanced joint configuration under a pure mechanical load; 

(ii) TC#2: an unbalanced joint configuration under a pure thermal load; 

(iii) TC#3: an unbalanced joint configuration under combined mechanical and thermal 

loads.  

The joint configurations are almost inspired from to those found in [19,22]. The mechanical 

load is F=5 kN while the thermal load is T=+50°K. The balanced joint configuration is made 
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of two steel adherends. The unbalanced joint configuration has the same geometry as the 

balanced one, but the lower adherend is made in aluminum instead of steel. The geometrical 

and mechanical parameters are given in Table 1 and Table 2 respectively in accordance to 

Figure 2 and Figure 6. A parabolic graduation of adhesive properties is assumed such as: 

𝐸𝑎(𝑥) = 𝐸𝑎,𝑚𝑎𝑥(𝑥) − (𝐸𝑎,𝑚𝑎𝑥(𝑥) − 𝐸𝑎,𝑚𝑖𝑛(𝑥)) (
𝑥

𝑐
)
2

          (61) 

𝐺𝑎(𝑥) = 𝐺𝑎,𝑚𝑎𝑥(𝑥) − (𝐺𝑎,𝑚𝑎𝑥(𝑥) − 𝐺𝑎,𝑚𝑖𝑛(𝑥)) (
𝑥

𝑐
)
2

          (62) 

where Ea,max (Ea,min) is the maximal (minimal) adhesive peel modulus in the graduation and 

Ga,max (Ga,min) is the maximal (minimal) adhesive shear modulus in the graduation. In this 

work, the ratio between the maximal (minimal) adhesive peel modulus and the maximal 

(minimal) adhesive shear modulus through is constant and equal to 2(1+a), where a is the 

adhesive Poisson’s ratio. In this work, the adhesive peel modulus is then represented by the 

adhesive Young’s modulus. The adhesive properties are then summarized in Table 3.  

 

Table 1. Geometrical parameters of joint configurations 

b (mm) ea (mm) e1=e2 (mm) L (mm) l1=l2 (mm) 

25 0.2 2 25 75 

 

Table 2. Material parameters of adherends. 

 Coefficient of thermal expansion (K
-1

) Young’s modulus (GPa) 

steel 12E-6 210 

aluminum 24E-6 70 

 

Table 3. Adhesive material properties. 

Ea,max (MPa) Ea,min (MPa) a 
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6500 2500 0.36 

 

3.2. Convergence study 

The convergence study is performed on the TC#1 and the TC#2 (FGA balanced joint under 

pure mechanical load and pure thermal load). The resolution scheme based on TEPS needs to 

truncation order (n_max) while the one based on the ME technique needs a mesh with n_ME 

BBa or BBe. A convergence study is then performed by recording the maximal adhesive 

stresses as a function n_max and n_ME.  

The maximal adhesive shear stress (Tmax) is provided in Figure 8 as function of the order of 

series truncation (n_max) for both TC#1 and TC#2 as predicted by the ISLM and the TEPS 

analysis. It is shown that Tmax tends to a finite value (12.56 MPa for TC#1 and 11.11 MPa for 

TC#2) for an order of series truncations lower than n_max=20. For the case of n_max=100 

with the TEPS analysis, the ratio between each series term Un with the sum of series terms – 

which is equal to u(x=c) – is provided in Figure 9 for both TC#1 and TC#2, illustrating the 

fast convergence of series. Moreover, the TEPS analysis provides a maximal adhesive shear 

stress relatively different of 1.68E-4 % from the one provided by the ISLM (for TC#1).  
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Figure 8. Maximal adhesive shear stress as function the order of series truncation for the 

ISLM by Stein et al. [22] and the 1D-bar TEPS analysis for both TC#1 and TC#2. 

 

 

Figure 9. Ratio between each series term and the sum of series terms for both TC#1 and 

TC#2. 
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The relative difference in the maximal adhesive provided the 1D-bar ME analysis from the 

one by 1D-bar TEPS analysis as function of the number of MEs for both TC#1 and TC#2 is 

provided in Figure 10. It is shown that Tmax provided by the 1D-bar ME analysis tends to the 

one provided by the TEPS analysis when the number of MEs is increased.  For n_ME=1000, 

the relative difference is 0.16% (0.22%) for TC#1 (TC#2). As a result, the TEPS resolution 

scheme is less costly in terms of CPU time than the ME one, since convergence is obtained at 

a lower size of the linear system to be inverted. This behavior is related to the meshing 

strategy associated with the graduation of adhesive properties. It is thought that the number of 

MEs could be reduced by adapting the length of each ME according to the current gradient of 

adhesive properties for example. However, the mesh optimization is not the topic of this 

paper. In Figure 11, the maximal adhesive shear stress provided by the 1D-bar and 1D-beam 

analysis as function the order of the number of MEs for both TC#1 and TC#2 is provided. As 

expected from Figure 10, it is shown that Tmax tends to a finite value. 

 

 

Figure 10. Relative difference in % in the maximal adhesive provided the 1D-bar ME analysis 

from the one by 1D-bar TEPS analysis as function of the number of MEs for both TC#1 and 

TC#2. 

0

10

20

30

40

50

60

0 200 400 600 800 1000

re
la

ti
ve

 d
if

fe
re

n
ce

 in
 %

 in
 T

m
ax

 

number of ME (n_ME) 

1D-bar ME TC#1

1D-bar ME TC#2

TC#2 

TC#1 



28 

 

 

Figure 11. Maximal adhesive shear stress provided by the 1D-bar and 1D-beam analysis as 

function the order of the number of MEs for both TC#1 and TC#2. 

 

3.3. Elements of validation  

The ME technique is a particular resolution scheme allowing for the system of ODEs coming 

from simplifying hypotheses on which various models – such as Volkersen, Goland and 

Reissner, Hart-Smith, Luo and Tong – are based. It was shown in that, for bonded joints with 

constant adhesive properties under mechanical or thermal loads, the predictions from the 

models using the ME resolution scheme provide the same results as those provided by the 

related reference models [36-40]. In other words, the same hypotheses lead to the same 

results. Moreover, it was shown that the predictions from the ME analysis are in close 

agreements with those from FE models built on bar or beam element linked by peel and/or 

shear springs, under mechanical and/or thermal loads, involving the update of adhesive 

properties for each ME to take into account for nonlinear adhesive material behaviors [39-40]. 

These FE models were developed to be the most representative for the ME analysis in order to 

validate the codes. As a result, the ME resolution scheme provide validated predictions 

relevant to the simplifying hypotheses. Similarly, the TEPS resolution scheme allows for the 
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resolution of differential equations related to the simplifying equations. It was validated and 

assessed in the case of FGA single-lap joints under mechanical load by Stein et al. [22]. 

In addition, the stress distributions at constant maximal and minimal adhesive properties are 

then provided from the use of ME models in the following sections. An order of truncation 

equal to 100 and a number of MEs equal to 500 is chosen in the following sections. 

Considering the balanced joint configuration in the frame of the 1D-bar analysis, the adhesive 

shear stress distributions along the overlap are provided in Figure 12. The predictions 

considering homogeneous shear modulus Ga,min and Ga,max, as well as those from ISLM by 

Stein et al. [22], the present 1D-bar TEPS and ME analyses are included. It appears that the 

predictions from the ISLM, the TEPS analysis and 1D-bar ME analysis provide the same 

predictions.  

 

Figure 12. Adhesive shear stress distribution along the overlap associated with TC#1 for the 

1D-bar analyses. 
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Figure 14, respectively. The predictions considering homogeneous shear and peel modulus 

(Ga,min ; Ea,min ) and (Ga,max ; Ea,max ), as well as those from GM by Stein et al. [22], the present 

1D-beam ME analyses are included. As the simplifying hypotheses of the GM differ from 

those used in the present 1D-beam analysis solved with the ME technique, the predictions 

from the GM and 1D-beam ME analysis are not superimposed. Nevertheless, it appears that 

the predictions are close each other and qualitatively similar. As expected, the predictions in 

terms of adhesive shear stress by the 1D-bar analysis differ from those by the 1D-beam 

analysis. 

 

 

Figure 13. Adhesive shear stress distribution along the overlap associated with TC#1 for the 

1D-beam analyses. 
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Figure 14. Adhesive peel stress distribution along the overlap associated with T C#1 for the 

1D-beam analyses. 
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combined mechanical and thermal loads), respectively. The ISLM cannot then be applied. It is 

shown that the predictions by the 1D-bar TEPS and ME analyses are superimposed. For each 

case, the graduation of adhesive properties allows to reduce the peak stresses below those 

obtained from the case at constant minimal shear modulus. However, the reduction is less 
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adhesive shear peak stress at x=c of the FGA joint is -21.7% from the bonded joints with a 
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Figure 15. Adhesive shear stress distribution along the overlap associated with TC#2 for the 

1D-bar analyses. 

 

Figure 16. Adhesive shear stress distribution along the overlap associated with TC#3 for the 

1D-bar analyses. 
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3.4.2 1D-beam analyses  

In the frame of 1D-beam analysis, the adhesive shear and peel stress distributions along the 

overlap are provided in Figure 17 to Figure 18, and in Figure 19 to Figure 20, for TC#2 and 

TC#3 respectively. The predictions come from the 1D-beam ME analysis only since the GM 

cannot be applied for these TCs. The adhesive shear stress distribution along the overlap of 

FGA joints from the 1D-bar analysis differs significantly from the one from 1D-beam 

analysis. As for the 1D-bar analysis, the reduction of adhesive peak stresses is shown while 

the stress distribution of FGA joints appears close to the one of the bonded joints with 

minimal and constant adhesive modulus. For TC#1, the reduction in adhesive shear stress at 

x=c for the FGA joint is -13.6% from the bonded joints with a constant minimal Young and 

shear modulus, while it is -10.0% (-9.61%) for TC#2 (TC#3). Similarly, in terms of peel 

stress at x=c, the reduction is -4.85% (-2.59%) for TC#1 (TC#3).  

 

Figure 17. Adhesive shear stress distribution along the overlap associated with TC#2 for the 

1D-beam analyses. 
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Figure 18. Adhesive shear stress distribution along the overlap associated with TC#2 for the 

1D-beam analyses. 

 

Figure 19. Adhesive peel stress distribution along the overlap associated with TC#3 for the 

1D-beam analyses. 
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Figure 20. Adhesive peel stress distribution along the overlap associated with TC#3 for the 

1D-beam analyses. 
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unbalance of the joint, the adhesive peel peaks stresses located at both overlap ends are 

significant. As a result, for both previous load cases, a symmetrical adhesive graduation is 

kept in order to try to reduce the adhesive peak stresses. It is assumed to follow a symmetrical 

power law parametrized by p, with p=1,2,3,4, such as: 

𝐸𝑎(𝑥) = 𝐸𝑎,𝑚𝑎𝑥(𝑥) − (𝐸𝑎,𝑚𝑎𝑥(𝑥) − 𝐸𝑎,𝑚𝑖𝑛(𝑥)) (
𝑥

𝑐
)
2𝑝

          (63) 

𝐺𝑎(𝑥) = 𝐺𝑎,𝑚𝑎𝑥(𝑥) − (𝐺𝑎,𝑚𝑎𝑥(𝑥) − 𝐺𝑎,𝑚𝑖𝑛(𝑥)) (
𝑥

𝑐
)
2𝑝

          (64) 

The increase of the parameter p allow for the enlargement of the overlap length at higher 

modulus, while increasing the graduation slope at both overlap ends where the adhesive stress 

gradients are higher. The shape of various graduations is illustrated in Figure 21. 

 

Figure 21. Adhesive peel modulus along the overlap as a function of p. 
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stress is the highest, the reductions obtained become -5.22%, -8.42% and -10.6% with p=2, 

p=3 and p=4 respectively. The choice of adhesive graduation law associated higher power 

order allows then for a lag of the adhesive shear peak stress in direction of the center of the 

overlap. 

 

Figure 22. Adhesive shear stress distribution along the overlap for the unbalanced joint 

configuration under a pure thermal load, for various adhesive graduations. 
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Figure 23. Adhesive peel stress distribution along the overlap for the unbalanced joint 

configuration under a pure thermal load, for various adhesive graduations. 
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Figure 24. Adhesive shear stress distribution along the overlap for the unbalanced joint 

configuration under combined mechanical and thermal loads, for various adhesive 

graduations. 

 

 

Figure 25. Adhesive peel stress distribution along the overlap for the unbalanced joint 

configuration under combined mechanical and thermal loads, for various adhesive 

graduations. 
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study, is presented on balanced and unbalanced joint configuration under pure mechanical, 

pure thermal and combined mechanical and thermal loads. The following conclusions could 

then be made: 

 the present 1D-bar TEPS analysis restricted to a pure mechanical load provide the same 

results as the ISLM by Stein et al [22]; 

 the present 1D-bar TEPS and the 1D-bar ME analysis provide the same results; 

 the use of TEPS resolution scheme provides converged results at lower CPU cost than the 

ME resolution scheme; 

 the graduation of the adhesive properties allows for the reduction of adhesive peak 

stresses; 

 the present 1D-beam ME analysis restricted to a pure mechanical load provide similar 

results as the GM by Stein et al [22]; 

 the reduction of the adhesive shear peak stresses is found less pronounced when the 1D-

beam analysis is used instead of the 1D-bar analysis; 

 the reduction of the adhesive peak stresses in less pronounced for an unbalanced joint than 

for a balance joint. 

 higher level of reduction can be obtained by modifying the graduation law. 

A dedicated validation campaign based on FE modelling should be undertaken in order to 

assess the relevance of the simplifying hypotheses and the performance of the resolution 

scheme for the stress analysis of FGA joints. In particular, the free stress state at both overlap 

ends cannot be captured with the simplifying hypotheses used. Besides, optimization 

processes could be used to optimize the graduation of adhesive properties as function of the 

adhesive stress distribution to minimize the adhesive peak stresses. Finally, in order to 

increase the strength of FGA single-lap joints, an idea could be to graduate the properties of 

both the adhesive and adherends. For example, the reduction of adhesive peel stresses at both 
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overlap ends could be obtain by tapering the adherend edge, while increasing the ratio 

between the overlap length and the adherend thickness [1]. 
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Appendix A 

This appendix presents the mathematical description of the elementary stiffness matrix of the 

BBa element. Equation Eq. (7) can be explicitly written such as a system of a coupled second 

order ODE at constant coefficients: 

{

𝑑2𝑢1

𝑑𝑋2
+ 𝑘𝐼𝐼

1

𝑒1𝐸1
(𝑢2 − 𝑢1) = 0

𝑑2𝑢2

𝑑𝑋2
+ 𝑘𝐼𝐼

1

𝑒2𝐸2
(𝑢2 − 𝑢1) = 0

           (A-1) 

This system is solved such as: 

𝑢1(𝑋) =
1

2
(𝑐1 + 𝑐2𝑋 − 𝑐3(1 + 𝜒)𝑒

−𝜂𝑋 − 𝑐4(1 + 𝜒)𝑒
𝜂𝑋)     (A-2) 

𝑢2(𝑋) =
1

2
(𝑐1 + 𝑐2𝑋 + 𝑐3(1 − 𝜒)𝑒

−𝜂𝑋 + 𝑐4(1 − 𝜒)𝑒
𝜂𝑋)     (A-3) 

with: 

𝜒 =
𝜓2

𝜂2
            (A-4) 

𝜓2 =
𝐺

𝑒
(
1

𝑒1𝐸1
−

1

𝑒2𝐸2
)           (A-5) 

𝜂2 =
𝐺

𝑒
(
1

𝑒1𝐸1
+

1

𝑒2𝐸2
)          (A-6) 

where c1, c2, c3 and c4 are integration constants. The boundary conditions at both extremities of the 

BBa element, in terms of displacements, lead to the expressions for the integration constants as 

functions of nodal displacements ui, uj, uk and ul (see Figure 4): 

𝑐1 = (1 − 𝜒)𝑢𝑖 + (1 + 𝜒)𝑢𝑗           (A-7) 
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𝑐2 = −
(1−𝜒)

Δ
𝑢𝑖 −

(1+𝜒)

Δ
𝑢𝑗 +

(1−𝜒)

Δ
𝑢𝑘 +

(1+𝜒)

Δ
𝑢𝑙       (A-8) 

𝑐3 = −
𝑒𝜂Δ

2 sinh𝜂Δ
𝑢𝑖 +

𝑒𝜂Δ

2 sinh𝜂Δ
𝑢𝑗 +

1

2 sinh𝜂Δ
𝑢𝑘 −

1

2 sinh𝜂Δ
𝑢𝑙      (A-9) 

𝑐4 =
𝑒−𝜂Δ

2 sinh𝜂Δ
𝑢𝑖 −

𝑒𝜂−Δ

2 sinh𝜂Δ
𝑢𝑗 −

1

2sinh𝜂Δ
𝑢𝑘 +

1

2sinh𝜂Δ
𝑢𝑙               (A-10) 

It can then be written under this shape: 

𝐶 = (

𝑐1
𝑐2
𝑐3
𝑐4

) = 𝑀𝑒
−1𝑈𝑒                     (A-11) 

With: 

𝑀𝑒
−1 =

(

 
 
 
 

(1 − 𝜒) (1 + 𝜒) 0 0

−
(1−𝜒)

Δ
−
(1+𝜒)

Δ

(1−𝜒)

Δ

(1+𝜒)

Δ

−
𝑒𝜂Δ

2sinh𝜂Δ

𝑒𝜂Δ

2 sinh𝜂Δ

1

2 sinh𝜂Δ
−

1

2 sinh𝜂Δ

𝑒−𝜂Δ

2 sinh𝜂Δ
−

𝑒𝜂−Δ

2 sinh𝜂Δ
−

1

2 sinh𝜂Δ

1

2sinh𝜂Δ )

 
 
 
 

               (A-12) 

The normal forces are then computed from Eq. (2), Eq. (A-2) and Eq. (A-3): 

𝑁1(𝑋) =
1

2
(𝑐2 + 𝑐3𝜂(1 + 𝜒)𝑒

−𝜂𝑋 − 𝜂𝑐4(1 + 𝜒)𝑒
𝜂𝑋)𝐴1 − 𝐴1𝛼1Δ𝑇            (A-13) 

𝑁2(𝑋) =
1

2
(𝑐2 − 𝑐3𝜂(1 − 𝜒)𝑒

−𝜂𝑋 + 𝜂𝑐4(1 − 𝜒)𝑒
𝜂𝑋)𝐴2 − 𝐴2𝛼2Δ𝑇            (A-14) 

The nodal normal forces are then deduced as function of the integration constants: 

𝐹𝑒 + (

−𝐴1𝛼1
−𝐴2𝛼2
𝐴1𝛼1
𝐴2𝛼2

)Δ𝑇 = 𝑁𝑒𝐶                    (A-15) 

with: 

𝑁𝑒 =
1

2

(

 
 

0 −𝐴1 −𝜂(1 + 𝜒)𝐴1 𝜂(1 + 𝜒)𝐴1
0 −𝐴2 𝜂(1 − 𝜒)𝐴2 −𝜂(1 − 𝜒)𝐴2
0 𝐴1 𝜂(1 + 𝜒)𝑒−𝜂Δ𝐴1 −𝜂(1 + 𝜒)𝑒𝜂Δ𝐴1
0 𝐴2 −𝜂(1 − 𝜒)𝑒−𝜂Δ𝐴2 𝜂(1 − 𝜒)𝑒𝜂Δ𝐴2 )

 
 

             (A-16) 

In equation Eq. (A-15) the equivalent nodal force vector to the thermal load is appearing: 
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𝐹𝑡ℎ = (

−𝐴1𝛼1
−𝐴2𝛼2
𝐴1𝛼1
𝐴2𝛼2

)Δ𝑇                                 (A-17) 

From Eq. (A-11) and Eq. (A-15), it comes: 

𝐹𝑒 + 𝐹𝑡ℎ = 𝑁𝑒𝑀𝑒
−1𝑈𝑒                                (A-18) 

The elementary stiffness matrix is finally computed from the matrix Me and Ne: 

𝐾𝐵𝐵𝑎 = 𝑁𝑒𝑀𝑒
−1 =

1

1+𝜒𝐴

𝐴2

Δ

(

 
 
 
 

𝜂Δ

tanh𝜂Δ
+

1

𝜒𝐴
1 −

𝜂Δ

tanh𝜂Δ
−

𝜂Δ

sinh𝜂Δ
−

1

𝜒𝐴

𝜂Δ

sinh𝜂Δ
− 1

1 −
𝜂Δ

tanh𝜂Δ

𝜂Δ

tanh𝜂Δ
+ 𝜒𝐴

𝜂Δ

sinh𝜂Δ
− 1 −

𝜂Δ

sinh𝜂Δ
− 𝜒𝐴

−
𝜂Δ

sinh𝜂Δ
−

1

𝜒𝐴

𝜂Δ

sinh𝜂Δ
− 1

𝜂Δ

tanh𝜂Δ
+

1

𝜒𝐴
1 −

𝜂Δ

tanh𝜂Δ

𝜂Δ

sinh𝜂Δ
− 1 −

𝜂Δ

sinh𝜂Δ
− 𝜒𝐴 1 −

𝜂Δ

tanh𝜂Δ

𝜂Δ

tanh𝜂Δ
+ 𝜒𝐴 )

 
 
 
 

                    (A-19) 

The elementary stiffness matrix of the bar element, simulating the adherend j outside the 

overlap is: 

𝐾𝑏𝑎𝑟,𝑗 = 𝐴𝑗 (
1 −1
−1 1

) , 𝑗 = 1,2                  (A-20) 

 

Appendix B 

This appendix provides the derivation of the constitutive equations of laminated beams used 

in the 1D-beam analysis, in the (X,Yi,Z) reference local axis of the adherend, the height origin 

of which is taken on the neutral axis. The normal force and the bending moment are written 

such as: 

𝑁𝑖(𝑋) = ∫ 𝜎𝑖𝑏𝑑𝑌𝑖
+ℎ𝑖
−ℎ𝑖

= 𝑏∑ ∫ 𝜎𝑖
𝑝𝑖𝑑𝑌𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

𝑛𝑖
𝑝𝑖=1

, 𝑖 = 1,2     (B-1) 

𝑀𝑖(𝑋) = ∫ −𝑌𝑖𝜎𝑖𝑏𝑑𝑌𝑖
+ℎ𝑖
−ℎ𝑖

= −𝑏∑ ∫ 𝜎𝑖
𝑝𝑖𝑌𝑖𝑑𝑌𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

𝑛𝑖
𝑝𝑖=1

, 𝑖 = 1,2     (B-2) 

where, in the adherend i ni is the number of layers and hpi is the final height of the pi
th

 layer. 

Moreover, the orthotopic behavior provides 

𝜎𝑖
𝑝𝑖 = 𝑄𝑖

𝑝𝑖(𝜀𝑖
𝑝𝑖 − 𝛼𝑖

𝑝𝑖Δ𝑇), 𝑖 = 1,2        (B-3) 
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where, in the adherend I, 𝑄𝑖
𝑝𝑖 is the matrix of reduced stiffness in the pi

th
 layer. 

As a result, the normal force and the bending moment are given by: 

𝑁𝑖(𝑋) = 𝑏∑ ∫ 𝑄𝑖
𝑝𝑖(𝜀𝑖

𝑝𝑖 − 𝛼𝑖
𝑝𝑖Δ𝑇)𝑑𝑌𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

𝑛𝑖
𝑝𝑖=1

, 𝑖 = 1,2     (B-4) 

𝑀𝑖(𝑋) = −𝑏∑ ∫ 𝑄𝑖
𝑝𝑖(𝜀𝑖

𝑝𝑖 − 𝛼𝑖
𝑝𝑖Δ𝑇)𝑌𝑖𝑑𝑌𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

𝑛𝑖
𝑝𝑖=1

  𝑖 = 1,2      (B-5) 

which finally leads to: 

𝑁𝑖(𝑥) =

∑ 𝑄𝑖
𝑝𝑖 [∫ 𝑑𝑦𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

]
𝑛𝑖
𝑝𝑖=1

𝑑𝑢𝑖

𝑑𝑥
− 𝑏∑ 𝑄𝑖

𝑝𝑖 [∫ 𝑦𝑖𝑑𝑦𝑖
ℎ𝑝𝑖
ℎ𝑝𝑖−1

]
𝑛𝑖
𝑝𝑖=1

𝑑𝜃𝑖

𝑑𝑥
− 𝑏∑ 𝑄𝑖

𝑝𝑖𝛼𝑖
𝑝𝑖 [∫ 𝑑𝑦𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

]
𝑛𝑖
𝑝𝑖=1

Δ𝑇 

(B-6)  

𝑀𝑖(𝑥) =

𝑏∑ 𝑄𝑖
𝑝𝑖 [∫ 𝑦𝑖𝑑𝑦𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

]
𝑛𝑖
𝑝𝑖=1

𝑑𝑢𝑖

𝑑𝑥
+ 𝑏∑ 𝑄𝑖

𝑝𝑖 [∫ 𝑦𝑖
2𝑑𝑦𝑖

ℎ𝑝𝑖
ℎ𝑝𝑖−1

]
𝑛𝑖
𝑝𝑖=1

𝑑𝜃𝑖

𝑑𝑥
+

∑ 𝑄𝑖
𝑝𝑖𝛼𝑖

𝑝𝑖 [∫ 𝑦𝑖𝑑𝑦𝑖
ℎ𝑝𝑖
ℎ𝑝𝑖−1

] Δ𝑇
𝑛𝑖
𝑝𝑖=1

 (B-7)  

The parameters involving in the constitutive equations Eq. (31) to Eq. (33) are thus defined 

such as for i=1,2 

𝐴𝑖 = 𝑏∑ 𝑄𝑖
𝑝𝑖(ℎ𝑝𝑖 − ℎ𝑝𝑖−1)

𝑛𝑖
𝑝𝑖=1

         (B-8) 

𝐵𝑖 =
𝑏

2
∑ 𝑄𝑖

𝑝𝑖(ℎ𝑝𝑖
2 − ℎ𝑝𝑖−1

2)
𝑛𝑖
𝑝𝑖=1

         (B-9) 

𝐷𝑖 =
𝑏

3
∑ 𝑄𝑖

𝑝𝑖(ℎ𝑝𝑖
3 − ℎ𝑝𝑖−1

3)
𝑛𝑖
𝑝𝑖=1

                  (B-10) 

𝑁𝑖
�̅� = 𝑏∑ 𝑄𝑖

𝑝𝑖𝛼𝑖
𝑝𝑖(ℎ𝑝𝑖 − ℎ𝑝𝑖−1)

𝑛𝑖
𝑝𝑖=1

Δ𝑇                  (B-11) 

𝑀𝑖
�̅� =

𝑏

2
∑ 𝑄𝑖

𝑝𝑖𝛼𝑖
𝑝𝑖(ℎ𝑝𝑖

2 − ℎ𝑝𝑖−1
2)

𝑛𝑖
𝑝𝑖=1

Δ𝑇                   (B-12) 

 

Appendix C 
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This appendix provides a brief description of the formulation of the beam element used in the 

1D-beam analysis. Under the approximation of small bending angle, the local equilibrium 

equations of adherend i=1,2 outside the overlap are given by: 

𝑑𝑁𝑖

𝑑𝑋
= 0                   (C-1) 

𝑑𝑉𝑖

𝑑𝑋
= 0            (C-2) 

𝑑𝑀𝑖

𝑑𝑋
+ 𝑉𝑖 − 𝑁𝑖𝜃𝑖 = 0            (C-3) 

It corresponds to those obtained along the overlap when the adhesive stresses vanish. But, the 

normal force is equal to F at any X. The system of six first order linear ODEs to be solved is 

then found under the following shape: 

𝑑𝑢𝑖

𝑑𝑋
=
𝐷𝑖

Δ𝑖
𝑁1 +

𝐵𝑖

Δ𝑖
𝑀𝑖          (C-4) 

𝑑𝑣𝑖

𝑑𝑋
= 𝜃𝑖           (C-5) 

𝑑𝜃𝑖

𝑑𝑋
=
𝐵𝑖

Δ𝑖
𝑁𝑖 +

𝐴𝑖

Δ𝑖
𝑀𝑖          (C-6) 

𝑑𝑁𝑖

𝑑𝑋
= 0                   (C-7) 

𝑑𝑉𝑖

𝑑𝑋
= 0            (C-8) 

𝑑𝑀𝑖

𝑑𝑋
= −𝑉𝑖 + 𝐹𝜃𝑖             (C-9) 

The resolution is performed using the exponential matrix as described in section 2.2.3. 

 

Appendix D 

In [39-40], a path to take into account for a linear variation of the shear stress in the adherend 

thickness following [28] in the formulation of MEs is described and reminded here. In the 1D-

bar analysis, it is sufficient to modify the adhesive shear relative stiffness such as: 

𝑘𝐼𝐼 =
1

1+𝛽

𝐺𝑎

𝑒𝑎
             (D-1) 

with: 
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𝛽 =
1

3

𝐺𝑎

𝑒𝑎
(
𝑒1

𝐺1
+
𝑒2

𝐺2
)            (D-2) 

where G1 (G2) is the shear modulus of the adherend 1 (2). 

In the 1D-beam analysis, the constitutive equations of adherends to consider are: 

𝑁𝑖 = 𝐴𝑖
𝑑𝑢𝑖

𝑑𝑥
− 𝐵𝑖

𝑑𝜃𝑖

𝑑𝑥
− 𝐶𝑖

𝑑𝑇

𝑑𝑥
− 𝑁𝑖

Δ𝑇         (D-3) 

𝑀𝑖 = −𝐵𝑖
𝑑𝑢𝑖

𝑑𝑥
+𝐷𝑖

𝑑𝜃𝑖

𝑑𝑥
+ 𝐶′𝑖

𝑑𝑇

𝑑𝑥
+𝑀𝑖

Δ𝑇        (D-4) 

𝜃𝑖 =
𝑑𝑣𝑖

𝑑𝑥
           (D-5) 

where, for i=1,2: 

𝐶𝑖 =
𝑒𝑖𝐵𝑖+(−1)

𝑖𝐷𝑖

2𝑒𝑖𝐺𝑖
=
1

2
(
𝐵𝑖

𝐺𝑖
+ (−1)𝑖

𝐷𝑖

2ℎ𝑖𝐺𝑖
)       (D-6) 

𝐶′𝑖 =
𝑒𝑖𝐷𝑖+(−1)

𝑖𝐹𝑖

2𝑒𝑖𝐺𝑖
=
1

2
(
𝐷𝑖

𝐺𝑖
+ (−1)𝑖

𝐹𝑖

2ℎ𝑖𝐺𝑖
)       (D-7) 

𝐹𝑖 =
𝑏

4
∑ 𝑄𝑖

𝑝𝑖(ℎ𝑝𝑖
4 − ℎ𝑝𝑖−1

4)
𝑛𝑖
𝑝𝑖=1

         (D-8) 

Beside, to replace the Euler-Bernoulli beam model by the beam model, it is sufficient to 

replace the normality equation: 

𝑑𝑣𝑖

𝑑𝑋
= 𝜃𝑖           (D-9) 

by: 

𝑉𝑖 = 𝐻𝑖 (
𝑑𝑣𝑖

𝑑𝑥
− 𝜃𝑖)                    (D-10) 

where Hi is the shear stiffness taken into account the shear correction factor. 
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