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Abstract— Electrocardiography is used to provide features 

for mental state monitoring systems. There is a need for quick 

mental state assessment in some applications such as attentive 

user interfaces. We analyzed how heart rate and heart rate 

variability features are influenced by working memory load 

(WKL) and time-on-task (TOT) on very short time segments 

(5s) with both statistical significance and classification 

performance results. It is shown that classification of such 

mental states can be performed on very short time segments 

and that heart rate is more predictive of TOT level than heart 

rate variability. However, both features are efficient for WKL 

level classification. What’s more, interesting interaction effects 

are uncovered: TOT influences WKL level classification either 

favorably when based on HR, or adversely when based on 

HRV. Implications for mental state monitoring are discussed.  

 

I. INTRODUCTION 

In today’s technological environment, mental state 

monitoring is a quickly expanding field. Its applications are 

numerous, ranging from gaming to education, including 

driving and security. What are called biocybernetic systems, 

or physiologically attentive user interfaces, are systems that 

take the user’s covert aspects into account to adapt its 

functionality [1]. The assumption is that modulations in 

physiological features reflect modulations in the operator 

mental state (cognitive or emotional). Such covert aspects 

include workload and mental fatigue. First, mental workload 

(WKL) can be defined either as the load in working memory 

(i.e. number of items), the number of tasks to be performed 

simultaneously and more generally as a measure of the 

amount of mental resources engaged in a task. Thus, it is 

considered a measure of task difficulty [2], and depends on 

each individual’s capabilities and effort [3]. Second, mental 

fatigue is a gradual and cumulative process associated with 

reduced alertness. It arises notably from growing time-on-

task (TOT) [4].  

 

 Physiological measurements of an operator’s cognitive 

state used in the mental state monitoring framework include 

direct measurements of mental activity such as 

electroencephalography (EEG), and indirect ones such as 

electrooculography, and electrocardiography (ECG) [4]. 

ECG has for main advantages of being noninvasive and 

convenient for daily living measurements. Although ECG 

has become widely used, the impact of TOT on ECG-based 
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mental workload assessment has yet to be evaluated. Indeed, 

if such an influence exists, it may reduce the relevance of 

such ECG features in some conditions, and therefore call for 

features from other modalities such as EEG ones. Moreover, 

an assessment of ECG feature usability with very short time 

periods would benefit physiologically attentive user 

interfaces that could therefore prevent users from taking 

rapid and potentially erroneous decisions when detecting an 

abnormally high workload or mental fatigue. In this study, 

we assess the impact of working memory load and time-on-

task on basic ECG features on short time periods and 

compare their relevance for mental state assessment using 

both statistical analyses and a classification performance 

evaluation. The results allow us to select the appropriate 

feature for each mental state for short time period 

assessment. 

II.  ECG FEATURES 

ECG analyses are mainly based on the measurement of 

the RR interval. The R peak is the peak of the ECG wave 

with the highest amplitude, hence easier to detect than the 

other components. It is part of the well-known QRS complex 

and arises from ventricular depolarization [5, 6]. In order to 

compute the interval between two heart beats, it is therefore 

common practice to measure the time duration between two 

adjacent R peaks, as follows: IBIn = rn – rn-1 with IBI as the 

interbeat interval and rn the index of the n
th

 R peak.    ̅̅ ̅̅
  is 

the mean IBI over the k
th

 analyzed time segment. The 

analysis of the interbeat interval allows for computing the 

mean heart rate (HR) over a period of time, expressed in 

beats per minute (bpm):     
  

    ̅̅ ̅̅ ̅̅
. 

  

Heart rate variability (HRV) is another frequently used 

ECG feature. It reflects modulations in instantaneous heart 

rate over a given time period, usually several minutes. It is 

considered a good quantitative marker of the autonomic 

nervous system (ANS) activity [6]. HRV can be computed in 

the time domain, or in the frequency domain. In the time 

domain, a simple yet effective feature is the standard 

deviation of the IBI [6]:  

      √
 

   
∑             ̅̅ ̅̅ ̅̅      

     

with HRVk as the HRV in the temporal domain for the k
th

 

analyzed segment, and    ̅̅ ̅̅
  as the mean IBI over the given 

segment. The HRV in the time domain has been shown to be 

most effective in WKL classification compared with other 

features [7]. 

 

The HRV in the frequency domain can be computed from 

the beat index. The beat index, or RR interval tachogram, is 

the representation of the RR interval duration as a function 
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of the number of progressive beats [6]. The spectrum of this 

beat index is then found using for instance Welch power 

spectrum density method. Typically, two main components 

of the spectrum can be defined: a low frequency (LF) 

component (0.04-0.15 Hz) and a high frequency (HF) one 

(0.15-0.40 Hz). The HF component, also known as vagal 

tone, is thought to reflect parasympathetic activity [5, 6]. 

Although the physiological correlates of the HF component 

are known, there is no consensus regarding the LF one. It 

may reflect sympathetic activity [6]. Therefore the ratio 

LF/HF is often used to observe fluctuations in the 

sympathetic-vagal balance [5]. Both HR and HRV are 

markers of arousal and engagement and have been used to 

characterize levels of alertness and WKl. Typical findings 

are reported in Table I. 

 

The influence of the interaction between TOT and task 

demands on ECG features was recently studied by 

Fairclough et al. [9]. They showed that the higher portion of 

the LF component of HRV (0.08-0.13Hz) increases with 

TOT. They also showed that it decreases with task demands. 

But then, after a long period of time (one hour), the trend is 

reversed and it increases with task demands. Thus, the 

present study was designed to investigate joint effects of 

TOT and WKL on both features and classification 

performance and we expect TOT to impact WKL 

classification, as already shown for EEG features [17]. 

Table I Workload and Time-on-task effects on heart rate and heart rate 

variability as reported by the literature. WKL: workload; TOT: Time-on-task 

 Increase in WKL  Increase in TOT 

HR Increase [8,9,10,11,13] Decrease [4,8,14] 

HRV  Decrease [7] Increase [12] 

HF Decrease [9,10,14,15] Increase [9,10,16] 

LF Increase [9,10] / Decrease [9] Decrease[12] / Increase [9] 

III. METHODS 

This research was promoted by Grenoble’s hospital 

(France) and was approved by the French ethics committee 

(ID number: 2012-A00826-37). 

 

A. Experimental design 

Workload was manipulated using a modified Sternberg 

paradigm [18]. At each trial, the 19 participants (9 females; 

24.9 +/- 3.7 years old in average) had to memorize a list of 

sequential digits visually presented on a computer screen. 

Then, a probe item flanked with question marks was 

presented (Fig. 1). The participants had to answer as quickly 

as possible whether the probe was present or not in the 

memorized list using a response box. Two levels of WKL 

were considered, i.e. 2 and 6 digits to memorize (low and 

high WKL respectively). Two 10-minute blocks, each 

including 40 trials of each WKL level, were performed. 

Trials of low and high WKL were pseudo-randomly 

presented. In order to induce a mental fatigue between the 

two blocks, participants also carried out an intermediate 

similar task during 50 minutes. Given that the task was 

repetitive and stimulus poor, this delay allowed us to 

presuppose two levels of mental fatigue depending on TOT 

(short/long). 

 
Figure 1. Trial structure. The participants memorize a list of digits (2 or 6), 
and answer whether the probe was in the list. The circled segment is used 

for analyses. The next segment was added to perform other analyses that 

will be described in another paper. 
B. Data acquisition & preprocessing 

WKl and mental fatigue manipulation was confirmed 

thanks to behavioral and subjective measures. Participants’ 

reaction times (RTs) and accuracy were measured, as well as 

their answers to a mental fatigue questionnaire (Karolinska 

questionnaire [19]) before and at the end of the experiment, 

and between the 2 blocks. Participants’ ECG signal was also 

recorded using Ag/AgCl electrodes positioned at the sternum 

and fifth intercostal space of the left ribcage. Data were 

processed and analyzed offline. The signal was sampled at 

500 Hz and filtered between 1 and 40 Hz. We detected the R 

peaks using a threshold equal to half the amplitude of the 

segment’s maximum. A refractory period of 200ms was also 

used, as it is physiologically impossible to have an adjacent 

QRS complex before this delay [20]. 5-s time segments were 

then selected (circled on Fig. 1). This epoching step was 

performed in order to analyze time segments of equal 

duration between conditions of WKL. Indeed, one should 

not compare segments of different duration when willing to 

perform HRV analyses [6]. Thus, a total of 160 segments 

were available per participant: 80 per WKL or TOT 

condition (high/low, short/long), 40 per WKL and TOT 

condition (high WKL & short TOT, low WKL and short 

TOT, etc.). Trial values were considered outliers and 

rejected when they exceeded 2 standard deviations from the 

mean.  

C. Statistical analyses & classification 

To assess the significance of each factor’s effect, statistical 

analyses were performed in 2 different ways: First, we 

analyzed the HR and HRV features across all participants 

using repeated measures ANOVAs and Tukey post-hoc tests 

with WKL and TOT as factors. Behavioral and subjective 

data were analyzed in the same way. Secondly, participant-

specific classifiers were built to detect TOT and WKL 

levels. The classifiers used were Fisher LDA, with either one 

(HR or HRV) or 2 features (HR and HRV: ALL). Using a 

10-fold random cross-validation procedure, for each feature 

or feature combination we obtained results in classification 

performance for TOT and WKL levels independently, as 

well as for each feature or feature combination per TOT 

condition (STOT: short TOT ; LTOT long TOT). 

Classification performances were compared using single 

sample t-tests to test them against random (0.50). Then, we 

performed repeated measures ANOVAs with Tukey post-

hoc tests to assess the significance of the influence of feature 



  

choice on TOT or WKL level classification, as well as the 

impact of TOT condition on WKL level classification using 

different features. Lastly, for illustration purposes, the 

averaged HRV in the frequency domain was computed per 

TOT level over the whole signal using an auto-regressive 

model (order 20). 

IV. RESULTS 

A. Behavioral, subjective & ECG results 

Participants reported feeling increasingly tired with TOT 

(p<0.001). As regards the WKL effect, participants were 

slower to respond and had a lower accuracy in the high 

WKL condition than in the low one (p<0.001). Across all 

participants, ANOVAs and Tukey post-hoc tests revealed 

that HRV significantly increased with TOT for the low load 

condition (p<0.01), whereas no significant TOT effect was 

observed for HR. As for WKL, HR significantly decreased 

with an increase in WKL, and there was also a tendency for 

a decrease in HRV, both in the long TOT condition (p<0.01 

and p=0.08 respectively).   

 

B. Classification results 

The classification performance results are given in Table II.  

 
TABLE II Classification performance for each factor and feature (mean 
proportion of correct classification and sd) and statistical results. TOT: 

Time-on-task (S: short, L:long); WKL: workload; HR: heart rate; HRV: 

heart rate variability in the time domain; ALL: HR & HRV. 

Factors & Features M SD 

T-test single 

sample 

against 0.5 

ANOVA & Tukey 
post-hoc test 

TOT 

HR 0.64 0.13 * p<0.001 

TOT > WKL 

(p=0.06) 

 

HR & ALL > HRV 
(*p<0.001), but only 

for TOT (*p<0.001) 

HRV 0.56 0.12 
Tendency 

p=0.06 

ALL 0.65 0.13 *p<0.001 

WKL 

HR 0.56 0.05 *p<0.001 

HRV 0.54 0.06 *p<0.05 

ALL 0.57 0.05 *p<0.001 

WKL HR 
STOT 0.54 0.09 

Tendency 

p=0.09 

Opposite pattern: 

 HR STOT<LTOT,  

HRV STOT>LTOT 
but n.s. 

LTOT 0.58 0.07 *p<0.001 

WKL 

HRV 

STOT 0.57 0.10 *p<0.01 

LTOT 0.54 0.07 *p<0.05 

WKL 
ALL 

STOT 0.57 0.08 *p<0.001 

LTOT 0.57 0.08 *p<0.01 

1) TOT classification results 

We can see that classification performances were almost 

all significantly different from random. TOT classification 

performance reached 65 % of correct classification when 

both HR and HRV were used as input features, with HR as 

the most discriminative one. Fig. 2, a Poincaré plot that 

displays IBI fluctuations per TOT condition, illustrates this 

phenomenon for one participant. For this participant, the 

shift with TOT of the feature distribution is quite clear. 

Although classification of TOT is less accurate with HRV 

(56 %), TOT effect is clearly visible in the frequency 

domain, as illustrated by Fig. 3. Indeed, there was a clear 

increase in the HF component with increasing TOT. Thus, 

the ratio LF/HF decreased with TOT. 

 
Figure 2 Poincaré plot that displays IBI fluctuations per TOT condition (1 
participant). Conditionwise covariance matrices indicate a fitted Gaussian 

distribution by equidensity contours at 1.5 s.d. 

 
Figure 3 Average PSD of HRV per TOT condition across all participants. 

2) WKL classification results 

Regarding WKL classification performance, it reached 57 

% of correct classification when both features were used, 

although no significant difference was found between 

feature choice conditions. Fig. 4 illustrates the feature 

distribution for 1 participant. In addition, we observed 

opposite patterns of performance depending on feature and 

TOT condition: performance was higher for HR-based WKL 

estimation in the LTOT condition, whereas they were higher 

for HRV-based estimation in the STOT condition.  

 
Figure 4 Feature distribution per WKL condition (1 subject). Conditionwise 

covariance matrices indicate a fitted Gaussian distribution by equidensity 

contours at 1.5 s.d. The line is the FLDA separating hyperplane. HR: mean 
heart rate; HRV: heart rate variability (time domain). 
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V. DISCUSSION 

As expected, statistical analyses revealed a negative 

influence of WKL and TOT condition on both behavioral 

performance and subjective feeling. Regarding TOT, in 

keeping with the literature, the HF component of the HRV 

increased with it [9, 10, 16]. Moreover, although 

classification was performed on very short time segments 

(5s), good performance was achieved using HR and HRV for 

TOT assessment (65 %). Compared to HRV, the HR feature 

gave best results for the classification of this factor. What is 

more, the TOT effect was found to be conditional on the 

WKL level. Indeed, contrary to what could be expected from 

[9], we did not find the trend reversal in the WKL 

modulation of HRV after a long TOT. But it appeared that 

the classical increase of HRV with TOT was only present in 

the low load condition. This phenomenon was never 

reported in the literature, and may be due to an effort of the 

participants to stay alert for the more demanding trials, 

hence increasing their amount of recruited cognitive 

resources and diminishing the impact of TOT on HRV.  

 

As for WKL, HRV was as useful as HR for its estimation, 

and their combined use allowed us to reach a rate of 57 % of 

good WKL classification. Yet, the WKL effect was also 

found to be conditional on the TOT level. Indeed, HR and 

HRV both decreased with an increase in WKL in the LTOT 

condition, a phenomenon reflected by a better HR-based 

WKL estimation in the LTOT than in the STOT condition 

(58 % vs. 54 % respectively). On the other hand, HRV-based 

estimation was better in the STOT then in the LTOT 

condition (57 % vs. 54 % respectively). It should be noted 

that the decrease of HR with WKL in the LTOT condition 

may be due to the monotony of the digit presentation in the 

high load condition, as opposed to the rapidly engaging low 

load trials. 

 

This study has allowed us to investigate interaction effects 

that occur between TOT and WKL and that affect ECG 

features, hence potentially distorting the classifiers’ output. 

In the future, we plan on focusing on these effects and on 

analyzing individual differences more thoroughly. Indeed, 

when asked at the end, several participants reported feeling 

more tired at the beginning of the experiment than at the end, 

even though they had rated their mental fatigue otherwise. If 

they indeed presented this pattern opposite to what we 

expected, their features, when averaged with the others’, 

may have cancelled out major effects. Moreover, even 

though some discrepancies with the literature have been 

found, this study has assessed the usability of HR and HRV 

features for mental state monitoring on very short time 

segments. Yet, they can be subject to interactions and are 

nonspecific to a given mental state. This calls for in-depth 

research of more robust features and for modality fusion. By 

now, some real-time assessment systems that include several 

recording modalities have been designed [21].  
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