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Abstract² Current mental state monitoring systems, a.k.a. 

passive brain-computer interfaces (pBCI), allow one to perform 

a real-time assessment of DQ�RSHUDWRU¶V�FRJQLWLYH state. In EEG-

based systems, typical measurements for workload level 

assessment are band power estimates in several frequency 

bands. Mental fatigue, arising from growing time-on-task 

(TOT), can significantly affect the distribution of these band 

power features. However, the impact of mental fatigue on 

workload (WKL) assessment has not yet been evaluated. With 

this paper we intend to help fill in this lack of knowledge by 

analyzing the influence of WKL and TOT on EEG band power 

features, as well as their interaction and its impact on 

classification performance. Twenty participants underwent an 

experiment that modulated both their WKL (low/high) and time 

spent on the task (short/long). Statistical analyses were 

performed on the EEG signals, behavioral and subjective data. 

They revealed opposite changes in alpha power distribution 

between WKL and TOT conditions, as well as a decrease in 

WKL level discriminability with increasing TOT in both 

number of statistical differences in band power and 

classification performance. Implications for pBCI systems and 

experimental protocol design are discussed. 

I. INTRODUCTION 

Brain-computer interfaces (BCIs) are information transfer 

V\VWHPV� EHWZHHQ� RQH¶V� EUDLQ and a machine. They were 

initially designed to provide surrogate communication and 

motor abilities to handicapped people [1]. BCIs are mainly 

applied on neural correlates such as sensorimotor rhythm 

modulations and evoked visual potentials. Lately, the BCI 

framework has been applied to PRQLWRU� DQ� RSHUDWRU¶V�

cognitive and emotional state, as well as to implicitly adapt 

systems in real-time using only brain waves as an input [2]. 

Those interfaces, now kQRZQ�DV�µSDVVLYH¶�%&,V��S%&,V��>�@��

are the new means to answer neuro-ergonomics issues and 

mental state monitoring (MSM) systems.  

 

Most of current pBCI systems are electro-

encephalography (EEG)-based and include measures of 

workload and/or mental fatigue [4, 5]. Mental workload 

(WKL) has been extensively documented in the MSM 

literature and can be defined either as the load in working 

memory (i.e. number of items), the number of tasks to be 
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performed simultaneously and more generally as a measure 

of the amount of mental resources engaged in a task. Thus, it 

is considered a measure of task difficulty [6], and depends on 

HDFK�LQGLYLGXDO¶V�capabilities and effort [7]. Regarding those 

IDFWRUV¶� QHXUDO� FRUUHODWHV�� Srevious studies showed that the 

band power in the theta and delta frequency bands at frontal 

sites increases with workload, while the band power in the 

alpha band at parietal sites decreases [8, 9, 10]. Regarding 

mental fatigue, or reduced alertness, it arises from growing 

time-on-task (TOT) and induces an increase of band power 

in the low frequency (LF; <12 Hz) bands, coupled with a 

decrease in the high frequency (HF) bands [11].  

 

In real life situations, BCI systems are mainly calibrated 

only once before being used for a long period of time (e.g. 

for driving); i.e. when the participant is awake and fully 

responsive. Therefore, they do not take into account the 

possible impact of mental fatigue and reduced alertness. To 

date, no study has objectively evaluated the interaction of 

those factors at the electrophysiological level for such EEG-

based systems. Yet, this interaction might prevent systems 

from clearly distinguishing WKL levels and thus reduce 

classification accuracy. This interaction could also reveal a 

major involvement of mental fatigue in generating non-

stationarity in the EEG signal. Indeed, although such non-

stationarity is known to appear between training and test 

sessions, physiological causes have never been thoroughly 

investigated.  

 

In the present study, we focus on this undocumented 

interaction between WKL and mental fatigue and its impact 

on classification performance. In order to do so, we designed 

an experiment that manipulates both working memory load 

and TOT. We hypothesized that an increase in mental fatigue 

with TOT would create band power feature interferences and 

drown out WKL level differences. It would therefore 

negatively impact WKL level classification performance.  

II. METHODS 

This research was SURPRWHG� E\� *UHQREOH¶V� KRVSLWDO�

(France) and was approved by the French ethics committee 

(ID number: 2012-A00826-37). 

A. Experimental design 

WKL was manipulated using a modified Sternberg 

paradigm [12]. At each trial, the 20 healthy participants (9 

females; M = 25, S.D. = 3.5 years) had to memorize a list of 

sequential digits visually presented on a computer screen. 

Then, a probe item flanked with question marks was 
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presented (Fig. 1). The participants had to answer as quickly 

as possible whether the probe was present or not in the 

memorized list using a response box. Two levels of WKL 

were considered, i.e. 2 and 6 digits to memorize (low and 

high WKL respectively). Two 10-minute blocks, each 

including 40 trials of each workload level, were performed. 

Trials of low and high WKL were pseudo-randomly 

presented. In order to induce a mental fatigue between the 2 

blocks, participants also carried out an intermediate similar 

task during 50 minutes. Given that the task was repetitive 

and stimulus poor, this delay allowed us to presuppose 2 

levels of mental fatigue depending on TOT (short/long). 

 

 
Figure 1. Trial structure. Participants memorize a list of 2 or 6 digits, and 

answer whether the probe item was in the list. The circled segment is used 

for analyses. The next segment was added to perform other analyses that 

will be described in another paper. 

B. Data acquisition and pre-processing 

Workload and mental fatigue manipulation was confirmed 

thanks to behavioral and subjective measures. PDUWLFLSDQWV¶�

reaction times (RTs) and accuracy were measured, as well as 

their answers to a mental fatigue questionnaire (Karolinska 

questionnaire) before and at the end of the experiment, and 

between the 2 blocks. IQ�DGGLWLRQ��ZH�UHFRUGHG�SDUWLFLSDQWV¶�

EEG activity using a BrainAmp
TM

 system (Brain Products, 

Inc.) and an Acticap® equipped with 32 Ag-AgCl active 

electrodes that were positioned according to the extended 

10-20 system. The reference and ground electrodes used for 

acquisition were those of Acticap, i.e. FCz for the reference 

electrode and AFz for the ground electrode. The data were 

sampled at 500 Hz. The electro-oculographic (EOG) activity 

was also recorded using 2 electrodes positioned at the eyes 

outer canthi, and 2 respectively above and below the left eye. 

The EEG signal was band-pass filtered between 1 and 40 Hz, 

re-referenced to a common average reference and corrected 

for ocular artifacts using the signal recorded from the EOG 

electrodes and the SOBI algorithm [13]. Time segments of 

800 ms of signal were then selected (circled on Fig. 1). This 

epoching step was performed to only analyze time segments 

in which participants were loaded and had not yet performed 

the recognition task. This way, we avoided analyzing neural 

correlates associated with memory-encoding and memory-

scanning processes.  

 

C. Analyses 

To assess the significance of each facWRU¶V�HIIHFW��Vtatistical 

analyses were performed in 2 different ways: First, the 

averaged power of the EEG signal in the 5 frequency bands: 

delta [1-4 Hz], theta [4-8 Hz], alpha [8-12 Hz], beta [12-30 

Hz], and gamma [30-40 Hz] was HVWLPDWHG� XVLQJ�:HOFK¶V�

power spectral density estimation. The changes in band 

power on midline electrodes were then analyzed across 

participants using repeated mesures ANOVAs and Newman-

Keuls posthoc tests. Behavioral and subjective data were 

analyzed in the same way. Secondly, participant-specific 

classifiers were built to detect TOT and WKL levels. The 

processing chain used to perform classification is as follows: 

first, the EEG signal was divided into the 5 frequency bands. 

For each band, 15 electrodes were then selected using a 

method based on Riemannian geometry [14]. Next, a spatial 

filtering step was executed using 6 common spatial pattern 

(CSP) filters. Lastly, a binary classification was performed 

DFURVV� H[SHULPHQWDO� FRQGLWLRQV� XVLQJ� )LVKHU¶V� OLQHDU�

discriminant analysis (FLDA) with 30 features (6 spatial 

filters x 5 frequency bands). Using a 10-fold random cross-

validation procedure, we obtained results in classification 

performance for TOT and WKL levels independently, as 

well as for WKL level per mental fatigue state (WKL|sTOT 

and WKL|lTOT respectively for the short and long TOT 

conditions). In order to put ourselves in a more realistic 

classification situation, we also added a condition in which 

we trained our workload classifier on the short TOT data, 

and tested it on the long TOT data (WKL|diff). This 

condition is supposed to mirror a system that would be 

calibrated before use, and then be used during a long period 

of time. Classification performances were compared using t-

tests.  

III. RESULTS 

A. Behavioral & subjective results 

Participants reported feeling increasingly tired with TOT 

(p<0.001, Fig. 2). As regards the WKL effect, participants 

were slower to respond and had a lower accuracy in high 

WKL conditions than in low ones (p<0.001). 

 
Figure 2. Subjective ratings of mental fatigue at different times of the 

experiment (p<0.001) Scale ranging IURP���µKLJKO\�DOHUW�VWDWH¶�WR����µYHU\�

drowsy with great effort to stay awake, fighting against sOHHS¶� 



  

B. EEG results 

Across all participants, the band power in the alpha and 

beta frequency bands significantly decreased at all midline 

electrodes with increasing load in working memory (p<0.05). 

Fig. 3 is a topographic map of signed r² [15] that illustrates 

WKL level discriminability for the alpha band (grand 

average). Here, it can be seen that the relevant electrode 

locations for WKL discriminability are mostly centro-

parietal ones, as those electrode locations are highly 

correlated with the low WKL condition. 

 

Moreover, the power in the alpha frequency band ±

especially the low alpha- increased with growing TOT for all 

midline electrodes (p<0.05), and the power in the delta, theta 

and beta bands also significantly increased for electrodes Cz, 

CPz and Pz (p<0.05). Those modulations are illustrated by 

Fig. 4 in which we can see a clear distinction between 

conditions around 8 to 12 Hz (alpha band) and by Fig. 5 that 

displays the alpha power scalp distribution per WKL and 

then per TOT condition. In this last figure we can see that 

opposite phenomena take place: alpha power decreases with 

WKL (mostly at centro-parietal sites) whereas it increases 

with TOT (mostly at fronto-central sites).  
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Figure 3. Scalp topography of the signed coefficients of determination 

(SCDs, or signed r² values) for the alpha band power and workload levels. 

Indicates discriminability power of alpha band power between conditions 

of WKL (Grand average). 

 

 
Figure 4. Power density spectrum on electrode Pz (Grand average; wkl: 

workload; TOT: time-on-task) 
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Figure 5. Averaged alpha power scalp distributions (µV²) depending on 

WKL (Left: low/high WKL) or TOT condition (Right: short/long TOT) 

 

Regarding the interaction between WKL and TOT (Fig. 

6), there were more significant differences between WKL 

conditions per frequency band and electrode in the short 

TOT condition than in the long TOT condition. For instance, 

we can see that differences in theta power at Fz disappear 

when TOT increases, as well as differences in high alpha 

power for anterior electrode sites, and in beta power at the 

CPz, Pz and Oz electrodes. The disappearance of differences 

in high alpha power is reflected in Fig. 4 by a peak shift 

between TOT conditions.  

 
Figure 6. Significant differences across participants (in white) between 

WKL conditions per midline electrode, frequency band and TOT condition 

(p<0.05) 

C. Classification results 

It can be seen on Table I that our processing chain 

achieved 98.04 % of correct classification of the TOT 

condition, on average for the 20 subjects. As for the WKL 

condition, the performance was 65.51 % independently of 
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the TOT condition. This classification performance 

decreased to 59.76 % and 58.75 % of correct classification 

when we trained and tested our WKL classifier respectively 

with the short TOT data (WKL|sTOT) and the long TOT 

data (WKL|lTOT). Moreover, when we trained our workload 

classifier on the short TOT data and tested it on the long 

TOT data, we dropped to 50.10 % of correct classification 

(WKL|diff), which is not different from random (p = 0.11). 

An interesting result is that classification performance 

significantly dropped from 59.76 to 50.10 % between the 

condition in which the classifier is trained and tested on data 

recorded in the same condition (WKL|sTOT), and the 

condition in which it is trained on WKL|sTOT and tested on 

WKL|lTOT  (WKL|diff ; p<0.001). 

 
TABLE I Classification performances for each factor and condition (mean 

and sd). Averaged results of a 10-fold random cross-validation procedure 

repeated 10 times 

Condition TOT WKL WKL|sTOT WKL|lTOT WKL|diff 

% of 

correct 

classifi-

cation 

98.04 

(2.01) 

65.51 

(5.93) 

59.76 

(7.18) 

58.75 

(6.65) 

50.10 

(0.29) 

IV. CONCLUSION & OUTLOOK 

High classification performance was obtained for mental 

fatigue state (98.04 %), with a standard amplification of band 

power for LF bands with increasing TOT. However, we did 

not observe a significant decrease in band power for HF 

bands. Besides, given the length of the analyzed time period 

(800 ms), we achieved workload classification performances 

comparable to those reported in the literature for 2.5 s 

windows [16]. As reported in the literature, we do observe a 

decrease in alpha power with an increase in working memory 

load, also mostly at the centro-parietal sites. This decrease in 

alpha power is also reported by [10] who speak about it in 

terms of increasing alpha band desynchronization with 

ascending cognitive load. In our study we also reported an 

expected rise in theta power at frontal sites with growing 

workload, but only in the short TOT condition. This result 

contributes to illustrate the significant impact of mental 

fatigue on the EEG power feature data, impact that resulted 

in a significant degradation of classification performances as 

expected. :KDW¶s more, even when the classifier was trained 

and tested on data recorded in the same condition, the long 

TOT one, we could observe a slight decrease in classification 

performance compared with the short TOT one. This can be 

explained by an increase in power in the LF bands, increase 

that drowns out the subtle differences that would allow a 

good classification of workload level.  

 

These results bring to light a real flaw in using band power 

features such as alpha band desynchronization for cognitive 

state assessment as those are subject to major arousal related 

fluctuations. This calls for the development of adaptive 

systems and for in-depth research of more robust features of 

cognitive state. Lately, several methods to alleviate non-

stationarities have been proposed, such as work on common 

spatial patterns [17]. However, there is still upstream 

research to be performed in order to evaluate how cognitive 

states interact at both the source and the feature level. This 

research would also benefit context-aware computer systems 

that make use of covert aspects of the ongoing user state 

[18]. 
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