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Abstract 

Aquaporins (AQPs) are a group of small membrane proteins belonging to a highly 

conserved family of membrane proteins called MIPs (Major Intrinsic Proteins) that 

are responsible for the bidirectional transport of water (orthodox aquaporins) and 

also small uncharged solutes (aquaglyceroporins) across cell membranes, in 

response to osmotic or solute gradients. 

Rapid water flux across membranes is crucial to maintain the water homeostasis in 

many epithelia and endothelia involved in fluid transport. In addition, due to the 

unique ability of aquaglyceroporins to transport glycerol in addition to water, they 

have important roles in glycerol metabolism and skin hydration in non-fluid 

transporting tissues such as skin, fat and liver. The thesis introduction (Chapter 1) 

presents an overview of aquaporins structure, their main biological functions and 

related pathologies, with special emphasis on the so far described mechanisms of 

regulation. 

In the first part of this thesis (Chapter 2), we report the discovery of a new role for 

Aquaporin-5 (AQP5, an orthodox aquaporin) in adipocyte biology, where 

Aquaporin-7 (AQP7, an aquaglyceroporin) has been the mainly characterized 

protein in adipose tissue responsible for glycerol efflux.  

A better understanding of aquaporin regulation and gating would allow 

manipulation of their activity facilitating the identification of new putative 

modulators. A cellular model optimized to assess the function of aquaporins and 

discriminate individually each isoform, instead of mammalian cells where more 

than one isoform is usually expressed, is a useful tool to study aquaporin 

regulation.  

The second part of this thesis (Chapter 3) is dedicated to the functional 

characterization of different mammalian aquaporin isoforms (AQP3, AQP5, AQP7 
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and AQP10), using a yeast heterologous expression system devoided of 

endogenous aquaporins, a background where analysis is unlikely to be 

compromised by the co-expression of other aquaporin isoforms. Using the 

stopped-flow technique to evaluate the channel permeability for water and for 

glycerol, we were able to disclose gating mechanisms of aquaporin isoforms, being 

given special emphasis to the regulation by pH and phosphorylation. 

In the third part of this thesis (Chapter 4), a screening of several small gold 

compounds as inhibitors for Aquaporin-3 (AQP3, an aquaglyceroporin) was 

performed aiming at identifying new modulators with potential therapeutic use. 

 

Keywords: aquaporins, regulation, pH, heterologous expression, Saccharomyces 

cerevisiae 
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Resumo 

A água possui um papel crucial para a vida devido às suas propriedades únicas. 

Todos os processos bioquímicos e fisiológicos de um organismo dependem da 

presença de água, sendo esta o componente fundamental na manutenção da 

homeostase celular. Nas células eucarióticas, a água encontra-se distribuída pelos 

vários compartimentos intracelulares separados entre si por membranas 

intracelulares e do meio extracelular pela membrana plasmática. Estas membranas 

de composição bilipídica são normalmente impermeáveis à maioria dos solutos 

polares e/ou carregados, cuja passagem é facilitada através de canais membranares 

específicos. No entanto estas membranas são bastante permeáveis à água, sendo 

então propostas três vias de transporte: por difusão simples, por transporte passivo 

associado ao transporte de iões e solutos e por canais específicos para a água.  

Atualmente sabe-se que a maioria das células de um organismo possui proteínas 

específicas – as aquaporinas – que conferem à membrana uma permeabilidade à 

água de cerca de 5 a 10 vezes superior às membranas que não possuem estas 

proteínas. 

Devido às suas características estruturais, as aquaporinas permitem um rápido 

transporte bidirecional de água, seletivo e regulado, em resposta a gradientes 

osmóticos, ao mesmo tempo que previnem a passagem de protões e iões através da 

membrana plasmática. Em mamíferos, são conhecidas até à data treze isoformas 

(AQP0-AQP12) que são classificadas em três grupos de acordo com a sua 

sequência primária, localização celular e seletividade em 1) aquaporinas ortodoxas, 

primariamente seletivas à água; 2) aquagliceroporinas, para além de água também 

transportam pequenos solutos neutros, como glicerol e ureia; e 3) super-

aquaporinas, que são encontradas em membranas intracelulares e possuem menor 

homologia. 
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No entanto, a lista de substâncias que são capazes de permear as diferentes 

aquaporinas tem aumentado ao longo do tempo. Recentemente, para além de água 

e glicerol, foi também descrito o transporte facilitado através de algumas isoformas 

de arsenito, amoníaco e peróxido de hidrogénio. 

Devido à grande diversidade de tecidos onde são encontradas as aquaporinas, o 

seu papel de facilitar o transporte de água e/ou solutos através das membranas 

plasmáticas é importante em vários processos fisiológicos, tais como: secreção de 

fluido glandular, mecanismo de concentração urinária, excitabilidade neuronal, 

metabolismo dos lípidos, hidratação epidérmica e balanço de água no cérebro. A 

observação do fenótipo de ratinhos geneticamente modificados com knock-out de 

determinadas aquaporinas revelou funções fisiológicas muito importantes no 

aparecimento e desenvolvimento de várias patologias, como epilepsia, edema 

cerebral, glaucoma, cancro e obesidade. 

No Capítulo 1 é apresentada uma introdução geral que visa proporcionar um 

conhecimento abrangente sobre as principais funções das aquaporinas humanas e 

patologias associadas, dando especial atenção aos diferentes mecanismos de 

regulação já conhecidos. 

Na primeira parte dos resultados desta tese (Capítulo 2), através da construção de 

linhas celulares de pré-adipócitos de ratinho 3T3-L1 com diferentes níveis de 

expressão da Aquaporin-5 (cenário de ganho e perda de função) foi possível 

estabelecer um novo e determinante papel desta aquaporina na diferenciação dos 

adipócitos. 

Na segunda parte dos resultados desta tese (Capítulo 3), pretendeu-se usar um 

sistema de expressão heteróloga em Saccharomyces cerevisiae (S. cerevisiae) para 

permitir avaliar de forma individual a função de cada aquaporina. A levedura S. 

cerevisiae é considerada um valioso sistema de expressão heteróloga para estudar 

inúmeras proteínas devido à elevada homologia funcional entre esta e os 
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eucariontes superiores, incluindo mamíferos. Pelo facto de existir uma grande 

biblioteca de estirpes disponíveis, ser de fácil manipulação genética, ser pouco 

dispendioso em comparação com as culturas de células animais e poderem ser 

testadas uma variedade de condições externas, este sistema oferece condições 

experimentais ótimas para estudar a especificidade e regulação das aquaporinas. 

Após a expressão e confirmação da sua localização celular, procedeu-se à 

caracterização da função de cada isoforma, utilizando a técnica de interrupção 

brusca de fluxo, seguindo a variação de volume celular por fluorescência quando 

se introduz uma perturbação no meio extracelular. Os fluxos de água através da 

membrana celular causados por gradientes de pressão osmótica (de solutos 

impermeantes ou permeantes) provocam alterações transitórias de volume, até se 

atingir um novo volume final de equilíbrio osmótico. A velocidade com que as 

alterações de volume ocorrem e o tempo que a célula leva a re-estabelecer o seu 

novo equilíbrio osmótico dependem diretamente das características intrínsecas de 

transporte da membrana, em particular da quantidade de canais específicos para a 

água e para o soluto em questão. No Capítulo 3 foram estudadas quatro isoformas 

diferentes (AQP3, AQP5, AQP7 e AQP10) e os seus mecanismos de regulação por 

pH e fosforilação foram revelados pela primeira vez. 

Vários esforços têm vindo a ser feitos com o intuito de desenvolver possíveis 

fármacos para tratamento das aquaporinopatias, mas até agora nenhum composto 

se revelou qualificado para estudos in vivo, quer pela sua fraca solubilidade quer 

pela sua baixa capacidade de inibição. Na terceira parte dos resultados desta tese 

(Capítulo 4), deu-se especial atenção à descoberta de novos compostos 

organometálicos, inibidores da função da Aquaporina-3, que poderão ser usados 

para benefício clínico na prevenção ou tratamento das várias patologias associadas.  
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Palavras-chave: aquaporinas, regulação, pH, expressão heteróloga, Saccharomyces 

cerevisiae 
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General aims and outline of this thesis 

Being AQPs recognized as promising drug targets for several pathological 

conditions, detection and characterization of AQP function is critical to understand 

its regulatory mechanisms as well to identify efficient AQP modulators with 

potential for drug development. 

In general terms, the work developed in this thesis aimed to deep our knowledge 

in AQPs physiology and mechanisms of regulation, by (1) functional 

characterization of AQPs (analysis of water/glycerol transport); (2) investigation of 

post-translational regulatory mechanisms that can affect AQPs’ activity, such as 

pH and phosphorylation, and (3) screening of new chemical inhibitors and 

elucidation of its structure-activity relationship. 

This thesis is organized in five chapters. In Chapter 1, a general introduction is 

presented with the state-of-art of the subject of this thesis. Chapter 2 describes 

studies where the expression of endogenous AQP5 was detected in adipocytes, so 

far never reported. Using a gain / loss of function scenario, we found that AQP5 is 

important for cell differentiation, thus revealing a novel physiological role of AQP5 

in adipose cells. This discovery brings new insights into AQP5 biological functions. 

Chapter 3 is divided in four separate studies, where yeast cells were used to 

express and characterize mammalian AQPs. Mammalian cell lines frequently 

express more than one aquaporin isoform at the plasma membrane and, unless a 

specific isoform is silenced or overexpressed, its function is not easily 

discriminated. Using the yeast cell system, water/glycerol transport of particular 

mammalian AQP isoforms was evaluated, as well as their putative mechanisms of 

regulation. In the first part (subchapter 3.1), AQP5 ability to be short-term 

regulated either by pH and phosphorylation was investigated. Our data show that 

AQP5 can be gated by pH in a phosphorylation dependent manner, with higher 
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water permeability at physiological pH 7.4. In the second part (subchapter 3.2), pH 

regulation of rat and human AQP3 were compared and our data show that both 

isoforms are inactive at pH 5. In the third part (subchapter 3.3), pH regulation of 

human AQP7 was disclosed and discussed within its well-known physiological 

role in adipose tissue. In the fourth part (subchapter 3.4), pH regulation of AQP10, 

also abundantly expressed in human adipocytes, was investigated and the 

mechanism of pore gating was elucidated by structural studies. 

In Chapter 4, divided in two complementary studies, human red blood cells (RBC) 

were used as a screening system for several series of small molecules as AQP3 

inhibitors. In the first part (subchapter 4.1) the mechanism of aquaporin inhibition 

by a gold-compound is elucidated by biophysical and computational methods. In 

the second part (subchapter 4.2), two new series of gold compounds were tested in 

order to fine-tune specificity and potency.  

Finally, in Chapter 5, the results obtained along this thesis are discussed and future 

considerations are presented. 
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CHAPTER   

 

 

1 General Introduction 
 

Movement of water through cells is a prerequisite for all life forms. In eukaryotic 

cells, water needs to flow into and out of the cell and between intracellular 

compartments through plasma membrane and intracellular membranes, 

respectively, to maintain homeostasis.  

Aquaporins (AQPs) are a family of small integral membrane proteins found in 

almost every organism, from bacteria to humans, that act primarily as water 

channels conferring high water permeability to membranes. AQPs facilitate bi-

directional water movement across cellular membranes in response to osmotic 

gradients, playing a crucial role in water homeostasis through transcellular and 

transepithelial pathways. 

In the next sections, a comprehensive overview about AQP structure, function and 

regulation will be presented. Due to the variety of AQP related pathologies they 

are now considered to be drug targets and the importance of potential modulators 

will be also addressed.  
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1.1 Discovery of water channels – Historical perspective 

The first studies of water transport began in the early 50s when the high water 

permeability of human red blood cells (RBC) was detected after imposing an 

osmotic pressure gradient [1]. Although no water channels were identified at this 

date, these studies suggested that specialized water channels should be present in 

the RBC membrane to account for the high water permeability measured. 

The fundamental discovery and characterization of the abundant protein of the 

erythrocyte membrane CHIP28 (presently termed as Aquaporin-1 (AQP1)) by 

Peter Agre, who was acknowledged with a Nobel Prize in Chemistry in 2003, 

represented a paradigm shift in the understanding of membrane water transport 

[2]. Several studies have shown that AQP1 is a member of a conserved and 

widespread family of water and solute-permeable membrane proteins – Major 

Intrinsic Proteins (MIPs) - which have been demonstrated to be ubiquitous in all 

types of organisms [3]. 

 

1.2 Overview of aquaporins: structure and function 

Three-dimensional structural studies of AQPs from different species revealed a 

homotetrameric assembly in the plasma membrane (Figure 1.2.1 A) [4,5,6,7] that is 

assumed to be preserved among all AQP family members. Each monomer, with an 

hourglass conformation, functions independently as a water channel (Figure 1.2.1 

B). Figure 1.2.1 C illustrates the topology of the AQP monomer, which comprises 

six α-helical transmembrane domains (TM1-6) connected by three extracellular and 

two intracellular loops (Loop A-E), with a cytoplasmic N- and C-terminal [8].  

The intracellular and extracellular entry of the pore is constituted by several 

carbonyl groups that offer hydrophilic interaction sites for water molecules. The 

transport specificity of AQPs is achieved by the presence of two highly conserved 
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regions within the pore channel: 1) an aromatic/arginine selectivity filter (Ar/R SF) 

at the extracellular vestibule which forms the narrowest point along the channel 

pore, acting mainly as a size filter and 2) a pair of Asn-Pro-Ala boxes considered to 

be the signature of the AQP family (NPA motifs), located in loop B and E, which 

reenter into the lipid bilayer from opposite sites at the centre of the channel, 

behaving as dipoles forcing water molecules to acquire a specific orientation [9,10]. 

The combination of both size and charge restriction sites endorses AQPs with 

unique properties that allow water molecules to pass through the channel while 

preventing the permeation of protons and ions [11], and differentiate AQPs from 

other channels and transporters. 

 

 

Figure 1.2.1 │ General structure of aquaporins. Crystal structure of human AQP5 (PDB 

code 3D9S) in ribbon representation showing the (A) tetrameric organization viewed 

perpendicular to the plasma membrane (side view) and from the extracellular side (top 

view) and the (B) monomer hourglass conformation viewed parallel to the membrane. 
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Water molecules along the channel pore are shown as red spheres. (C) Schematic 

representation of AQP topology with six transmembrane α-helices (TM1-6), five connecting 

loops (loop A-E), ar/R selectivity filter and NPA motifs. 

 

Despite the conserved molecular structure, it has been demonstrated that some 

members of AQP family have different channel selectivity which are directly 

related with structural differences in the ar/R region. For some isoforms, the 

diameter of ar/R region is slightly larger and more hydrophobic and these are able 

to transport larger molecules such as glycerol and urea [12]. 

In humans, 13 AQPs isoforms (AQP0-12) are presently known which have been 

divided in three main subgroups on the basis of their primary sequence, 

localization and substrate selectivity: 1) orthodox AQPs (AQP0, AQP1, AQP2, 

AQP4, AQP5, AQP6 and AQP8) that are primarily selective for water permeation; 

2) aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) that also facilitate the 

movement of small neutral solutes such as glycerol and urea; and 3) 

superaquaporins (AQP11 and AQP12), that are found in intracellular membranes, 

showing unusual NPA boxes and lower sequence homology [13] as its function is 

still not clear; while AQP11 water and glycerol permeation was detected [14,15], 

function of AQP12 remains to be clarified. 

Interestingly a few aquaporins do not fit in only one sole category; for example, 

AQP6 and AQP8 are both classified as orthodox aquaporins, even though AQP6 is 

an intracellular isoform found in vesicles and AQP8 is also permeated by urea, 

ammonia and hydrogen peroxide [16,17,18]. AQP9 is the isoform with the most 

wide-ranging selectivity, facilitating the passage of monomethylselenic acid, 

selenite, lactate, ionic arsenic species and neutral solutes such as urea, carbamides, 

polyols, purines and pyrimidines [19,20]. The presence of AQP9 in highly 

metabolically active tissues [21] that accumulate several metabolites may provide 



5 
 

an exit pathway for their elimination. On the other hand, when compared to other 

AQP members, AQP0 has a limited water permeability. To compensate its poor 

water channel function, a secondary function has been suggested for AQP0 as a 

cell-to-cell adhesion protein, forming membrane junctions [22]. 

Also interestingly is the fact that the central pore formed by the homotetrameric 

structure has been recently described to be permeated by gases and cations [23]. 

Particularly, it has been proposed that AQP1 is the major pathway for CO2 

permeation in human red blood cells [24] and can also permeate cations, 

independently from the aqueous pore in individual monomers [25,26,27,28]. In 

general terms, emerging evidences show that AQPs are not simply water channels 

but can act as multifunctional channels [29]. 

 

 

1.3 Aquaporin physiological roles and related pathologies 

Much of our understanding of AQPs function in mammalian physiology has come 

from phenotype analysis of mice lacking one of the AQP isoforms. These studies 

have confirmed the anticipated involvement of AQPs in the mechanism of urine 

concentration (AQP2, Figure 1.3.1 A), glandular fluid secretion (AQP5, Figure 1.3.1 

B) [30] and cell migration (AQP1, Figure 1.3.1 C) [31,32]. On the other hand, the 

aquaglyceroporins subgroup gave rise to surprising roles in regulating glycerol 

content in epidermis preventing dehydration (AQP3, Figure 1.3.1 D) [33], 

adipocyte metabolism and obesity (AQP7, Figure 1.3.1 F) [34] and cell proliferation 

promoting carcinogenesis (AQP3, Figure 1.3.1 E) [35]. 
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Figure 1.3.1 │ Main physiological roles of aquaporins. Water-selective aquaporins are 

involved in (A) water reabsorption for urine concentration in kidney tubules; (B) fluid 

secretion in epithelial cells; and (C) cell migration. Glycerol transport through 

aquaglyceroporins is crucial for (D) skin hydration by maintaining high glycerol levels in 

epidermis which retains water; (E) cell proliferation by high ATP generation; and (F) 

adipocyte metabolism by facilitating efflux of glycerol from triglycerides (TG) hydrolysis. 

Adapted from [36]. 

 

Other studies led to the discovery of unexpected roles for AQPs in brain water 

balance and neural function (AQP4) [37], ocular function (AQP0) [38], macrophage 

immune function (AQP3) [39], as reviewed in [36]. Mutations and/or dysfunction 

of AQPs have been associated with several human pathologies, such as congenital 
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cataracts (AQP0) [38], palmoplantar keratoderma (AQP5) [40] and nephrogenic 

diabetes insipidus (AQP2) [41].  

Overexpression of several AQPs isoforms has been reported in many types of 

tumor cells and associated with tumor aggressiveness and clinical prognosis 

[42,43]. It is proposed that AQP-mediated water fluxes may facilitate changes in 

cell volume and shape that are crucial for cell migration, and are involved in cell 

invasion, metastasis and angiogenesis [31,44]. Recently, AQP5 gained attention 

due its potential implication in carcinogenesis in different organs and systems [45]. 

AQP5 was found overexpressed in cancer cells and tumor tissues, strongly 

suggesting that it may be implicated in tumor formation by contributing to cell 

differentiation and migration. In fact, AQP5 downregulation in hepatocellular 

carcinoma inhibited cell invasion and tumor metastasis which may result from 

impaired water uptake by tumor cells [46]. Implantation of tumor cells in AQP1-

null mice resulted in reduced tumor vascularity and subsequent impairment of 

tumor growth [31], and AQP3-null mice were remarkably resistant to the 

development of skin tumors [35].  

However, in human hepatocellular carcinoma, AQP9 mRNA and protein levels 

were significantly lower [47]. Interestingly, overexpression of AQP9 in a human 

hepatoma cell line inhibited cellular proliferation through cell cycle arrest and 

apoptosis, and also reduced tumor growth in mice [47]. In general, the pathological 

importance of AQPs and the mechanisms that are behind carcinogenesis and other 

diseases remain poorly understood [48]. 

In addition, it is now well established that reactive oxygen species (ROS), 

particularly H2O2, participate in cell signaling transduction pathways affecting 

cellular growth and proliferation mechanisms involved in cancer development 

[49,50]. Recently, permeation of H2O2 by some AQPs revealed that these channels 

could influence regulatory complex signaling pathways involved in pathological 
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states. In mammalian cells, AQP3, AQP8, and AQP9 were shown to mediate H2O2 

membrane transport [51,52,53], which may be used for intracellular signaling in 

cancer cells [54].  

 

 

1.4 Regulation of mammalian aquaporins  

As many other channels and transporters, there are emergent evidences that AQPs 

are subject to a very tight regulation in different cells and organs, either by 

transcriptional/translational mechanisms, protein trafficking, or by channel short-

term regulation also known as gating. The latter is often achieved by mechanisms 

directly affecting the protein channel conformation after its insertion in the plasma 

membrane, when a rapid regulation of water permeability is required.  

Furthermore, sequence alignment of aquaporins demonstrates that C-terminal is 

the most diverse region of these proteins and is often crucial to achieve channel 

regulation. In the particular case of AQPs, these domains are thought to regulate 

membrane targeting, interaction with other proteins and aquaporin function in a 

tissue-specific manner. 

 

 

1.4.1 Membrane trafficking 

The classical examples of this regulatory mechanism are the redistribution of 

AQP2 in kidney-collecting ducts and AQP7 in adipocytes, both in response to a 

hormonal stimuli. Trafficking of AQP5 is also regulated by the neurotransmitter 

acetylcholine. 
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1.4.1.1 Aquaporin-2 

Aquaporin-2 (AQP2) is one of the most characterized AQP isoforms which plays 

the important role of water reabsorption and urine concentration in kidney-

collecting ducts to maintain the overall body water homeostasis. Mutations and 

insufficient membrane abundance of AQP2 results in nephrogenic diabetes 

insipidus in humans [41,55]. Thus, insertion at the plasma membrane and retrieval 

of AQP2 are important processes that need to be precisely controlled (Figure 1.4.1). 

Briefly, AQP2 is stored intracellularly in vesicles and upon anti-diuretic hormone 

arginine-vasopressin (AVP) secretion, a cAMP signaling cascade is initiated which 

results in human AQP2 phosphorylation by PKA [56]. Phosphorylation of S256 

appears to be required for the fusion of AQP2-containing vesicles with the apical 

membrane [57].  

 

Figure 1.4.1 │ Schematic representation of transcellular water transport in kidney 

collecting ducts through AQPs. AQP2 is stored in intracellular vesicles and upon 

vasopressin stimulation its trafficking to the apical plasma membrane is triggered. With 

AQP2 at the apical membrane, water is reabsorbed from the lumen of collecting duct and 

exits through the basolateral membrane via AQP3/AQP4. 

 

When AVP levels decrease, internalization of AQP2 by endocytosis is triggered to 

restore the basal water permeability of the apical membrane. AQP2 in the cell 
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surface is short-chain-ubiquitinated on a single lysine residue (K270) enhancing its 

endocytosis and targeting to multivesicular bodies (MVB) [58]. Once in MVB, 

AQP2 can be subjected to 1) lysosomal degradation; 2) the next AVP-induced 

insertion cycle into apical membrane, after being deubiquitinated or 3) release as 

exosomes from renal cells into the urine [56]. 

Strikingly, AQP2 is also highly expressed in rat vas deferens where it is 

constitutively present on the apical membrane of epithelial cells and is not 

regulated by AVP [59].  This is a clear example that AQP targeting signals can be 

interpreted differently depending on the cell type or tissue.  

 

1.4.1.2 Aquaporin-5 

Aquaporin-5 (AQP5) is responsible for the majority of water secretion in exocrine 

glands such as lacrimal, salivary and sweat glands [60,61]. Abnormalities in AQP5 

trafficking toward the apical membrane of salivary and lacrimal acinar cells are 

supposed to play a crucial role in development of Sjögren’s Syndrome (SS) [62]. 

Patients suffering from SS experience severe mucous dryness and have a higher 

risk of developing a B-cell (non-Hodgkin’s) lymphoma [62].  

Normal saliva secretion by acinar cells is triggered by acetylcholine stimulation of 

M3 muscarinic receptors that leads to an increase in cytosolic [Ca2+] and Cl- and K+ 

channels opening. The efflux of Cl- and K+ ions create an osmotic gradient that 

results in cell shrinkage mediated by AQP5. AQP5 trafficking is induced from 

intracellular vesicles to apical membrane upon neurotransmitter stimulation to 

increase water permeability in acinar cells [63,64,65], similarly to AQP2 upon AVP 

stimulation. In the case of AQP5, a PKA consensus site is found in C-terminal 

region and some studies describe a phosphorylation event; however, is still 

controversial if it is crucial for membrane trafficking.  
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1.4.1.3 Aquaporin-7 

In feeding conditions, adipocytes accumulate triacylglycerols (TAGs) in lipid 

droplets while, during fasting, TAGs are hydrolyzed into free fatty acids (FFA) and 

glycerol that are release into the bloodstream. AQP7 is highly expressed in 

adipocytes plasma membranes being crucial for glycerol efflux into the blood 

stream, which will then be taken up by liver AQP9 for gluconeogenesis [66].  

Balance between formation (lipogenesis) and breakdown (lipolysis) of TAGs in 

adipocytes are hallmarks of body fat homeostasis [67]. As well, glycerol and 

aquaglyceroporin-induced glycerol fluxes are likely central elements of fat 

accumulation in the pathophysiology of obesity [34,68], since mice AQP7 knockout 

accumulate glycerol and TAGs, and develop enlarged adipocytes and obesity with 

age.  

Human aquaglyceroporin-7 (AQP7) is controlled by cathecolamine/insulin levels 

[69]. Briefly, during lipogenesis, pancreatic β-cells secrete insulin in response to 

increased glucose blood levels. Insulin stimulates glucose transporter 4 (GLUT4) 

trafficking to the adipocyte plasma membrane, promoting uptake of glucose to be 

converted into glycerol-3-phosphate and esterification into TAGs (Figure 1.4.2). 

Conversely, during fasting or exercise, lipolysis is stimulated by catecholamines 

promoting TAGs hydrolysis into free fatty acids and glycerol that are released into 

the bloodstream to provide energy in other tissues (Figure 1.4.2). During the fed 

state AQP7 is found intracellularly, regulated by insulin [70], whereas it is 

trafficked to the plasma membrane in response to a lipolytic stimuli by 

catecholamines [71]. 
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Figure 1.4.2 │AQP7 trafficking and its contribution for glycerol metabolism in 

adipose tissue. In lipogenesis, AQP7 is found intracellularly. During lipolysis, triglycerides 

(TG) are hydrolyzed in free fatty acids (FFA) and glycerol. Efflux of glycerol is facilitated by 

AQP7 which is trafficked to the plasma membrane in response to an increase in 

catecholamines and a decrease in insulin levels. 

 

1.4.2 Mechanisms of aquaporin channel gating 

AQPs can be subjected to regulation via different mechanisms. For example, some 

orthodox aquaporins are regulated by posttranslational modifications, as 

phosphorylation [72,73,74,75], as well as gated by sudden osmotic changes and 

membrane surface tension [72,76,77,78], divalent cations [79,80] and pH [81,82]. 

The orthodox water channels AQP0 (expressed in the lens) and AQP6 (expressed 

in the intercalated cells of the kidney collecting ducts) are gated by pH and appear 

to have low permeability at physiological pH, increasing below pH 7 and with a 

maximum of permeability at about pH 6.5 [18,79].  

As far as aquaglyceroporins are concerned, information about gating mechanisms 

is only available for AQP3, which can be regulated by both pH and divalent 

cations [83,84,85]. Interestingly, at variance with AQP0 and AQP6, AQP3 shows an 
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overall maximum of permeability for water and glycerol above pH 6.5, decreasing 

with lower pH, until complete pore closure at pH 5 [83,85]. As AQP0 and AQP6 

are both orthodox aquaporins and AQP3 is permeated by glycerol, these 

differences may be correlated with protein function in different cells and organs. 

Remarkably, more than one regulatory mechanism is found in the same isoform 

pointing to a complex level of regulation. For example, water channel permeability 

of AQP0 is gated by either low pH, phosphorylation at C-terminal residues and/or 

Ca2+ concentration [79]. In vasopressin-regulated water reabsorption through 

AQP2 in the kidney, phosphorylation of AQP2 S256 that appears to be crucial for 

its apical membrane trafficking is also responsible for an increase channel itself 

water permeability [86]. 

Interestingly, AQP1 can function as a cation channel when gated by cGMP 

[25,27,28,87]. The reversible cGMP-induced activation that requires the direct 

binding of the secondary messenger cGMP is thought to occur at C-terminal since 

truncation of AQP1 at position 237 abolished the cation permeation without 

affecting water permeability [27]. However, it appears that the presence of cGMP is 

not sufficient since only a small fraction of AQP1 channels in the plasma 

membrane, that are constitutively open for water permeation, are active for cation 

conductance [27]. Phosphorylation of a tyrosine residue in C-terminal (Y253) is 

required for AQP1 ion function to be available for activation [25].  

 

 

1.4.3 Interaction with regulatory proteins 

Several protein interaction partners have been identified for mammalian AQPs in 

the last years [88]. Some regulatory proteins including carbonic anhydrase II (CAII) 

[89] and calmodulin (CaM) [79] directly affect AQP channel permeability, whereas 

others often control membrane trafficking and protein complex assembly, such as 
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SPA-1 [90], prolactin inducible protein (PIP) [91], perilipin-1 (PLIN1) [92] and 

Na+/H+ Exchange Regulatory Factor-1 (NHERF1) [93]. 

AQP0 water permeability is inhibited by an allosteric mechanism in response to 

increased Ca2+ concentration, which promote the binding of calmodulin (CaM) 

[79,94], whereas renal carbonic anhydrase II (CAII) is known as to interact 

physically and functionally with AQP1 C-terminal enhancing its water 

permeability, crucial for urine concentration in thin descending limp of the loop of 

Henle [89]. CAII-deficient mice displayed a lower ability to concentrate urine due 

to the reduced water flux through AQP1 [89]. 

Both AQP2 and AQP9 possess PDZ-binding domains at the C-terminal. PDZ 

proteins are involved in targeting, anchoring and stabilizing membrane proteins. 

SPA-1, a PDZ protein, directly bounds to AQP2 in kidney papilla and regulates its 

trafficking to apical membrane [90]. The PDZ binding motif of AQP9 binds 

NHERF1 [93], which is a cytoplasmic scaffolding protein that facilitates the 

assembling of multiprotein complexes at the plasma membrane. Also CFTR (Cystic 

Fibrosis Transmembrane Conductance Regulator, a cAMP-activated Cl- channel) 

co-immunoprecipitated with AQP9 in rat epididymis and Sertoli cells [93,95]. It is 

thought that cAMP-activated CFTR is required for normal AQP9 permeability [96] 

probably via NHERF1 complex formation and a disruption of this protein complex 

might contribute to male infertility observed in cystic fibrosis [93]. This interaction 

is further supported by studies in human preeclamptic placentas where a decrease 

in CFTR protein expression with an AQP9 apparent lack of functionality for water 

and mannitol permeability is found [97,98]. It seems that decreases or defects in 

CFTR lead to defective regulation of AQP9 permeability. 

Some regulatory proteins are important for AQP trafficking. As formerly 

described, AQP7 trafficking in adipocytes is controlled by hormone stimulation. 

During feeding state, it is suggested that AQP7 is kept intracellularly by a physical 
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interaction with PLIN1 while, during stimulated lipolysis, a PKA-mediated 

phosphorylation prevents the interaction, allowing AQP7 translocation to the 

plasma membrane for glycerol efflux [92]. Another example is the prolactin-

inducible protein (PIP) that was found to interact with murine AQP5 C-terminal in 

lacrimal glands promoting the localization of the water channel in apical 

membrane [91].  

In other cases, AQPs can also determine the function of other proteins. An example 

is the functional interaction between AQP5 and the transient receptor potential 

cation channel (TRPV4). In fluid secretion of salivary glands, AQP5 is crucial for 

the initial rate of cell swelling but also for the subsequent cell volume recovery - 

regulatory volume decrease (RVD) [60]. Both channels are required for the 

regulatory response but deletion of AQP5 N-terminal showed that a physical 

interaction is required for TRPV4 activation [99]. 

 

1.5 Aquaporins as drug targets 

Numerous roles of AQPs in physiology and pathological conditions make these 

proteins essential for health, suggesting that AQPs can be considered as potential 

targets for drug development. Modulators of AQPs are expected to be of broad 

interest for diagnostic and therapeutic approaches, as well as a tool to investigate 

AQP molecular features and mechanisms of gating. 

The effect of sulfhydryl-reactive compounds such as HgCl2 on water permeability 

inhibition is well described in the literature [2,100] and these compounds are 

considered benchmark inhibitors of orthodox AQPs [2,100] and aquaglyceroporins 

[101,102]. Despite mercurial compounds have been typically used to block AQP 

activity, they are extremely toxic and nonspecific due to its high affinity towards 

cysteine and methionine residues, and thus not suitable for in vivo experiments and 
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therapeutic application.  

In the past years, several chemical compounds such as acetazolamide [103,104], 

tetraethylammonium [105,106], inorganic salts [107], aromatic sulfonamides and 

dihydrobenzofurans [108,109] were reported as inhibitors of AQPs permeability. 

The inhibitory effect of other transition compounds, that are also able to interact 

with sulfhydryl groups such silver (as silver nitrate and silver-sulfadiazine) [110] 

and copper [84] were reported.  

Recently, our group selected some metallodrugs well-known by their anticancer, 

antimetastatic, antirheumatic and antibacterial properties to evaluate their ability 

to inhibit AQP3 glycerol transport, using human red blood cells (RBC) as a 

screening model [101]. Only the water-soluble Au(III) compound [Au(phen)Cl2]Cl 

(phen = 1,10-phenanthroline) (Auphen) showed to be effective by reducing AQP3 

glycerol permeability in 90% and highly selective since it poorly affected AQP1-

mediated water permeability [101]. Auphen selectivity towards AQP3 can be 

explained by the favorable interactions that can occur between the hydrophobic 

phenanthroline ligand and the hydrophobic AQP3 pore entrance region, in 

contrast to the highly hydrophilic region of AQP1 [101]. 
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CHAPTER   

 

 

2 New insights into the physiological roles 

of aquaporins 
 

In mammalian cells, multiple AQP isoforms are usually co-expressed and their 

individual contribution to biological processes is difficult to ascertain. The use of 

gain of function / loss of function strategies helps to disclose novel physiological 

roles of AQPs. In the adipose tissue where aquaglyceroporins are mainly 

expressed, AQPs coordinated activity might be crucial to assure lipid homeostasis. 

Recently, AQP5 was described as a regulator of other AQP isoforms. We 

hypothesized for a role of AQP5 in adipocyte biology. 
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2.1 Role of aquaporin-5 in adipocyte differentiation 

2.1.1 Abstract 

Aquaporins (AQPs) are membrane channels widely distributed in nature. 

Typically, multiple isoforms are expressed in a single tissue. The adipose tissue is 

no exception where several AQP members have been identified. The importance of 

overlapped AQPs expression is unclear, yet interisoforms interactions might be 

required for key cellular functions. Recently, AQP5 was described as a regulator of 

other AQP isoforms. Therefore, we hypothesized for a role of AQP5 in adipocyte 

biology.  

Gene expression analysis revealed the presence of AQP5 in both 3T3-L1 fibroblasts 

and adipocytes, being more abundant in the later. AQP5 depletion impaired 

adipocyte differentiation, which was confirmed by decreased expression of specific 

differentiation markers. By overexpressing the human AQP5 in mature adipocytes 

it was possible to ascertain its role as a water channel in a gain-of-function 

scenario. To our knowledge, this is the first time that AQP5 is reported on adipose 

tissue. Our data revealed AQP5 as a new player in adipose tissue biology. 

 

2.1.2  Introduction 

For a long time, AQP7 has been the only aquaporin isoform associated with the 

adipose tissue. Evidences that AQP7 is involved in obesity were found in AQP7 

knockout mice presenting adipocyte hypertrophy and in obese humans showing 

dysregulated AQP7 expression [1,2].  

Recently, other AQP isoforms were reported in human adipocytes, namely AQP3, 

9, 10, and 11 [3,4,5]. Although the role of these novel adipose AQPs is still unclear, 

their dysregulation seems to be mostly associated with metabolic disorders [6]. The 

need for overlapped AQPs expression in tissues, including the adipose, is not yet 
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understood but it is speculated that the establishment of interisoform physical 

interactions is required for important cellular functions [7,8].  

Recently, AQP5 was described as participating in protein–protein interactions, 

controlling another aquaporin isoform in kidney [9]. AQP5 is highly expressed in 

corneal epithelium, alveolar type I cells, epidermis, and in several glandular 

epithelia [10]. AQP5 dysfunction has been associated with a vast array of 

phenotypes: AQP5-null mice present reduced saliva production [11] and airway 

submucosal fluid secretion [12]; two recent studies showed that AQP5 missense 

mutations are associated with the development of palmoplantar keratoderma 

[13,14] and interestingly, there are many evidences suggesting the importance of 

AQP5 upregulation in promoting tumor cell proliferation [15].  

The evidences correlating AQP5 to adipose tissue biology are scarce. In favor of 

AQP5 involvement in adipose tissue biology is the surprising link discovered 

between hypothalamus AQP5 and 169 adipose genes, strongly indicating a 

possible regulatory coordination [16]. Interestingly, AQP5-depleted mice are 10–

15% smaller by weight than controls [17], yet the precise mechanisms have not yet 

been explored. With these discoveries in mind, we hypothesized for the presence 

of AQP5 in adipocytes. 

In this work, we silenced AQP5 expression in mice 3T3-L1 adipocytes and 

observed an impairment of cell differentiation that was confirmed by 

quantification of specific differentiation markers. Further, by overexpressing the 

human AQP5 isoform, we unveiled its activity as a functional water channel when 

expressed in adipocytes. 
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2.1.3  Results and Discussion 

AQP5 is expressed in 3T3-L1 cells 

For a long time AQP7 has been the only AQP associated with the adipose tissue, 

but in recent years AQPs expression profile in adipose tissue broadened with the 

identification of many other AQP members, namely AQP3, AQP9 [5], AQP10 [3] 

and AQP11 [4].  

Within the search for AQP5 association with adipose tissue biology, gene 

expression analysis revealed the presence of AQP5 in both 3T3-L1 fibroblasts and 

mature adipocytes (Figure 2.1.1). As expected, AQP7 expression was only detected 

in adipocytes, roughly two-fold the level of AQP5. In addition, increased AQP5 

levels in adipocytes were observed, indicating that its expression might also be 

related to adipose cells differentiation. 

 

 

Figure 2.1.1 │ AQP7 and AQP5 gene expression analysis in 3T3-L1 cells. AQP mRNA 

levels are expressed relative to the reference gene β-actin and to AQP7 expression. Data 

are presented as mean ± SEM of three independent measurements. [Data obtained by Ana 

Madeira] 
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AQP5 depletion affects adipocyte morphology reducing lipid droplets 

According to AQPs solute specificity, AQP5 is described as a selective water 

channel [10]. To establish the direct role between AQP5 expression levels and the 

adipocyte membrane water permeability, we obtained 3T3-L1 stable cell lines in 

which AQP5 was downregulated (mice AQP5 knockdown phenotype, AQP5-

shRNA) or upregulated (overexpressing phenotype for human AQP5, hAQP5) 

(Table 2.1.1). The knockdown cell line showed a 68% reduction of AQP5 transcript 

whereas enhanced levels of human AQP5 were detected in the overexpression cell 

line (Table 2.1.1).  

 

Table 2.1.1 │ AQP5 expression in the generated 3T3-L1 cell lines. AQP5 expression in 

3T3-L1 adipocytes: control, AQP5-shRNA (AQP5 knockdown), and hAQP5 (human AQP5 

overexpression). β-actin was used as reference gene. Data represent mean ± SEM of three 

independent measurements. nd, not detected. *P < 0.05 vs. Control. [Data obtained by Ana 

Madeira] 

 

3T3-L1 generated cell lines Gene Relative mRNA expression 

Knocked down Control Mouse AQP5 0.544 (±0.086) 

 AQP5-shRNA  0.176 (±0.034)* 

Overexpression Control Human AQP5 nd 

 hAQP5  0.337 (±0.133) 

 

 

After differentiating these cell lines expressing different amounts of AQP5, distinct 

morphologies were noticeable amongst them. We observed that AQP5 knockdown 

adipocytes presented smaller lipid droplets, when compared with both control and 

human AQP5-overexpressing cells (Figure 2.1.2 A). 

To further explore the mechanisms underlying these observations we assessed the 

relative non-osmotic volume (β) [18], which represents the fraction of the cell that 

is osmotically unresponsive. In adipocytes, besides the intracellular organelles, the 
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increase in osmotically inactive portion is greatly due to the existence of large lipid 

droplets that occupy most of the cytoplasm. In fact, a positive correlation between 

adipocytes nonosmotic volume (β) and triglyceride content was previously 

established [18]. Figure 2.1.2 B shows significantly lower β values for AQP5-

depleted adipocytes (AQP5-shRNA), in comparison with control and hAQP5, 

indicating lower triglyceride content in these cells. No differences were detected 

between control and hAQP5-overexpressing adipocytes. However, considering 

that the control cell line already expresses endogenous AQP5 (mouse AQP5) and 

has the capacity of fully differentiation, further differentiation promoted by 

hAQP5 overexpression would not be expected. 

 

 

Figure 2.1.2 │ AQP5 depletion affects adipocyte morphology reducing lipid droplets. 

(A) Representative illustration of 3T3-L1 adipocytes with different levels of AQP5 [controls, 

AQP5 knockdown (sh-AQP5) and human AQP5 overexpression (hAQP5)]. (B) Nonosmotic 

volumes β of control and human AQP5-overexpressing adipocytes (hAQP5). Bars show 
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mean ± SEM from 20 to 25 cells. Significance levels: ns, not significant; **P < 0.01; ***P < 

0.001 vs. control.  

 

These observations led us to speculate for a generalized defect in adipocytes 

differentiation as a consequence of AQP5 depletion. To confirm this hypothesis, we 

quantified specific markers of adipocyte differentiation (fatty acid-binding protein, 

aP2; hormone-sensitive lipase, HSL; and glucose transporter type 4, Glut4) in both 

control and AQP5-depleted cells (Table 2.1.2). A tendency toward lower 

adipogenic markers levels was observed in regard to control. Thus, these data 

point towards a perturbation in adipocytes maturation related to the absence of 

AQP5.  

 

Table 2.1.2 │ Expression of specific mature adipocyte markers. Expression in control 

and AQP5 knockdown (AQP5-shRNA) 3T3-L1 adipocytes. GAPDH was used as reference 

gene. Data represent mean ± SEM of three independent measurements. [Data obtained by 

Ana Madeira] 

Gene Cell line Adipocytes 

Mouse aP2 Control 0.096 ( ±0.033) 

 AQP5-shRNA 0.085 (±0.014) 

Mouse HSL Control 0.152 (±0.090) 

 AQP5-shRNA 0.076 (±0.002) 

Mouse Glut4 Control 0.229 (±0.168) 

 AQP5-shRNA 0.114 (±0.011) 

 

Previous studies have correlated elevated AQP5 expression levels with increased 

proliferation in several cancer cell lines [19,20,21,22,23]. In the course of 

differentiation, 3T3-L1 preadipocytes undergo multiple rounds of proliferation, 

referred as mitotic clonal expansion [24]. Whether AQP5 interferes with this 

process still needs to be further elucidated. 
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Human AQP5 is a functional water channel in adipocytes 

Water permeability Pf was determined by computing the time course of cell 

volume change (V/V0) after a hyperosmotic challenge with a non-diffusible solute 

(mannitol), inducing water outflow and cell shrinkage. A faster volume change is 

depicted for hAQP5-overexpressing cells (Figure 2.1.3 A), giving a Pf of (1.6 ± 0.1) × 

10-3 cm s-1 for hAQP5 and of (0.9 ± 0.1) × 10-3 cm s-1 for control adipocytes (Figure 

2.1.3 B). 

It is well documented that upon differentiation, adipocytes plasma membrane 

undergoes striking changes to accommodate the unique functions carried out by 

these cells [25,26]. Significant alterations in both lipid/protein composition and 

arrangement impart changes in plasma membrane properties, including 

membrane permeability. It was previously reported that AQPs expression 

(AQP3,7) is intrinsically related to adipocytes differentiation [5,27] and specifically, 

the involvement of AQP7 in water permeation in mature adipocytes was shown 

[18]. Therefore, given that AQP5 depletion compromises adipocytes differentiation 

with predicted impact on the overall plasma membrane properties, for comparison 

purposes Pf was only assessed in control and hAQP5 overexpressing adipocytes. 

Our results show that human AQP5 is a functional water channel when expressed 

in adipocytes. Further studies are required to clarify if water transport through 

AQP5 is associated with adipocytes differentiation, which seems to be 

compromised in the absence this protein (Figure 2.1.3). 
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Figure 2.1.3 │ Functional assessment of human AQP5 water transport. (A) 

Representative time course of the relative cell volume change V/V0 after an osmotic shock 

with mannitol. All data points were from cells presenting equivalent nonosmotic volumes 

(β). (B) Osmotic water permeability coefficient (Pf). Bars show mean ± SEM from 20 to 25 

cells. Significance levels: ***P < 0.001 vs. control.  

 

2.1.4 Conclusions 

AQP5 has been classified as specific for water transport and thus its contribution to 

adipocyte differentiation is not probably related with glycerol permeation. hAQP5 

high-resolution structure [28] displayed a pore that narrows to an average radius 

of 1.02 Å near the highly conserved ar/R constriction region, which is marginally 

narrower than that of AQP1 [29]. This feature renders the channel unable to 

permeate molecules much larger than water, such as glycerol. Thus, it is not 

expected any effect on glycerol permeability due to AQP5 expression nor a direct 

effect on glycerol metabolism. 
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Alternatively, AQP5 role in adipocytes may rely on the coordination with specific 

functional partners. Transient receptor potential vanilloid 4 (TRPV), a Ca2+-

permeable nonselective cation channel described as a sensor of many stimuli, 

including osmolarity [30], was reported as functionally linked to AQP5 [14,31,32]. 

Remarkably, adipose tissue expresses high levels of TRPV4 [30] and a relation 

between obesity and TRPV4 has been proposed: deletion of mouse TRPV4 results 

in reduced glucose levels, improved insulin sensitivity and resistance against diet-

induced obesity [33]. In human and murine salivary gland cells, activation of 

TRPV4 upon hypoosmotic conditions is dependent on the presence of AQP5 [31], 

whereas in lung epithelial cells TRPV4 activation by hypotonicity leads to a 

reduction in AQP5 abundance [32]. Despite the mechanism(s) associating TRPV4 

activation and AQP5 still remain untangled in adipose tissue, a deeper 

involvement of AQP5 with TRPV4 or other interaction partners cannot be 

disregarded. 

 

 

2.1.5  Experimental Section 

Cell culture and differentiation - 3T3-L1 preadipocytes (CCL 92.1; American Type 

Culture Collection, Manassas, VA) were grown to confluence and induced to differentiate 

into adipocytes essentially as previously described [34]. Fully mature adipocytes were 

used 10-15 days after initiation of differentiation. 

 

cDNA and shRNA constructs - Human AQP5 was subcloned from the pDONR223 

(Invitrogen, Carlsbad, CA) into the lentiviral expression vector pWPI-DEST (Adaptation 

by Trono Lab) using the recombination Gateway® Technology as described [18]. For 

mouse AQP5 silencing, five different target shRNA constructs inserted within the 

lentiviral vector pLKO.1-puro were tested [35]. The effective target sequence of the sense 
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shRNA was as follows: 5’ – GCTGTGGTCAAAGGCACATAT – 3’ (Clone ID 

TRCN0000105621). shRNA lentiviral non-target plasmid (MISSION pLKO.1-puro Control 

Transduction Particles, Sigma-Aldrich, St. Louis, MO) was used as a control and contains a 

puromycin resistance marker for selection of successfully infected cells. 

 

Lentivirus production and infection of 3T3-L1 preadipocytes - To generate the lentivirus, 

shRNA or cDNA lentiviral expression constructs were co-transfected into Human kidney 

293T cells with pCMVR8.74 (Addgene plasmid 22036) and pMD2G (Addgene plasmid 

22036) using the polyethilenimine method [36] as described [18]. The HIV derived 

constructs (pCMVR8.74 helper packaging vector and pMD2G vector encoding for envelop 

protein) were kindly provided by Dr. D. Trono, EPFL (Switzerland). Levels of human 

AQP5 overexpression were determined by RT-PCR and expressed relative to control cells 

infected with the empty plasmid (GFP control). 

 

RNA extraction and RT-PCR - Total RNA was extracted with RNeasy Mini Kit (Qiagen, 

Hiden, Germany) as described [18]. Quantification of PCR products was accomplished by 

measuring the fluorescence of specific probes for each target sequence (Taqman ® pre-

designed gene expression assays, Applied Biosystems, Carlsbad, CA) or by measuring 

fluorescence from the progressive binding of SYBR green I dye to double-stranded DNA. 

Amplification and detection of specific products were performed with the 7500 Real-Time 

PCR System (Applied Biosystems) following the manufacturer’s protocol. Relative 

quantification value of PCR transcripts was calculated either using the comparative Ct 

method (manufacture’s protocol) or the standard curve method [12] with normalization to 

β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) endogenous controls. 

The set of specific primers and TaqMan® pre-designed gene expression assays were as 

follows: AQP5 (Mm00437578_m1); AQP7 (Mm00431839_m1); β-actin (Mm02619580_g1); 

GLUT4 (5’- ACTTCATTGTCGGCATGGGT-3’ and 5’-AGATCTGGTCAAACGTCCGG- 3’); 

aP2 (fatty acid binding protein 4) (5’-TTCGATGAAATCACCGCAGA-3’ and 5’-

GGTCGACTTTCCATCCCACTT-3’); HSL (Hormone sensitive lipase) (5’-
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GGCTTACTGGGCACAGATACCT-3’ and 5’-CTGAAGGCTCTGAGTTGCTCAA-3’); and 

GAPDH (5’-GGCCATCCACAGTCTTCTGG-3’ and 5’-

ACCACAGTCCATGCCATCACTGCCA-3’). 

 

Permeability assays - Water permeability (Pf) was measured in individual adherent cells 

on a coverslip as previously described [18]. Briefly, 3T3-L1 adipocytes were loaded with 5 

μM calceinacetoxymethyl ester (calcein-AM) (Sigma Aldrich) (a volume sensitive 

fluorophore) for 90 min at 37°C in 5% CO2/95% air. The coverslips with the adhered cells 

were mounted in a closed perfusion chamber (Warner Instruments, Hamden, CT) on the 

stage of a Zeiss Axiovert 200 inverted microscope. Fluorescence was excited at 495/10 nm 

and the emission fluorescence was collected with a 535/25nm bandpass filter coupled with 

a 515 nm dichroic beam splitter. Images were captured using a ×40/1.6 epifluorescence oil 

immersion objective and a digital camera (CoolSNAP EZ, Photometrics, Tucson, AZ) and 

were recorded by the Metafluor Software (Molecular Devices, Sunnyvale, CA). For the 

permeability assays the strategy developed in our previous work was used [18]. Briefly, 

for the Pf assessment, cells were perfused with HEPES [135 mM NaCl, 5 mM KCl, 2.5 mM 

CaCl2, 1.2 mM MgCl2, 10 mM glucose, 5 mM HEPES, pH 7.4, and initial osmolarity 

(osmout)0 = 300 mosM] for 60 sec, after which 300 mM mannitol (nondiffusible solute) was 

added, being achieved an external osmolarity (osmout)∞ = 600 mosM and thus a tonicity 

of the osmotic shock (Λ) of 2 [Λ is defined as the ratio between final and initial media 

osmolarities, Λ =(osmout)∞/(osmout)0]. Permeability coefficient Pf was evaluated from the 

measured time-dependent volume changes, vrel=V/V0, obtained by adding mannitol 

(impermeant solute) to the external media achieving an osmotic challenge of Λ=2. The 

relative nonosmotic volume β=VNosm/V0 was considered in all calculations. Parameters (Pf 

and β) were evaluated by numerically integrating and curve fitting the time dependent vrel 

data, using the model equations detailed in [18] and the Berkeley Madonna software 

(http://www.berkeleymadonna.com/). 
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Cell volume measurement - Cell volume V was measured at selected time points from 2D 

images obtained during the permeability assay to evaluate the initial volume (prior to the 

osmotic challenge V0) and the final equilibrium volume. For each assay three coverslips 

were analyzed (approximately 25 cells). The cross-sectional area of calcein-loaded cells 

was measured using the Image J software [37] and cells were assumed to have a spherical 

shape for volume calculations. A linear relationship between relative changes in cell 

osmotic volume (V-β)/(V0-β) (thus of V/V0) and calcein fluorescence intensity (F/F0) was 

previously reported [38] and validated for these 3T3-L1 cells [18] allowing the calibration 

of the fluorescence output after the mannitol osmotic challenge. This linear correlation 

indicates that the overestimation of cellular volume V when considering a spherical rather 

than a disc-like shape of adherent cells can be disregarded for relative volume changes 

V/V0 [18]. Cell fluorescence traces F/F0 were converted into (V/V0) after subtracting the 

bleaching given by the initial fluorescence decay before the mannitol osmotic shock. F0 

was calculated in each signal as the averaged initial values of fluorescence prior to the 

osmotic challenge. 

 

Statistical analysis - Results were expressed as mean ± SEM of n individual experiments. 

Statistical analysis between groups was performed by one-way ANOVA followed by 

Tukey’s multiple comparisons test or unpaired t-test. P values < 0.05 were considered 

statistical significant. Statistical analyses were performed using the Graph Prism software 

(GraphPad Software). 
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CHAPTER   

 

 

3 Exploring the pH regulation of 

aquaporins by heterologous expression in 

yeast 

 

A better understanding of human aquaglyceroporin regulation in biological 

environments by different stimuli and the identification of mechanisms of 

modulation of water/glycerol fluxes may help the design of novel inhibitors with 

potential therapeutic applications.  

An excellent tool to investigate AQP’s function and regulation is the yeast 

heterologous expression system. In the current chapter, AQP3, AQP5, AQP7 and 

AQP10 isoforms were functional characterized in the yeast Saccharomyces cerevisiae 

and their channel activity regulation by external pH were investigated.  
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3.1 pH gating induced by phosphorylation of Aquaporin-5 

 

3.1.1 Abstract 

Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human 

tissues that was found up-regulated in different tumors and considered implicated 

in carcinogenesis in different organs and systems. However, AQP5 short-term 

regulation was not reported and mechanisms underlying its involvement in cancer 

are not well defined. In this work, we expressed rat AQP5 in yeast and 

investigated mechanisms of gating. Our data shows that AQP5 does not change its 

water permeability by external acidification, but AQP5 can be gated by pH in a 

phosphorylation-dependent manner, with higher activity at physiological (pH 7.4). 

 

3.1.2 Introduction 

Besides being widely distributed among the human body, AQP5 was found 

expressed in salivary and lacrimal glands and showed to play a major role in saliva 

secretion [1]. AQP5 transport defect was also associated with Sjögren’s syndrome, 

a chronic autoimmune disease that destroys the salivary and lacrimal glands [1].  

Interestingly, a recent study showed that AQP5 membrane abundance is regulated 

by phosphorylation [2], and in fact, the contrasting phosphorylation status 

between cancer and normal tissues suggests that AQP5 role in tumorigenesis is 

related with its phosphorylation [3]. However, besides its post-translational 

modification by phosphorylation, gating mechanisms for AQP5 channel activity 

regulation have not been reported so far. 
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3.1.3 Results and Discussion 

Subcellular localization and water permeability of rat AQP5 expressed in yeast 

Yeast cells made devoid of endogenous aquaporins (aqy-null) were transformed 

with either the empty plasmid pUG35 (control cells) or the plasmid containing the 

rat AQP5 gene (mentioned as AQP5 cells, for clarity). The expression of AQP5 in 

the S. cerevisiae model was assessed by fluorescence microscopy, using GFP 

tagging. In transformed cells, AQP5–GFP is localized at the cellular membrane, as 

depicted in Figure 3.1.1 A. 

The permeability of yeast expressing AQP5 was evaluated by stopped-flow 

fluorescence after loading cells with the volume sensitive dye carboxyfluorescein. 

When cells are exposed to hyperosmotic shock with impermeant solutes, water 

outflow induces cell shrinkage. Water permeability is then evaluated by 

monitoring the time course of fluorescence output that reflects the transient 

volume change. As depicted in Figure 3.1.1 B, cells expressing AQP5 show a much 

faster volume change after a hyperosmotic shock. The water permeability 

coefficient Pf was 12-fold higher for AQP5 cells ((4.94 ± 0.40) × 10−3 cm s−1 and (0.41 

± 0.05) × 10−3 cm s−1 for AQP5 and control, respectively) (Figure 3.1.1 C). The 

activation energy for water transport Ea was concomitantly lower for AQP5 cells 

(6.52 ± 0.82 kcal mol−1) compared to the control (15.16 ± 0.85 kcal mol−1) (Figure 

3.1.1 D), corroborating the increase in membrane water permeability conferred by 

AQP5 expression. Although AQP5 behavior as a water channel is well known in 

the literature, these data validate the use of the yeast system to detect AQP5 

function and further explore mechanisms of regulation. 
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Figure 3.1.1 │ Expression and function of rat Aquaporin-5 (AQP5) in yeast. (A) 

Epifluorescence images of GFP-tagged AQP5 localization (green) in yeast cells (100x 

objective); (B) Representative time course of the relative cell volume (V/V0) changes after a 

hyperosmotic shock inducing cell shrinkage (pH 7.4); (C) Water permeability coefficients of 

control (Pf = (0.41 ± 0.05) × 10−3 cm s−1 and cells expressing AQP5 (Pf = (4.94 ± 0.40) × 

10−3 cm s−1), measured at 23 °C and pH 7.4. Data are mean ± SD of 10 measurements; (D) 

Activation energies (Ea) for water permeation of control and AQP5 cells (15.16 ± 0.85 and 

6.52 ± 0.82 kcal mol−1, respectively). Data are mean ± SD. *** p < 0.001.  

 

Effect of pH and glucose-stimulated phosphorylation on rat AQP5 permeability 

A gating mechanism regulating human AQP5 activity has been proposed by 

molecular dynamics simulations [4]. This study revealed that the AQP5 channel 

could change between an open and closed state by a tap-like mechanism at the 

cytoplasmic end, induced by a translation of the His67 inside the pore, blocking 

the entrance of the channel. Moreover, when in the open state, the selectivity filter 

(SF) can regulate the flow rate of water molecules by exhibiting two different 

conformations (wide or narrow). These two conformations are decided by the side 

chain orientation of His173 and the proximity to Ser183—when His173 is close to 
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Ser183, the SF is in the narrow conformation and the water passage is restricted. 

The trigger for this gating mechanism has not been described; in addition, this in 

silico approach has not been so far experimentally validated. A similar gating 

mechanism for human AQP4 was recently described [5], where two putative gate 

regions formed by two residues on the cytoplasmic side (His95 and Cys178) and 

the other two on the SF region (Arg216 and His201) modulate opening and closure 

of the AQP4 pore along four possible conformational states. The relative stability 

of the two resulting states, open and closed, may depend on small changes in the 

microenvironment, such as variations of pH. Indeed, a pH-dependent gating 

mechanism was recently obtained from in silico and in vitro studies [6], ascribing 

to His95 located in AQP4 cytoplasmic end the role of regulating channel 

permeability. Phosphorylation of AQP4 has also been demonstrated with opposed 

effects depending on the residue that is phosphorylated. AQP4 is inhibited when 

Ser180 is phosphorylated in loop D and is activated when Ser111 in loop B is 

phosphorylated [7]. These observations prompted us to investigate if AQP5 would 

be gated by pH or by phosphorylation. Thus, we first decided to investigate the 

effect of external pH on AQP5 activity of rat AQP5-transformed yeasts. Although 

our yeast cells express rat AQP5, sequence alignment of human and rat AQP5 

isoforms showed a sequence identity of 91% [8]. From the analyses of the amino 

acid sequences, we can infer that human and rat AQP5 may share the same gating 

mechanism. 

Since the physiological pH of yeast’s natural environment is acidic (3.5–6.5) [9], 

and conditions at which cells show optimal growth and expression and trafficking 

mechanisms are expected to be fully active, we chose the external pH 5.1 to test 

yeast membrane water permeability. In addition, considering that a mammalian 

aquaporin is being expressed, permeability was also measured at the mammalian 

physiological pH 7.4. Permeability experiments with AQP5 and control cells 



49 
 

incubated at pH 5.1 and 7.4 showed that, by changing external pH channel, activity 

was not altered (Figure 3.1.2 A). At pH 5.1, Pf = (0.35 ± 0.01) × 10−3 cm s−1 and Ea = 

14.38 ± 0.22 kcal mol−1 for control cells, and Pf = (4.77 ± 0.32) × 10−3 cm s−1 and Ea = 

7.69 ± 0.86 kcal mol−1 for AQP5 cells, were not different from the respective values 

at pH 7.4 (detailed above, Figure 3.1.1). These results indicate that the acidic 

external pH does not affect AQP5 water permeability. 

It is known that AQP5 expression and trafficking can be regulated by 

phosphorylation, but whether phosphorylation also regulates channel activity and 

contributes to gating still remains uncertain. Several studies reported AQP5 

redistribution in plasma membrane of animal cells initiated by phosphorylation 

[2,10]. Post-transcriptional regulation of AQP5 function in response to stimuli such 

as neurotransmitters, hormones, and cyclic adenosine monophosphate (cAMP), 

has been reported (for a review see [3]). cAMP regulates aquaporin-5 expression at 

both transcriptional and post-transcriptional levels through a protein kinase A 

(PKA) pathway [11], increasing AQP5 abundance on the apical membrane of lung 

epithelial cells after long-term exposure [12]. Besides translocation to the plasma 

membrane, phosphorylation of AQP5 was shown to promote cell proliferation [13] 

and, interestingly, AQP5 Ser156 was found preferentially phosphorylated in tumor 

cells [14], supporting AQP5 phosphorylation involvement in cell proliferation. 

In yeast S. cerevisiae, the basal intracellular cAMP concentration is low [15]. 

However, addition of glucose or related fermentable sugars after a period of 

glucose-starvation triggers the Ras/PKA pathway, creating a sudden and transient 

increase in intracellular cAMP levels that induce a protein phosphorylation 

cascade [16,17]. Activation of this pathway by glucose mimics the well-known 

hormonal-induced phosphorylation pathways that occur in animal cells [18]. 

Therefore, to examine the effect of phosphorylation on AQP5 water permeability, 

glucose starved yeast cells were incubated with 100 mM glucose for 5 min before Pf 
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measurements. As shown in Figure 3.1.2 B, glucose addition did not affect Pf of 

control or AQP5 cells at pH 5.1. However, at pH 7.4, glucose pulse resulted in a 

significantly two-fold increased Pf in AQP5 cells (Pf = (10.60 ± 0.53) × 10−3 cm s−1) 

and a 30-fold increase compared with basal levels of control cells (Figure 3.1.2 B). 

 

 

Figure 3.1.2 │ Regulation of AQP5 water permeability. (A) Water permeability Pf at pH 

5.1 and pH 7.4 of control cells (Pf = (0.35 ± 0.01) × 10−3 and (0.41 ± 0.05) × 10−3 cm s−1, 

respectively) and yeast cells expressing AQP5 (Pf = (4.77 ± 0.32) × 10−3 and (4.94 ± 0.40) × 

10−3 cm s−1, respectively); (B) Water permeability Pf at pH 5.1 and pH 7.4 upon an external 

glucose pulse (C) Time course of glucose-induced phosphorylation (1, 5 and 15 min, pH 

7.4) and inhibition of AQP5 by HgCl2 0.05 mM. Data are mean ± SD of 10 measurements; 

(D)  Representative epifluorescence images of GFP-tagged AQP5 localization in yeast cells 

(100x objective); linear intensity profiles are indicated (yellow lines); and (E) Relative 

membrane expression of AQP5 calculated from fluorescence intensity profiles (30 cells in 

each experimental condition, 3 profiles for each cell, from at 3 independent experiments). 

ns, non significant, * p < 0.5, *** p < 0.001. 
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In addition, we investigated the time course of AQP5 activation after glucose 

addition at pH 7.4 (Figure 3.1.2 C). Following a glucose pulse, a transient strong 

increase of cAMP with peak values around 1–2 min that progressively decay to 

about their basal levels, was previously reported in yeast cells [19,20]. Our data 

show a significant increase of AQP5 water permeability after 1 min that was 

further increased at 5 min; after 15 min, glucose exposure no longer produces effect 

on AQP5 permeability, possibly due to the decay of cAMP synthesis. Yeast cells 

were subsequently incubated for 5 min simultaneously with glucose and HgCl2, a 

well-known aquaporin inhibitor (Figure 3.1.2 C). In this case, the glucose-induced 

increase in Pf of AQP5 cells was partially abolished (Pf = (6.26 ± 1.23) × 10−3 cm s−1. 

The inhibitor alone had no effect on Pf of control cells. 

Afterwards, to determine whether cAMP-mediated increase in water permeability 

was due to AQP5 increased trafficking and abundance or to opening of the 

channel, we measured GFP-tagged AQP5 relative membrane expression (Figure 

3.1.2 D). Before glucose addition, the membrane abundance measured at pH 5.1 

and pH 7.4 was not significantly different (0.37 ± 0.07 and 0.35 ± 0.07, respectively) 

(Figure 3.1.2 E). Although membrane abundance was slightly increased after 5 min 

glucose pulse (implying that also trafficking is triggered by phosphorylation, as 

previously reported by Kitchen et al. [2]), this effect was only detected at 

extracellular pH 5.1 (0.49 ± 0.08 and 0.47 ± 0.12 at 5 and 15 min, respectively). 

Interestingly, at pH 7.4, no significant difference could be detected after 5 min (0.37 

± 0.07), and at both pHs the membrane abundance was kept stable at least for 15 

min (Figure 3.1.2 E). 

Also to consider is the fact that, if a carbon source is available, external shifts in 

proton concentration in the pH range from 3.0 to 7.5 do not significantly affect 

yeast internal pH values due to ATPase activity [9]. However, a two-fold increase 

in Pf with concomitant reduction of Ea after glucose addition only happened at pH 
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7.4 (Figure 3.1.2 B). No increase was seen at pH 5.1. Interestingly, pH 5.1 is in the 

range of yeast physiological pH at which the machineries for protein expression, 

transcription, and trafficking are expected to be in place. If the increase in Pf 

observed would be simply due to an increase in AQP5 membrane abundance, then 

it should also be detected at pH 5.1. Hence, since we observe differences in 

permeability mediated by phosphorylation when the external pH is changed, 

changes in the channel structure activity rather than in AQP5 membrane 

abundance might be responsible for the measured difference in permeability. 

Figure 3.1.3 A displays the structure of human AQP5 with several consensus 

phosphorylation sites at cytoplasmic loop D (Ser152 and Ser156) and at C-terminal 

(Ser231, Ser233, and Thr242) [21]. In Figure 3.1.3 B the top view of the monomer is 

depicted, with His173 and Ser183 located in the selectivity filter (SF). The distance 

between these two residues (8.4 Å) was proposed to correspond to the pore wide 

conformation [4]. All these residues are conserved in rat AQP5 sequence with the 

exception of Ser233. Phosphorylation of Ser156 was reported to play an important 

role in AQP5 translocation to the plasma membrane in HEK293 cells [2]. In 

contrast, another study observed that a mutation on Ser156 had no effect on 

membrane trafficking but instead affected cell proliferation [14]. 
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Figure 3.1.3 │ Structure of human AQP5 monomer. (A) Side view of the monomer with 

several phosphorylation consensus sites in the cytoplasmic region (Ser152, Ser156, Ser231, 

Ser233, and Thr242) shown in licorice representation. Thr259, also a phosphorylation site, is 

not represented due to the inexistent electron density beyond Pro245 for hAQP5 structure 

[49]; (B) Top view of the monomer with His173 and Ser183 in the selectivity filter (SF) 

shown in licorice representation. The distance between these two residues (8.4 Å) 

corresponds to the proposed distance for the SF wide conformation [33]. Water molecules 

are shown as red spheres along the channel pore. Structures were generated with Chimera 

(http://www.cgl.ucsf.edu/chimera) and are based on AQP5 X-ray structure (PDB databank 

code 3D9S). 

 

Thr259 is not represented in Figure 3.1.3 A due to the inexistent electron density 

beyond Pro245 in hAQP5 structure. However, this residue is also an interesting 

phosphorylation site due to the homology to Ser256 in hAQP2. It has been 

demonstrated that phosphorylation of Ser256, besides triggering AQP2 insertion at 

apical plasma membrane, is also essential to modulate AQP2 function, increasing 

water permeability of the individual channel [22,23]. In a recent study, 

extracellular acidic pH was shown to attenuate AQP2 hormone-induced 
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phosphorylation and membrane apical trafficking, probably by inhibition of 

vasopressin V2 receptor-G protein-cAMP-PKA actions [24]. 

From a structural point of view, Ser152 and Ser156 are strong candidates prone to 

induce conformation changes at loop D with impact on the protein channel 

monomeric conformation. However, phosphomimetic mutations of Ser156 were 

able to increase membrane expression but did not cause any significant structural 

change [2]. It is thus reasonable to anticipate that more than one phosphorylation 

site is necessary to produce a measurable conformation change. Phosphorylated 

AQP5 (Ser and Thr residues facing the cytoplasmic region, Figure 3.1.3 A) may 

induce a change in channel conformation, and in this new conformation de-

protonation of His183 residue (facing the outer membrane) may occur at pH 7.4, 

with widening of the channel pore (Figure 3.1.3 B). While at pH 7.4 the channel is 

wide open, at pH 5.1 the protonated residues and putative hydrogen-bond 

interactions hold the channel in the narrow open conformation, with lower 

permeability. Interestingly, the human AQP5 crystals were obtained at pH 7.0–7.6, 

the pH range where, in this study, phosphorylated AQP5 shows increased 

permeability. 

 

3.1.4 Conclusions 

Human AQP5 was the first aquaporin crystalized in full tetrameric assembly [21] 

and its trafficking and membrane expression are known to be regulated by 

phosphorylation [2] through PKA and RAS signaling pathways that promote cell 

proliferation [13]. The fact that AQP5 was found preferentially phosphorylated in 

tumor cells strongly suggests that its regulation might be involved in 

tumorigenesis.  

Our data provides experimental evidences for the direct regulation of AQP5 water 

permeability by pH dependent on phosphorylation. We observed that AQP5 does 
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not change its activity by external acidification, but phosphorylation makes the 

AQP5 channel prone to pH sensing.  

At mammalian physiologic conditions (pH 7.4) phosphorylated AQP5 enables 

larger fluxes of water through membranes, which may contribute to rapid changes 

in cell volume and shape and thus facilitate cell migration and proliferation as seen 

in cancer cells. In this context, AQP5 modulation by phosphorylation may 

represent a novel strategy with potential application in cancer treatment. On the 

other hand, acidic conditions favors channel narrowing, allowing fine-tuning of 

cell volume. Notably, although natural for yeast cells, the low pH tested is far 

below the pH found in mammalian tissues, even in solid tumors where it can reach 

pH 6.5 [25]. There are, however, a few mammalian acidic physiological conditions 

where pH gets close to this value. For instance, sweat shows acidic pH levels, 

between 4.6 and 5.4 [26], and in the skin the protective sweat acid mantle acidity 

ranges from 4 to 5.5 [26]; the pH of human stomach is highly acidic, usually from 1 

to 2; osteoclasts’ acidic microenvironment below pH 5.5 is critical for the bone 

resorption [27]; an acidic pH luminal fluid microenvironment is important for 

sperm maturation  [28]. Interestingly, AQP5 was found expressed in sweat glands 

[29], gastric mucosa [30], bone cells [31], and in the epididymis [28]. In all these 

tissues, effective mechanisms of water flux regulation induced by pH fluctuations 

might be advantageous to prevent excessive water reabsorption and control cell 

volume and shape. 

 

3.1.5 Experimental Section 

Yeast Strains and Growth Conditions - Plasmid (pcDNA3) with Rattus norvegicus AQP5 

cDNA (pcDNA3-AQP5), kindly provided by Prof. Miriam Eschevarria, Virgen del Rocio 

University Hospital, Seville, Spain, was used for AQP5 cDNA amplification. The 

centromeric plasmid pUG35 was used for cloning AQP5, conferring C-terminal GFP 
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tagging, MET25 promoter, and CYC1-T terminator [32]. For plasmids propagation, 

Escherichia coli DH5α was used as host [33]. E. coli transformants were maintained and 

grown in Luria-Bertani broth (LB) supplemented with ampicillin (100 µg/mL), at 37 ˚C 

[34]. Plasmid DNA was extracted from E. coli using a GenEluteTM Plasmid Miniprep Kit 

(Sigma-Aldrich, St. Louis, MO, USA). 

Saccharomyces cerevisiae (10560-6B MATa leu2::hisG tpr1::hisG his3::hisG ura3-52 

aqy1D::KanMX aqy2D::KanMX) from now on designated as aqy-null, was used as host 

strain for heterologous expression of AQP5. The aqy-null strain was grown and 

maintained in YPD medium (2% w/v peptone, 1% w/v yeast extract, 2% w/v glucose). 

Transformed yeast strain was grown in YNB medium (2% w/v glucose, 0.67% (DIFCO) 

Yeast Nitrogen Base) supplemented with the adequate requirements for prototrophic 

growth [35] and maintained in the same medium with 2% (w/v) agar. For stopped-flow 

assays, the same medium was used for yeast cell growth. For all experiments, cells were 

grown to mid exponential phase (OD600nm 1-2). 

 

Cloning and Heterologous Expression of AQP5 in S. cerevisiae - Briefly, after 

propagation, isolation, and purification of pcDNA3_AQP5, AQP5-specific primers 

modified to incorporate restriction sites for SpeI (underlined) and ClaI (underlined) (5’-

GGACTAGTCCT ATGAAAAAGGAGGTGTGCTCCCTTGC-3’ and 5’-

CCATCGATGGAGTGTGC CGTCAG CTCGATG-3’, respectively) were designed and 

used for PCR amplification of AQP5 cDNA (carried out in an Eppendorff thermocycler 

using Taq Change DNA polymerase from NZYTech, Lisbon, Portugal). The PCR product 

was digested with SpeI and ClaI restriction enzymes, purified (using a Wizard® SV Gel 

and the PCR Clean-Up System kit Promega) and cloned (using T4 DNA Ligase Roche) into 

the corresponding restriction sites of pUG35 digested with the same restriction enzymes, 

behind the MET25 promoter and in frame with the GFP sequence and CYC1-T terminator, 

according to standard protocols [34], to construct the expression plasmid pUG35-AQP5. 

This plasmid was propagated in E. coli DH5α. After extraction and purification, fidelity of 

constructs and correct orientation of AQP5-cDNA were verified by PCR amplification and 
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DNA sequencing. Transformation of the S. cerevisiae aqy-null strain with pUG35-AQP5 

was performed using the lithium acetate method described in [36]. The same strain was 

also transformed using an empty pUG35 vector (which does not contain AQP5 cDNA) to 

be used as a control (further indicated as control strain). Transformants were selected on 

YNB medium without uracil as auxotrofic marker. 

 

AQP Subcellular Location by Fluorescence Microscopy - For subcellular localization of 

GFP-tagged AQPs in S. cerevisiae, yeast cells in the mid-exponential phase were observed 

using a Zeiss Axiovert 200 fluorescence microscope (Zeiss, Jena, Germany), at 495 nm 

excitation and 535 nm emission wavelengths. Fluorescence microscopy images were 

captured with a digital camera (CoolSNAP EZ, Photometrics, Tucson, AZ, USA) and using 

the Metafluor software (Molecular Devices, Sunyvale, CA, USA).  

AQP5 membrane expression was measured by evaluating GFP-protein fluorescence 

intensity according to [2,37]. A linear profile that crosses the cell membrane was generated 

and analyzed using the software ImageJ (https://imagej.net). The intensity profile along 

the line path from at least 30 cells in each experimental condition (n = 3) was recorded and 

for each cell three profile lines were taken. The background intensity along the same 

distance was measured and subtracted from the peak fluorescence intensity over each line, 

and the obtained difference divided by the maximal fluorescence to calculate the relative 

membrane expression. 

 

Cell Sampling and CFDA Loading - For water permeability assays, yeast transformants 

grown up to OD600nm 1-2, were harvested by centrifugation (5000 g; 5 min; 4 ˚C) (Allegra® 

6 Series Centrifuges, Beckman Coulter®, Brea, CA, USA), washed 3 times and 

resuspended in ice cold sorbitol (1.4 M) K+-citrate (50 mM pH 5.1 or 7.4) buffer up to a 

concentration of 0.3 g/mL wet weight and cells were incubated on ice for at least 90 min. 

Prior to permeability assays, cells were preloaded with the non-fluorescent precursor 5(6)-

carboxyfluorescein diacetate (CFDA, 1 mM, 10 min at 30 ˚C), which is intracellularly 
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hydrolyzed yielding the impermeable fluorescent form (CF). Cells were then diluted (1:10) 

in 1.4 M sorbitol buffer and immediately used for experiments. 

 

Cell Volume Measurements - Equilibrium cell volumes (Vo) were obtained after loading 

the cells with CFDA under an epifluorescent microscope (Zeiss Axiovert, Zeiss, Jena, 

Germany) equipped with a digital camera. Cells were assumed to have a spherical shape 

with a diameter calculated as the average of the maximum and minimum dimensions of 

each cell. 

 

Water Permeability Assays - Permeability assays were performed by stopped-flow 

fluorescence spectroscopy as previously described [38], using a HI-TECH Scientific PQ/SF-

53 stopped-flow apparatus, which has a 2-ms dead time, controlled temperature, 

interfaced with a microcomputer. Experiments were performed at temperatures ranging 

from 9 to 34 ˚C. Four runs were usually stored and analyzed in each experimental 

condition. In each run, 0.1 mL of cell suspension was mixed with an equal volume of 

hyperosmotic sorbitol buffer (2.1 M sorbitol, 50 mM K-citrate, pH 5.1 or 7.4) producing an 

inwardly directed gradient of the impermeant sorbitol solute that induces water outflow 

and cell shrinkage. Fluorescence was excited using a 470 nm interference filter and 

detected using a 530 nm cut-off filter. The time course of cell volume change was followed 

by fluorescence quenching of the entrapped fluorophore (CF). The recorded fluorescence 

signals were fitted to a single exponential from which the rate constant (k) was calculated. 

The osmotic water permeability coefficient, Pf, was estimated from the linear relationship 

between Pf and k [38], Pf = k(Vo/A)(1/Vw(osmout)), where Vw is the molar volume of water, 

Vo/A is the initial volume to area ratio of the cell population, and (osmout) is the final 

medium osmolarity after the osmotic shock. The osmolarity of each solution was 

determined from freezing point depression by a semi-micro-osmometer (Knauer GmbH, 

Berlin, Germany). The activation energy (Ea) of water transport was evaluated from the 

slope of the Arrhenius plot (ln Pf as a function of 1/T) multiplied by the gas constant R. 
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External pH Dependence and In Vivo PKA Phosphorylation - Yeast cells were grown 

and prepared as above-described and incubated in isotonic sorbitol buffer (1.4 M sorbitol, 

50 mM K+-citrate) at two different pH (5.1 and 7.4) for at least 90 min. Deprived of a carbon 

source and incubated in ice for a long period, yeast cells are considered in starvation. The 

production of intracellular cAMP and phosphorylation was triggered immediately before 

water permeability measurements by the addition of 0.1 M glucose (adjusted to pH 5.1 or 

7.4) to starved cells [16,17]. 

 

Statistical Analysis - All experiments and assays were carried out in triplicate. Mean 

values were compared using ANOVA followed by unpaired t-test. p-values < 0.05 were 

considered significantly different. 
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3.2 Gating mechanism of Aquaporin-3 

3.2.1 Abstract 

The pH gating of human AQP3 and its effects on both water and glycerol transport 

permeability have been fully characterized for the first time using a human red 

blood cell model (RBC). For comparison, the effects of pH on the gating of rat 

AQP3 have also been characterized in yeast. The obtained results highlight 

similarities as well as differences between the two isoforms. Our data show that 

both human and rat AQP3 are gated by pH, the latter with the pH gating 

parameters here described for the first time. However, different features were 

observed for glycerol and water permeation in the two cases. Through molecular 

modelling studies, we could study the pH dependent closure/opening of the 

hAQP3 channel at a molecular level, allowing us to predict gating mechanisms of 

this isoform and possibly of other aquaglyceroporins. The obtained results are 

discussed in terms of the putative physiological roles of pH gating in 

aquaglyceroporins and the opening of new possibilities to inhibitors design. 

 

3.2.2 Introduction 

Aquaporin-3 (AQP3) has a wide tissue distribution in the epithelial cells of 

kidneys, airways and skin, suggesting a role in water reabsorption, mucosal 

secretions, skin hydration, and cell volume regulation [1]. Moreover, recent studies 

demonstrated an aberrant AQP3 expression in tumour cells of different origins, 

particularly in aggressive tumours [2], suggesting this enhanced protein expression 

to be of diagnostic and prognostic value.  

The first publication in 1999, describing AQP3 gating by pH, used Xenopus 

oocytes expressing rat AQP3 (rAQP3) and revealed only a slightly different pKa for 

water and glycerol permeability (6.4 and 6.1, respectively) but a markedly different 
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Hill coefficient. In fact, the Hill slope was calculated to be ca. 3 for water and 6 for 

glycerol permeability, respectively [3]. At the time of this first study, little was 

understood about the possible conformation or residue distribution in the folded 

functional AQP3, leading the authors to speculate that the pH sensitive residues 

would be along the channel. Instead, in a later report by Zelenina et al. [4], who 

studied the mechanism of pH gating of human AQP3 (hAQP3) transfected into 

lung cells, thanks to the availability of additional sequence information, it could be 

hypothesized that the pH sensitive residues are likely to be located in loops at the 

monomers’ interfaces, within the AQP3 tetrameric assembly, instead of lining the 

protein channel. Moreover, four main amino acid residues were identified as pH-

sensitive residues by site-directed mutagenesis: His53, His154, Tyr124 and Ser152, 

all located in extracellular loops. Mutations in these residues led to loss of pH 

sensitivity, a decrease in water permeability or a shift in the pH sensitivity range 

[4]. However, in this study the effects of pH gating on permeation by glycerol were 

not described. Interestingly, both papers postulate that the differences in Hill slope 

values for water and glycerol are mainly due to different hydrogen bonding 

capability of the two substrates, while permeating the monomeric aquaporin pore 

[3,4]. However, so far, this idea remains to be validated.  

Thus, we investigated the pH gating of rAQP3, in a different system than 

previously reported, using this isoform homolog expressed in yeast. Furthermore, 

we extended our study to human AQP3 and its effects on both water and glycerol 

permeability using human red blood cells (hRBC), considered a very good model 

to assess AQP3 activity [5].  
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3.2.3 Results and Discussion 

pH gating of rat AQP3 in yeast 

In our study we first evaluated rAQP3 gating, in a yeast model, using stopped-

flow spectroscopy. Yeast cells were transformed with either the empty plasmid 

(control cells) or the plasmid containing the rat AQP3 gene (mentioned as rAQP3 

cells, for clarity). The expression of rAQP3 in the S. cerevisiae model was assessed 

by fluorescence microscopy, using GFP tagging. In transformed cells, rAQP3-GFP 

is localized at the cellular membrane, while cells with empty plasmid have a 

homogeneous cytoplasmic distribution (Supplementary Figure S3.2.1). Stopped-

flow technique allows volume monitoring of cells subjected to hypo and 

hyperosmotic stress: when cells are exposed to hyperosmotic shock with 

impermeant solutes, water outflow induces cell shrinkage. Conversely, when the 

osmotic shock is provided by a permeable solute as glycerol, cells first shrink due 

to water outflow and afterwards swell again due to glycerol passage. Thus, water 

and glycerol permeability is then evaluated according to cell swelling or shrinkage 

monitored by 90° light scattering, detected by the stopped-flow. In the case of the 

yeast cell model, the cells are pre-loaded with carboxyfluorescein, and the 

fluorescence intensity reflects volume changes.  

At first, in order to evaluate if the observed effect was due to AQP3 being 

expressed in the yeast cells, both groups of control and rAQP3 were incubated at 

two different pH values, namely pH 5 and 7. These pH conditions were chosen 

based on previous literature [3,4], to have closed (pH 5) and open (pH 7) AQP3. In 

Figure 3.2.1 the water and glycerol permeability (Pf and PGly, respectively) of 

control and rAQP3 cells are shown. It is possible to observe that, while control cells 

have no glycerol permeability, they do show basal water permeability at both 

tested pH conditions, due to the intrinsic water permeability of the membrane 



65 
 

lipid bilayer. Interestingly, from panel C of Figure 3.2.1 it is evident that, at pH 5, 

there is no permeation by glycerol, with a significant increase at pH 7, which 

clearly demonstrate the close and open states of rAQP3. 

 

 

Figure 3.2.1 │ Water (A,B) and glycerol (C, D) permeability (Pf and PGly) in control yeast 

cells (transformed with the empty vector) (dashed) and in yeast expressing rAQP3 (solid) at 

pH 5 (grey) and 7 (black). Panel A shows the water permeability (Pf) of control and AQP3-

expressing cells, at pH 5 and pH 7. Panel B shows the changes in fluorescence intensity 

obtained when yeast transformants are confronted with a hyperosmotic sorbitol solution 

of tonicity 1.25 triggering cell shrinkage due water outflow. Panel C shows the glycerol 

permeability (PGly) of control and AQP3-expressing cells, at pH 5 and pH 7, while panel D 

shows the changes of fluorescence intensity obtained when cells are confronted with a 

hyperosmotic glycerol solution. After a first water outflow due to the osmotic gradient, the 

AQP3-expressing cells re-swell due to glycerol entrance at pH7. *** p<0.001. [Data 

obtained jointly with Ana Paula Martins] 
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Since the control cells present a basal water permeability that is not altered by the 

expression of rAQP3 when incubated at pH 5, it is possible to normalize the Pf that 

corresponds to the permeability of rAQP3 alone. Knowing from these results 

(Figure 3.2.1) and previous studies that hAQP3 is in a closed state at low pH (ca. 5) 

[3], the normalized water permeability via rAQP3 was obtained by subtracting the 

permeability values of control cells at each pH value. For PGly, this subtraction was 

not necessary since the control cells show no glycerol permeability at any pH. The 

rAQP3 permeability for both water and glycerol are shown in Figure 3.3.2. We can 

observe that the channel is closed for both water and glycerol between pH 5 and 6 

and has maximum permeability at pH 6.5 (glycerol) and pH 7 (water), respectively. 

This behaviour and Hill slope values found for water and glycerol in the rAQP3 

isoform (see Table 3.2.1) are similar to those reported previously [3]. 
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Figure 3.2.2 │ Water and glycerol permeability (Pf and PGly, normalized) in yeast cells 

expressing rAQP3 versus pH. The fit is according to Hill equation. [Data obtained jointly 

with Ana Paula Martins] 
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Table 3.2.1 │ pKa and Hill slope values for water and glycerol, of human and rat AQP3, 

obtained by fitting the data presented in Figures 3.21 and 3.2.2. [Data obtained jointly with 

Ana Paula Martins] 

AQP3 variant pKa Hill slope 

 Water Glycerol Water Glycerol 

rat 6.80 ± 

0.15 

6.40 ± 

0.20 

3.00 ± 

0.31 

5.30 ± 

0.62 
human 6.08 ± 

0.01 

6.12 ± 

0.01 

1.64 ± 

0.21 

3.93 ± 

0.91 
 

 

pH gating of human AQP3 in hRBC 

Afterwards, we evaluated hAQP3 gating in RBC. RBC co-express hAQP1 (selective 

for water) and hAQP3 (permeating water and glycerol) and thus both isoforms 

contribute for water permeability. Previous studies showed that human AQP1 is 

not gated by pH [3,6] and thus any pH-dependent effect on hRBC water 

permeability would be due to individual gating of hAQP3. Knowing that pH does 

not influence water permeation via lipid bilayer nor via hAQP1, water 

permeability corresponding exclusively to hAQP3 was obtained by subtracting the 

total cell permeability at pH 5 (where AQP3 is in the closed state [3,4]) from the 

total permeability at each pH value (Figure 3.2.3). In accordance with previous 

studies [3,4], we observed a maximum permeability for both water and glycerol 

between pH 6.5 and 7.5, and a decreased permeability and pore closure at lower 

pH, with the pore completely closed at pH 5. 
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Figure 3.2.3 │ Water and glycerol permeability (Pf and PGly normalized) in human red 

blood cells (RBC) versus pH. The fit is according to Hill equation. [Data obtained by Ana 

Paula Martins] 

 

The calculated pKa values for both water and glycerol were found to be 

approximately the same, ca. 6.1, with Hill slopes of about 2 and 4, respectively. 

While the pKa for glycerol permeability is in accordance with our data on rAQP3, 

the pKa value for water is slightly lower (6.1 vs 6.8). Notably, while the Hill 

coefficients vary from those calculated for rAQP3 - which may be due to both 

differences in protein sequence or in the selected cellular model - they have the 

same 2-fold difference (Table 3.2.1). It is worth mentioning that in spite of the 

strong sequence homology (ca. 95%) between the two isoforms still the 5% 

difference in sequence may account for a different mechanism of inhibition, as will 

be discussed further.  

Hill coefficients, as black boxes parameters, may be subjected to different 

interpretations. One explanation found in literature for this difference of half the 

value for water, when compared to glycerol, is based on the Eyring energy barrier 

model [7], and explained by the differences in activation energy (Ea) of both 
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solutes. Interestingly, the measured activations energies for water and glycerol in 

RBC evidenced a two-fold value for glycerol permeability [8]. It was hypothesized 

that, as Ea for water permeability is low, water molecules cross the channel by 

forming a single line of hydrogen bonds, while glycerol, with higher Ea, and 

having three OH groups, will establish more hydrogen bonds than water 

molecules when passing through the channel [7]. In fact, such hydrogen bond 

network for both water and glycerol is evidenced by X-ray studies of the bacterial 

glycerol facilitator (bGlpF) channel [9] and of the P. falciparum isoform (pfAQP) 

[10] (Figure 3.2.4). Moreover, glycerol molecules have their OH groups pointing 

towards the hydrophilic side of the channel, favouring such hydrogen bond 

network. In the case of hAQP3, we can also observe this phenomenon in molecular 

dynamics (MD) simulations [11]. Remarkably, in this latter study the number of 

hydrogen bonds in the crystal structures, as well as in the MD simulations, is 

similar to the Hill slopes found by us for hAQP3 in RBC, approximately 1.5 for 

water and 4 for glycerol. 

Although the importance of H-bonding interactions between substrates and amino 

acid residues inside the AQP3 channel cannot be underestimated, and certainly 

plays a role in determining the activation energies of each substrate, recent 

experimental findings from our groups on the pH gating of aquaglyceroporin-7 

(hAQP7) (unpublished data) indicate that the Hill slope is similar for water and 

glycerol. Therefore, other factors may influence the overall pH gating mechanisms 

of AQPs, in addition to the number of H-bonds between substrates and the protein 

channel.  

A second explanation for the observed difference in Hill coefficient values is the 

amount of titrable residues inside the channel, as postulated previously by 

Zeuthen et al [3]. This theory is based on the possible competition between the H+ 

and glycerol molecules for the protonable side-chains. A phenomenon of 
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noncompetitive inhibition of glycerol binding, by two protons, has been observed 

in RBC [12]. The limitation of this theory is the fact that the titrable residues would 

be located in the channel lining, where they could affect glycerol H-bond 

formation. Later work on aquaporin sequencing and structure showed that 

hydrophilic and hydrophobic sides constitute the aquaporin lining and few to no 

residues are actually titrable. 

 

 

Figure 3.2.4 │ H-bond network of water (A) and glycerol (B), X-ray structure of bacterial 

glycerol facilitator (bGlpF) with water (A), pdb1LDA, and glycerol (B), pdb1FX8. [Data 

obtained by Andreia de Almeida] 

 

Interestingly, analysing not only the Hill slope but also the raw data of the titration 

curve (shown in Figure 3.2.3) the decrease in water permeability appears to have 

an earlier onset, but also seems to be more gradual than that of glycerol as a 

function of pH. However, it is important to distinguish between the steepness of 
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the titration curves (Hill slope), which is related to how abruptly the channel stops 

permeating a substrate, and the exact pH at which we observe a change in 

permeability. Regarding the different steepness of water and glycerol permeability, 

the phenomenon may be explained by the smaller size of a water molecule, when 

compared to glycerol. In fact, protonation of certain residues in the protein, even in 

loops, may cause structural changes in hAQP3, as seen in other aquaporins 

[12,13,14,15], which lead to channel’s closure. Such changes may abruptly hinder 

the passage of a bulkier glycerol molecule at a pH where some water molecules 

can still flow through. This hypothesis is in line with our studies on aquaporin 

inhibition by Hg2+, where we described the closure of hAQP3 for glycerol passage, 

but not for water passage, upon structural changes caused by metal binding [11]. 

Based on these considerations, we suggest that the different protonation states of 

hAQP3 correspond to different structural conformations. Moreover, since the 

activation energies of water and glycerol have a two-fold difference, higher for 

glycerol, it suggests that glycerol permeation is much slower. In fact, in our studies 

on Hg2+ inhibition of hAQP3, we observed an unbiased passage of a glycerol 

molecule and its permeation was much slower than observed for water [11]. This 

difference is mainly due to the formation of a higher number of hydrogen bonds 

inside the channel with lining residues by glycerol. 

 

Investigation of the pH gating mechanism of hAQP3 by molecular modelling 

In order to investigate the molecular mechanism of pH gating of hAQP3, a 

molecular modelling approach previously developed by our group was used [16]. 

However, in the case of the present study, a homology model of human AQP3 in 

the tetrameric form was built, instead of the monomeric form, based on the 

available structure of the bacterial glycerol facilitator (GlpF, pdb code 1LDI) [9]. 
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The final model was obtained by averaging 50 individual models, using MOE 

software (MOE 2012.10; CCG 2012) [17], as described in the Experimental section.  

Analysis of the model shows the common fold, shared by the aquaporin family, 

containing six transmembrane helices and two half-helices, for each monomer. The 

two half-helices are located inside of the pore of each monomer and contain the 

typical NPA (Asp-Pro-Ala) motif that constitutes one of the aquaporin’s selectivity 

filters. The residues in these two NPA motifs are Asn83-Pro84-Ala85, and Asn215-

Pro216-Ala217 (Supplementary Figure S3.2.2). Another selectivity filter, the 

narrowest part of the channel lining, is located near the extracellular entrance and 

is named ar/R SF (aromatic/arginine selectivity filter). This selectivity filter is an 

important structural feature of aquaporins, where the arginine is fully conserved in 

all mammalian aquaporins (Supplementary Figure S3.2.2). The ar/R SF also serves 

as a distinctive feature among aquaporins, as the composition in amino acids may 

vary in water and glycerol channels: classical aquaporins have an ar/R SF formed 

by 4 residues, including commonly a phenylalanine and histidine, while 

aquaglyceroporins’ ar/R SF comprises only three residues. Thus, these differences 

account for pore size and selectivity among aquaporin isoforms. All these features 

are observed in our model of hAQP3, where Phe63, Tyr212 and Arg218 constitute 

the ar/R SF (Supplementary Figure S3.2.2).  

According to the previously reported site-directed mutagenesis studies, the 

molecular mechanism behind the gating of AQP3 involves four titrable residues, 

namely His53, Tyr124, Ser152 and His154 [4]. However, the lack of structural 

information about this isoform led the authors only to speculate on the type of 

interactions these residues could possibly establish with unknown surrounding 

residues, based on possible similar behaviours of histidines, tyrosines and serines 

in enzymes. Using our homology model of the tetrameric form of hAQP3, it is 

possible to locate the pointed residues at the interface of the monomers, closer to 
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the extracellular side of the protein (Figure 3.2.5). These residues may be involved 

in important monomer–monomer interactions and their protonation/deprotonation 

may affect the overall assembly of the tetramer and, consequently, of the water and 

glycerol permeability. In detail, at pH 7 in our model His53 is located at the central 

pore lining and its side-chain appears to have the possibility to form H-bonds with 

residues Thr58, Thr52 and Gln45 in the same monomer while interacting also with 

the aromatic ring of Phe56, located in an adjacent monomer. These interactions are 

different in each monomer. Interestingly, mimicking the protonation state of the 

protein at pH 5 leads to the formation of new H-bonds, namely a second H-bond 

with Thr52 (this time with its side-chain) Thr204, Gly51 and Thr62. The formation 

of new H-bonds may cause loop A to move closer to the monomer pore and cause 

structural modifications in transmembrane-helix 5 (TM5).  
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Figure 3.2.5 │ Homology model of tetrameric human AQP3. (A) Extracellular top view 

of the tetrameric form of hAQP3 and position of residues involved in pH regulation. (B) 

Positions of His129 from monomer A and His154 from monomer D, as well as Ser152. The 

dashed blue line represents the H-bond formed between the two histidines at pH 7. (C) 

Scheme of the interactions of His154 with neighbouring residues, at pH 7, for each of the 4 

monomers. [Data obtained by Andreia de Almeida] 

 

On the other hand, Tyr124 does not appear to have a clear role or to be particularly 

sensitive to pH changes. Due to its very high pKa (typical range for a Tyr side-

chain in proteins is 9–12 [18]), it is unlikely that its side-chain is affected by changes 

in the pH range from 5 to 8. In addition, the side-chain of Tyr124 appears to be 

pointing out in the direction of the membrane, not participating in any interaction 

with other residues. The only apparent interactions of this residue are between its 
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backbone and the backbones of Trp128 and Phe120, contributing to the 

maintenance of the helical structure. Interestingly, at pH 5, in one monomer it is 

possible to see the formation of a new H-bond with the backbone of Ile127. This 

cannot explain the influence of pH on Tyr124 and the possible changes it may 

induce.  

Regarding Ser152 and His154, these residues are located in the region between two 

adjacent monomers. At pH 7, while the backbone of His154 forms a H-bond with 

the backbone of Ser152, located in the same loop (loop C), the His154 side-chain 

forms a H-bond with the side-chain of His129, at the opposite end of loop C of 

another monomer (Figure 3.2.5 B).  

At lower pH, the same interactions appear to be maintained and a new H-bond 

may be formed with the backbone of Gly153. The formation of this new bond in 

the same loop may weaken the interaction between the two histidines, leading to a 

movement of loop C towards the channel opening. This disruption, together with 

the above-described movement of loop A due to protonation of His53, may be the 

cause for blockage of the channel for water and glycerol permeability. This 

structural change of movement of loop C was also observed in the MD studies on 

mercury inhibition of hAQP3, which leads to a collapse of the ar/R SF [11]. This 

movement may not be simultaneous as, due to neighbouring amino acid side-

chains, the pKa of His53 and His154 may be subjected to small variation, causing a 

gradual conformational change with a pH decrease (or increase).  

Previous studies by Zelenina et al. show that a mutation of His129 to an alanine 

residue does not affect water permeability or change the pH sensitivity range [4]. 

However, glycerol permeability was not measured and the contribution of this 

residue to the mechanism of inhibition of hAQP3 by pH, regarding glycerol 

permeability, cannot be excluded.  
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Interestingly, loop movement upon pH changes was also observed for the 

orthodox water channel bovine AQP0 (bAQP0). This isoform has a maximum of 

permeability similar to that of hAQP3 at pH 6.5; however it is closed at pH 8.5 [19]. 

The residues responsible for pH sensibility were identified by site-directed 

mutagenesis as two histidines: His40 and His122, in loops A and C, respectively. 

While His40 in bAQP0 is in a similar position to His53 in our model of hAQP3, 

His122 is in the position corresponding to Ser152 (and close to His154) in hAQP3 

(Supplementary Figure S3.2.3). Overall, as described for bAQP0, we propose that 

key histidines in loops A and C that span the outer vestibule contribute to pH 

sensitivity in hAQP3. Moreover, insertion of two histidines in similar positions in 

hAQP1, a non pH-gated aquaporin, induced pH sensitivity in the same range as 

bAQP0 [19], further confirming the key role of these residues in pH gating.  

As observed for the MD study on Hg2+ inhibition of hAQP3, by Spinello et al. [11], 

the closed state of bAQP0 involves the movement of a loop (in this case loop A) 

and a collapse of the ar/R SF (Supplementary Figure S3.2.4), shown in the X-ray 

structures of the open and closed bAQP0 [20]. This collapse in the SF appears to be 

different from the one described for hAQP3, most likely due to differences in 

amino acid composition and diameter of the channel. Mutations in the histidine of 

loop A – His40 in AQP0 [19] and His53 in AQP3 [21] – showed a shift of the pH 

sensitivity towards a more alkaline range. This effect supports the idea that the 

pKa of histidine residues in different regions of the same protein may be very 

different, leading to different levels of channel regulation. Other studies reported 

that the orthodox water channel AQP4 also shows pH-sensitivity, which was 

recently attributed to one particular histidine residue, His95, predicted by in silico 

methodologies [22]. His95, located inside the channel and facing the intracellular 

side, is conserved in all aquaporins, including those that do not show pH-
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sensitivity, such as AQP1. Therefore, it is difficult to conclude that it is the only one 

responsible for the observed pH gating mechanism. 

 

rAQP3 versus hAQP3 

Molecular modelling was useful also to explain observed differences among the 

Hill slope values of hAQP3 with respect to rAQP3 (see Table 3.2.1). Human AQP3 

shares a sequence identity higher than 80% with most mammalian AQP3 isoforms. 

Nonetheless, changes in key residues may change permeability and regulatory 

features. When compared human and rat AQP3 isoforms, although a sequence 

similarity of about 95% is observed, they do not share one of the residues that may 

be involved in the pH gating of the hAQP3, namely His129, which is substituted 

by an alanine (Supplementary Figure S3.2.5). Even though this mutation does not 

seem to affect water permeability of hAQP3 [4] its effect on glycerol permeability is 

unknown. Moreover, a mutation of the same residue on a human and rat isoform 

may not have the same effect, as a network of hydrogen bonds is a very delicate 

system and is highly dependent on the neighbouring residues. Therefore, we can 

only conclude that the mutation H129A is able to produce a functional rAQP3 

glycerol and water channel. Additionally, it is possible that the differences in the 

observed pKa and Hill slope for the human and rat isoforms are due to species 

differences, even though we cannot exclude the possibility of cell-model 

differences. 

 

3.2.4 Conclusions 

In the present study we investigated the pH gating of rat and human AQP3 by 

stopped flow spectroscopy. For the first time we were able to fully characterize not 

only the effects of pH gating on water, but also on glycerol permeability in this 



78 
 

human isoform. In the case of water, the obtained results confirm the previous 

observations of hAQP3 gating in oocytes [3]. 

Interestingly, previous reports on rAQP3 pH gating were confirmed in our yeast 

model, which highlighted differences with the human isoform. In fact, while 

hAQP3 shows the same pKa for both water and glycerol, the pKa values are 

similar for water, but different for glycerol in the rAQP3 system. These differences 

may be due to species differences, even though we cannot exclude that the selected 

investigational system itself may partly lead to this variation. 

In the light of the experimental Hill slope values for water and glycerol, a few 

theories on differences in the pH gating mechanisms of aquaporin permeation 

have been postulated. Current knowledge about the aquaporin sequence and 

structure allows us to discard the hypothesis of protonation of residues inside the 

channel. 

Previous mutagenesis studies highlighted four key residues -- His53, Tyr124, 

Ser152 and His154 – in hAQP3 pH gating and their effects on water permeability, 

but could not give a comprehensive analysis of the role of these residues [4]. Based 

on our experimental data (pKa and the Hill slope of hAQP3), and using a 

tetrameric homology model of hAQP3, we investigated the AQP3 gating 

mechanisms at a molecular level, disclosing the interactions of the four key amino 

acidic residues in the context of the functional aquaporin quaternary-structure. 

Specifically, we can now conclude the following: 

- The four key amino acids are located in extracellular loops (A and C) in each 

hAQP3 monomer. 

-  Protonation of pH-sensitive residues of hAQP3 may not occur simultaneously, 

but gradually, causing progressive structural changes as a function of pH. 
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- Movement of loop C in the outer vestibule of hAQP3, as observed previously in 

MD studies [11], may cause a blockage of the larger glycerol molecule, while still 

allowing the permeation of water. A similar movement may occur in loop A. 

- hAQP3 monomers may not behave in a concerted fashion, but rather 

independently, and fluxes of solutes may be different in each monomer, upon pH 

changes. The observable effect of pH on AQP3 permeation is a sum of the effects in 

all the four monomers and, as a consequence, our observation of the differences in 

the Hill slope for water and glycerol may not be the same for each independent 

monomer, but an ‘‘average’’ effect of the tetrameric assembly.  

Overall, in silico methodologies have allowed us and others [13,22] to perform a 

detailed molecular analysis of the gating mechanism of AQPs, providing a more 

physiological view of such processes. Moreover, the movement of loops, intra or 

extracellular, was observed in the gating mechanism of several AQPs [12,13,14,15] 

and appears to be a crucial feature in channel closure. Histidine residues in such 

loops can ‘‘tune’’ the pH sensitivity towards certain pH values [4,19].  

Notably, metal compounds have also been shown to modulate the function of 

AQPs. For example, among the endogenous transition metal ions, Cu2+ and Ni2+ 

have been demonstrated to cause a decrease in water and glycerol permeability (Pf 

and PGly) in cells expressing human AQP3-GFP in a dose-dependent manner and 

the effect was rapid and reversible, while Pb2+ and Zn2+ ions had no effect in AQP3 

permeability [4,21].  

Moreover, the effect of Ni2+ was pH-dependent: at neutral and acidic pH, the 

AQP3-mediated water permeability was completely inhibited by 1 mM NiCl2. At 

pH 7.4 and 8.0, the Pf in transfected cells was decreased by Ni2+, but remained 

significantly higher than that in non-transfected cells. Site-directed mutagenesis 

studies identified three residues, Trp128 and Ser152 in the second extracellular 

loop and His241 in the third extracellular loop of AQP3, as determinants of Ni2+ 
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inhibition effects [4]. These Ni2+-sensitive residues are the same as for Cu2+, which 

suggests the same binding site and mechanism of inhibition [21]. Interestingly, 

Ser152 was identified as a common determinant of both Ni2+ and pH sensitivity. 

Finally, considering the importance of glycerol in multiple vital physiological 

processes, regulation of its permeation across hydrophobic cell membranes via 

AQPs may be crucial for cell proliferation, adaptation and survival, and future 

research to untangle the biological relevance of aquaglyceroporins’ pH gating in 

health and disease conditions ought to be conducted. 

 

3.2.5 Experimental Section 

Ethics Statement - Venous blood samples were obtained from healthy human volunteers 

following a protocol approved by the Ethics Committee of the Faculty of Pharmacy of the 

University of Lisbon. Informed written consent was obtained from all participants. 

 

Strains, plasmids and growth conditions - Plasmid with Rattus norvegicus aquaporin-3 

(rAQP3) cDNA (pcDNA3-AQP3), kindly provided by Dr. M. Eschevarria, Virgen del 

Rocio University Hospital-Seville, was used for AQP3 cDNA amplification. The 

centromeric plasmid pUG35 was used for cloning rat AQP3, conferring C-terminal GFP 

tagging, MET25 promoter and CYC1-T terminator. Escherichia coli DH5α [23] was used as 

host for routine propagation of the plasmids. E. coli transformants were maintained and 

grown in Luria-Bertani broth (LB) at 37 ˚C; ampicillin (100 μg/ml) [24]. Plasmid DNA from 

E. coli was isolated using a GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich). 

Saccharomyces cerevisiae, 10560-6B MATα leu2::hisG trp1::hisG his3::hisG ura352 

aqy1D::KanMX aqy2D::KanMX (YSH1770, further indicated as aqy-null) was used as a host 

strain for heterologous expression of rat AQP3. Yeast strains were grown at 28 ˚C with 

orbital shaking in YNB (yeast nitrogen base) without amino acids (DIFCO), with 2% (w/v) 

glucose supplemented with the adequate requirements for prototrophic growth.31 Yeast 
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transformants were maintained in the same YNB medium with 2% (w/v) agar. For 

stopped-flow assays, the same medium was used to yeast cells growth.  

 

Cloning of rAQP3 and yeast transformation - E. coli DH5α was transformed with 

(pcDNA3_AQP3) and used for propagation of the plasmid. Plasmidic DNA was isolated 

and purified. rAQP3 specific primers modified to incorporate restriction sites for SpeI 

(underlined) and ClaI (underlined) (5’- GGACTAGTCCT ATG GGT CGA CAG AAG GAG 

TTG AT-3’ and 5’-CCAT CGATGGA GAT CTG CTC CTT GTG CTT CAT GT-3’ 

respectively) were designed and used for PCR amplification of rAQP3 cDNA. PCR 

amplification was carried out in an Eppendorff thermocycler with Taq Change DNA 

polymerase (NZYTech). The PCR product was digested with SpeI and ClaI restriction 

enzymes (Roche Diagnostics®), purified using Wizard® SV Gel and PCR Clean-Up 

System kit (Promega) and cloned into the corresponding restriction sites of pUG35 

digested with the same restriction enzymes, behind the MET25 promoter and in frame 

with GFP sequence and CYC1-T terminator, using T4 DNA Ligase (Roche), according to 

standard protocols [24], to construct the expression plasmid pUG35-rAQP3. The plasmid 

was used to transform DH5α E. coli strain, propagated and subjected to extraction and 

purification. Fidelity of constructs and correct orientation were verified by PCR 

amplification, restriction analysis and DNA sequencing. Agarose gel electrophoresis and 

restriction site mapping were performed according to standard methods [24,25]. 

Transformation of the S. cerevisiae aqy-null strain with pUG35-rAQP3 was performed by 

the lithium acetate method described in [25]. The same strain was also transformed with 

an empty pUG35 vector (which does not contain rAQP3 cDNA) to be used as a control 

(further indicated as control). Transformants were selected on YNB medium without 

uracil as auxotrofic marker. 

 

rAQP3 subcellular location by fluorescence microscopy - For subcellular localization of 

GFP-tagged rAQP3 in S. cerevisiae, yeast transformants in mid-exponential phase were 

observed with a Zeiss Axiovert 200 fluorescence microscope, at 495 nm excitation and 535 
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nm emission wavelengths. Fluorescence microscopy images were captured with a digital 

camera (CoolSNAP EZ, Photometrics, USA) and using the Metafluor software (Molecular 

Devices, Sunyvale, CA). 

 

Cell sampling and preparation - Venous blood samples were collected in citrate 

anticoagulant (2.7% citric acid, 4.5% trisodium citrate and 2% glucose). Fresh blood was 

centrifuged at 750 x g for 5 min at 4 ˚C and plasma and buffy coat were discarded. Packed 

erythrocytes were washed three times in phosphate buffer saline solution (PBS; KCl 2.68 

mM, NaCl 137 mM, KH2PO4 and Na2HPO4 concentration was varied in order to change 

the pH in the range 5 - 7.8 maintaining total osmolarity constant at 310 mOsM), diluted to 

0.5% hematocrit and immediately used for experiments. Yeast transformants were grown 

up to OD640nm≈1, harvested by centrifugation (5000 x g; 10 min; 4 °C), washed and re-

suspended in ice cold sorbitol (1.4 M) K+-citrate buffer (50 mM, pH 5 - 7.8) up to a 

concentration of 0.33 g ml−1 wet weight and kept on ice for at least 90 minutes. Prior to the 

osmotic challenges the cell suspension was pre-loaded with the nonfluorescent precursor 

5-and-6-carboxyfluorescein diacetate (CFDA, 1 mM for 10 min at 30 ˚C) that is cleaved 

intracellularly by nonspecific esterases and generates the impermeable fluorescent form 

known to remain in the cytoplasm [26]. Cells were then diluted (1:10) in sorbitol 1.4 M 

buffer and immediately used for experiments. 

 

Cell volume measurements - The equilibrium volume of RBC in PBS solutions at different 

pHs was determined using a CASY-1 Cell Counter (Scharfe System GmbH, Reutlingen, 

Germany) and was calculated as 86 fL for the experimental pH range used in the 

permeability assays. Mean volumes of yeast transformants equilibrated in sorbitol 1.4 M 

buffer were obtained by loading cells with carboxyfluorescein diacetate (CFDA) under a 

fluorescent microscope equipped with a digital camera as previously described [26]. Cells 

were assumed to have a spherical shape with a diameter calculated as the average of the 

maximum and minimum dimensions of each cell. 
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Stopped-flow experiments - Light scattering and fluorescence stopped-flow spectroscopy 

was used to monitor cell volume changes of respectively, RBC [8] and yeast transformants 

loaded with the concentration-dependent self-quenching CFDA fluorophore [26]. 

Experiments were performed on a HI-TECH Scientific PQ/SF-53 stopped-flow apparatus, 

which has a 2 ms dead time, temperature controlled, interfaced with an IBM PC/AT 

compatible 80386 microcomputer. After challenging cell suspensions with an equal 

volume of shock solution at 23 ˚C, the time course of volume change was measured by 

following the 90˚ scattered light intensity at 400 nm, or fluorescence intensity (excitation 

470 nm and emission 530 nm). For each experimental condition, 5 to 7 replicates were 

analyzed. Baselines were acquired using the respective incubation buffers as isotonic 

shock solutions. For osmotic water permeability (Pf) measurements, a hyperosmotic shock 

solution containing a non-permeable solute was used (for RBC assays, sucrose 200 mM in 

PBS pH 5 to 7.8; for yeast assays, sorbitol 2.1 M in K+-citrate pH 5 to 7.8) producing an 

inwardly directed gradient of solute. To measure glycerol permeability (PGly), a 

hyperosmotic shock solution containing glycerol was used (for RBC assays, glycerol 200 

mM in PBS pH 5 to 7.8; for yeast assays, sorbitol 0.7 M, glycerol 1.4 M in K+-citrate pH 5 to 

7.8) creating an inwardly directed glycerol gradient. After the first fast cell shrinkage due 

to water outflow, glycerol influx in response to its chemical gradient was followed by 

water influx with subsequent cell re-swelling. In all the permeability assays the magnitude 

of the osmotic shocks (given by the ratio of the initial to final medium osmolarity after the 

applied osmotic challenges) is similar (tonicity of 1.25 to 1.5).  

 

Data analysis - Pf was estimated by Pf = k (Vo/A)(1/Vw(osmout)), where Vw is the molar 

volume of water, Vo/A is the initial cell volume to area ratio, (osmout) is the final medium 

osmolarity after the applied osmotic gradient and k is the single exponential time constant 

fitted to the light scattering or fluorescence signal of yeast [26] or RBC shrinkage [8]. For 

RBC, PGly was calculated by PGly = k (Vo/A), where Vo/A is the initial cell volume to area 

ratio and k is the single exponential time constant fitted to the light scattering signal of 

glycerol influx in erythrocytes. For yeast cells, fluorescence glycerol traces obtained were 
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corrected by subtracting the baseline slope that reflects the bleaching of the fluorophore. 

This was attained by fitting each signal to a double exponential with slope where the first 

process corresponds to cells shrinkage due to water outflow, the second process to cells 

swelling due to glycerol influx, and the slope corresponds to the baseline observed in all 

glycerol traces. The pattern of fitted slopes was confirmed for each experimental condition 

using baseline traces obtained with control stain under isotonic conditions. 

 

Statistical Analysis - The results were expressed as mean ± SEM of n individual 

experiments. Statistical analysis between groups was performed by the unpaired t-test. P 

values < 0.05 were considered statistical significant. 

 

Molecular modelling - The 3D structure of hAQP3 was obtained by homology modelling 

using the Molecular Operating Environment (MOE 2012.10) (CCG 2012) [17]. The choice of 

a template structure was based on the sequence identity between hAQP3 and the sequence 

of the AQPs with available resolved structures from human, bacteria and Plasmodium 

falciparum. The isoform showing the highest sequence similarity with hAQP3 is the 

bacterial isoform Glycerol Facilitator (GlpF), which was then chosen as a template 

structure to generate a homology model of hAQP3. Three resolved structures for bGlpF, 

crystallized either with or without glycerol and solved by X-Ray diffraction, were 

retrieved from the Protein Data Bank. Among them, the template was selected that had the 

best resolution (2.70 Å) without any substrate (pdb 1LDI) [27]. The tetrameric form was 

assembled and the structure was prepared and protonated at pH 7 by using the 

Amber12EHT force field [20]. Intermediate models of AQP3 were generated and averaged 

to obtain the final homology model. The model obtained was checked for reliable rotamers 

involving the side chains in the regions of ar/R SF and NPA, by comparison with the 

available crystal structures of all the other human and microbial AQP isoforms (pdb codes 

1H6I, 36D8, 3D9S, 1RC2, 1LD1 and 3C02). The structure was protonated at pH 7 and an 

energy minimization refinement was performed, with fixed Cα atoms. 
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3.2.6 Supplementary Information 

 

Supplementary Figure S3.2.1 │ Localization of GFP-tagged rAQP3 expressed in S. 

cerevisiae aqy-null strain. Epifluorescence (left panel) and phase contrast (right panel) 

images of S. cerevisiae aqy-null strains transformed with rAQP3. [Data obtained jointly with 

Ana Paula Martins] 

 

 

Supplementary Figure S3.2.2 │ Homology model of human AQP3. Left panel: ribbon 

representation of the hAQP3 channel. Right panel: the represented residues compose the 

aromatic/Arginine selectivity filter (ar/R SF), in blue, and the NPA motif, in green. [Data 

obtained by Andreia de Almeida] 



86 
 

 

Supplementary Figure S3.2.3 │ Ribbon representation of bovine AQP0 in an open (green, 

pdb 2B6P) and closed (red, pdb 1SOR), superposed with the homology model of hAQP3 

(black). pH-sensitive histidines are represented in stick representation, with the color 

corresponding to the respective isoform: His40/53 in Loop A and His122/154 in Loop C. 

[Data obtained by Andreia de Almeida] 

 

 

Supplementary Figure S3.2.4 │ Molecular surface of bovine AQP0 in an open (green, pdb 

2B6P) and closed (red, pdb 1SOR). Sidechains of residues in the channel lining, such as ar/R 
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SF residues, are depicted in stick representation, as well as the two pH-sensitive histidines, 

His122 and His40. [Data obtained by Andreia de Almeida] 

 

 

 

Supplementary Figure S3.2.5 │ Sequence alignment of rat and human aquaporin-3. The 

black boxes highlight the pH-sensitive residues, while the grey box highlights His129 in 

hAQP3. * represents the residues that are not conserved in the two isoforms. [Data 

obtained by Andreia de Almeida] 
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3.3 Regulation of Aquaporin-7 glycerol influx by acidic pH 

3.3.1 Abstract 

The aquaglyceroporin AQP7, a family member of aquaporin membrane channels, 

facilitates the permeation of water and glycerol though cell membranes and is 

crucial for body lipid and energy homeostasis. Regulation of glycerol permeability 

via AQP7 is considered a promising therapeutic strategy towards fat-related 

metabolic complications. We used a yeast expression system for heterologous 

expression and functional analysis of human AQP7 and investigated its regulation 

by pH. Using a combination of in vitro and in silico techniques, we found that 

AQP7 changes from fully permeable to virtually closed at acidic pH preventing 

glycerol influx but not efflux. Tyr135 and His165 are essential residues for pH 

sensing. Protonation further induces changes in protein surface electrostatic 

charges switching AQP7 from a bidirectional water/glycerol channel to a glycerol 

efflux channel. This mechanism of pH-regulation supports the role of AQP7 in 

adipose tissue and may help the design of selective modulators targeting 

aquaglyceroporin-related disorders. 

 

3.3.2 Introduction 

In this study we investigated pH regulation of human AQP7, the main 

aquaglyceroporin expressed in human adipocytes and particularly relevant to 

assure efficient glycerol fluxes in healthy adipose tissue, being involved in obesity 

and fat-related metabolic complications [1,2,3,4]. By expressing hAQP7 in our 

optimized yeast expression system [5], we were able to detect and characterize 

water and glycerol permeability corroborating hAQP7 channel function. Moreover, 

channel permeability was confirmed by inhibition with Auphen - [Au(phen)Cl2]Cl 

(phen = 1,10-phenanthroline) - a gold(III) compound reported by us as a potent 
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inhibitor of human aquaglyceroporins AQP3 and AQP7 in their native expression 

systems [6,7]. Using a combination of in vitro and in silico techniques, we showed 

for the first time that the bidirectional permeability of an aquaporin can be 

regulated differently upon pH changes, changing from a completely open 

bidirectional channel to a glycerol efflux channel at acidic pH. The mechanisms 

involved in hAQP7-pH regulation were investigated at a molecular level using 

site-directed mutagenesis combined with molecular modeling and molecular 

dynamics (MD) approaches. Knowledge on hAQP7 regulation can contribute to 

understand the roles of this isoform in physiology and pathology, helping in the 

development of aquaglyceroporin-targeted therapies. 

 

3.3.3 Results and Discussion 

hAQP7 is a functional water and glycerol channel when expressed in yeast  

Yeast cells were transformed with either the empty plasmid (control cells) or the 

plasmid containing the human AQP7 gene (mentioned as hAQP7 cells for clarity). 

Expression and subcellular localization of hAQP7 at the yeast plasma membrane 

were confirmed by fluorescence microscopy using GFP-tagging (Supplementary 

Figure S3.3.1). 

The activity of hAQP7 was assessed by stopped-flow fluorescence spectroscopy by 

challenging cells equilibrated in isosmotic solution at pH 7.4 (mammalian 

physiological pH) with hyperosmotic solutions of sorbitol (impermeant solute, 

inducing water efflux and cell shrinkage) or glycerol (after the initial fast water 

outflow, glycerol influx induces cell re-swelling [5]). Yeast expressing hAQP7 show 

faster volume equilibration and higher osmotic permeability coefficient Pf ((4.38 ± 

0.23) x 10-4 cm s-1) than control cells ((2.91 ± 0.12) x 10-4 cm s-1) (Figure 3.3.1 A and 

B), evidencing water channeling. Regarding glycerol permeability, PGly, a marked 



92 
 

difference in the volume change rate between control and hAQP7 cells is observed 

(Figure 3.3.1 D), where the permeability PGly for hAQP7 cells was observed to be 

approximately 100-fold the control ((13.1 ± 1.80) x10-6 and (0.12 ± 0.07) x10-6 cm s-1 

for hAQP7 and control cells respectively) (Figure 3.3.1 E). To confirm the 

contribution of hAQP7 for the observed Pf and PGly, the activation energies (Ea) for 

both water and glycerol permeation were measured (Figure 3.3.1 C and F). Ea is a 

crucial parameter that allows distinction between passive bilayer diffusion and 

protein-mediated diffusion through membranes. The observed Ea was lower in 

hAQP7 cells (9.16 ± 0.45 and 10.55 ± 0.41 kcal mol-1 for water and for glycerol) 

when compared to control cells (15.06 ± 0.46 and 23.20 ± 1.31 kcal mol-1 for water 

and for glycerol), indicating that hAQP7 expressed in yeast is a functional water 

and glycerol channel. 

Previous studies by our group have detected the strong and selective inhibitory 

effect of a gold(III) coordination compound Auphen [Au(phen)Cl2]Cl (phen=1,10-

phenanthroline) on hAQP3 and hAQP7, expressed in human erythrocytes and 

mammalian cultured cells, respectively [6,7,8,9]. Here, we used Auphen to validate 

hAQP7 activity expressed in yeast and demonstrate that it is possible to detect 

small changes in channel permeation. Auphen induced a marked inhibitory effect 

of hAQP7 permeability (34% and 84% for Pf and PGly respectively) (Figure 3.3.1 G). 

Additionally, a dose-response curve for PGly inhibition by Auphen resulted in an 

inhibitory concentration (IC50) of 12.95 ± 0.35 μM (Figure 3.3.1 H), in line with 

previously reported studies in hAQP7 expression in cultured adipocytes [6].  
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Figure 3.3.1 │ Water and glycerol permeability in control and cells expressing hAQP7. 

(A) Representative time course of the relative cell volume (V/V0) changes after a sorbitol 

hyperosmotic shock (pH 7.4, 23 ºC) inducing water efflux and cell shrinkage. (B) Water 

permeability coefficient (Pf) and (C) Activation energy (Ea) for water permeation. (D) 

Representative time course of the relative cell volume (V/V0) change after a glycerol 

hyperosmotic shock (pH 7.4). After the fast water outflow, glycerol influx induces cell 

reswelling. (E) Glycerol permeability (PGly) and (F) Activation energy (Ea) for glycerol 

permeation. (G) Water and glycerol permeability of cells upon treatment with Auphen (30 

min, 70 μM). (H) Dose-response curve of glycerol permeability inhibition by Auphen, IC50 = 

12.95 ± 0.35 μM. All permeability assays were performed at 23 ºC, except for Ea assessment 

(described in Experimental Section). Data is shown as mean ± SEM of five independent 

experiments. ns, non significant; ** P < 0.01; *** P < 0.001.  
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hAQP7 is a pH-sensitive water and glycerol channel 

hAQP7 pH-dependency has been previously evaluated in the Madin-Darby canine 

kidney (MDCKII) cells by measuring 14C-glycerol uptake in the pH range 5.5 to 8 

and, although glycerol uptake was significantly reduced at pH 5, no relevance was 

attributed to this effect with unclear meaningful physiological relevance [10]. A 

recent study also showed pH-dependence of murine AQP7 when expressed in 

yeast, with a loss of glycerol permeability at pH 4 and below [11]. This prompted 

us to investigate hAQP7 pH-sensitivity for both water and glycerol permeation 

using our optimized yeast-cell system where channel permeability was fully 

characterized as shown above. 

Thus, Pf and PGly were evaluated by varying external pH from 7.4 to 5. (Figure 3.3.2 

A and B). Data shows that, while at pH 7.4 hAQP7 is fully functional and has a 

maximal permeability at pH 6.5 and above, a marked reduction (more than 90% 

decrease) of Pf and PGly is observed at pH 5 (Figure 3.3.2 C and D). Interestingly, 

despite this clear reduction, Pf and PGly were still significantly higher than control 

cells, indicating that although the permeability is substantially reduced, the pore is 

not completely closed at pH 5. Remarkably, the pH-dependence profile was similar 

for both water and glycerol permeation, with pKa values estimated as 5.88 ± 0.01 

and 5.85 ± 0.01 respectively. Additionally, the estimated Ea at three distinct pH 

values (pH 5, 6.5 and 7.5) corroborate the proposed channel regulation upon 

extracellular acidification (Supplementary Figure S3.3.2).  
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Figure 3.3.2 │ pH-dependence of hAQP7 permeability. (A) Pf and (B) PGly dependency 

of control and hAQP7 cells at pH 5 – 7.5. (C) Pf and (D) PGly at pH 5 and pH 7.4. pH-

dependence of hAQP7 was analyzed by fitting the experimental data to a Hill equation 

from where the pKa values were estimated. Permeability assays were performed at 23 ºC. 

Data are mean ± SEM of four independent experiments. * P < 0.05, ** P < 0.01, *** P < 

0.001. 

 

hAQP7 pore is not closed after pH decrease 

To gain further insights into hAQP7’s pH regulation, we used a molecular 

modeling approach previously developed by our group [12]. A homology model of 

hAQP7’s tetramer, based on the available structure of the bacterial glycerol 

facilitator (GlpF, pdb code 1LDI) [13] was obtained using MOE software (MOE 

2012.10; CCG 2012) [14], as described in the Experimental Section. In each protein 

monomer, the common fold shared by the aquaporin family was found: six 

transmembrane helices and two half-helices, with their N-terminal ends located in 

the centre of the pore (NPA motif). However, hAQP7 has NAA (Asn94, Ala95, 
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Ala96) and NPS (Asn226, Pro227, Ser228) motifs, rather than the common NPA 

found in other AQPs. A second selectivity filter, located near the extracellular 

entrance, named aromatic/arginine selectivity filter (ar/R SF), is an important 

distinctive and conserved feature of the aquaporin family. This is observed in our 

model of hAQP7, where Phe74, Tyr223 and Arg229 constitute the ar/R SF. The 

refined homology model of hAQP7 was protonated using the PROPKA 3.1 

package [15] at pH 5 and 7. 

Using the homology model prepared and protonated as described above, five 

independent MD simulations were run for 0.5 ns for each pH system (pH 5 and 7), 

as detailed in Experimental Section.  

To investigate possible pore closure and conformational changes at low pH, the 

size and shape of the pore were analyzed using HOLE [16], from snapshots taken 

at five time points in each MD simulation. In Figure 3.3.3 is shown a HOLE surface 

representation of channel A, next to the average channel size of all monomers 

throughout the simulations. Interestingly, no differences were found in the size of 

the channels at the two pH values for both NPA and ar/R SF areas, indicating that 

the decrease in Pf and PGly may not be due to conformational changes and pore 

closure. However, there is an observable difference in the extracellular pocket (EP) 

(0.5 Å broader), just above the ar/R SF. This small variation may be due to system 

fluctuation during the simulation (as previously observed for other aquaporin 

isoforms [17]), as it was not detected in all individual cases (Supplementary Figure 

S3.3.3). Yet, such conformational difference at pH 7, leading to a broader 

extracellular glycerol binding pocket just above the ar/R SF, could favor its passage 

through the pore, leading to increased permeability. 
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Figure 3.3.3 │ Pore size of hAQP7 monomer A at pH 5 and pH 7. Surface of a 

representative snapshot of monomer A (based on VDW radii): red = smaller than single 

H2O, green = single H2O, blue = larger than single H2O. Pore size represented as an 

average of all monomers in 5 simulations at each pH value. EP – extracellular pocket, ar/R – 

aromatic/arginine selectivity filter, NPA – NPA motif, CP – cytoplasmic pocket. Figure 

generated by HOLE [16] and VMD [18]. [Data obtained by Andreia de Almeida] 

 

hAQP7 is a glycerol efflux channel at acidic pH 

Since conformational analysis of the pore indicates that the protein does not alter 

pore size when protonated at pH 5, and the structure of the channel is not exactly 

symmetrical in both sides of the membrane (Figure 3.3.3), we decided to 

investigate if glycerol influx and efflux would similarly be affected by pH. 

Therefore, as described in the Experimental Section, five independent MD 

simulations were run for 0.5 ns for each pH (pH 5 and 7) with four glycerol 

molecules, located in the intra or extracellular side of the membrane, pulled along 

the Z-axis in each direction, mimicking imposed glycerol gradients to simulate 

both influx and efflux. Hence, a total of 20 simulations were run to evaluate 
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glycerol permeability in both directions (see supplemental material for videos of 

the MD simulations). Afterwards, all simulations were analyzed and glycerol 

molecules monitored for successful permeation of hAQP7. In Figure 3.3.4 A, 

glycerol permeation is shown as an average number of glycerol molecules able to 

cross the tetramer via monomer channels. As expected, glycerol influx is 

significantly higher at pH 7 than at pH 5 corroborating the obtained experimental 

PGly (Figure 3.3.2 B), while surprisingly there is no significant difference between 

pH 5 and 7 for efflux.  

 

Figure 3.3.4 │ Glycerol and water directional permeation across the hAQP7 channel 

(in silico and in vitro) as a function of pH. (A) Number of glycerol molecules crossing 

the AQP7 tetramer in MD studies, represented as mean ± SEM (n = 5). (B) Water diffusion 

coefficient calculated by MD simulations, represented as mean ± SEM (n = 3). n = number 

of simulations. (C) Glycerol efflux, and (D) water influx rates of hAQP7 cells by stopped-

flow spectroscopy. Assays were performed at 23 ºC, at pH 7.4 and pH 5.1. Glycerol efflux 

was also measured after incubation with 70 M Auphen. Data are represented as mean ± 
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SEM of three independent experiments. ns, non-significant, * P < 0.05, ** P < 0.01, *** P < 

0.001. [Data obtained jointly with Andreia de Almeida] 

 

Since 0.5 ns MD simulations are too short to observe a net water movement, longer 

simulations (20 ns) were run at both pH values, without any pull code. The 

movement of water molecules between the two sides of the lipid bilayer was 

evaluated using a script, developed by us and based on previous work [19], that 

accounts for all water molecules moving from one side of the compartment to the 

other. For this purpose, only water molecules that completed the crossing through 

the AQP7 channel were counted, excluding all molecules crossing via the lipid 

bilayer. Moreover, we were able to discriminate between water molecules crossing 

in different directions of the Z-axis, allowing us to distinguish between influx and 

efflux. Water diffusion (Dw) was calculated as described in the experimental 

section and based on reference [20], simulating an equilibrium situation. It is 

important to note that, thermodynamically, due to the changes in protonation 

states, AQP7-pH7 and AQP7-pH5 are two different systems. For each of these 

systems separately, and as expected for an equilibrium situation, Dw evaluated for 

both water influx and efflux was identical (Figure 3.3.4 B). However, a significant 

difference between AQP7-pH7 and AQP7-pH5 was observed for water efflux. It 

should be noted that our MD simulations did not take into account the different 

ratio of charged species at the two pH values. Only neutral species permeate AQPs 

and, therefore, a decrease in pH will lead to decreased available neutral species, 

thus possibly reducing water permeability. This is a limitation of the MD 

approach, and in this respect further studies are necessary to fully disclose the 

gating mechanism for water permeation through aquaporins. 

The obtained MD data on influx and efflux differences led us to explore this effect 

in vitro in yeast cells incubated with glycerol, promoting intracellular glycerol 
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accumulation [21]. The rate of glycerol efflux was measured after exposing 

glycerol-loaded cells to a sorbitol solution of identical osmolarity and following 

cell shrinkage. As depicted in Figure 3.3.4 C, glycerol efflux is 30-fold higher in 

hAQP7 cells compared to control and similar at both pH values, and, thus, not 

affected by pH as revealed by the above MD simulations. Importantly, we 

observed a full inhibition of glycerol efflux by Auphen, which validates the assay 

for hAQP7 activity. Regarding water influx, hAQP7 cells show significantly higher 

influx rates than control, but similar at both pH values (Figure 3.3.4 D); these data 

also corroborate our findings with the MD simulations. 

Although the MD and stopped-flow spectroscopy data are not directly 

comparable, since the computational studies are not performed in conditions of 

osmotic shock, our in silico and in vitro data are in line in that only glycerol influx 

and water efflux are pH-regulated, while glycerol efflux and water influx are not 

affected within the tested pH range. 

 

Tyr135 and His165 are key residues for glycerol permeability  

Previous research on human AQP3 using site-directed mutagenesis [22], 

demonstrated that four residues (His53, Tyr124, Ser152 and His154) appear to be 

responsible for pH gating of this isoform. The relevance of these residues on 

hAQP3 was recently investigated by our group using MD and we proposed that 

gating occurs mainly due to protonation of His154 and its interaction with the 

neighboring His129 [12].  

To investigate the mechanism of pH regulation, sequence alignment of hAQP3 and 

hAQP7 and superposition of the two homology models (the homology model of 

hAQP3 was prepared as described in reference [12]) showed that the 

corresponding residues in hAQP7 are Tyr64, Tyr135, His140, Pro163 and His165. 
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The location of residues Tyr135, His140 and His165 in the hAQP7 tetramer is 

shown in Figure 3.3.5 A and B.  

Detailed analysis of the protonation sites at both pH values revealed that only four 

residues are protonated at pH 5, which are not at pH 7 (Supplementary Figure 

S3.3.4): on extracellular side, His140 (in all monomers), intracellularly, Glu40 

(monomers A, C and D), His92 (monomers B, C and D) and Glu202 (in all 

monomers).  

Based on the sequence/structural alignment and protonation studies, the residues 

facing the extracellular environment were chosen for further site-directed 

mutagenesis studies were Tyr135, His140 and His165. Additionally, as seen in 

Figure 3.3.3, changes in pore size are only observed in the extracellular side at pH 

7, thus pointing at role of extracellular amino acids in pH-dependency. Since 

Pro163 does not have a protonable side chain, and Tyr64 was not protonated at pH 

5, these residues were not further investigated. 

Thus, to determine the importance of His165, His140 and Tyr135, the selected 

amino acids were substituted by alanine residues (Ala) and, due to the proposed 

role of His165 on AQP3 pH gating [12], double mutants were also generated. The 

relative membrane expression levels revealed that all the point-mutants could 

retain the same cellular distribution in the plasma membrane as the wild type 

AQP7 protein (WT). Additionally, no differences in membrane abundance were 

observed in cells incubated in media with different pH or osmolarity 

(Supplementary Figure S3.3.5). The permeability of the mutants was then further 

investigated under the same pH range as previously used for WT. 

Data shows that the water permeability of all mutants remains equal or even 

slightly higher than WT above pH 7, indicating that the hAQP7 mutants are 

functional channels (Figure 3.3.5 C and E). Regarding glycerol permeation, while 

the single H140A mutant displays similar behavior to WT, all the other mutations 
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showed markedly reduced glycerol permeability at pH 7.4 (Figure 3.3.5 D and F). 

In fact, the mutants H165A and H165A+H140A reduced glycerol maximal 

permeability at pH 7.4 to 44% of the WT, inducing a shift in the pKa from 5.86 ± 

0.01 to 6.30 ± 0.01 (Supplementary Table S3.3.2). Interestingly, the mutants Y135A 

and Y135A+H165A rendered the protein almost inactive, reducing the maximal 

PGly to 10% of the observed for WT (Figure 3.3.5 D and F). This suggests the key 

involvement of the Tyr135 and His165 residues in the channel pore permeability, 

while His140 does not appear to have any contribution to pH-dependency.  
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Figure 3.3.5 │ Putative residues involved in hAQP7 pH regulation. (A) side and (B) top 

views of the refined homology model of human AQP7 in its tetrameric assembly, in 

cartoon representation of the tertiary structure, with ribbon representation of each 

monomer. Amino acid residues are shown in stick representation and backbone and 

hydrogens are hidden for clarity. Residues are colored according to the corresponding 

monomer, as shown in B. Figure generated with MOE [14]. (C) Water permeability (Pf) and 

(D) glycerol permeability (PGly) measured at pH 5.1-7.5, of control cells and cells expressing 

hAQP7-WT and -mutants. (E) Change in water (Delta Pf) and in (F) glycerol (Delta PGly) 

permeability (from pH 7.4 to pH 5.1). All permeability assays were performed at 23 ºC. Data 

(mean ± SEM, n=4 for each data set) were fitted according to the Hill equation. [Data 

obtained jointly with Andreia de Almeida] 
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Protonation of hAQP7 induces changes in protein surface electrostatic charges  

Following the functional in vitro results, showing a clear role of Tyr135 and His165 

in hAQP7 permeability, detailed analysis of the MD trajectories was performed. 

The MD trajectories of both glycerol and water permeation, did not allow to 

disclose a clear role for His165 in pH-gating of WT hAQP7. However, careful 

analysis of the hydrogen bond network during glycerol permeation at pH 7 shows 

that glycerol preferably forms hydrogen bonds with residues featuring protonable 

side chains (e.g. Lys63, Tyr64). Protonation of residues in the pore entrance, such 

as His165, at pH 5 may alter the hydrogen bond network, also affecting the 

residues responsible for glycerol passage.  

Therefore, we postulate that the contribution of His165 and Tyr135 to AQP7 pore 

permeability is based on a network of hydrogen bonds that dynamically readapts 

to changes in external acidification. In order to support this hypothesis, we have 

prepared new homology models for all the mutants. The models were generated 

based on mutated sequences, refined and subsequently protonated at pH 5 and pH 

7, using PROPKA 3.1 package [15], as performed for the WT model. Each model 

was further analyzed using HOLE [16] for pore size and the results for all models 

are shown in Supplementary Figure S3.3.6.  

The main difference in size was found for the double mutant Y135A+H165A 

(Figure 3.3.6 A), which showed a decrease in pore size at the ar/R SF of 

approximately 1 Å when compared to the WT. All mutants show a pore size 

decrease in this region (Supplementary Figure S3.3.6), although not as marked (ca. 

0.5 Å). Moreover, none of the mutants show relevant changes in size in the NPA 

region. A decrease in size of the ar/R SF, the first constriction site that solutes 

encounter when permeating AQPs from the extracellular side, may contribute to 

the observed loss of permeability of the mutants. However, His140A also shows a 

slight decrease in ar/R SF size, despite having the same permeability of the WT 
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protein. This indicates that pore size may not be the only factor playing a role in 

AQP7 permeability. In fact, as observed in Figure 3.3.5 and Supplementary Table 

S3.3.2, the studied mutants also appear to alter the pKa of water and glycerol 

permeation. This effect may be due to changes in the electrostatic surface of the 

mutants and also under different pH conditions. Therefore, in order to study the 

effects of pH and mutations in the electrostatic surface of hAQP7, surfaces were 

generated using the Adaptive Poisson-Boltzmann Solver (APBS) [23] plugin in 

Chimera [24], and are shown in Figure 3.3.6 B and Supplementary Figure S3.3.7. 

 

 

Figure 3.3.6 │ Pore size and protein surface electrostatic charges. (A) Pore size of 

human AQP7-WT and double mutant Y135A+H165A, analyzed using HOLE [16]. Top 

channel surface represents the pore size of hAQP7 mutant Y135A+H165A (based on VDW 

radii): red = smaller than single H2O, green = single H2O, blue = larger than single H2O. 

Figure generated by HOLE [16] and VMD [18]. (B) Electrostatic surfaces of hAQP7-WT and 

mutant Y135A+H165A, at pH 5 and 7, with the following color code: positive = blue, 

negative = red, neutral = white. Top views of both intra and extracellular sides, with the 

pKa of each protein indicated in the figure. Surfaces were generated using the Adaptive 
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Poisson-Boltzmann Solver (APBS) [23] plugin in Chimera [24]. Monomers labelled A-D are 

shown in grey to indicate their position in each view. [Data obtained by Andreia de 

Almeida] 

 

Overall, the main observable difference is that the intracellular surface of all 

models appears to be much more negative (shown in red color) at pH 7 than at pH 

5. At pH 7, the channel areas appear more positively charged, while the outer 

portion is more neutral than at the lowest pH. Interestingly, the H140A mutant is 

very similar to WT, both in charge distribution on the protein surface at both pH 

values and in terms of protonation (Supplementary Figure S3.3.7), which is in line 

with our experimental findings. 

The most marked changes were observed for the H165A and Y135A single and 

double mutants, pointing at the crucial involvement of these two residues in pH 

gating and glycerol permeability. Remarkably, as observed for the glycerol 

permeability shown in Figure 3.3.5 C, Y135A mutation has the strongest effect on 

the double mutant, also shown to have the same protonated residues as the single 

mutant (Supplementary Figure S3.3.7). Similarly, H165A mutation appears to 

dominate the effects of the double His mutant, both in permeability and residue 

protonation. 

Analysis of protonation reveals that the mutants do not induce changes in 

protonation of intracellular residues at pH 7. However, at pH 5 His92, an 

intracellular residue, is deprotonated in H165A and H140A+H165A mutants and 

partially deprotonated on the H140A mutant. Changes in protonation of this 

residue do not appear to affect the permeability at the lowest pH of any of the 

mutants, indicating that deprotonation of His92 is not a major player in the 

permeation mechanism. Despite the fact that none of the mutants induce 

protonation changes of intracellular residues at pH 7, it is possible to observe that 
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the intracellular charge distribution is altered in Y135A, H165A and the double 

mutants: surface of the channel area is more negative than WT. This indicates that 

changes in extracellular residues affect the overall electrostatic surface of the 

protein, including the intracellular surface. Thus, changes in extracellular pH may 

be able to affect the intracellular charge distribution, likely by altering the H-bond 

network of the protein, affecting the permeability. 

Moreover, the pKa differences appear to be due to the changes in electrostatic 

protein surface, caused by the mutations, which can alter the protein’s affinity for 

substrates. However, mutating these residues does not render the protein pH-

insensitive. Interestingly, beside the residues mutated in this study, most of the 

protonable amino acids composing the protein surface are lysines and arginines, 

with pKa above 10, making them very unlikely players in pH-sensitivity in a 

physiological range. A likely scenario is that the protein rearranges its H-bonding 

network according to the newly inserted residues, redistributing the electrostatic 

potential and changing affinity for substrates, shifting the role of pH-sensitivity to 

other nearby residues. 

 

hAQP7 regulation by acidic pH may contribute to an efficient glycerol efflux 

from adipocytes 

Knowing that AQP7 is crucial for glycerol efflux from adipose tissue into blood 

circulation during lipolysis, to be used in gluconeogenesis in the liver [3,25], full 

hAQP7 activity for glycerol efflux at mammalian physiological pH would be 

expected. Notably, during intracellular lipolysis, diffusion of free fatty acids across 

adipocyte plasma membranes has been shown to release protons in a 

stoichiometric manner acidifying the intracellular pH [26,27,28]. In addition, it is 
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possible that significant levels of lipolysis with increased H+ released into the 

adipose micro-circulation, create local acidic microenvironments [27]. 

Previous intracellular pH measurements of our yeast cells showed that an external 

acidification from pH 6.8 to 5 produces an intracellular pH drop from 6.8 to 6.1 

[29]. Thus, in our experimental approach, lowering the extracellular pH from pH 

7.4 to pH 5 may mimic the intracellular acidification observed in adipocytes during 

lipolysis.  

Briefly, in basal conditions when intracellular pH is kept at a physiological range, 

water and glycerol movements via AQP7 are solely dependent on osmotic or 

glycerol gradients. However, during lipolysis, the occurring acidic pH prevents 

glycerol influx while efflux is not affected, transforming AQP7 in an efficient 

glycerol efflux channel able to dissipate the intracellular glycerol accumulation in 

the adipose tissue. Interestingly, we show that acidic pH also decreases water 

efflux via hAQP7. In fact, glycerol efflux driven by its outwardly directed gradient 

is followed by water to compensate the osmotic unbalance, which can permeate 

the membrane either via AQP7 or through the lipid bilayer. Competition between 

glycerol and water molecules for hydrogen bonding to the channel lining has 

already been reported using MD simulations [30,31]. As water and glycerol may 

compete for passage through the pore in a single-file, a mechanism excluding 

water from the pore and enabling glycerol to be the only molecular species inside 

the channel surely allows a higher efficiency of glycerol release during lipolysis. 

 

3.3.4 Conclusions 

Aquaglyceroporins have emerging roles in energy metabolism and adipose tissue 

homeostasis and have been implicated in obesity and metabolic-related 

complications, such as metabolic syndrome. AQP7 is the main glycerol channel 
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expressed in human adipose tissue, with a fundamental role in glycerol release 

from adipocytes during lipolysis, when triglycerides are hydrolysed to fatty acids 

and glycerol. During fasting, the intracellularly produced glycerol is channeled by 

AQP7 into the bloodstream to be taken up in the liver by AQP9 where it will be 

used for gluconeogenesis. Thus, the fine-tuning of AQP7 efficiency for glycerol 

release from the adipose tissue and its uptake by the liver might be the rate-

limiting step for maintenance of normal blood glucose levels. While it appears 

evident that despite its bi-directionality, AQP7 may have selective directional 

permeation under certain conditions, this mechanism has never been explored. In 

fact, the channel structure is not symmetrical between intra and extracellular side, 

which may account for different solute affinity. Since acidification is a 

physiological consequence of triglyceride lipolysis in the human adipose tissue, we 

investigated the pH-regulation of human AQP7 permeability. Using in vitro and in 

silico approaches we found that residues Tyr135 and His165 facing the extracellular 

environment are crucial for channel permeability and, importantly, that 

protonation induces changes in protein surface electrostatic charges switching 

AQP7 from a bidirectional channel to a glycerol efflux channel. The selectivity 

model proposed supports the physiological role of human AQP7 in the adipose 

tissue as a glycerol efflux channel and opens new doors for the design of selective 

and potent modulators targeting AQP7. 

 

3.3.5 Experimental Section 

Strains, plasmids and growth conditions - Human AQP7 (hAQP7) cDNA was PCR 

amplified from pWPi-DEST-AQP7 plasmid [32] and C-terminally fused to GFP of the 

centromeric plasmid pUG35 [33]. Escherichia coli DH5α [34] was used as a host for routine 

propagation and purification of the plasmids with a GenEluteTM Plasmid Miniprep Kit 



110 
 

(Sigma-Aldrich, USA). E. coli transformants were maintained and grown in Luria-Bertani 

broth (LB) at 37 ˚C, ampicillin (100 µg/ml) [35]. For functional studies, Saccharomyces 

cerevisiae, 10560-6B MATα leu2::hisG trp1::hisG his3::hisG ura352 aqy1D::KanMX 

aqy2D::KanMX (YSH1770, further indicated as aqy-null) was used as a host strain for 

heterologous expression of hAQP7. Yeast strains were grown at 28 ˚C with orbital shaking 

in YNB (yeast nitrogen base) without amino acids (DIFCO), 2% (w/v) glucose 

supplemented with the adequate requirements for prototrophic growth [36].  

 

Heterologous expression of hAQP7 in S. cerevisiae 

Cloning of hAQP7 gene - E. coli DH5α was transformed with pWPi-DEST_lnAQP7 and 

used for propagation of the plasmid. Plasmidic DNA was isolated and purified. Specific 

primers modified to incorporate restriction sites for SpeI (bold) and ClaI (bold) were 

designed and used for amplification of hAQP7 cDNA (Supplementary Table S3.3.1). PCR 

amplification was carried out in an Eppendorff thermocycler with proofreading Taq 

Change DNA polymerase (NZYTech). A temperature gradient PCR was performed to 

determine the optimum annealing temperature. The amplified product was digested with 

SpeI and ClaI (Roche Diagnostics®) and purified using Wizard® SV Gel and PCR Clean-

Up System kit (Promega). The purified product was cloned into the corresponding 

restriction sites of pUG35 digested with the same restriction enzymes, behind the MET25 

promoter and in frame with GFP sequence and CYC1-T terminator, using T4 DNA Ligase 

(Roche). Cloning was performed according to standard protocols [35] to construct the 

expression plasmid pUG35-hAQP7. The plasmid was used to transform DH5α E. coli 

strain, propagated and subjected to extraction and purification. Fidelity of constructs and 

correct orientation was verified by PCR amplification, restriction analysis and DNA 

sequencing. Agarose gel electrophoresis and restriction site mapping were performed 

according to standard methods [35,37]. 
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Transformation of the S. cerevisiae aqy-null strain - Transformation of the aqy-null strain 

with pUG35-hAQP7 was performed by the lithium acetate method described in [37]. The 

same strain was also transformed with the empty pUG35 vector (which does not contain 

hAQP7 cDNA) to be used as a control (further indicated as control cells). Transformants 

were selected on YNB medium without uracil as an auxotrophic marker. 

 

Subcellular localization and membrane abundance analysis by fluorescence microscopy 

- For subcellular localization of GFP-tagged hAQP7 in S. cerevisiae, yeast transformants in 

mid-exponential phase were observed with a Zeiss Axiovert 200 fluorescence microscope, 

at 495 nm excitation and 535 nm emission wavelengths. Fluorescence microscopy images 

were captured with a digital camera (CoolSNAP EZ, Photometrics, USA) and using the 

Metafluor software (Molecular Devices, Sunyvale, CA). hAQP7 membrane expression was 

measured at pH 7.4 and pH 5.1 by measuring GFP-protein fluorescence intensity 

according to [38,39] and as previously reported by us [40]. A linear intensity profile across 

the cell membrane was generated and analyzed using the software ImageJ 

(https://imagej.net). The intensity profile along the line path from at least 30 cells in each 

experimental condition (n = 3) was recorded (Supplementary Figure S3.3.5), and for each 

cell three profile lines were taken. The background intensity along the same distance was 

measured and subtracted from the peak fluorescence intensity over each line, and the 

obtained difference divided by the maximal fluorescence to calculate the relative 

membrane expression (RME).  

 

Site-directed mutagenesis - PCR-based site-directed mutagenesis was performed to 

introduce point mutations into wild-type hAQP7 cDNA, where Tyr135, His140 and His165 

were replaced with Alanine residues (Ala), using the recombinant plasmid pUG35-hAQP7 

as a template. The mutagenic primers used in this study and the respective substitutions 

introduced (underlined) are listed in Supplementary Table S3.3.1. Each mutation at the 

corresponding position was confirmed by DNA sequencing and, further PCR reactions 

were performed to create double mutations (Y135A+H165A and H140A+H165A). All PCR 
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mutagenized products were purified, digested and cloned in pUG35 and yeast cells were 

transformed as described above. 

 

Permeability assays - Yeast transformants were grown up to OD640nm ≈ 1 (corresponding to 

1x107 cells/ml) and harvested by centrifugation (5000 ×g; 10 min; 4 °C). Afterwards, cells 

were washed and re-suspended in ice-cold sorbitol (1.4 M) K+-citrate buffer (50 mM, pH 

7.4), up to a concentration of 0.33 g ml−1 wet weight and kept on ice for at least 90 minutes. 

Prior to the osmotic challenges, the cell suspension was pre-loaded with the non-

fluorescent precursor 5-and-6-carboxyfluorescein diacetate (CFDA, 1 mM for 10 min at 30 

˚C) that is cleaved intracellularly by nonspecific esterases and generates the impermeable 

fluorescent form carboxyfluorescein, known to remain in the cytoplasm [41]. 

Equilibrium cell volumes were obtained by loading cells with CFDA under a fluorescent 

microscope equipped with a digital camera as previously described [41]. Cells were 

assumed to have a spherical shape with a diameter calculated as the average of the 

maximum and minimum dimensions of each cell. 

Stopped-flow was used to monitor cell volume changes of cells loaded with a 

concentration-dependent self-quenching fluorophore [41]. Experiments were performed 

on a HI-TECH Scientific PQ/SF-53 stopped-flow apparatus, which has a 2 ms dead time, 

temperature controlled, interfaced with an IBM PC/AT compatible 80386 microcomputer. 

Experiments were performed at 23 °C. Five runs were usually stored and analyzed in each 

experimental condition. In each run, 0.1 ml of cell suspension (1:10 dilution in 

resuspension buffer) was mixed with an equal amount of iso- (baseline) or hyperosmotic 

solutions (of sorbitol or glycerol) of 1.25 tonicity (( = (osmout)/(osmout)o), 350 mM gradient). 

The fluorophore was excited using the light source with a 470 nm interference filter, 

detected using a 530 nm cut-off filter and the changes in fluorescence due to the 

carboxyfluorescein fluorescence quenching were recorded.  

For efflux assays, cells were previously loaded with 1.4 M glycerol (pH 5.1 or pH 7.4) for 

60 min on ice to prevent intracellular glycerol metabolism, and subsequently loaded with 

CFDA. In the stopped-flow, 0.1 ml of cell suspension were mixed with equal volume of 
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isosmotic sorbitol solution producing an outwardly gradient of 700 mM glycerol. The rate 

of glycerol efflux was followed by the decrease in fluorescence (self-quenching) due to cell 

shrinkage.  

For inhibition experiments, cell suspensions equilibrated in an isotonic solution were 

incubated with CFDA in the absence or presence of Auphen (70 μM), at room temperature 

for 30 minutes at the selected pH. 

 

Calibration of the fluorescence signals into relative volume - The fluorescence traces 

obtained were corrected by subtracting the baseline trace that reflects the bleaching of the 

fluorophore. The calibration of the resulting traces for the two strains followed our 

previous strategy [42], where a linear relationship between relative volume and F was 

obtained (vrel =a F/F0+b); the values of a and b were estimated individually for each sorbitol 

osmotic shocks, considering the initial and final fluorescence values and the correspondent 

relative volumes obtained previously by our group for the same tonicity shock [41,42]. 

These values were then used for the calibration of the traces in the glycerol osmotic shock 

performed under the same experimental conditions, tonicity and temperature. 

 

Permeability and activation energies evaluation - The experimental protocols to assess 

aquaporin function were designed to keep the membrane surface tension to a minimum, 

in order to maintain aquaporin activity at its maximum, as previously found in our 

laboratory [42]. This was accomplished by equilibrating cells in 1.4 M sorbitol solution 

(considering sorbitol as a non-diffusible solute) followed by the application of low tonicity 

hyperosmotic shocks ( = 1.25, 350 mM gradient) with sorbitol or glycerol. For this 

purpose, the calibrated experimental curves vrel were fitted to their theoretical curves, 

considering the water and glycerol fluxes and the resulting changes in cell volume and 

intracellular concentrations of solutes. Optimization of permeability values was 

accomplished by numerical integrations using a mathematical model implemented in the 

Berkeley Madonna software (http://www.berkeleymadonna.com/).  
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The activation energy (Ea) of water and glycerol transport was evaluated by performing 

permeability assays at temperatures ranging from 7 to 38 °C. Ea values were obtained from 

the slope of Arrhenius plots (ln Pf or ln PGly as a function of 1/T). 

 

pH dependency - In order to further characterize the pH-dependence of hAQP7 

permeability, yeast transformants were incubated in an isotonic solution (sorbitol 1.4 M) 

with different pH (varying from 5 to 7.5) for at least 90 minutes. In these conditions, cells 

deprived of carbon sources and incubated on ice for a long period are considered in 

starvation and unable to maintain an internal pH gradient [43]. After the incubation with 

the fluorescence probe, stopped-flow experiments were performed at 23 ˚C for both water 

and glycerol transport at different external pH values. 

 

Molecular Modeling and analysis - The 3D structure of hAQP7 was obtained by 

homology modelling using Molecular Operating Environment (MOE 2012.10) (CCG 2012) 

[14]. The choice of a template structure was based on the sequence identity between 

hAQP7 and the sequence of the AQPs with available resolved structures from human, 

bacteria and Plasmodium falciparum (UniProt 2013 codes O14520, C8TK05 and Q8WPZ6, 

respectively). The isoform that has the highest sequence similarity with hAQP7 is the 

bacterial isoform Glycerol Facilitator (GlpF), which was then chosen as a template 

structure. Three resolved structures for bGlpF, crystalized either with or without glycerol 

and solved by X-Ray diffraction, were retrieved from the Protein Data Bank [13]. Among 

them, the template was selected that had the best resolution (2.70 Å) without any substrate 

(pdb 1LDI). The tetrameric form was assembled according to directions given in the pdb 

file and the structure was prepared and protonated at pH 7 under forcefield Amber12EHT. 

Thus, the tetrameric form of the human AQP7 model was built: 50 intermediate models 

were generated and averaged to obtain the final homology model. 

The obtained model was checked for more realistic rotamers of side chains in the regions 

of ar/R SF and NPA, by comparison with the available crystal structures of all the other 

AQP isoforms (pdb codes 1H6I, 36D8, 3D9S, 1RC2, 1LD1 and 3C02). The structure was 
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protonated at pH 7 and an energy minimization refinement was performed, also under the 

Amber12EHT force field, during which the Cα atoms were fixed. After identification of the 

residues of interest for the mechanism of pH gating, the same energy minimization 

procedure was used to further refine them. The refined homology model of hAQP7 was 

protonated using the PROPKA 3.1 package [15] at pH 5 and 7. Electrostatic surfaces were 

generated using the Adaptive Poisson-Boltzmann Solver (APBS) [23] plugin in Chimera 

[24]. 

 

Molecular Dynamics - Two model systems, using the above-described homology model, 

were produced using the PDB2PQR Server (version 2.0.0) [15], protonated at pH 7 and pH 

5. The molecular systems consisted of the protonated tetrameric models of the AQP7 

within a double layer of 175 palmitoyl-oleoyl-phosphatidyl-coline (POPC) lipid using the 

charm-gui online server [44]. Four glycerol molecules were placed into the system, one 

above each pore entrance on the extracellular side, at an approximate distance of 30 to 35 

Å. To evaluate glycerol uptake, the system was solvated with 33151 (pH 7) and 33098 (pH 

5) TIP3P water molecules and used a modified amber99sb-ildn forcefield, with the 

parameters for glycerol generated by the Automated Topology Builder and Repository 

(ATb, version 2.2) website using the B3LYP/6-31G* basis set [45]. A second system for each 

model was also created with the four glycerol molecules placed at an approximate 

distance of 30 to 35 Å from the pore entrance on the intracellular side, in order to evaluate 

efflux mechanisms. 

All simulations were run using the GROMACS 5.1.2 simulation software with a 2fs time 

step. Particle-mesh Ewald method was used for calculating electrostatic interactions. The 

verlet cut-off scheme with a cut-off distance of 4.0 nm was used for short-range repulsive 

and attractive interactions and Lincs was used to constrain all bond lengths. Nose-hoover 

temperature coupling was used to maintain the temperature of the system (т = 0.5 ps) at 

310 K. The Parrinello-Rahman algorithm was used to maintain the pressure of the system 

at 1 bar with a coupling constant of т = 1.0 ps. Simulations were equilibrated for 100 ps 

before production. 
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The four individual glycerol molecules were defined in the index and coupled in the pull 

code (e.g. gly_1 to chain_A). A total of 20 MD simulations, 10 in each direction (5 with the 

pH7 system and 5 with the pH5 system) were run using the direction COM pull 

procedure, in each case applying a separate yet equal harmonic restraint force to each 

solute molecule of 100 kJ mol-1nm2 with a rate of 0.02 nm ns-1 along the z-axis. Simulations 

were run for 250000 steps or 500 ps. Each pore radius was calculated using the Hole 2.0 

program [16], which determines the internal surface based on atomic van der Waals radii. 

Snapshots at 100, 300,500,700 and 900 steps were taken of each simulation and coordinates 

for the centre of each pore (monomers A to D), at the ar/R SF, were used to generate the 

pore radius along the z-axis.  

To test water permeation 6 MD simulations were performed, 3 for pH 7 and 3 for pH 5. 

Simulations were run for 10000000 steps or 20000 ps (20 ns) using the same two model 

systems and parameters. For these runs, the pull code was omitted, therefore removing 

any biasing of the system. Water molecules were counted using a python script, based on 

a Tcl script for tracking water molecules in a simulation [19], to determine each water 

molecule’s position at each step and track its progress over the simulation time, registering 

full passage through the tetramer as well as the direction of movement. The upper and 

lower limits on the tetramer height were taken from the pore radius data calculated using 

the HOLE 2.0 program [16]. 

 

Water and glycerol permeation from Molecular Dynamics - Glycerol movement across 

hAQP7 was monitored by analyzing its trajectories for the whole duration of the 

simulations. For each simulation, glycerol molecules able to completely cross the hAQP7 

channels were accounted for and all others excluded. The final data is represented as the 

mean ± SEM of total glycerol molecules crossing in each condition. 

Due to the fact that the molecular dynamics used in this work represents an equilibrium 

simulation, only the diffusion constant (Dw) can be estimated, rather than the permeability 

coefficient. For this purpose, Dw of the single-file water molecules was estimated using the 

Einstein relation [46]: 



117 
 

 

where z represents the average distance between two water molecules in the single-file 

region and k0 represents the transport rate. The transport rate was calculated as the total 

number of water molecules crossing the channel, given by the script, divided by the length 

of the simulation (in seconds). For uptake and efflux, the total number of water molecules 

was defined as the number of molecules going in either direction of the z-axis (positive 

direction for efflux and negative for uptake). The final data is represented as the mean ± 

SEM. 

 

Statistical analysis - The results were expressed as mean ± SEM of n individual 

experiments. Statistical analysis between groups was performed by the unpaired Student’s 

t-test using the Prism software (GraphPad Software Inc., San Diego, CA). P values < 0.05 

were considered statistical significant. 
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3.3.6 Supplementary Information 

 

Supplementary Table S3.3.1 – Human AQP7 specific primers for PCR amplification and 

mutagenic primers used in this study. Restriction sites for SpeI and ClaI are in bold and 

mutated nucleotides introduced are underlined. Each mutation was confirmed by DNA 

sequencing to ensure the fidelity of PCR reactions. 

 

Primer name Sequence (5’ to 3’ direction) 

Cloning 

AQP7_FW 

AQP7_REV 

GGACTAGTCCTATGGTTCAAGCATCCGGGCACAG 

CCATCGATGGAGAAGTGCTCTAGGGCCATGGATTCAT 

Site-directed mutagenesis 

Tyr135Ala_FW 

Tyr135Ala_REV 

GCTGCCACCATCTACAGTCTCTTCGCCACGGCCATTCTCCACTTTTCG 

CGAAAAGTGGAGAATGGCCGTGGCGAAGAGACTGTAGATGGTGGCAGC 

His140Ala_FW 

His140Ala_REV 

CTCTTCTACACGGCCATTCTCGCCTTTTCGGGTGGACAGCTGATGGTG 

CACCATCAGCTGTCCACCCGAAAAGGCGAGAATGGCCGTGTAGAAGAG 

His165Ala_FW 

His165Ala_REV 

GCCACCTACCTTCCTGATGCCATGACATTGTGGCGGGGCTTCCTG 

CAGGAAGCCCCGCCACAATGTCATGGCATCAGGAAGGTAGGTGGC 

 

Supplementary Table S3.3.2 - pH dependency (pKa values) of water and glycerol 

permeation via human AQP7 (wild-type and mutated). Data presented as mean ± SEM 

(n=4). *P < 0.05 vs wild type.  

 Water Glycerol 

 pKa pKa 

Wild type 5.89 ± 0.02 5.86 ± 0.01 

Y135A 6.06 ± 0.01 6.04 ± 0.01 

H140A 6.11 ± 0.02 5.91 ± 0.01 

H165A 6.65 ± 0.01* 6.30 ± 0.02* 

Y135A+H165A 6.58 ± 0.01* 6.21 ± 0.02* 

H140A+H165A 6.53 ± 0.01* 6.29 ± 0.01* 

Values were compared to AQP7 wild type. *, P<0.05 
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Supplementary Figure S.3.3.1 │ Localization of GFP-tagged hAQP7 expressed in S. 

cerevisiae aqy-null strain.  Epifluorescence (left panels) and phase contrast (right panels) 

images of S. cerevisiae aqy-null strains transformed with (A) the empty plasmid pUG35 

(control cells) and (B) hAQP7. In control cells, GFP expression results in a homogeneous 

distribution of fluorescence in the cytoplasm, while yeast cells expressing hAQP7-GFP show 

membrane-localized fluorescence confirming hAQP7 localization at the plasma membrane. 
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Supplementary Figure S.3.3.2 │ Activation energy (Ea) for water and glycerol permeation 

at distinct pH values. Ea values estimated at three distinct pH values (pH 5, 6.5 and 7.5) 

significantly decreased from pH 5 (water 14.0 ± 1.4 kcal mol-1 and glycerol 19.5 ± 2.0 kcal 
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mol-1) to pH 6.5 (water 11.0 ± 0.8 kcal mol-1 and glycerol 11.5 ± 0.8 kcal mol-1) and pH 

7.5 (water 9.2 ± 0.5 kcal mol-1 and glycerol 10.6 ± 0.4 kcal mol-1), corroborating the 

proposed channel pH regulation. Data is shown as mean ± SEM of three independent 

experiments. ns, non significant, * p < 0.05;  *** p < 0.001. 

 

 

Supplementary Figure S3.3.3 │ Pore size of the four AQP7 monomers at pH 5 and pH 7. 

Each line represents an average pore size for each simulation, by using the pore size taken 

from five snapshots of each simulation. EP – extracellular pocket, ar/R – aromatic/arginine 

selectivity filter, NPA – NPA motif, CP – cytoplasmic pocket. Pore size obtained with HOLE. 

[Data obtained by Andreia de Almeida] 
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Supplementary Figure S3.3.4 │ (A) Top extracellular and (B) intracellular views of the 

homology model of human AQP7 in its tetrameric assembly in cartoon representation of 

the tertiary structure, with ribbon representation (in blue) and surface representation of 

residues lining the channel (grey). Relevant amino acid residues are shown in stick 

representation. In yellow the residues that are protonated at pH 5 in the intracellular side 

are shown. His140 residues in each monomer are protonated at pH 5 and shown in orange, 

while His165 and Tyr135 are represented in magenta; all three residues were mutated for 

further studies. Figure generated with MOE. [Data obtained by Andreia de Almeida] 
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Supplementary Figure S3.3.5 │ Plasma membrane localization and relative membrane 

abundance of GFP-tagged hAQP7 mutations in S. cerevisiae aqy-null strain. Photos are 

representative of cells incubated either in pH 7.4 or pH 5.1. Fluorescence was observed by 

fluorescence microscopy and the relative membrane abundance of each mutant (bar 

graph) was calculated from linear intensity profiles across cell membrane (yellow lines in 

the insert picture) from at least 30 cells (3 profiles lines per cell) using ImageJ software 

(https://imagej.net), according to [39,40]. Background fluorescence was subtracted from 

the maximal fluorescence intensity and the obtained difference was divided by the 

maximal fluorescence along the line scan to calculate the percentage of fluorescence at the 

membrane. No differences in membrane abundance were observed in cells incubated in 

media with different pHs or osmolarities. ns, non significant. 
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Supplementary Figure S3.3.6 │ Pore size average of the four AQP7 monomers for each 

mutant and WT. Pore size obtained with HOLE. [Data obtained by Andreia de Almeida] 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3.3.7 │ Electrostatic surfaces of hAQP7 WT and mutants, at pH 5 

and 7. Protonation performed using PROPKA 3.1 package 3. Surfaces were generated using 

the Adaptive Poisson-Boltzmann Solver (APBS) plugin in Chimera. [Data obtained by 

Andreia de Almeida] 
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3.4 Cytoplasmic pH gate in Aquaporin-10 

3.4.1 Abstract 

Obesity is a major threat to global health and metabolically associated with 

glycerol homeostasis. Here we demonstrate that in human adipocytes, at the low 

pH observed during lipolysis (fat burning), glycerol release is achieved through 

stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 

determined at 2.3 Å resolution, representing the first structure of a mammalian 

aquaglyceroporin, unveils the molecular basis for pH modulation - an 

exceptionally wide selectivity (ar/R) filter and an unique cytoplasmic gate. 

Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific 

pH-dependence and pinpoint pore-lining His80 as the pH sensor. Molecular 

dynamics simulations indicate how gate opening is achieved. These findings 

unravel a novel type of aquaporin regulation important for controlling body fat 

mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion 

may offer an attractive option for treating obesity and related complications. 

 

3.4.2 Introduction 

Uptake and release of glycerol from the small intestine (duodenal enterocytes), 

adipocytes and other cell types, are primarily facilitated by a subclass of 

aquaporins (AQP), the water and glycerol-conducting aquaglyceroporins (AQP3, 

7, 9 and 10; Figure 3.4.1 A) [1,2,3]. Furthermore, mice aquaglyceroporin AQP7 

knockouts accumulate glycerol and TAGs, and develop enlarged adipocytes and 

obesity with age. Thus, glycerol and aquaglyceroporin-induced glycerol flux are 

likely central elements of fat accumulation and the pathophysiology of obesity 

[4,5]. Nevertheless, the molecular principles that regulate glycerol flow across 

cellular membranes in the body remain enigmatic. The interplay between lipolysis 
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and glycerol flux is obscure, and human aquaglyceroporins are primarily believed 

to be controlled through trafficking (e.g. cathecolamine/insulin-dependent 

subcellular re-organisation of AQP7 in adipocytes [2,6], as structural information is 

available only for homologues from lower organisms [7,8,9]. Only a few reports 

hint at a pH-dependence of mammalian aquaglyceroporin-mediated flux [1,10,11].  

 

3.4.3 Results and Discussion 

We therefore assessed the pH effect on water and glycerol flow across membrane 

vesicles prepared from human adipocytes challenged with osmotic gradients 

(Figure 3.4.1 B and Supplementary Figure S3.4.1 A). Whereas the permeability to 

water (Pf) was pH-insensitive, glycerol passage (PGly) increased at low pH (pH 7.4 

vs 5.5). To identify the responsible protein(s), all four human aquaglyceroporins 

and water-strict (orthodox) hAQP2 serving as control were isolated as green 

fluorescent protein (GFP)-fusions. Following reconstitution into biomimetic 

vesicles (polymersomes) [12], we investigated the flow rates at the equivalent pH 

upon osmotic stress (Figure 3.4.1 C and Supplementary Figure S3.4.1 B). The water 

permeability was unchanged for all tested AQPs, suggesting pH-insensitive water 

diffusion. Glycerol conductance was in contrast highly pH-dependent. As 

expected, orthodox hAQP2GFP displayed no glycerol transport. hAQP3GFP, 7 and 9 

were permeable to glycerol only at pH 7.4. Only hAQP10GFP allowed glycerol flux 

at pH 5.5, whereas the flow at pH 7.4 was markedly reduced, in agreement with 

the adipocyte-based data. As an additional control, we detected plasma 

membrane-localized hAQP10 in the adipose tissue through selective 

immunolabeling (Figure 3.4.1 D). Thus, our data suggest that adipocyte glycerol 

flux augmented at lower pH associated with e.g. lipolysis is mediated by hAQP10. 
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Figure 3.4.1 │ Low pH stimulates human adipocyte glycerol flux through 

aquaglyceroporin AQP10. (A) Simplified overview of aquaglyceroporin-mediated 

regulation of human body glycerol homeostasis. Glycerol absorption in the small intestine 

(enterocytes) occurs through AQP7 and 10, and via AQP3-mediated excretion into the 

blood stream, whereas release into the circulation from fat tissue (adipocytes) involves 

AQP3, 7 and 10. (B) Water and glycerol permeability of human adipocyte plasma 

membrane vesicles exposed to glycerol gradient. Flux was measured using identical pH 

inside and outside: pH 7.4 (blue) or 5.5 (green). Water (Pf) and glycerol (PGly) permeability 

coefficients were calculated as described in Methods. Results are given as mean ± SD. *, 

P=0.037 vs. 7.4:7.4 (Student’s t test; N=6). (C) Water and glycerol permeability of GFP-

fused human aquaporins reconstituted into polymersomes. Ki rate constants (s−1) were 

obtained at pH 7.4 (blue) and pH 5.5 (green). Each bar shows an average of N=10 

measurements performed for the same proteopolymersome sample. (D) AQP10 is 

membrane-localized to subcutaneous human adipose tissue used for vesicle preparation. 

Representative immunofluorescence confocal microscopy images with anti-hAQP10 
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antibody (green) and DAPI staining for nuclei (blue). Scale bar: 200 µm. [Data obtained by 

Umberto Laforenza, Julie Winkel Missel and Mariana Spulber] 

 

To resolve how hAQP10 is pH-gated, structural studies were initiated using 

polyhistidine (His)-tagged protein. However, full-length hAQP10 yielded no 

crystals and we continued with a variant (hAQP10cryst; Figure 3.4.2 A) truncated in 

the termini (1-10, 277-301) that crystallized at pH 6.0. The structure was 

determined at 2.3 Å resolution and reveals a tetramer fold highly reminiscent of 

other AQPs (Figure 3.4.2 B), with each monomer formed by six transmembrane 

helices (TM1-TM6) establishing a conducting channel (Figure 3.4.2 C). Strikingly, 

the region typically linked to selectivity in AQPs, the aromatic and arginine (ar/R) 

selectivity filter at the non-cytosolic end of the pore [13], is significantly wider (2.6 

Å) than in previously structurally characterized AQPs (Figure 3.4.2 C and D), as 

revealed by HOLE analyses [14]. Furthermore, no glycerol molecule was identified 

at the ar/R filter, in contrast to the only available structure of a eukaryotic 

aquaglyceroporin, PfAQP (Figure 3.4.2 C and D) [9]. These observations raise 

questions if the functional role of the ar/R region is maintained in hAQP10. A 

single glycerol molecule is instead located adjacent to the AQP archetypical, 

central NPA-motif (N82-A84) in hAQP10 (Figure 3.4.2 C and E). This area and the 

presence of NPA glycerol molecule are highly conserved elements among 

structurally determined aquaglyceroporins (including GlpF and AqpM) [7,8]. 

However, towards the cytoplasm the glycerol molecule is rather positioned close 

to the unique F85 of loop B in hAQP10 (invariant as a valine/isoleucin in other 

AQPs). F85 has a side-chain configuration unfavorable for glycerol passage, 

forming a novel mechanistic feature. Moreover, the entire cytoplasmic pore region 

has adapted a tight arrangement not previously observed, achieved by the first 

part of loop B (G73-H80; loop layout likely allowed by the hAQP10-specific 
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G73G74-motif; Figure 3.4.2 E) with V76-S77 capping the cytoplasmic opening, F85, 

and R94 (of TM3), which seemingly stabilizes loop B in the closed configuration.  

Notably, HOLE analysis suggests that this narrowing (0.9 Å) permits water (0.8 Å 

at the ar/R filter in hAQP2) [14] but not glycerol (1.3 Å in AqpM) [8] flux, in 

agreement with the proteopolymersome data at relatively high pH. The most likely 

pH-sensor candidate in the region is H80, which lines the pore and structurally 

links loop B, F85 and R94. pH-dependent gating mechanisms have been proposed 

for human AQP3, 4 and 5 [10,15,16], but the available structures are open (for 

hAQP4 the H80 equivalent was pinpointed as a gate, but loop B in hAQP4 has a 

significantly different configuration as compared to hAQP10) [17,18]. Thus, this is 

to our knowledge the first structural evidence that human AQPs may be gated 

[19], and the first time that ligand-selective regulation is described for a membrane 

protein. 
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Figure 3.4.2 │ Architecture of human AQP10 and the glycerol-specific gate. (A) 

Topology of hAQP10 monomer with six transmembrane helices (TM1-6) and five 

connecting stretches (loops A-E). Residues at the NPA-motives, the classical ar/R selectivity 

filter and the novel cytoplasmic gate are indicated in green, purple and orange 
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(throughout); hAQP10-specific residues in bold. The length of the crystallized form is also 

highlighted. (B) The hAQP10 tetramer from the cytoplasmic side, with chains A-C shown in 

gray and chain D in cyan tones. (C) Side view of the primed-to-open monomer (chain D). A 

single glycerol and four water molecules were identified. (D) The unusually wide ar/R 

selectivity region of hAQP10 (chain A, gray) compared to those in hAQP2 (blue, pdb-id 

4NEF) [14], AqpM (yellow, pdb-id 2F2B) [8], GlpF (brown, pdb-id 1FX8) [20] and PfAQP 

(wheat, pdb-id 3C02) [9]. View from the non-cytoplasmic side. Glycerol molecules in the 

structures are shown as spheres in equivalent colors. (E) The channel profiles of selected 

aquaporins calculated using the software HOLE. hAQP10 chains A (gray) and D (cyan) are 

compared with increasing minimal diameter from left to right. The novel cytoplasmic gate 

and ar/R regions are marked in light orange and purple, respectively. (F) Close view of the 

novel cytoplasmic and glycerol-specific gate. H80 forms an interaction network work with 

E27, F85, R94, V76 and S77. [Data obtained by Kamil Gotfryd] 

 

To assess the functional role and physiological importance of the novel 

cytoplasmic gate we investigated the functionality of hAQP10 and mutant forms 

using protepolymersome- (in vitro) and S. cerevisiae-based (in-vivo) assays 

(Supplementary Figure S3.4.1 B and C) [21]. In the reconstituted system, His-tag-

fusions were assayed (Figure 3.4.3 A), revealing an overall similar pH-dependency 

permeation profile for water and glycerol as for GFP-fused counterparts (the 

crystallized variant, hAQP10cryst, mimics full-length protein, hAQP10). 

Furthermore, our experiments unambiguously pinpoint H80 and F85 as critical for 

glycerol flux, and subtle effects of S77 and R94 substitutions. Subsequently, we 

measured glycerol (Pgly) and water (Pf) flow rates in yeast cells challenged with 

osmotic gradients (Figure 3.4.3 B and C and Supplementary Figure S3.4.2 and 

Supplementary Table S3.4.1). As in the proteopolymersome assay (Figure 3.4.1 C 

and 3.4.3 A), opposing pH effects were found for hAQP3GFP and hAQP10, 

increasing glycerol permeation at low pH in hAQP10. Most importantly, the 

detrimental effect of H80A in vitro was reproduced, suggesting a channel 

remaining closed independently of pH, in agreement with a pH-sensory role of the 
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histidine; scouting prove that the H80A mutant is impermeable to glycerol over 

large pH and temperature spectra (Figure 3.4.3 B, Supplementary Figure S3.4.2 and 

Supplementary Table S3.4.1). Impaired glycerol flux was also observed for 

mutations of H80-interaction network residues, S77 and R94 (both profoundly 

affected) and F85A (moderately influenced). Similarly, substitutions of G73, 

located distal to the channel, to valine and phenylalanine as in hAQP1 and 4, 

respectively, markedly reduced glycerol flux, supporting that the G73G74-motif is 

important to kink TM2, thereby allowing loop B to gate. In contrast, water-

conducting flux remained unaffected in vivo for almost all hAQP10 forms 

(Supplementary Figure S3.4.2 E). This is congruent with the proteopolymersome 

data, substantiating that water diffusion through hAQP10 is pH-insensitive, 

maintained independently of the residues orchestrating glycerol flux. The 

moderate effect of G73A is exceptional, displaying increasing flux of glycerol and 

water only at low pH, indicating that this subtle alteration (mimicking the case in 

hAQP3, 7 and 9) maintains the gating-principles without achieving complete 

closure. We predict that the approximate loop configuration is maintained in other 

human aquaglyceroporins, but the pH-sensitivity is missing due to the valine 

replacement of F85. 
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Figure 3.4.3 │ Functional characterization of human AQP10. (A) Water and glycerol 

permeability of hAQP10 forms reconstituted into polymersomes. Ki rate constants (s−1) 

were obtained at pH 7.4 (blue) and pH 5.5 (green). Each bar shows an average of N=10 

measurements performed for the same proteopolymersome sample. (B) Upper plot: 

Representative time course of the relative cell volume (V/V0) changes after glycerol osmotic 

shock at pH 5.1 (green) and 7.4 (blue) in hAQP10 expressing yeast cells. Lower plot: pH-

dependence of glycerol permeability (Pgly) measured in cells expressing hAQP3GFP or 

different hAQP10 forms. PGly is normalized for each data set (PGly-PGly control/PGly max) and 

fitted with a Hill equation. (C) Glycerol permeability (PGly) ratio of yeast cells expressing 

hAQP3GFP or hAQP10 forms measured at pH 5.1 (green) and pH 7.4 (blue). Results are 
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normalized to PGly of the control strain at the respective pH. Results are given as mean ± 

SD of at least N=3 independent experiments. [Data obtained jointly with Mariana Spulber] 

 

How then is hAQP10 opened at low pH? Crystallization attempts at lower pH to 

structurally decipher the opening mechanism were fruitless. Nevertheless, as the 

obtained crystal form contains the entire hAQP10 tetramer in the asymmetric unit, 

intermonomeric differences were analyzed. While overall highly similar, three 

chains (Figure 3.4.2 B dark grey) display an identical, closed, cytoplasmic 

arrangement. In contrast, a subtle shift of the pore-width (to 1.0 Å) is observed at 

H80 in chain D (Figure 3.4.2 B and D cyan). Hence, monomer D may represent a 

primed-to-open gate configuration (glycerol flux remains unanticipated at this 

pore-width). Equivalent examination reveals that the observed pore closure likely 

cannot be attributed to crystal packing or associated detergent molecules, as these 

interaction patterns differ between monomers. To unravel the molecular 

mechanism required for full opening we turned to molecular dynamics (MD) 

simulations of membrane-embedded hAQP10 tetramer in the presence of glycerol, 

assessing two different protonation states of H80 (mono(ε) and double), as a mimic 

of relatively high and low pH, respectively. All-in-all, based on structural, 

functional and MD simulation analyses, we propose a pH-dependent gating 

mechanism of hAQP10 triggered by protonation of H80, which at low pH 

reorients, stabilized by E27  (Figure 3.4.4). With this structural shift, F85 adapts a 

more open side-chain orientation, and the loop (including V76-S77) rearranges in 

conjunction with R94 to allow glycerol permeation. 
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Figure 3.4.4 │ Human AQP10 gate opening mechanism. Proposed hAQP10 pH-gated 

glycerol flux mechanism in adipocytes and likely other cell types. Glycerol, but not water, 

permeation is decreased at pH 7.4. AQP10 glycerol-specific opening is stimulated by pH 

reduction, triggering H80 protonation that renders the residue to interact with E27. 

Concerted structural changes of the nearby F85 and the cytoplasmic V76-S77 loop thereby 

allow glycerol passage. [Figure generated by Kamil Gotfryd and Julie Winkel Missel] 

 

3.4.4 Conclusions 

The present findings shed light on a key component of fat metabolism - how 

glycerol levels in the body are maintained through hAQP10-mediated influx (small 

intestine) and efflux (adipocyte tissue). Glycerol flux across plasma membranes of 

adipocytes (and likely duodenal enterocytes) is demonstrated to be stimulated by 

low pH and unarguably linked to hAQP10, a protein previously shown to be 

highly physiologically relevant for glycerol flow in these cell types [2,22]. The 

determined hAQP10 structure represents a paradigm shift for future studies of 

aquaglyceroporins. Our combined analyses reveal that pH regulation is achieved 

by a novel cytoplasmic, glycerol-specific gate and, likely, a widened ar/R filter, 

both unique to hAQP10, correlating with intracellular acidification of adipocytes 

observed during lipolysis [23]. Thus, hAQP10 has potential for therapeutic 

intervention of obesity and metabolic diseases, as targeting the pH gate to allow 
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constitutively high efflux of glycerol may prevent accumulation of TAGs inside 

adipocytes. 

 

3.4.5 Experimental Section 

Plasmids, site-directed mutagenesis and yeast strains - Codon-optimized human 

aquaporin cDNAs were purchased from GenScript, USA. Yeast-enhanced green 

fluorescent protein (GFP) was PCR amplified using a yeast codon-optimized version as 

template [24]. Briefly, for proteopolymersome reconstitution, each aquaporin was C-

terminally fused to either a Tobacco Etch Virus (TEV) protease cleavage site attached to 

GFP and deca-histidine (His10) tag (yielding e.g. hAQP10GFP), or to an octa-histidine (His8) 

stretch only (hAQP10, hAQP10cryst and hAQP10-derived mutant forms). Site-directed 

mutagenesis was performed as described previously [25] using AccuPol DNA polymerase 

(Amplicon, Denmark). For crystallization studies, the hAQP10cryst variant was derived 

from hAQP10 by removal of the first 10 (N-terminal) and last 24 (C-terminal) amino acids, 

respectively. All expression plasmids were assembled directly in the S. cerevisiae 

production strain PAP1500 by homologous recombination of HindIII-, SalI- and BamHI-

digested pPAP2259 [26] and aquaporin PCR products in presence or absence of a GFP PCR 

product [27]. Functional characterization in intact yeast cells was performed with wild-

type aquaporins (tag-free) expressed from the methionine repressible promoter in pUG35 

[28]. The plasmids were generated by homologous recombination directly in the S. 

cerevisiae assay strain YSH1770, silenced for endogenous aquaporins AQY1 and AQY2 

(10560-6B MATa leu2::hisG trp1::hisG his3::hisG ura352 aqy1D::KanMX aqy2D::KanMX). 

Briefly, PCR amplified aquaporin cDNA fragments were co-transformed into YSH1770 

strain with BamHI-, HindIII- and SalI-digested pUG35 for synthetic cDNA-derived 

hAQP10 and its variants, or SpeI- and ClaI-digested pUG35 for genomic cDNA-derived 

hAQP3 and GFP PCR products yielding hAQP3GFP construct. The nucleotide sequence of 

all used constructs was verified by DNA sequencing. 
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Transport assay in human adipocyte plasma membrane vesicles - Subcutaneous adipose 

tissue was obtained from healthy donors during hip replacement surgery (males, age 53-

78 years) following overnight fasting. The body mass index of the donors ranged from 24.4 

and 37.5 kg m−2 (28.05 ± 4.8; mean ± SD, N=6). None of the subjects suffered from known 

metabolic or malignant diseases or were taking medications known to alter the adipose 

tissue metabolism. The conducted procedures were approved by the Institutional Review 

Board at “IRCCS Policlinico San Matteo Foundation” in Pavia, Italy, and in accordance 

with the Helsinki Declaration of 1975 as revised in 2008. Each patient gave written consent 

for participating in the study. Adipocyte plasma membrane vesicles were prepared as 

previously described [29]. Briefly, 3-8 g of freshly excised adipose tissue was homogenized 

in an ice-cold buffer containing 10 mM Tris-HCl pH 7.4, 250 mM sucrose, 1 mM EDTA. 

The homogenate was then centrifuged (3,000 × g, 15 min, 4 °C), the superficial solidified 

fat and pellet eliminated, and the infranatant centrifuged again (12,000 × g, 15 min, 4 °C). 

The resulting pellet consists of adipocyte plasma membrane vesicles, as assessed 

morphologically previously [2]. Water and glycerol permeabilities of isolated adipocyte 

plasma membranes were essentially measured exploiting stopped-flow light scattering as 

previously described [2]. Briefly, vesicles were suspended in solutions at pH 7.4 or 5.5 (10 

mM KH2PO4/K2HPO4, 136 mM NaCl, 2.6 mM KCl) and incubated at RT for 30 min. 

Subsequently, vesicles were subjected to a 145 mM inwardly directed glycerol gradient 

(the solutions contained 10 mM KH2PO4/K2HPO4 buffer at pH 7.4 or 5.5). Initially there is 

an increase in light scattering resulting from vesicle shrinkage caused by osmotic water 

efflux (water flux), followed by slower decrease resulting from vesicle swelling caused by 

glycerol entry triggering influx of water (glycerol flux). The water permeability coefficient 

(Pf) was calculated from the following equation as previously described [30]: Pf = k·V0 

/C·Vw·A, where C is the osmotic gradient, Vw the molar water volume, V0 the cell volume 

and A the vesicle surface area. The glycerol permeability coefficient (PGly) was calculated 

using the following equation: PGly = 1/[(S/V)τ], where S is the vesicle surface area, V the cell 

volume, and τ (K−1) is the exponential time constant fitted to the vesicle swelling phase of 

the light scattering time course corresponding to glycerol entry [31]. Immunolocalization 
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of hAQP10 in human adipose tissue was performed using anti-hAQP10 rabbit polyclonal 

affinity isolated antibody (1:300 dilution; Sigma, USA) followed by incubation with 

AlexaFluor 488-conjugated goat anti-rabbit antibody (Molecular Probes, USA) as 

previously described [2]. The fluorescent dye diaminophenyl-indole (DAPI; Molecular 

Probes, USA) was used to visualize nuclei. Slides were examined with a TCS SP5 II LEICA 

confocal microscopy system (Leica Microsystems, Italy) equipped with a LEICA DM IRBE 

inverted microscope. Negative controls (not shown) were performed by incubating slices 

with the non-immune serum. 

 

Protein production for proteopolymersome reconstitution and crystallization - TEV-

GFP-His10- and His8-fusions were produced essentially as previously described [26,27]. 

Briefly, a single colony of transformed PAP1500 cells was grown until stationary phase in 

5 mL of glucose minimal medium supplemented with leucine and lysine. Subsequently, 

200 µL of the culture was propagated in 5 mL glucose minimal medium supplemented 

with lysine. Next day, 1 mL of this culture was used to inoculate 50 mL of the same 

medium. The following day this pre-culture was used to inoculate 1 L of glucose minimal 

medium supplemented with lysine. The overnight culture was subsequently transferred to 

10 L of amino acid-supplemented minimal medium containing 3 % glucose and 3 % 

glycerol as carbon source, and propagated in an Applikon bioreactor equipped with an 

ADI 1030 Bio Controller connected to a PC running the BioExpert software (all from 

Applikon, Holland) as described previously [26]. The initial part of the fermentation was 

performed at 20 °C. The bioreactor was fed with glucose to a final concentration of 2 % 

when the initial glucose had been metabolized. The pH of the growth medium was 

maintained at 6.0 by computer-controlled addition of 1 M NH4OH. The shift from growth 

on glucose to glycerol was monitored as a decrease in the rate of NH4OH consumption. At 

this point the bioreactor was cooled to 15 °C and protein expression was induced by 

addition of galactose to a final concentration of 2 %. Cells were harvested 72 h post 

induction. 
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Protein was purified essentially as described previously [27]. Yeast cells were disrupted by 

glass bead homogenization (BioSpec, USA). Briefly, yeast cells were re-suspended in ice-

cold lysis buffer (25 mM Tris-HCl pH 7.5, 500 mM NaCl, 20 % glycerol, 5 mM BME, 1 mM 

PMSF) supplemented with SIGMAFAST protease inhibitor cocktail (Sigma, USA). After 

mechanical disruption, cell debris was pelleted by centrifugation (3,000 rpm, 20 min, 4 °C) 

and the membranes were isolated from the supernatant by ultra-centrifugation (205,000 × 

g, 3 h, 4 °C). Crude membranes were re-suspended in solubilization buffer (20 mM Tris-

HCl pH 7.5, 200 mM NaCl, 20 % glycerol, 5 mM BME, 1 mM PMSF) supplemented with 

SIGMAFAST protease inhibitor cocktail, homogenized in a Potter-Elvehjem homogenizer 

and stored at -80 °C until further use. Isolated membranes were solubilized in 2 % n-decyl-

β-D-maltopyranoside (DM; Anatrace, USA) and each aquaporin was purified using 

immobilized metal affinity chromatography (IMAC). Briefly, detergent-solubilized 

material was clarified by ultra-centrifugation (120,000 × g, 1 h, 4 °C), diluted 2 × in IMAC 

buffer (20 mM Tris-HCl pH 7.5, 200 mM NaCl, 20 % glycerol, 5 mM BME and 0.2 % DM) 

and filtered using a 0.45 μm filter. Each sample was then bound to a nickel-charged 

affinity HisTrap HP column (GE Healthcare, Denmark), and bound protein was eluted in 

IMAC buffer using an imidazole gradient. GFP-TEV-His10- and His8-tagged variants used 

for proteopolymersome reconstitution were produced from membranes solubilized in 0.5 

% n-hexadecyl-phosphocholine (FC-16; Glycon Biochemicals, Germany) and following the 

binding eluted in IMAC buffer containing 3 % lauryldimethylamine-N-oxide (LDAO; 

Anatrace, USA) and not subjected to size exclusion chromatography (SEC). Top IMAC 

fractions of the crystallization variant (hAQP10cryst) were pooled, concentrated using 

Vivaspin 20 concentrators (MWCO 100 kDa; Sartorius, Germany), and subjected to SEC 

using a Superdex increase 200 10/300 GL column (GE Healthcare) equilibrated in SEC 

buffer (20 mM Tris-HCl pH 8, 100 mM NaCl, 10 % glycerol, 2 mM BME and 0.4 % n-nonyl-

β-D-glucopyranoside (NG; Anatrace, USA)). 

 

Functional characterization in proteopolymersomes - Poly (2-methyloxazoline)-block-

poly (dimethyl siloxane) di-block copolymer PDMS34PMOXA11 (PDMS-PMOXA; DSM, 
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Denmark) polymersomes were prepared by the co-solvent method as previously 

described [32,33]. Briefly, 15 mg of PDMS-PMOXA copolymer was dissolved in 50 µL 

ethanol, and added dropwise to 4450 µL of 10 mM PBS pH 7.2, 136 mM NaCl, 2.6 mM 

KCl, followed by 24-h dialysis against PBS with 3 exchanges of the buffer. 

Proteopolymersomes were prepared in a similar manner where 15 mg of dissolved PDMS-

PMOXA copolymer was mixed with PBS containing 25 µg of the respective purified 

aquaporin sample. After dialysis, all samples were extruded 15 times through a 200 nm 

polycarbonate filter (Whitman, USA). The dimensions of the extruded vesicles 

(hydrodynamic diameter) were determined at 20 °C by dynamic light scattering (DLS) 

using ZetaSizer NanoZs instrument (Malvern, UK). The water flux was measured 

employing a Bio-Logic SFM 300 stopped-flow device (Bio-Logic, France), with a 

monochromator at 517 nm and a cut off filter at 530 nm, respectively. For each individual 

stopped-flow test, 0.13 mL of extruded polymersomes or proteopolymersomes was 

quickly mixed with 0.13 mL of 0.5 M NaCl, which caused the vesicles to shrink due to 

osmotically driven water efflux. At least 10 tests were performed for each sample; the dead 

time for the mixing of stopped flow injection was 5 ms. Vesicle size changes were 

monitored and recorded in the form of an increasing signal in the DLS analysis. Obtained 

kinetic data were fitted with a double exponential equation, and the rate constant (s-1) that 

is directly proportional to the water flux through polymeric membrane was determined. In 

the glycerol transport assay 3 mL of extruded polymersomes was incubated with 3 mL of 2 

M glycerol overnight at 4 °C to mediate glycerol transport into the polymeric vesicles. 

After incubation, the dimensions of the polymeric vesicles were determined by DLS. 

Glycerol flux in proteopolymersomes was assessed using stopped-flow after mixing the 

samples with 0.5 M of NaCl (exhibiting the same osmotic pressure as 1 M glycerol).  

 

Crystallization and structure determination - hAQP10cryst crystals were grown by 

hanging-drop vapor diffusion at 18 °C by mixing protein solution (~4 mg mL−1) 

supplemented with 0.3 mM n-nonyl-β-D-thioglucoside (Hampton Research, USA) with a 

reservoir solution composed of 100 mM MES-monohydrate-NaOH pH 6.0, 19 % PEG 2k 
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MME and 5 % glycerol and flash frozen in liquid nitrogen. X-ray diffraction data were 

collected using an EIGER detector at the Paul Scherrer Institut, Villigen, Switzerland, beam 

line X06SA. Data processing was done using the software XDS [34]. Crystals belonged to 

space group P212121 with cell dimensions a = 97.07 Å, b = 116.84 Å, c = 138.55 Å. The initial 

phases were determined by molecular replacement with software PHASER using E. coli 

glycerol facilitator (GlpF) structure (pdb-id 1LDF [35]) yielding an entire tetramer in the 

asymmetric unit. Model building and refinement were done using COOT [36] and 

phenix.refine [37] iteratively. TLS refinement was introduced in the final refinement 

rounds [38]. All structure figures were generated using Pymol. 

 

HOLE analysis of the pore dimensions - The software HOLE (version v2.2.005) was 

obtained from www.holeprogram.org [39]. Pore profiles were analyzed until the radius 

reached 5 Å, and van der Waals radii were subsequently determined. Analysis was 

performed after removal of water molecules and HETATOMS, with passage through S77, 

H80 and R94, and the pores colored according to the water permeability. 

 

Functional characterization in yeast cells - YSH1770 strain was grown at 28 ˚C with 

orbital shaking in YNB (yeast nitrogen base) without amino acids (DIFCO), with 2 % (w/v) 

glucose and supplemented with the adequate requirements for prototrophic growth. 

Transformants were grown to OD640nm ≈ 1 (corresponding to 1 × 107 cells mL−1), harvested 

by centrifugation (5,000 × g, 10 min, 4 °C), washed three times and resuspended in ice-cold 

sorbitol (1.4 M) K-citrate buffer (50 mM pH 5.1 or pH 7.4) up to a concentration of 0.33 g 

(wet weight) mL−1, and kept on ice for at least 90 min. Prior to the osmotic challenges, the 

cell suspension was preloaded with the nonfluorescent precursor 5-and-6-

carboxyfluorescein diacetate (CFDA, Sigma, USA; 1 mM for 20 min at 30 ˚C) that is 

cleaved intracellularly by nonspecific esterases, and generates the impermeable 

fluorescent form (CF) known to remain in the cytoplasm [40]. Cells were then diluted 1:10 

in 1.4 M sorbitol buffer and immediately used for stopped-flow experiments. Equilibrium 

cell volumes (Vo) were obtained by loading cells with CFDA under a epifluorescence 
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microscope (Zeiss Axiovert, Zeiss, Jena, Germany) equipped with a digital camera as 

previously described [40]. Cells were assumed to have a spherical shape with a diameter 

calculated as the average of the maximum and minimum dimensions of each cell. 

Stopped-flow experiments were performed on a Hi-Tech Scientific PQ/SF-53 apparatus 

(Hi-Tech Scientific, UK) with 2 ms dead time, temperature-controlled, interfaced with a 

microcomputer. Permeability assays were performed at 23 °C, except for activation energy 

(Ea) assays where temperature ranged from 10 to 34 °C. Five runs were usually analyzed in 

each experimental condition. In each run 0.1 mL of cell suspension (1:10 dilution in the 

resuspension buffer) was mixed with an equal amount of iso (baseline) or hyperosmotic 

solution (sorbitol or glycerol 2.1 M, 50 mM K-citrate buffer pH 5.1 or pH 7.4) of 1.25 

tonicity ((Λ = (osmout)∞/(osmout)o)). Fluorescence was excited using a 470 nm interference 

filter and detected using a 530 nm cut-off filter. The time course of cell volume change was 

followed by fluorescence quenching of the entrapped fluorophore (CF). The fluorescence 

traces obtained were corrected by subtracting baseline (reflecting the bleaching of the 

fluorophore). The calibration of the resulting traces was performed followed our previous 

strategy [41], where a linear relationship between relative volume and F was obtained (vrel 

= a F/F0+b), and the values of a and b were estimated individually for each osmotic shock. 

The permeability coefficients for water (Pf) and glycerol (PGly) transport were evaluated 

using the analysis described in [42]. The calibrated experimental data were fitted to 

theoretical curves, considering the water and glycerol fluxes and the resulting changes in 

cell volume and intracellular concentrations of solutes. Optimization of permeability 

values was accomplished by numerical integrations using the mathematical model 

implemented in the Berkeley Madonna software (http://www.berkeleymadonna.com/). 

Estimations of the internal pH (pHin) were performed as previously described [43]. The 

activation energy (Ea) of glycerol permeation was evaluated from the slope of the 

Arrhenius plot (ln PGly as a function of T−1) multiplied by the gas constant R. The results 

were expressed as mean ± SD of N individual experiments. 
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Molecular dynamics simulations - Molecular dynamics (MD) simulations were 

performed on the tetrameric hAQP10cryst structure embedded in a palmitoyloleoyl-

phosphatidylethanolamine (POPE) bilayer. Two systems were built with the imidazole 

ring of H80 mono protonated at ε-nitrogen or double protonated, to mimic physiological 

and low pH, respectively. The detergent molecules, the three intermediate glycerol 

molecules located between the monomers and water molecules on the hydrophobic 

exterior side of the protein were removed from the system, while water molecules present 

inside the protein were kept. Missing atoms were added using the software VMD [44] 

with the PSFGEN plugin. Side chains were kept at their default protonation state 

including remaining H residues (protonated at ε-nitrogen). Additional water molecules 

were placed using the software DOWSER [45], according to an energy threshold of -12 

kcal mol−1. The protein was aligned in the XY plane using the VMD plugin ORIENT, and 

was subsequently solvated using the program SOLVATE. A partially hydrated POPE 

membrane of 127 Å  127 Å bilayer patch was built using the VMD plugin MEMBRANE 

and aligned to the hydrophobic part of the protein. Lipids overlapping with the protein 

were removed to avoid steric clashes. The final solvation of the system was done by 

adding two 15 Å layers of water while water molecules in the hydrophobic part of the 

membrane were removed. To model the protein in natural ionic concentrations, the system 

was electroneutralized at 150 mM of Na+ and Cl- ions using the VMD plugin 

AUTOIONIZE. The H80 ε-nitrogen-protonated system consisted of 15177 protein atoms, 

330 POPE lipid molecules, 18549 water molecules and 52 Na+, 59 Cl- ions for a total of 

112241 atoms. The double protonated system consisted of 15,181 protein atoms, 326 POPE 

lipid molecules, 18,490 water molecules and 52 Na+, 63 Cl- ions for a total of 111,572 atoms. 

The two systems were simulated using the software NAMD2 [46] with the CHARMM27 

parameter set [47,48] using TIP3P for water molecules. Glycerol was modeled with the 

CHARMM36 parameter set [49]. The lipid tails were initially minimized for 10,000 steps 

and simulated for 100 ps with the lipid heads (N and P) atoms, protein, water and ions 

fixed. Next, only glycerol and the protein atoms were restrained by 5 kcal mol−1 and the 

system was minimized for 1,000 steps and simulated for 500 ps. The restraints were 
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lowered to 1 kcal mol−1 and simulated for 5 ns to allow lipid membrane adjustment to the 

protein. Water molecules entering the hydrophobic part of the membrane was pushed out 

using the TCL script from the Membrane Proteins Tutorial during the membrane 

equilibration. Subsequently the protein was fully released and simulated for 250 ns, while 

saving coordinates every 2 ps. A constraint was applied on the glycerol center of mass 

with the NPA motif of residues 82-84 backbone atoms as reference in order to keep it the 

vicinity of the loop. For the first 100 ns, the restraint would allow the glycerol to move [-

10;5] Å in the Z-direction, after which the restraint was updated to [-10;0] Å. A harmonic 

constant of 10 kcal mol−1 Å−2 was used for maintaining the glycerol within the boundary 

with a width of 0.1 Å. The simulations were carried out at constant temperature (310 K) 

and pressure (1 atm) using Langevin dynamics with a damping coefficient of 5 ps−1 and a 

Langevin piston with a period and decay time of 2 ps, respectively. The Particle Mesh 

Ewald method was used for evaluating electrostatic forces with a resolution of at least 1 Å. 

A cutoff of 12 Å using a switching function beginning from 10 Å was employed. The 

integration time step was 2 fs and all hydrogen bonds were kept fixed with the SHAKE 

constraint and the Settle algorithm. Short- and long-range electrostatic forces were 

evaluated every 2 fs and 4 fs respectively.  

Analysis of the trajectories was performed using the software VMD. During the 

simulations, the root mean square displacement (RMSD) on CA atoms and the area per 

lipid was monitored to ensure stable physical behavior. The total RMSD remained below 

1.5 Å2 while the area per lipid equilibrated towards 50 Å2 within 50 ns. The analysis was 

performed on the 250 ns trajectories at every 10,000 steps, equivalent to every 20 ps. 

Clustering and principal component analysis (PCA) to determine the specific interactions 

and conformations of the loop and glycerol was performed using CPPTRAJ [50] on the 

combined mono and double protonated simulations. Each monomer was put in sequence 

yielding a combined 2 µs simulation. Both analyses were performed on CA atoms of 28 

selected residues near the cytoplasmic region of the loop.  
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3.4.6 Supplementary Information 

 

Supplementary Figure S3.4.1 │ Overview of the three activity assays used for 

functional characterization of AQP-dependent fluxes. (a) Human adipocyte plasma 

membrane vesicle-based assay. Water and glycerol permeabilities of vesicles were induced 
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by isosmotic glycerol gradient and measured exploiting stopped-flow light scattering. 

Initially there is an increase in light scattering resulting from vesicle shrinkage caused by 

osmotic water efflux followed by a slower decrease resulting from vesicle swelling due to 

glycerol entry triggering water influx. (b) Proteopolymersome-bassed assay. Human AQPs 

were reconstituted into polymersomes and formed proteopolymersomes were exposed to 

either hyperosmotic NaCl gradient (to allow water efflux) or hyperosmotic glycerol 

gradient followed by NaCl osmotic stress to induce glycerol efflux. Permeation was 

measured using stopped-flow light scattering. (c) Intact yeast cell-based assay. Cells 

overexpressing respective human AQPs were preloaded with nonfluorescent dye that is 

intracellularly converted into impermeable fluorescent form. Water and glycerol 

permeabilities of cells were induced by hyperosmotic sorbitol or glycerol gradients, 

respectively and measured employing stopped-flow fluorescence. [Figure generated by 

Kamil Gotfryd and Julie Winkel Missel] 
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Supplementary Figure S3.4.2 │ Functional characterization of human AQP10 in vivo. 

(a-c) Arrhenius plots for estimation of the activation energy (Ea) for glycerol permeability in 

cells expressing hAQP10 forms measured at pH 5.1 (green) and pH 7.4 (blue). Results are 

given as mean ± SD of at least N=3 independent experiments. (d) Representative time 

course of the relative cell volume (V/V0) changes after glycerol hyperosmotic shock at pH 

5.1 (green) and 7.4 (blue) in hAQP10cryst expressing intact yeast cells. After the fast water 

efflux, glycerol influx via hAQP10cryst induces cell reswelling. (e) Water permeability (Pf) 

ratio of yeast cells expressing hAQP3GFP or hAQP10 forms measured at pH 5.1 (green) and 
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pH 7.4 (blue). Results are normalized to Pf of the control strain (without plasmid) at the 

respective pH. Results are given as mean ± SD of at least N=3 independent experiments. 

 

Supplementary Table S3.4.1 │Glycerol permeability (PGly) and activation energy (Ea) 

values obtained for pH-dependence transport measurements performed using S. 

cerevisiae-based in vivo assay. Results are given as mean ± SD of 3-6 independent 

experiments. 

construct 

pH 5.1 pH 7.4 

PGly (23 ºC) cm/s Ea kcal/mol PGly (23 ºC) cm/s Ea kcal/mol 

control (empty 

pUG35) 
6.69 e-9 ± 0.34 26.0 ± 2.1 11.9 e-8 ± 2.20 25.2 ± 2.0 

hAQP3 6.13 e-8 ± 0.60 20.3 ± 1.8 1.87 e-6 ± 0.91 10.1 ± 1.8 

hAQP10 1.40 e-6 ± 0.19 13.0 ± 1.2 6.03 e-8 ± 1.20 26.6 ± 1.9 

hAQP10cryst 1.40 e-6 ± 0.07 13.6 ± 1.7 9.19 e-8 ± 2.60 28.0 ± 1.2 

hAQP10H80A 8.27 e-8 ± 0.69 24.2 ± 1.6 9.90 e-8 ± 0.88 25.0 ± 1.6 
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CHAPTER   

 

 

4 Gold compounds as aquaglyceroporins 

selective inhibitors 
 

In the last decade, the discovery of AQPs modulators seed for drug design and 

with potential for novel therapeutics has attracted the scientific community. 

However, so far no reported small-molecule AQP inhibitors possess sufficient 

isoform selectivity to be good candidates for clinical development. Our recent 

studies in this area identified a gold(III) coordination complex as potent and 

selective AQP inhibitor, with potential use as a chemical probe to study AQPs 

function in biological systems. This chapter explores the mechanisms of AQPs 

inhibition by gold compounds at a molecular level via an integrated 

investigational approach. Additionally, aiming to optimize the drug design and 

achieve highly selective molecules with reduced risks of side effects, the inhibition 

properties of two new series of gold(III) compounds is described.  
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4.1 The mechanism of aquaporin inhibition by gold-

compounds 

4.1.1 Abstract 

The inhibition of water and glycerol permeation via aquaglyceroporin-3 (AQP3) 

endogenously expressed in human red blood cells (RBC) by four gold(III) 

complexes was studied by stopped-flow spectroscopy and, for the first time, its 

mechanism was described using molecular dynamics (MD) combined with density 

functional theory (DFT) and electrochemical studies. The obtained MD results 

showed that the most effective gold-based inhibitor of the series, anchored to 

Cys40 in AQP3, is able to induce shrinkage of pores preventing glycerol and water 

permeation. Moreover, the good correlation between the affinity of the Au(III) 

complex to Cys binding and AQP3 inhibition effects was highlighted, while no 

influence of the different oxidative character of the complexes could be observed.  

4.1.2 Introduction 

To validate the various roles of AQPs in health and disease, and to develop AQP-

targeted therapies, in addition to genetic approaches, the use of selective inhibitors 

holds great promise. Sulfhydryl-reactive compounds such as HgCl2 are typically 

used as AQP inhibitors, however, they are extremely toxic and nonspecific and 

thus not suitable for in vivo experiments and therapeutic application.  

In this context, for the first time we reported on the potent and selective inhibition 

of human aquaglyceroporin-3 (AQP3) by a water-soluble Au(III) compound, 

[Au(phen)Cl2]Cl (phen = 1,10-phenanthroline) (Auphen, Figure 4.1.1 A) [1]. Using 

in silico approaches we revealed that the most favorable non-covalent binding site 

for Au(III) ions is the very accessible thiol group of Cys40 in the proximity of 

AQP3 channel pore, which is absent in AQP1 [1]. The involvement of this residue 
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in the inhibition mechanism by Auphen was further confirmed by site-directed 

mutagenesis studies [2]. 

Additional studies on other Au(III) compounds with different N^N ligand 

scaffolds allowed us to establish preliminary structure-activity relationships [3]. 

Notably, Quantum Mechanics/Molecular Mechanics (QM/MM) calculations 

showed that the ligand moiety may play a major role in orienting the selectivity 

towards a certain isoform [3], stabilizing the position of the inhibitor in the 

extracellular binding pocket and possibly blocking the solutes’ fluxes. 

Interestingly, Molecular Dynamics (MD) simulations on the adducts of Hg2+ ions 

(benchmark inhibitors of all AQPs [4,5]) with AQP3 have allowed us to discover 

that pore closure may be due to protein conformational changes upon metal 

binding, other than direct steric blockage of the channel by the inhibitor [6]. 

We report here on the human AQP3 inhibition properties of four novel Au(III) 

complexes (Figure 4.1.1 B), including three coordination complexes with a 

dipyridin-2-ylamine (DipyAm) ligand [Au(Dipyam)Cl2]PF6 (1) [7], and with 

(pyridyl)benzimidazole type ligands – [Au(PbIm)Cl2] (3) (PbIm = 2-(pyridin-2-yl)-

benzimidazole) [8] and [Au(PbImMe)Cl2]PF6 (4) (PbImMe = 1-methyl-2-(pyridin-2-

yl)-benzimidazole), respectively. Moreover, for the first time, an organometallic 

Au(III) compound with a C^N cyclometalated 2-benzylpyridine (pyb-H) ligand (2) 

[9] was tested as AQP inhibitor. The mechanism of AQP3 inhibition by the most 

potent compound of this series was studied by MD simulations, allowing to 

disclose important structural changes leading to pore closure upon gold binding. 

Furthermore, the identification of structure-activity relationships that may link the 

electrochemical and electronic/structural properties of Au(III) compounds to their 

biological effects, was also explored. Thus, electrochemical methods were applied 

to define the compounds’ electron-transfer abilities, while density functional 
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theory (DFT) calculations were performed to further substantiate and interpret the 

experimental biological effects. 

 

 

Figure 4.1.1 │ Gold(III) compounds as human AQP3 inhibitors. (A) Auphen, from 

reference [1] (B) [Au(Dipyam)Cl2]PF6 (1), [Au(PbIm)Cl2] (3), [Au(PbImMe)Cl2]PF6. 

 

4.1.3 Results and Discussion 

Initially, four gold complexes (Figure 4.1.1 B) were tested for their AQP1 and 

AQP3 inhibition properties in RBC by stopped-flow spectroscopy. The obtained 

results are summarized in Table 4.1.1 and Figure 4.1.2 A. As previously observed 

for Auphen and related compounds [1,3] some of the new complexes act as 

inhibitors of glycerol permeation via AQP3, but do not affect water permeation via 

AQP1. The coordination complex 1 shows moderate inhibition of water and 

glycerol permeation (IC50 > 20 μM), which may be due to its poor stability in 

physiological environment [7]. The organometallic compound [Au(pyb-H)Cl2] 2 

was also scarcely active up to 50 µM, maybe since the metal-carbon bond renders 

the Au(III) centre less prone to ligand exchange reactions. Interestingly, while the 

neutral complex 3 poorly inhibits glycerol transport (IC50 > 50 μM), the novel 

cationic compound [Au(PbImMe)Cl2]PF6 4 is a very potent AQP3 inhibitor (IC50 = 

0.6 ± 0.1 μM), even more effective than Auphen, and ca. 3 orders of magnitude 

more potent than 3. The reversibility of AQP3 inhibition was also studied pre-

treating hRBC with the compounds for 30 min at r.t. and subsequently washing the 

cells with either the thiol containing reducing agent β-mercaptoethanol (BME, 1 
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mM) [10] or with the sulfur donor L-Cys. In both cases, as shown in Figure 4.1.2 B, 

treatments with the competitor molecules led to an almost complete recovery of 

glycerol permeability, ruling out the possible oxidative modification of amino acid 

residues by the Au(III) complex. 

 

Table 4.1.1 │ IC50 (μM) values for the gold complexes as human AQP3 inhibitors. 

Compound IC50
[a] (µM) 

Auphen 0.8 ± 0.1[b] 

1 > 20 

2 > 50 

3 > 50 

4 0.6 ± 0.1 

[a] Mean ± SE of at least three independent experiments. [b] from reference [1]. 

 

 

 

Figure 4.1.2 │ (A) Time-dependence glycerol inhibition (% of control) for two 

concentrations of 4; (B) Inhibition of glycerol permeability (% of control) of RBCs after 

treatment with 4 (30 min at r.t., 1 μM), and reversibility by incubation with BME and L-Cys 

(1 mM for 30 min). The results represent the average of at least three independent 

experiments ± SE. 
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The mechanism of human AQP3 inhibition by complex 4 was analyzed using 

classical molecular dynamics (MD). The quaternary structure of AQP3 was 

prepared via homology modelling, following an approach previously described by 

us [6] and reported in the Experimental Section [11]. The compound was first 

parameterised using DFT and QM/MM to generate Au(III) parameters for the 

applied force field, and then directly bound to the thiolate of Cys40, in the form 

[Au(PbImMe)Cl]2+. Geometry optimization was performed on this fragment 

(Supplementary Figure S4.1.1), which was subsequently embedded into monomer 

A of AQP3. The charge of Au was set to +3 (Au(III)). Afterwards, five independent 

MD simulations (0.5 ns) were conducted to determine the effect of 4 on water and 

glycerol permeation using either: (i) AQP3 or (ii) gold-bound AQP3 (AQP3-Au). 

Figure 4.1.3 shows the pore size comparison of the structures for monomer A 

obtained from the two representative simulations. Binding of complex 4 to Cys40 

induces shrinkage of the pore, impeding both glycerol and H2O permeability. 



162 
 

 

Figure 4.1.3 │(A) Human AQP3 monomer A and (B) AQP3 with modified Cys40 (AQP3-4), 

showing the effect on pore size (based on VDW radii):  red = smaller than single H2O, 

green = single H2O, blue = larger than single H2O. Complex 4 and Cys40 are shown in ball 

and stick representation, with atoms coloured by atom type. Generated with HOLE [12] and 

VMD [13]. [Data obtained by Andreia de Almeida] 

 

 

From one simulation, 30 snapshots were taken and the pore size of each monomer 

was measured as detailed in the Supplementary Figure S4.1.2. Afterwards, in order 

to validate the observed trend, five snapshots were taken (100, 300, 450, 600 and 

800 frames) from each of the five independent simulations, and the pore size was 

measured in each. The average of size fluctuations was obtained (Supplementary 

Figure S4.1.3), and allowed ruling out spontaneous pore geometry fluctuations 

during the simulation. Remarkably, from the average of the pore size analysis, it is 

seen that binding of complex 4 to monomer A also constricts monomer D, although 



163 
 

not sufficiently to hinder the solute permeability, but not B and C (Supplementary 

Figure S4.1.3).  

The overall protein conformation is conserved upon gold binding, as shown by the 

root mean square displacement (RMSD) plots reported in Supplementary Figure 

S4.1.4. However, local conformational changes of both the protein surface 

(Supplementary Figure S4.1.5) and the pore lining can be observed. Specifically, 

binding of the complex induced rearrangement of the side chains of the ar/R SF 

(Figure 4.1.4). Compound 4 does not appear to be positioned in the channel in a 

way that could prevent glycerol or water to flow through. However, binding of the 

complex, just above Arg218, prevents this residue from forming a H-bond with the 

backbone, present in the native AQP3, pushing the side-chain into the channel area 

(Figure 4.1.4). These effects suggest that inhibition of AQP3’s water and glycerol 

permeability is mainly due to protein conformational changes induced by binding 

of the gold complex to Cys40, rather than by the compound’s steric hindrance, in 

line with the previous MD results on the binding of Hg2+ to AQP3 [6]. It is worth 

mentioning that similar effects were observed when a longer MD simulation was 

run (8 ns, Supplementary Figure S4.1.6). 

 

 

Figure 4.1.4 │ (A) Tetrameric view of human AQP3 bound to complex 4. (B) Structure of 

the ar/R SF of AQP3 (blue) and upon binding of the gold complex (pink). The gold complex 

4 is shown in black with thin sticks, gold in yellow-gold color and chloride in green, both in 

ball and stick representation. H-Bonds are shown using orange dashed lines (HB), while H-
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arene interactions are shown using green dashed lines. Figures in panel B were generated 

with MOE. [Data obtained by Andreia de Almeida] 

 

Moreover, the observed structural changes upon gold binding increase the 

hydrophobicity of the pore entrance of monomer A, due to increased exposure of 

hydrophobic side chains (Supplementary Figure S4.1.5). Overall, the symmetry of 

the tetramer is disrupted in the AQP3-Au model, as can be seen in Supplementary 

Figure S4.1.5, due to increased exposure of hydrophilic residues (e.g. Arg50 and 

Asp125). These relatively small changes appear to affect the approach of glycerol 

molecules to the channels. 

To further investigate why the two complexes 3 and 4 have different AQP3 

inhibitory effects, and assuming Cys40 as gold binding site as in the case of 

Auphen [2], DFT calculations were performed on the adducts between a cysteinato 

ligand and compounds 2-4, as well as Auphen, obtained by substituting one of the 

two chlorido ligands (Supplementary Figure S4.1.7). The energy values of adduct 

formation are reported in Supplementary Table S4.1.1 and show that a larger 

formation energy is observed for positively charged Au(III) complexes with 

respect to neutral ones. These result supports the hypothesis that the cationic 

compounds, [Au(phen)Cl2]+ and [Au(PbImMe)Cl2]+ 4, can be more easily 

complexed by cysteinato residues than the neutral complexes [Au(pyb)Cl2] 2 and 

[Au(PbIm)Cl2] 3. Therefore, the corresponding AQP3 inhibition effects perfectly 

match this trend. 

Finally, we used cyclic voltammetry (CV) to evaluate the electrochemical features 

of the Au(III) complexes. Previous reports have investigated the electrochemistry 

of square planar Au(III) complexes with chloride [14], N^N donor [15,16] and 

C^N^C donor [17,18] ligands. Typical responses involve the reduction of Au(III) to 

Au(I) at potentials which are heavily influenced by the coordinating ligand field 
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strength. Initially, we examined the electrochemical response of HAuCl4 in DMSO 

containing 0.1 M TBAP as a supporting electrolyte by CV (Supplementary Figure 

S4.1.8 A). As expected, the introduction of strongly coordinating ligands, as in 

Auphen, shifts reduction potentials (AuIII/I reduction process) to more positive 

values [19]. Supplementary Table S4.1.2 shows the values of redox potentials 

attributed to reductive (Ered) and oxidative (Eox) electrochemical processes. A 

comparison of CVs of Auphen and HAuCl4 clearly shows this effect 

(Supplementary Figure S4.1.8 B). Substitution of two chlorido ligands by a phen 

scaffold results in a shift of +0.33 V for the Au(III)→Au(I) process (peak I vs. peak 

I′). Similar voltammetric responses to Auphen were obtained for the complexes 2-4 

(Supplementary Table S4.1.2 and Figure S4.1.9). As expected, complex 2 has the 

lowest reduction potential due to the C^N coordinating ligand. 

Moreover, potentials are shifted to more negative values with increasing electron 

donating character. For example, the PbIm ligand is more electron donating than 

phen, so potentials are shifted by about -0.3 V [8]. Furthermore, the complexes 

yielded a second reduction peak (peak II) indicative of Au(I)→Au(0) reduction 

process. Interestingly, all peak II potentials are centred at ca. -1.26 V, with the 

exception of 2 (Supplementary Table S4.1.2). Similar responses were reported for a 

range of Au(III) monodentate pyridine complexes [20]. Interestingly, the 

organometallic complex 2 is predicted to form a C-Au-Cl complex after reduction. 

In fact, the voltammetric response of 2 differs from those of general formula 

Au(N^N)Cl2, with two successive reduction peaks at -0.99 V and -1.72 V. The main 

conclusion drawn from the CV studies is that the electrochemical properties of the 

Au(III) compounds do not directly correlate to their AQP3 inhibition effects; for 

example, complexes 3 and 4 have similar redox potentials but markedly different 

effects on glycerol permeability. 
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4.1.4 Conclusions 

Due to the broad range of functions of AQPs in physiology and in disease states, 

the development of selective modulators (inhibitors) of AQPs is indispensable, as 

these could be used as either chemical probes to detect their function in biological 

systems, or as innovative therapeutic agents in a variety of disease states.  

Here, several Au(III) complexes has been studied for their AQP3 inhibition 

properties. In the first series, the cationic complex 4 was identified as the most 

potent inhibitor of glycerol permeation. Interestingly, the neutral complex 3, with a 

similar ligand system, was scarcely active. DFT studies showed that a good 

correlation can be found between the compound’s calculated affinity for cysteine 

residues and their AQP3 inhibitory activity. Instead, electrochemistry results 

suggest that the redox properties of the compounds do not influence their 

inhibition potency, excluding AQP3 inhibition by oxidative damage. 

Remarkably, MD studies conducted for the first time on the Au(III) complex 

binding to AQPs have allowed discovering that protein conformational changes, 

upon metal binding to Cys40 in human AQP3, are mostly responsible for the 

observed inhibition of water and glycerol permeation. This finding has important 

implications for future inhibitor design, in that other amino acid residues could be 

targeted, if their modification leads to the necessary conformational changes to 

achieve channel closure. Interestingly, binding of the compound in one monomer 

also affects substrate permeability in an adjacent one, and alters the overall 

extracellular distribution of hydrophobic/hydrophilic surfaces of the tetramer, 

which, in turn, orients the approach of the substrates to the pore. 

Of note, the Au(III) complexes described herein possess cytotoxic anticancer 

properties in vitro, and in recent years several gold compounds have shown 

promising anticancer effects related to the inhibition of different protein targets 
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[21]. In this context, we cannot exclude that inhibition of AQP3 might also 

contribute to the biological effects of the reported compounds towards cancer cells, 

although other studies are on-going in our labs to validate this hypothesis.  

 

4.1.5 Experimental Section 

Materials and Methods - Gold compounds 1-3 were prepared according to literature 

procedures [7,9,22,23]. The purity of the compounds was confirmed by elemental analysis, 

and all of them showed purity greater than 98%. 1,10-phenantroline and 2-

mercaptoethanol were from Sigma. 1H NMR spectra were recorded on a Bruker Avance 

II400 spectrometer at room temperature (r.t.). Elemental analyses were performed on a 

Carlo Erba EA 1110 CHN instrument. ESI-MS spectra were obtained in acetonitrile on a 

Thermo Finnigan LCQ DecaXPPlus quadrupole ion-trap instrument operated in positive 

ion mode over a mass range of m/z 150–2000. The absorption spectra of the complexes 3 

and 4 in the UV-Visible region were recorded on a Cary 5000 UV-Visible NIR 

spectrophotometer. 

 

Synthesis of Au(2-(pyridin-2-yl)-1H-benzo[d]imidazole)Cl2 – 3 - To a solution of (2-

(pyridin-2-yl)-benzimidazole) (0.195 g, 1.00 mmol) in MeCN (2 mL) was added an aqueous 

solution (12 mL) of potassium hydroxide (56 mg, 1.00 mmol). The reaction was stirred at 

r.t. for 15 minutes. Then, an aqueous solution of NaAuCl4 (398 mg, 1.00 mmol) (12 mL) 

was added. The solution was allowed to stir overnight at r.t. in the dark. The brown solid 

was filtered off, washed with water, ethanol and diethyl ether and dried under vacuum. 

Yield: 0.419 g (91%). ESI-MS (MeCN, positive mode) exact mass for C12H9AuCl2N3 ([M+H]+, 

theoretical m/z 461.9839): found m/z 461.9832 (err. -1.5 ppm). NMR 1H (DMSO-d6, 500 

MHz): 9.24 (m, 1H, H6), 8.46 (m, 1H, H4), 8.36 (m, 2H, H3 + H3’), 7.86 (m, 1H, H5), 7.74 (m, 

1H, H6’), 7.27 (m, 2H, H4’ + H5’). NMR 13C{1H} (DMSO-d6, 126 MHz): 156.6 (CIV), 149.1 (CIV), 

146.1 (CH6), 144.7 (CH4), 142.6 (CIV), 140.6 (CIV), 126.4 (CH5), 124.4 (CH3), 124.3 (CH4’), 122.5 

(CH5’), 120.2 (CH6’), 114.3 (CH3’). 
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Synthesis of [Au(1-methyl-2-[2-pyridyl]-1H-benzo[d]imidazole)Cl2][PF6] – 4 - To a 

solution of 1-methyl-2-[2-pyridyl]-benzimidazole (0.134 g, 0.64 mmol) in MeCN (2.5 mL) 

was added an aqueous solution of NaAuCl4 (255 mg, 0.64 mmol) (15 mL) and solid KPF6 

(0.354 g, 1.92 mmol). The solution was allowed to stir for 3 h at room temperature. The 

solid was filtered off and washed with water, ethanol and diethyl ether. The light orange 

solid was recrystallized from acetone-diethyl ether. Yield: 0.327 g (82%). Anal. Calculated 

for C13H11AuCl2F6N3P: C 25.10; H 1.78; N 6.75 %; found: C 25.54; H 1.55; N 6.63 %. ESI-MS 

(MeCN, positive mode) exact mass for C13H11AuCl2F6N3P ([M-PF6]+, theoretical m/z 

475.9996): found m/z 475.9993 (err. -0.6 ppm). NMR 1H (DMSO-d6, 500 MHz): 8.93 (m, 1H, 

H6), 8.30 (m, 1H, H3), 8.22 (m, 1H, H4), 8.02 (m, 1H, H3’), 7.87 (m, 1H, H6’), 7.81 (m, 1H, H5), 

7.60-7.63 (m, 2H, H4’ + H5’). NMR 13C{1H} (DMSO-d6, 126 MHz): 150.4 (CH6), 147.3 (CIV), 

143.6 (CIV), 138.4 (CH4), 134.2 (CIV), 132.0 (CIV), 127.1 (CH5), 126.5 (CH5’), 126.3 (CH3), 126.2 

(CH4’), 115.3 (CH6’), 113.3 (CH3’). 
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Ethics Statement - Venous blood samples were obtained from healthy human volunteers 

following a protocol approved by the Ethics Committee of the Faculty of Pharmacy of the 

University of Lisbon. Informed written consent was obtained from all participants. 

  

Erythrocyte sampling and preparation - Venous blood samples were collected in citrate 

anticoagulant (2.7 % citric acid, 4.5 % trisodium citrate and 2% glucose). Fresh blood was 

centrifuged at 750 x g for 5 min at 4º C and plasma and buffy coat were discarded. Packed 

erythrocytes were washed three times in PBS (KCl 2.7 mM, KH2PO4 1.76 mM, Na2HPO4 

10.1 mM, NaCl 137 mM, pH 7.4), diluted to 0.5 % haematocrit and immediately used for 

experiments. RBC mean volume in isotonic solution was determined using a CASY-1 Cell 

Counter (Schärfe System GmbH, Reutlingen, Germany) and was calculated as 82 fL. 



169 
 

 

Stopped-flow light scattering experiments - Stopped-flow experiments were performed 

on a HI-TECH Scientific PQ/SF-53 apparatus, with 2 ms dead time, temperature controlled 

and interfaced with a microcomputer. Experiments were performed at 23 ˚C for glycerol 

permeability (PGly) and for water permeability (Pf); for activation energy measurements 

temperatures were ranged from 10 ˚C to 37 ˚C. For each experimental condition, 5-7 

replicates were analysed. For measuring the osmotic Pf, 100 µL of a suspension of fresh 

erythrocytes (0.5 %) was mixed with an equal volume of PBS containing 200 mM sucrose 

as a non-permeable osmolyte to produce a 100 mM inwardly directed sucrose gradient. 

The kinetics of cell shrinkage was measured from the time course of 90˚ scattered light 

intensity at 400 nm until a stable light scatter signal was attained. Pf was estimated by Pf = 

k (Vo/A)(1/Vw(osmout)∞), where Vw is the molar volume of water, Vo/A is the initial cell 

volume to area ratio and (osmout)∞ is the final medium osmolarity after the applied osmotic 

gradient and k is the single exponential time constant fitted to the light scattering signal of 

erythrocyte shrinkage. For PGly, 100 µL of erythrocyte was mixed with an equal volume of 

hyperosmotic PBS containing 200 mM glycerol creating a 100 mM inwardly directed 

glycerol gradient. After the first fast cell shrinkage due to water outflow, glycerol influx in 

response to its chemical gradient was followed by water influx with subsequent cell 

reswelling. PGly was calculated as PGly = k (Vo/A), where k is the single exponential time 

constant fitted to the light scattering signal of glycerol influx in erythrocytes. For inhibition 

experiments cells were incubated with different concentrations of complexes, from freshly 

prepared stock aqueous solutions, for various times at r.t. before stopped-flow 

experiments. A time dependent inhibition assay for all the tested compounds over several 

hours incubation with RBC showed no further increase of inhibition after 30 min at r.t. 

Inhibition reversibility was tested by 30 min incubation of RBCs with the compounds 

followed by further incubation with 1 mM 2-mercaptoethanol (EtSH) for 30 min at r.t.. The 

reversibility assays were also performed under the same conditions, using 1 mM L-

cysteine. The inhibitor concentration necessary to achieve 50% inhibition (IC50) was 

calculated by nonlinear regression of dose-response curves (Graph Pad Prism, Inc) to the 
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equation: y=ymin+(ymax-ymin)/(1+10((LogIC50-Log[Inh]) H)), where y is the percentage 

inhibition obtained for each concentration of inhibitor [Inh] and H is the Hill slope. The 

activation energy (Ea) of water and glycerol permeation was calculated from the slope of 

the Arrhenius plot (lnPf or lnPGly as a function of 1/T) multiplied by the gas constant R. All 

solution osmolarities were determined from freezing point depression on a semi-micro 

osmometer (Knauer GmbH, Berlin, Germany) using standards of 100 and 400 mOsM. 

 

Statistical analysis - Data were presented as mean ± standard error of the mean (SEM) of 

at least four independent experiments, and were analysed with either the paired Student’s 

t-test or one-way analysis of variance (ANOVA) followed by Tukey’s test. A value of P = 

0.01 was considered to be statistically significant.  

 

Homology modelling and molecular dynamics – The 3D structure of hAQP3 was 

obtained by homology modelling using the Molecular Operating Environment (MOE 

2013.08) [24]. The choice of a template structure was based on the sequence identity 

between hAQP3 and the sequence of the AQPs with available resolved structures. The 

isoform showing the highest sequence similarity with hAQP3 is the bacterial isoform 

GlpF, with 34.68% of sequence identity, which was then chosen as a template structure to 

generate a homology model of hAQP3. The template was selected among the structures 

with the best resolution (2.70 Å) without any substrate (pdb 1LDI) [25]. The tetrameric 

form was assembled and the structure was prepared and protonated at pH 7, with the 

Amber12EHT force field, as described in [6], using the Molecular Operating Environment 

(MOE 2013.08) [24]. 50 intermediate models of hAQP3 were generated and averaged to 

obtain the final homology model. The model obtained was checked for reliable rotamers 

involving the side chains in the region of ar/R SF and NPA, by comparison with the 

available crystal structures of all the other human and microbial AQP isoforms (pdb codes 

1H6I, 3GD8, 3D9S, 1RC2, 1LD1 and 3C02). The structure was protonated at pH 7 and an 

energy minimization refinement was performed, with fixed Cα atoms.  

Afterwards, the effect of binding of Au(III) complex 4 on AQP3 glycerol permeability was 
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investigated using classical molecular dynamics (MD). The molecular system consisted of 

the homology model of the hAQP3 tetramer within a double layer of 166 palmitoyl-oleyl-

phosphatidyl-coline (POPC) lipid, prepared using the charmm-gui online server [26,27], 

using Amber99SB-ILDN in combination with Slipids (Stockholm lipids) force field for 

lipids [11,28]. Four glycerol molecules were placed into the system, one above each pore 

entrance, approximately 30 to 35 Å (to residue TRY212 at the pore entrance). The system 

was solvated with 35379 water molecules and used a modified amber99sb-ildn force field, 

with the parameters for glycerol and 1-methyl-2-(pyridine-2-yl)-benzimidazole generated 

by the Automated Topology Builder and Repository (ATb, version 2.2) website using the 

B3LYP/6-31G* basis set [29], using a combination of semi-empirical QM and DFT. 

Complex 4 was parameterized using DFT and QM/MM in order to obtain the parameters 

for the Au(III) ions in the force field. Afterwards, the complex was bound to the thiolate of 

a cysteine residue, to further integrate in the protein complex. The complex’s geometry 

was further optimized and then incorporated into monomer A of AQP3.  

All simulations were run using the GROMACS 5.1.2 simulation software [30]. Particle-

mesh Ewald method was used for calculating electrostatic interactions. The verlet cut-off 

scheme with a cut-off distance of 4.0 nm was used for short range repulsive and attractive 

interactions and Lincs was used to constrain all bond lengths. Nose-hoover temperature 

coupling was used to maintain the temperature of the system (т = 0.5 ps) at 310 K. The 

Parrinello-Rahman algorithm was used to maintain the pressure of the system at 1 bar 

with a coupling constant of т = 1.0 ps. Simulations were equilibrated for 100 ps before 

production. 

The four individual glycerol molecules were defined in the index and coupled in the pull 

code (e.g. gly_1 to chain_A). A total of 10 MD simulations (5 with the Au(III) complex 

present and 5 without) were run for 0.5 ns using the direction COM pull procedure, in 

each case applying a separate yet equal harmonic restraint force to each solute molecule of 

600 kJ mol-1nm 2 with a rate of 0.02 nm ns-1 along the z-axis. Two 4000000 step runs or 8 ns 

were run using the same two model systems and parameters. For these runs the pull code 

was omitted, therefore removing any biasing of the system. 
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Pore size measurements – Each pore radius was calculated using the Hole 2.0 program 

[12], which determines the internal surface based on atomic van der Waals radii. A 

snapshot at the beginning of each simulation was taken and coordinates for the centre of 

each pore (monomers A to D), at the ar/R SF, were used to generate the pore radius along 

the z-axis. In order to assess if the gold complex significantly affects the pore size by 

inducing protein conformational changes, five simulations, with and without gold 

complex, were performed. From these, 5 snapshots were taken (100, 300, 450, 600 and 800 

frames) and the pore size was measured in each. For consistency, the narrowest part of the 

pore was considered to be the distance between the side chains of Tyr212 and Arg218 and, 

for each frame, the distance between the closest N atom of the side chain of Arg218 and C 

of the aromatic ring of Tyr212. The same methodology was used to assess the pore size of 

monomer A for the long (8 ns) simulation. 

 

DFT calculations - DFT calculations were performed on the structures of cysteine, HCl, 

Auphen, 2, 3, 4 and on the adducts obtained by substituting one chlorido with a cysteinato 

ligand, by using the M06-L [31] functional, the Lanl2dz [32] basis set for Au, S and Cl 

atoms and the 6-31G(d,p) basis set for C, N, O and H atoms. Solvent effects were evaluated 

by full geometry optimization within the implicit water solvent, reproduced by the 

polarizable continuum model (PCM) [33]. Vibration frequency calculations, within the 

harmonic approximation, were performed to confirm that each optimized geometry 

corresponded to a minimum in the potential energy surface. Moreover, vibration 

frequency calculations allowed us to estimate the standard Gibbs free energy values, at 

298.15 K, of each energy minimum structure, both in vacuum and in solution. All 

calculations were performed by the Gaussian 09 program package. The energy values of 

formation of the gold complex-Cys adducts were obtained by the following hypothetical 

reaction: [Au(Ligand)Cl2]n+ + HCys → [Au(Ligand)ClCys]n+ + HCl, where n is the charge of 

the metal complex, and calculated by the Eqn. 0 below, where E can be either the self-

consistent field (SCF) energy or the standard Gibbs free energy in solution: 

ΔE = E[Au(Ligand)ClCys] + E[HCl] - E[Au(Ligand)Cl2] - E[HCys]   Eq. 0 
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Electrochemistry - Cyclic voltammograms were recorded using a PalmSens EmStat3+ 

potentiostat. Compounds (~ 2 mmol) were dissolved in DMSO containing 0.1 M 

tetrabutylammonium perchlorate (TBAP) as electrolyte and 1 mM ferrocene (Fc) used as 

internal reference. Measurements were recorded in a single compartment electrochemical 

cell (0.5 mL volume) containing a glassy carbon disk electrode (3mm diameter), a Ag/AgCl 

reference electrode and a platinum wire counter electrode. Prior to measurements, the 

glassy carbon disc electrode was polished on a microcloth pad in 0.05 μm alumina slurry. 

All measurements were carried out under nitrogen at r.t. Initially, we examined the 

electrochemical response of HAuCl4 in DMSO containing 0.1 M TBAP as a supporting 

electrolyte. HAuCl4 serves as a useful bench mark to evaluate the effect of the more 

strongly coordinating N^N and C^N ligands on the redox properties of the Au(III) 

complexes relative to weakly coordinating chlorido ligands. The electrochemical 

properties of HAuCl4 have been extensively studied in aqueous [19,34,35,36], ionic liquids 

[37,38,39,40,41] and organic [14,15,16,42,43,44,45,46] electrolytes. In aqueous solution, the 

reduction of Au(III) to Au(0) takes place in a single three electron reduction process 

[34,35,36]. However, in aprotic organic media, reduction of Au(III) to Au(0) is postulated 

to occur in two distinct electrochemical steps [14,15,42,45]: 

AuCl4- + 2e- → AuCl2- + 2Cl-   (Eqn. 1) 

AuCl2- + e- → Au + 2Cl-  (Eqn. 2) 

Supplementary Figure S4.1.8 shows the CV of HAuCl4 in DMSO containing 0.1 TBAP as 

supporting electrolyte. Due to the reactive nature of Au complexes at positive potentials (> 

+1.23 V vs. Ag/AgCl) [47], the scan was initiated at -0.1 V (indicated by *) to ensure that the 

Au metal centre was in the +3 oxidation state prior to measurement. Scanning to lower, 

more negative, potentials generated two successive reduction peaks centred at -0.35 V 

(peak I) and –1.26 V (peak II) which, in accordance with analogous studies [14,15,42,45], 

can be attributed to Au(III)→Au(I) and Au(I)→Au(0) transitions, respectively. The absence 

of defined oxidation peaks on the reverse scan, between -1.9 and 0 V vs. Fc, indicates that 
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both reduction processes are non-reversible. A broad oxidation peak (Peak III) centred at 

+0.31 V is evident at higher potentials. This oxidative process is consistently observed in 

aqueous [19], ionic liquids [37,38,39] and organic media [48] although its origin is unclear 

and has been attributed to both oxidation of free Cl- ions [14,45] and electrodeposited 

Au(0) [16,43,48] at the electrode surface. In order to investigate this further, a scan was 

performed where the switching potential was reversed at -0.9 V, thus preventing 

subsequent reduction to Au(0) (Supplementary Figure S4.1.8 red scan). No evidence of the 

corresponding Au oxidation peak was observed indicating that the origin of the oxidation 

peak is dependent on the formation of Au(0) generated from the Au(I) reduction step. 

Furthermore, a thin layer of deposited Au(0) was visually observed on the working 

electrode surface after the two step reduction process. It is likely that this deposited Au(0) 

undergoes a anodic ‘stripping’ process at sufficiently positive potentials giving rise to the 

observed anodic peak [47]. Interestingly, the peak attributed to Au(I) reduction (Peak IIʹ) 

occurs at the same potential for that of HAuCl4 complex. This suggests that the products of 

both reactions are similar in character. Indeed, this is reasonable as the postulated 

mechanism for Au(III) reduction results in liberation the free ligand to form AuCl2- (Eqn 

3). Therefore, it is likely that the 1e- reduction of AuCl2 to Au(0) gives rise to the reduction 

peak. 

Au(N^N)Cl2 + 2e- → AuCl2- + N^N   (Eqn. 3) 
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4.1.6 Supplementary information 

Supplementary Table S4.1.1 │Formation energy of [Au(ligand)ClCys]n+ adducts in H2O 

solution (in kJ/mol, in terms of the SCF energy, ΔE, and of standard Gibbs free energy, ΔG°) 

calculated through DFT and by Eq. 0. [Data obtained by Giampaolo Barone] 

Compound ΔE ΔG° 

[Au(phen)ClCys]+ -53.7 -45.0 

2 [Au(pyb)ClCys] -10.7 -0.2 

3 [Au(PbIm)ClCys] -27.8 -18.9 

4 [Au(PbImMe)ClCys]+ -53.0 -46.6 

 

Supplementary Table S4.1.2 │ List of electrochemical potentials attributed to reductive 

(Ered) and oxidative (Eox) electrochemical processes. Potentials evaluated from cyclic 

voltammetric scans recorded in DMSO containing 0.1 M TBAP electrolyte at 0.1 V s-1 scan 

rate. All potentials measured against ferrocene/ferrocenium redox couple. [Data obtained 

by Stefano Leoni] 

Compound Ered  
(peak I) 

Ered 

(peak II) 
Eox  

(peak III) 

HAuCl4 -0.35 -1.26 +0.31 
[Au(phen)Cl2] -0.02 -1.26 +0.49 
2 [Au(pyb-H)Cl2] -0.99 -1.72 +0.38 
3 [Au(PbIm)Cl2] -0.30 -1.16 +0.41 
4 [Au(PbImMe)Cl2]PF6 -0.33 -1.28 +0.52 

 

 

Supplementary Figure S4.1.1 │ Geometry of modified Cys40 with complex 4 after energy 

minimization. [Data obtained by Giampaolo Barone] 
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Supplementary Figure S4.1.2 │Pore size taken at the narrowest point of the channel (ar/R 

SF) from a representative simulation (0.5 ns) of AQP3 permeation by glycerol in the 

absence (A) or presence (C) of the gold complex. Each monomer is represented by a trace, 

and the colored markers indicate the glycerol passage from extracellular to cytoplasmic 

side. (B) Pockets for glycerol passage, indicated in yellow (extracellular pocket), blue (ar/R 

SF), pink (NPA motif) and green (cytoplasmic pocket). The narrowest point of the channel is 

indicated by a dashed line (approximate localization). In panel D the pore sizes of each 

monomer are shown with (dashed line) and without (full line) gold complex. The same 

color code of the point markers was used. [Data obtained by Andreia de Almeida] 
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Supplementary Figure S4.1.3 │Pore size taken at the narrowest point of the channel (ar/R 

SF) from 10 independent simulations (0.5 ns) of AQP3 (5 without and 5 with gold complex) 

for each monomer. In black markers, the pore size of each monomer are show as an 

average of 5 independent simulations and with a linear trend line (shown in black). In 

colored dashed lines, with white markers, the results for each of the 5 individual 

simulations of AQP3 with the gold complex are shown. In colored markers is represented 

the average size for each point, for AQP3 with gold complex 4, with an added linear trend 

line, shown in the respective color. [Data obtained by Andreia de Almeida] 

 

Supplementary Figure S4.1.4 │ RMSD (Å) of the protein backbone atoms of AQP3 (black) 

and AQP3-Au (red). [Data obtained by Andreia de Almeida] 
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Supplementary Figure S4.1.5 - Top intra and extracellular view of AQP3 (left) and AQP3-

Au bound (right) tetramers hydrophobic surfaces at the start of the simulation. Gold 

complex is shown over the surface only for indication of its relative position within the 

tetramer. This does not represent the compound’s location across the z-axis. Blue = 

hydrophobic, red = hydrophilic. Generated with MOE. [Data obtained by Andreia de 

Almeida] 
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Supplementary Figure S4.1.6 │Molecular dynamics simulation of AQP3 permeation by 

glycerol in the presence and absence of the gold complex without pull (8 ns). During the 

time of the simulation, due to the absence of pull, any of the glycerol molecules crosses 

the AQP3 channels. (A) RMSD of the backbone of AQP3’s simulation with (blue trace) and 

without (red trace) gold complex. (B) Pore size of monomer A, measured at the narrowest 

point of the channel. The simulation with gold complex is shown in blue markers and line, 

while the simulation without the complex is shown in black. (C) Structure of the ar/R SF of 

AQP3 (blue) and upon binding of the gold complex (pink). The gold complex 4 is shown in 

black with thin sticks, gold in yellow-gold color and chloride in green, both in ball and stick 

representation. H-bonds are shown in orange dashed lines, while H-arene interactions are 

shown in green dashed lines. The figures in panel C were generated with MOE. [Data 

obtained by Andreia de Almeida] 
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Supplementary Figure S4.1.7 │ Structure of the cysteinato complexes 

[Au(ligand)ClCys]n+ obtained for Auphen, 2, 3 and 4, whose geometry was optimized by 

DFT calculations; n=1, 0, 0, 1 for the adducts of Auphen, 2, 3 and 4, respectively. [Data 

obtained by Giampaolo Barone] 

 

 

Supplementary Figure S4.1.8 │Cyclic voltammograms of (A) AuCl4- in DMSO containing 

0.1 M TBAP electrolyte at 0.1 V s-1 scan rate. Cathodic sweep initiated at -0.1 V vs Fc+/FC. 

Switching potential -1.95 V vs Fc+/FC (black scan) and -0.9 V vs Fc+/FC (red scan); and of 

(B) Auphen (black) and HAuCl4 (red dash) recorded in DMSO containing 0.1 M TBAP 

electrolyte at 0.1 V s-1 scan rate. [Data obtained by Stefano Leoni] 
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Supplementary Figure S4.1.9 │Cyclic voltammograms of (A) complex 2 (B) complex 3 

and (C) complex 4. [Data obtained by Stefano Leoni] 
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4.2 Expanding the series of gold(III) compounds 

Furthermore, to expand the series of Au(III) coordination compounds, two 

different series based on Au(PbImMe) (4) and Auphen scaffolds (MNW and KAP 

series, respectively) (Figure 4.2.1) were synthesize and tested as AQP3 inhibitors, 

with the objective to improve our understanding on the structure-activity 

relationship of gold-based compounds as aquaglyceroporins inhibitors and 

increase inhibition potency. The compounds were synthesized at Cardiff 

University by the group of Prof. Angela Casini. MNW064 in the series resulted to 

be insoluble, therefore it was not further tested. 

 

 

Figure 4.2.1 │ Gold(III) compounds as human AQP3 inhibitors. Expanding the series with 

MNW and KAP compounds. 
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Table 4.2.1 │ IC50 (μM) values for the gold complexes as human AQP3 inhibitors. 

Compound IC50
[a] (µM) 

KAP025 0.73 ± 0.09 

KAP024 0.43 ± 0.08 

KAP013 0.89 ± 0.14 

KAP022 0.57 ± 0.04 

KAP039 0.57 ± 0.07 

MNW011 1.83 ± 0.02 

MNW016 0.88 ± 0.02 

MNW062 0.85 ± 0.22 

MNW065 0.81 ± 0.14 

[a] Mean ± SE of at least three independent experiments 

 

Briefly, all KAP compounds have equal or even better potency and selectivity 

towards AQP3 that Auphen. Within the KAP series, the most active compound is 

KAP024 featuring phenyls substituents on the phenanthroline ring (IC50 = 0.43 ± 

0.08). Concerning the MWN series, no differences could be observed with respect 

to the AuPbImMe despite the different substitution patterns on the imidazole 

moiety of the ligand bound to Au(III).  

Molecular dynamics studies are ongoing in the Cardiff lab to shed light into the 

different inhibitory effects of the KAP compounds at a molecular level and to 

define initial structure-activity relationships. 
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CHAPTER   

 

 

5 Final remarks 
 

This thesis presented different studies that investigated mechanisms of aquaporins 

regulation and possible physiologic outcome.  

In the first part of this thesis (Chapter 2), hypothesizing for the expression of AQP5 

in the adipose tissue, we disclosed a new physiological role of AQP5, as necessary 

for adipocyte differentiation. Downregulation of AQP5 in 3T3-L1 adipocytes led to 

an impairment of cell differentiation. Furthermore, overexpression of human 

AQP5 unveiled its activity as a functional water channel in adipocytes. Further 

studies are required to clarify the full involvement of AQP5 in adipose tissue 

biology and disclose if specific water transport through AQP5 is necessary for 

adipocyte differentiation and if it is involved in key protein–protein interactions.  

The second part of this thesis (Chapter 3) was devoted to the functional 

characterization of AQPs and their regulatory mechanisms. For that purpose, we 

used a yeast heterologous expression system to evaluate water/glycerol transport 

of each individual AQP isoform. The yeast Saccharomyces cerevisiae is one of the 

best characterized eukaryotic models and considered to be an excellent model for 

the study of proteins in general due to the large library of strains available and 
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their easy and inexpensive genetic manipulation when compared with cultures of 

animal cells. This heterologous expression system is a valuable option due to the 

high functional homology between yeast and higher eukaryotes including 

mammals. Furthermore, contrary to animal cells, yeast cells can survive in severe 

external environments allowing establishing several experimental conditions that 

could not be applied to mammalian cells.  

Using this approach, we showed that AQP3, AQP5, AQP7 and AQP10 channel 

permeability is regulated by pH and remarkably, all the isoforms presented 

distinct gating mechanisms, revealing that AQPs are subjected to an elaborated 

short-term regulation that might be coordinated at the tissue level to support its 

function.  

The yeast system may also be used to investigate the involvement of intracellular 

signaling pathways on AQP regulation. The addition of glucose to starved yeast 

cells activating PKA pathway that mimics the well-known hormonal-induced 

phosphorylation in animal cells, is a clear example (Subchapter 3.1). Several 

studies demonstrated the effect of phosphorylation on AQP5 redistribution in the 

plasma membrane. Here, we showed for the first time that PKA phosphorylation 

significantly increases AQP5 individual channel permeability and that this 

activation is dependent on pH. Further studies are necessary to unveil the crucial 

residues for pH and the main phosphorylation sites involved in this peculiar 

gating mechanism. 

Investigation of human and rat AQP3 pH regulation (Subchapter 3.2) revealed that 

acidic pH triggers the channel closure and consequently decreases permeability. 

Through molecular modelling studies, the pH dependent closure/opening of the 

hAQP3 channel at a molecular level was characterized. 

Regulation of human AQP7, the main aquaglyceroporin expressed in the adipose 

tissue responsible for glycerol efflux during lipolysis, was investigated (Subchapter 
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3.3). Interestingly, we observed that protonation induces changes in protein surface 

electrostatic charges switching AQP7 from a bidirectional channel to a glycerol 

efflux channel. This selective directional permeation under certain conditions 

supports the physiological role of human AQP7 in the adipose tissue and reveals a 

fine-tuning mechanism of AQP7 efficiency for glycerol release from adipocytes. 

Using a combination of in vitro and in silico techniques, we were able also to 

identify Tyr135 and His165 as essential residues for pH sensing. 

A multidisciplinary study revealed that AQP10, also abundantly expressed in 

adipocytes and proposed to be a second glycerol gateway in addition to AQP7, is 

stimulated by lipolysis induced acidification (Subchapter 3.4). In this study, the 

crystal structure of human AQP10, the first structure of a mammalian 

aquaglyceroporin, pinpointed His80 as the pH sensor and revealed an 

exceptionally wide selectivity (ar/R) filter and a novel cytoplasmic glycerol-specific 

gate, both unique to hAQP10. 

Overall, the yeast expression system used in this thesis showed to be a valuable 

tool to assess individual AQP function and regulation and can be used to explore 

the remaining AQP isoforms. The results obtained and herein presented confirm 

that the physiological mechanisms of AQP regulation, in particular aquaporin pH-

sensing and phosphorylation in mammalian cells, may offer new strategies to 

selectively target different AQPs. 

The discovery of small molecule modulators of AQPs activity opens new 

opportunities for drug development. Following the recently reported gold(III) 

compound Auphen as aquaglyceroporin inhibitor, AQP3 inhibition properties of a 

new series of gold-based compounds were tested in RBC to achieve optimization 

of potency (Chapter 4). Among the series, Au(PbImMe) has stood out for its 

inhibitory potency for AQP3 glycerol permeability, with an IC50 even lower than 

Auphen. Molecular dynamics simulations combined with DFT calculations and 
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electrochemical studies, allowed to establish a structure-activity relationship by 

describing its inhibition mechanism. Binding of the gold(III) compound induces 

structural changes leading to shrinkage of the channel pore thus preventing 

glycerol and water permeation. 

At the end of the work here described and discussed, particular questions remain 

to be addressed. A mammalian in vitro model able to validate the coordinated 

mechanisms of regulation of the several AQP isoforms is paramount. Concerning 

the AQP inhibitors, our group reported two potent inhibitors of human AQP3 

(Auphen and Au(PbImMe)), that do not affect AQP1 water permeability, but the 

compounds selectivity towards other aquaglyceroporin isoforms remains to be 

explored. Although human red blood cells are a suitable screening model since 

only express one aquaglyceroporin (AQP3), a comparative study between the 

other human aquaglyceroporins (AQP7, 9 and 10) should be further investigated, 

allowing to optimize the drug design and to achieve highly selective molecules 

with reduced risks of side effects. To achieve this goal, the heterologous yeast 

system expressing human AQP3, AQP7, AQP9 and AQP10, seems to be the most 

appropriate to ascertain the selectivity and potency of the compounds. Future 

studies investigating AQP structure-function relationships taking advantage of 

structural differences between isoforms will broaden our knowledge of AQPs 

mechanisms of regulation and may help the design of novel and efficient 

compounds and their pharmaceutical formulations. 
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