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Summary 

 

Hypertrophic Cardiomyopathy (HCM) is the most common hereditary disease of 

the heart (1:500 individuals), and a cause of sudden cardiac death in young adults and 

athletes. The disease is inherited as an autosomal dominant trait caused by mutations 

in genes of the cardiac sarcomere. It is a disease with a widely variable genotype and 

phenotype. At present there is no effective treatment for this genetic disorder. 

The goal of my work was to explore applications of recent molecular genetics 

tools to improve patient diagnosis and develop potential new treatment strategies. 

Inspired by recent reports demonstrating the feasibility of performing 

“molecular RNA surgery” by using a double trans-splicing approach that results in the 

specific substitution of a given mutated exon, I investigated whether trans-splicing 

could efficiently correct the expression of a mutant TNNT2 gene in cardiac cells. The 

TNNT2 gene codes for cardiac troponin T, one of the first sarcomeric proteins to be 

linked to HCM with more than 30 mutations identified to date. Because there is a 

significant mutational clustering on TNNT2 exon 9 associated with poor prognosis, I 

designed a strategy to specifically correct this exon. As a model system I used murine 

HL-1 cardiomyocytes. Given architectural differences between the human TNNT2 and 

mouse Tnnt2 genes, human exon 9 corresponds to mouse exon 8. The human TNNT2 

exon 9 was used to replace the homologous mouse exon 8, which encodes the same 

amino acid sequence but differs in nucleotide composition, thus creating unique 

restriction sites and also a unique binding site for a primer that only hybridizes to the 

human TNNT2 exon 9.  These unique restriction sites or the specific primer were 

further used to check the efficiency of trans-splicing events. Briefly, double trans-

splicing molecules were constructed containing the replacing exon flanked by artificial 

intronic sequences with strong splice sites and splicing enhancers connected by a 

spacer linker to antisense sequences designed to anneal the two introns flanking exon 

8 in the target murine Tnnt2 pre-mRNA. Cells were transfected with the exon exchange 

constructions cloned under the control of different promoters. The efficiency of trans-

splicing was determined by RT-PCR followed by restriction analysis or, alternatively, by 

RT-PCR using the primer that only hybridizes to the human TNNT2 exon 9 and thus only 

amplifying trans-spliced transcripts. An RT-PCR assay using a radioactive γ-32P labelled 
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primer indicated the presence of only residual amounts of the trans-splicing product. In 

order to improve efficiency, I designed an alternative strategy that involves a single 3' 

trans-splicing reaction. In brief, the goal was to replace mouse exon 8 and all exons 

downstream (exons 8 to 15) with a human cDNA containing the nucleotide sequence 

corresponding to exons 9 to 16. I constructed a 3' trans-splicing vector containing the 

human cDNA and upstream an artificial intronic sequence with a strong splice site and 

splicing enhancers connected by a spacer linker to an antisense sequence designed to 

anneal to intron 7 upstream of the mouse Tnnt2 exon 8 in the target pre-mRNA. After 

transfection, no trans-splicing product was detected. All together, these results argue 

that trans-splicing does not ensure efficient correction of expression of a TNNT2 gene 

in cardiac cells. This could be due to inefficiency of trans-splicing reactions in general, 

or a particular resistance to trans-splicing of the targeted region in the Tnnt2 pre-

mRNA.  

 

High throughput sequencing technologies have revolutionized the identification 

of mutations responsible for HCM. Detection of pathogenic mutations has important 

implications for the medical management of patients and their families. However, 

approximately 50% of individuals with a clinical diagnosis of HCM have no causal 

mutation identified. In my host lab, we hypothesized that this may be due to the 

presence of pathogenic mutations located deep within the introns, which are not 

detected by conventional sequencing analysis restricted to exons and exon-intron 

boundaries. The aim of my study was to develop a whole-gene sequencing strategy to 

prioritize deep intronic variants that may play a role in HCM pathogenesis. In 

collaboration with other members of the host lab, the full genomic DNA sequence of 26 

genes previously associated with HCM was analysed in 16 unrelated patients. We 

identified likely pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. 

These variants, which are predicted to act through disruption of either splicing or 

transcription factor binding sites, were 3-fold more frequent in our cohort of probands 

than in normal European populations. Moreover, we found a patient that is compound 

heterozygous for a splice site mutation in MYBPC3 and the deep intronic VCL variant. 

Analysis of family members revealed that carriers of the MYBPC3 mutation alone do 

not manifest the disease, while family members that are compound heterozygous are 
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clinically affected. In conclusion, we developed a framework for scrutinizing variation 

along the complete sequence of HCM-associated genes and our results suggest that 

deep intronic variation contributes to HCM phenotype.  

In order to translate the novel genetic information that we found to clinical 

decision taking requires further functional analysis. To date, mechanistic and functional 

studies of HCM mutations have been largely restricted to animal models in part due to 

difficulties in obtaining human tissue from patients. However, the recent emergence of 

patient-derived induced pluripotent stem cells (iPSCs) that can be differentiated into 

functional cardiomyocytes that recapitulate HCM-specific characteristics holds great 

promise as an exciting new approach to study how gene mutations relate to clinical 

outcomes and might be applied to test our hypothesis-generating data. Thus, I decided 

to use the CRISPR-Cas9 genome-editing technology to introduce patient mutations in 

the genome of embryonic stem (ES) cells that were subsequently differentiated in 

cardiomyocytes. In collaboration with other members of the host lab, I generated sets 

of isogenic ES cells that differ exclusively by the presence of HCM-causing mutations in 

the TNNT2 gene. We used mouse ES cells, which are easier to manipulate and 

differentiate than human cells.  

In conclusion, during my PhD training I explored the feasibility of inducing trans-

splicing as an RNA-targeted therapy to correct the expression of mutant sarcomeric 

genes in cardiomyocytes, I contributed to the development of a bioinformatics pipeline 

to identify novel mutations located within intronic regions of sarcomeric genes that 

may contribute to HCM pathogenesis, and I constructed new genome-edited cellular 

models of HCM. 

 

Keywords: hypertrophic cardiomyopathy, splicing, intronic mutations, whole-gene 

sequencing, genome editing 
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Resumo  

 

A Cardiomiopatia Hipertrófica (CMH) é a doença cardíaca hereditária mais 

comum (1: 500 indivíduos) e uma das principais causas de morte súbita em adultos 

jovens e atletas de alta competição. A doença é herdada de forma autossómica 

dominante e causada por mutações em genes que codificam proteínas sarcoméricas. É 

uma doença com um genótipo e um fenótipo bastante variáveis. Atualmente, só existe 

tratamento sintomático para esta doença genética e uma terapia génica convencional 

não é aplicável.  

O objetivo do meu trabalho foi explorar a potencial aplicação de ferramentas de 

genética molecular “de ponta” visando, por um lado, melhorar o diagnóstico de 

doentes de CMH e, por outro, o desenvolvimento de estratégias inovadoras para o 

tratamento destes doentes. 

Tendo por base estudos prévios que demonstraram a possibilidade da 

realização de "cirurgia molecular ao nível do RNA ", isto é, a substituição específica de 

um exão mutado por ‘double trans-splicing’, neste estudo foram realizadas 

experiências de trans-splicing com o objectivo de corrigir a expressão do gene TNNT2 

quando mutado em células cardíacas. O gene TNNT2 codifica a troponina T cardíaca, 

uma das primeiras proteínas sarcoméricas a ser associada à CMH com mais de 30 

mutações identificadas até a data. Uma vez que existe um elevado número de 

mutações no exão 9 do gene TNNT2 associadas a um prognóstico pouco favorável, 

neste trabalho foi desenvolvida uma estratégia especifica para   a correção específica 

deste exão. Para tal, uma linha de cardiomiócitos murinos, HL-1, foi utilizada como 

modelo celular. Devida as diferenças estruturais entre os genes TNNT2 humano e Tnnt2 

murino, o exão 9 humano corresponde ao exão 8 murino; assim, nas células HL-1, o 

exão 8 do gene Tnnt2 foi subtituído pelo exão 9, seu homólogo humano, o qual codifica 

a mesma sequência de aminoácidos, mas difere na sua composição nucleótidica, 

criando assim locais de restrição únicos e um local de ligação também único para um 

primer que apenas hibrida com este último. Estes locais de restrição únicos, assim 

como o primer específico do exão 9 humano, foram usados para distinguir, por RT-PCR 

e ensaios de restrição, o produto endógeno de cis-splicing (murino) do produto de 

trans-splicing contendo o exão 9 humano. As construções de double trans-splicing 
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foram concebidas para conter o exão 9 humano, flanqueado por sequências intrónicas 

artificiais contendo splice sites e splicing enhancers ligados a sequências antisense, as 

quais foram desenhadas para emparelhar com os dois intrões que flanqueiam o exão 8 

no pre-mRNA endógeno do Tnnt2 murino. Sob o controlo de diferentes promotores, as 

várias construções foram usadas para transfectar células HL-1. A eficiência de trans-

splicing foi determinada por RT-PCR, seguida de análise de restrição dos produtos de 

PCR, ou alternativamente, apenas por RT-PCR usando um primer que híbrida 

especificamente com o exão 9 humano e logo amplifica apenas transcritos que 

sofreram eventos de trans-splicing. Um ensaio de RT-PCR usando este primer 

especifico marcado radioactivamente com γ-32P permitiu aumentar a sensibilidade de 

detecção destes transcritos, revelando a presença de quantidades residuais de eventos 

de trans-splicing. Por forma a melhorar a eficiência do trans-splicing, uma estratégia 

alternativa envolvendo uma única reacção de 3’ trans-splicing foi posteriormente 

desenhada. Resumidamente, um cDNA do Tnnt2 humano contendo os exões 9 a 16 foi 

utilizado para substituir os exões 8 a 16 murinos. As construções de 3' trans-splicing 

foram desenhadas para conter o cDNA humano de substituição dos exões 9 a 16 e, a 

montante, uma sequência intrónica artificial, contendo em splice site e splicing 

enhancers ligados por sequências antisense, as quais foram desenhadas para 

emparelhar com o intrão 7 a montante do exão 8 nos transcritos endógenos murinos 

de Tnnt2. Após transfecção, nenhum produto de 3´trans-splicing foi detectado. Em 

conjunto, estes resultados revelam que o trans-splicing não garante a potencial 

correção da expressão do gene mutado Tnnt2 em células cardíacas. Este facto poderá 

ser devido à ineficiência das reacções de trans-splicing no geral ou, especificamente, à 

resistência ao trans-splicing da região alvo escolhida no pre-mRNA Tnnt2. 

 

As tecnologias de sequenciação de última geração vieram revolucionar a 

identificação de mutações associadas à CMH. Embora a detecção de mutações 

patogénicas tenha implicações importantes no tratamento e diagnóstico de doentes 

com CMH, estudos prévios mostram que em 50% dos doentes não foram detectadas 

mutações causadoras da doença. No meu laboratório de acolhimento, foi proposta a 

hipótese que este factor se devesse à presença de mutações patogénicas em regiões 

intrónicas profundas em genes associados à CMH, as quais não são detectadas por 
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análises de sequenciação convencionais que se cingem aos exões e as fronteiras exão-

intrão. Um outro objectivo do meu trabalho de doutoramento passou por desenvolver 

uma estratégia de sequenciação total de um painel de genes associados à CMH, 

priorizarando mutações identificadas em regiões intrónicas profundas e que poderão 

desempenhar um papel na patogénese da CMH. Em colaboração com outros membros 

do laboratório, a sequência genómica completa de 26 genes previamente associados à 

CMH foi analisada em 16 doentes não relacionados. Da análise realizada, várias 

mutações intrónicas nos genes VCL, PRKAG2 e TTN foram identificadas, prevendo-se 

que possam interferir com eventos de splicing ou com locais de ligação de fatores de 

transcrição, uma vez que são 3x mais frequentes no nosso cohort de doentes do que na 

população europeia normal. Um dos pacientes deste cohort revelou-se heterozigótico 

para uma mutação num splice site do gene MYBPC3 e para uma mutação intrónica no 

gene VCL. A análise de familiares deste paciente indicou que os que eram portadores 

da mutação no gene MYBPC3 não manifestavam a doença; no entanto, os que 

possuíam as duas mutações, em heterozigotia, eram afectados pela patologia. Em 

conclusão, ao longo desta análise, foi desenvolvida uma pipeline que permitiu 

identificar variantes genéticas ao longo de toda a sequência de um painel de genes 

associados à CMH, sendo que os resultados sugerem que variantes em regiões 

intrónicas profundas nestes genes contribuem para o fenótipo da CMH. 

A potencial aplicação clínica das variantes genéticas previamente identificadas 

através da pipeline por nós desenvolvida requer a análise funcional das mesmas. 

Durante as últimas décadas, os estudos mecanísticos e funcionais de mutações 

causadoras de CMH têm estado confinados a modelos animais em parte devido à 

dificuldade de obter tecido humano de doentes. No entanto, mais recentemente, a 

utilização de induced pluripotent stem cells (iPSC) derivadas de doentes, as quais 

podem ser diferenciadas em cardiomiócitos funcionais que recapitulam características 

da CMH, tem emergido como uma inovadora e promissora abordagem para o estudo 

de que como mutações genéticas se correlacionam com os outcomes clínicos, podendo 

ser usada para testar as variantes prioritizadas pela nossa pipeline bioinformática. 

Assim, numa terceira fase do meu projecto de doutoramento, utilizou-se a tecnologia 

de edição de genoma CRISPR-Cas9 para introduzir em células estaminais embrionárias 

murinas (mESCs) mutações já descritas em doentes como causadoras de CMH, que 
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foram subsequentemente diferenciadas em cardiomiócitos. Assim, criaram-se sets de 

linhas de mESCs isogénicas que diferem apenas pela presença de mutações causadoras 

de CMH no gene Tnnt2. Optou-se pelo uso de mESCs para gerar modelos celulares de 

CMH porque a manipulação destas células é mais fácil do que a manipulação de células 

humanas. 

Em conclusão, durante o meu trabalho de doutoramento, foi explorada a 

hipótese de se utilizar a técnica de trans-splicing como uma nova abordagem 

terapêutica, tendo como alvo moléculas de RNA, por forma a corrigir a expressão de 

genes sarcoméricos mutados em cardiomiócitos; também contribuí no 

desenvolvimento de uma pipeline bioinformática para a identificação de novas 

mutações localizadas em regiões profundas intrónicas de genes sarcoméricos que 

podem contribuir para a patogénese da CMH, e construí novos modelos celulares de 

CMH geneticamente editados.  

  

Palavras-chave: cardiomiopatia hipertrófica, splicing, mutações intrónicas, 

sequenciação total de genes, edição de genoma 
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1. Background and state of the art 

 

1.1. Hypertrophic Cardiomyopathy - the disease 

 

1.1.1. Pathophysiology, disease manifestations and symptoms 

 

The European Society of Cardiology defined Hypertrophic Cardiomyopathy 

(HCM) “by the presence of increased left ventricular (LV) wall thickness that is not solely 

explained by abnormal loading conditions” [1]. It is an autosomal dominant disease, 

which is phenotypically and genetically heterogeneous [2, 3]. It affects 1:500 

individuals, but a new study suggests that the prevalence is actually higher (1:200), due 

to new techniques in genetic screening, diagnostic methods and more family members 

being screened for the disease [2, 3]. 

The disease manifestations range from asymmetrical thickening of the left 

ventricle leading to myocardial disarray as a compensatory mechanism (Figure 1.1) to 

coronary dysfunction expressed as increased wall thickness/lumen ratio and eventually 

leading to ischemia, remodelling and fibrosis [3, 4].  

 

 

Figure 1.1 - Comparison of a healthy heart with a heart with HCM 

On the right is the healthy heart (A) and on the left the hypertrophic one (B), the difference in size of the 

myocardium is clear. (© Rita Mendes de Almeida) 
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These changes in the cardiac muscle can be detected very early in life or may 

remain asymptomatic and only be diagnosed post-mortem after a sudden death by 

cardiac arrest. In short, although HCM may be asymptomatic, the main characteristics 

include angina, shortness of breath, dizziness and stroke and affected individuals may 

present symptoms ranging from mild to severe heart failure and sudden cardiac death 

[3-5]. 

HCM is often referred as a “disease of the sarcomere” [3, 4]. The sarcomere is 

the functional unit of the cardiomyocytes (Figure 1.2). The cardiomyocytes contain 

thick and thin filaments, and these units repeat themselves and form the myocardial 

myofibrils [5]. The thin filament includes the following proteins: actin (ACTC1), α-

tropomyosin (TPM1), troponin C, T and I (TNNC1, TNNT2, TNNI3). The thick filament is 

composed of the myosin proteins: myosin binding protein C (MYBPC3), α- and β-

myosin heavy chain (MYH6, MYH7) [5].  Around 50% of HCM cases do not have a 

genetic variation attributed to it [3, 4]. The HCM phenotype is modulated either by a 

genetic variant or a modifier [5, 6]. To date, more than 1400 mutations have been 

associated to HCM in at least 13 different genes [2, 4, 5]. HCM mutations can interfere 

in several processes, such as: cellular calcium signalling, actin ATPase activation and 

changes in the myosin-actin interactions that interfere in force generation, among 

others that still remain unclear. Altogether, these mutations lead to different HCM 

phenotypes [6]. 
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Figure 1.2 – The sarcomere: the contractile unit of cardiomyocytes 

In the heart’s myocardium, cardiomyocytes are responsible for the contractions in the heart. The 

sarcomere is the contractile unit in the cardiomyocytes.  HCM mutations occur usually in proteins of the 

sarcomere: α-tropomyosin, β-myosin heavy chain, myosin binding protein C, titin, actin and troponin 

complex (C, T, I). (© Rita Mendes de Almeida) 

 

HCM-associated mutations present in the thick filament are the ones in the 

myosin genes (MYBPC3, MYH7, MYH6) and they account for 75-80% of the sarcomere 

HCM mutations and 30-40% of all HCM cases [4, 5]. Most of myosin mutations are 

missense mutations with some exceptions for the MYBPC3 gene [7]. Mutations found 

in the MYBPC3 gene might lead to truncated protein that will be degraded, resulting in 

insufficient protein for normal functional sarcomeres [5, 8]. For the MYH7 gene, 

mutations are aggregated between exons 3 to 23, which code for functionally relevant 

protein domains of α-myosin heavy chain, mainly the myosin ‘head’ and ‘neck’ 

responsible for the process of contraction by connecting to actin [5]. On the other 

hand, mutations in the MYH6 gene showed an increase in actin ATPase dependent 

activity and disruption of the interaction between actin and myosin, which may lead to 

alterations of cardiomyocytes and trigger hypertrophy [5]. The HCM mutations in thin 

filament proteins (actin, α-tropomyosin, troponin C, T and I) account for only 5 to 15% 

of all HCM cases. These might alter the Ca2+ sensitivity of those proteins (essential for 

contraction) and of the force generation [5]. Despite the lower percentage of HCM- 
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associated mutations in these genes, they are associated to a more severe phenotype 

[9]. 

Even though the major genes associated to HCM are sarcomeric genes, the 

panel of genes associated to this disease has been growing larger. These new genes 

code mainly for associated proteins of the Z-disc, of the sarcoplasmic reticulum and of 

the plasma membrane [6]. Several mutations were identified and associated to a small 

number of HCM cases, in the following genes (Table 1.1): cardiac ankyrin repeat 

domain 1 (ANKRD1), α-actinin 2 (ACTN2), myozenin-2 (MYOZ2), LIM domain binding 3 

(LDB3), vinculin (VCL), titin (TTN), telethonin (TCAP), cysteine and glycine rich protein 3, 

(CSRP3), nexilin (NEXN), junctophilin-2 (JPH2), other proteins that regulate Ca2+ (PLN, 

CASQ2, CALR3), among others.  

 

 

 

 

Table 1.1 – List of HCM-associated genes and evidence of their pathogenecity 

Genes that have been associated to HCM, with respective evidence and frequency. Adapted from [5]. 

Disease genes Evidence for 

pathogenicity 

Locus Protein Frequency 

Thick filament protein 

MYH7  strong  14q11.2  β-myosin heavy chain  15–25%  

MYBPC3  strong  11p11.2  myosin binding protein C  15–25%  

MYL2   strong  12q24.1  regulatory myosin light chain  rare  

MYL3   strong  3p21.3  essential myosin light chain  rare  

MYH6  weak  14q11.2  α-myosin heavy chain  rare  

Thin filament protein 

TNNT2  strong  1q32.1  troponin T  ≈5%  

TNNI3  strong  11p15.5  troponin I  ≈5%  

TNNC1  strong  3p21.1  troponin C  rare  

TPM1  strong  15q22.2  α-tropomyosin  rare  

ACTC1  strong  15q14  α-cardiac actin 1  rare  

Z-disc protein 

CSRP3  weak 11p15.1  muscle LIM protein  rare  

TCAP  weak 17q12  telethonin  rare  
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VCL  weak 10q22.2  vinculin  rare  

LDB3  weak 10q23.2  LIM domain binding 3  rare  

ACTN2  strong  1q43  α-actinin 2  rare  

MYOZ2  strong  4q26  myozenin 2  rare  

ANKRD1  weak 10q23.3  cardiac ankyrin repeat protein  rare  

NEXN  weak 1p31.1  nexilin  rare  

Ca2+-handling protein 

PLN  weak 6q22.3  phospholamban  rare  

CASQ2  weak 1p13.1  calsequestrin 2  rare  

CALR3  weak 19p13.1  calreticulin 3  rare  

JPH2  weak 20q13.12  junctophilin 2  rare  

Other related genes 

TTN  weak  2q31.2  titin  rare  

CAV3  weak  3p25.3  caveolin 3  rare  

 

When looking at genotype-phenotype relationships, they remain unclear for 

most of the mutations that were associated to HCM [6]. In fact, the pathogenesis in 

HCM can come from a dominant negative effect from an abnormal protein, a problem 

in the metabolism of the myocardium or haploinsufficiency (insufficient wild-type 

protein for a normal functional cell) [5]. When it comes to the dominant negative effect 

of a protein, it means that the protein itself is abnormal and will cause harm to the cell, 

which can be explained by a possible gain of function of the mutant protein. Since most 

of the HCM mutations are missense, they will give rise to mutant, abnormal proteins 

that will be incorporated as if they were wild-type, giving rise to several problems at 

the cellular level. These can affect the mechanical and the Ca2+ signalling in the 

sarcomeres, leading to potential arrhythmias and cardiac sudden death [5]. 

Haploinsufficiency maybe the main reason for the pathology of mutations in the 

MYBPC3 gene that lead to premature stop codons, meaning that the wild-type allele is 

not enough to maintain a healthy phenotype (loss of function protein, truncated 

protein) [5, 6, 8, 10]. Finally, an altered energetic metabolism of the myocardium such 

as an increased sensitivity and affinity to Ca2 or increased activity of ATPase activated 

actin, can indicate a gain of function of the proteins involved and that they are 

spending more energy than wild-type proteins [5]. 
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1.1.2. Diagnosis and genetic screening 

 

The diagnosis of such phenotypically heterogeneous disease such as HCM 

involves different techniques. In the 70’s, the most common exam for HCM diagnosis 

was echocardiography. But since the 80’s, cardiac magnetic resonance came to be a 

more enriched tool for diagnosis, which is very useful for characterization of the heart’s 

appearance and function and also to evaluate specific regions of hypertrophy [2, 3]. 

The imaging techniques are indispensable to make a definitive HCM clinical diagnosis, 

together with the patient’s history, physical exam, symptoms and electrocardiogram, 

being the ultimate decisive factor the presence of a thickness of the left ventricle wall 

higher than 15 mm [11, 12]. 

In both clinically HCM diagnosed patients or first-degree relatives of HCM 

patients, there is the recommendation for genetic screening, which is useful for patient 

management [2]. However, and despite the recent evolution of DNA sequencing 

techniques facilitates the screening of HCM mutations, to date only 50% of patients 

have potential HCM mutations identified. Moreover, even in these patients where an 

HCM mutation was detected, the mutation identified might not have a well-known 

genotype/phenotype correlation. This makes genetic sequencing difficult but still 

useful, especially for management of relatives of HCM patients that maybe at risk of 

developing the disease, if they have an HCM associated variant [5]. A genetic screening 

can also be helpful in distinguishing between an HCM case or other cardiomyopathies, 

helping physicians to make a proper diagnosis [5]. The impact of NGS and genetic 

screening in HCM patients is further discussed in section 1.3. 

 

 

1.1.3. Impact of HCM mutations at cellular level 

 

There is a complex challenge to develop functional assays to study the effects of 

a given variant, especially at the cellular level, for a better understanding of the 

pathogenesis and heterogeneous HCM phenotypes. At the cardiomyocyte level 

affected by HCM, several issues take place: hypertrophy, fibrosis, altered gene 

expression and altered signalling pathways (mainly calcium regulation) [13]. In HCM the 

characteristic hypertrophy may be attributed to a compensatory mechanism, which 
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independent of the initial cause, will lead to the increased size of the muscle and of the 

cardiomyocytes [13]. The altered expression of several genes may also help in HCM 

diagnose and in the understanding of the molecular mechanisms undelaying this 

disease. For example, the expression levels of atrial natriuretic peptide (ANF) and brain 

natriuretic peptide (BNP) are altered in cases of cardiomyopathies; specifically, BNP is 

secreted in cases of ventricular hypertrophy [13, 14]. In early signs of cardiomyopathy 

there is also a change in expression of the MHC gene, which is tightly regulated, with β-

MHC levels being increased and α-MHC decreased [13, 15].  Two mutations in the 

MYH6 gene (R403Q, R719W) lead to the increase of TGF-β expression, which 

contributes to fibrosis [16]. The Akt/phosphoinositide 3-kinase (PI3K) is a signalling 

pathway involved in cardiac remodelling. If it remains active it may lead to 

cardiomyopathy. Akt activation may increase cardiomyocyte size, and inactivates 

glycogen synthase kinase 3 (GSK-3β), which in normal circumstances helps reduce 

cellular size [13, 17]. Another sign of hypertrophy is the overexpression of calcineurin 

(which happens with increased Ca2+ in the cytoplasm) or nuclear factor of activated T 

cells (NFAT, which migrates to the nucleus) [13, 18]. These various HCM pathogenic 

mechanisms were elucidated thanks to animal models and other available models, but 

at the cell level there is the need for reliable cellular HCM models. 

Since obtaining patient’s cardiomyocytes is very cumbersome and 

cardiomyocytes are fully differentiated cells that do not proliferate, studies at cellular 

level would be complicated [13, 19]. Before the advent of induced pluripotent stem 

cells (iPSCs), the major disease models used were animal models. Animal models 

helped understand many of the disease mechanisms, but they are more expensive and 

time consuming than cellular ones [19].  Some of the HCM animal models available are 

represented in Table 1.2.  

 

Table 1.2 - Examples of HCM mouse models  

Example of mouse models from the literature and respective cardiac phenotype that each mutation 

displays. 

Organism Gene Protein Mutation Cardiac phenotype References 

Mouse ACTC1 
Cardiac α-

actin 
E99K 

Apical HCM and 

increased Ca2+ sensitivity 
[20] 
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Mouse CSRP3 
Muscle LIM 

protein (MLP) 
W4R 

Late-onset HCM. Blunted 

response to adrenaline 

stimulation. 

[21] 

Mouse MYH6 
α-Myosin 

heavy chain 

R403Q 

Left ventricular 

hypertrophy, myocyte 

dissaray, myocardial 

fibrosis 

[6, 22] 

R453C Idem [6] 

R719W Idem [6] 

Mouse MYOZ2 
Myozenin-

2/calsarcin-1 
S48P, I246M 

Cardiac hypertrophy with 

interstitial fibrosis and Z-

line abnormalities. 

Preserved cardiac 

function. 

[23] 

Mouse MYPN Myopalladin Y20C 

CM with dilatation of 

both chambers and 

disrupted intercalated 

discs. 

[24] 

Mouse TNNI3 Troponin I R145G 

Cardiomyocyte disarray, 

fibrosis and premature 

death 

[25] 

Mouse 

 
TNNT2 Troponin T 

R92Q 

Hypercontractility, 

diastolic dysfunction and 

fibrosis 

[26] 

I79N 

Enhancement of base-

line contractility leading 

to cardiac dysfunction. 

[27] 

Mouse TPM1 Tropomyosin 

E180G 
Severe cardiac 

hypertrophy, fibrosis 
[28, 29] 

N175D 

Mild myocyte 

disorganization and 

hypertrophy 

[30] 

 

 

But, nowadays, it is already possible to have patient’s cells to perform 

characterization and functional studies without having the need for samples from a 

patient’s heart. This is possible thanks to the ability of reprograming somatic cells into 

pluripotent stem cells, the so-called induced pluripotent stem cells or iPSCs. This 
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process was first described by Yamanaka and colleagues, by forcing the expression of 

certain factors OCT-4, SOX-2, Klf-4 and c-myc (‘Yamanaka factors’) in differentiated 

cells [31]. The obtained iPSCs cells can later be differentiated in any cellular type, 

including cardiomyocytes, taking advantage of the modulation of several signalling 

pathways such as: Activin/Nodal, transforming growth factor β (TGFβ), glycogen 

synthase kinase 3 (GSK3), Wnt, bone morphogenic protein (BMP), among others [19, 

32]. Using patient’s somatic cells and then developing patient specific iPSC - 

cardiomyocytes (iPSC-CM) allows to generate unique patient specific HCM cellular 

models [19].  

The process used to differentiate iPCSs in cardiomyocytes can be done through 

three different types of culture: (1) embryoid bodies (EBs), which are round cell 

agglomerates that recapitulate the three layers of early embryos, (2) co-culture with 

visceral endoderm-like (END-2) cells and (3) 2D monolayer culture [19, 32, 33]. 

Regarding the first methodology, in order to obtain a relative pure population 

of cardiomyocytes, EBs are grown in a monolayer culture in gelatin-coated dishes [33, 

34]. At day 8-9 of differentiation, embryoid bodies exhibit contracting areas where 

cardiomyocytes can be isolated by a complex procedure. But only 1% of the cells in the 

EBs are actually cardiomyocytes [35, 36].  

The co-culture of iPSCs with the endoderm-like cells drives the cardiac 

differentiation of the iPSCs due to the released factors by the END-2 cells into the 

medium, with a yield of around 10% of immature cardiomyocytes [32, 33].  

The 2D monolayer culture involves the differentiation of the iPSC cells using a 

set of factors and a specific culture media to induce the differentiation into 

cardiomyocytes. The cardiomyocytes obtained by this method have been shown to 

have a more mature phenotype with yields of 85-95%. There are various protocols that 

involve various and different factors [32]. A recent study proposes three approaches to 

obtain a high yield of cardiomyocytes (80-98%), using human pluripotent stem cells 

(hPSCs) in a monolayer based differentiation approach [37]. All three protocols start by 

pre-treating iPSCs with glycogen synthase kinase 3 (GSK3) inhibitor [37]. It was 

demonstrated that the use of the GSK3 inhibitor improved cardiac differentiation 

before EBs are formed, since GSK3 inhibition helps determine cell fate and proliferation 

in cardiac development [37, 38]. So, after the pre-treatment, the first approach is 
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based on the use of growth factors of the TGF-β family, specifically activin A and bone 

morphogenetic protein 4 (BMP4). The second consists in the use of a Wingless (Wnt) 

inhibitor. The last one, involves the use of inducible expression of a β-catenin shRNA, 

but requires prior genetic manipulation of the hPSCs [37]. All three protocols have a 

very successful yield of cardiomyocytes and can be further used to differentiate patient 

derived IPSCs into cardiomyocytes.  

 

Nevertheless, some disadvantages were found when using these models. 

Indeed, several factors might contribute to less homogenous iPSC cell populations such 

as culture conditions, epigenetic markers of the somatic cells used, age of the cells, 

genetic components, reprograming efficiency might vary from types of somatic cells, 

etc [19].  

Even though, iPSC-CMs have proven themselves as reliable HCM cell models. In 

Table 1.3 are represented a few of the HCM iPSC-CM cell model already generated. 

 

Table 1.3 – Examples of iPSC-CMs HCM cell models 

Example of iPSC-CMs models from the literature and respective cardiac phenotype that each mutation 

displays. Partially adapted from [19]. 

 

Gene Protein Mutation Cardiac phenotype References 

MYH7 
α-Myosin 

heavy chain 
R442G 

Enlarged size, disorganized 

sarcomere structures and 

arrhythmic beatings. Irregular 

calcium handling and ion channel 

functions. Increased expression of 

HCM related genes. 

[39] 

MYH7 
α-Myosin 

heavy chain 
R663H 

Cellular enlargement and 

contractile arrhythmia at the 

single-cell level and dysregulation 

of Ca2+ cycling. 

[35] 

MYBPC3 

Myosin 

binding 

protein C 

G999- 

Q1004del 

Enlarged cells with myofibrillar 

disarray. 
[40] 

MYBPC3 Myosin Q1061X Larger cardiomyocytes compared [41] 
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binding 

protein C 

to TPM1 mutation (D175N). 

Arrhythmogenic events, cell 

elargment and altered gene profile. 

TPM1 Tropomyosin D175N 

More abnormal Ca2+ transients 

compared to MYBPC3 mutation 

(Q1061X). Arrhythmogenic events, 

cell elargment and altered gene 

profile. 

[41] 

 

Overall, in all these iPSC-CMs models, there seems to be certain elements in 

common such as: cardiomyocyte enlargement, altered calcium handling and altered 

gene expression of the following genes α-myosin heavy chain (Myh6), β-myosin heavy 

chain (Myh7), α-actin (Actc1), myocyte enhancer factor 2C (Mef2c), cardiac troponin T 

(Tnnt2), GATA4, atrial natriuretic factor (Anf), Connexion 43 (Gja1), calcineurin (Pp3ca). 

Indeed, these iPSC-CM HCM cellular models had been very useful as a first screening 

tool for pathogenicity of a given mutation at the cell-level. So, based on this, 

establishing of cardiomyocytes cell lines with different HCM mutations appears as a 

good experimental approach to help in understanding such phenotypically diverse 

disease. Moreover, the generation of such custom isogenic cell lines, using the existing 

gene editing tools to induce any HCM mutation and only having a single mutation per 

cell line (which might not be the case in patient derived iPSCs) will be crucial to 

understand the individual contribution of each of the identified variants. 

 

1.1.4. Disease management and gene therapy 

 

Disease management for HCM addresses signs and symptoms in order to 

manage or prevent them, such as: heart failure, ventricular arrhythmias, left ventricular 

dysfunction, atrial fibrillation and cardioembolisms. Either a pharmacological or a 

surgical approach can be performed [42]. The approach chosen under the latest 

guidelines will depend on the symptoms and the degree of severity.  
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Conventional medical intervention used in HCM solely involves symptomatic 

treatment either pharmacological or non-pharmacological and those do not focus in 

the underlying cause of the disease [43]. So in this work, we focused in the much-

needed attempt to develop a novel HCM therapy based in a gene therapy approach, as 

HCM is a genetic disease. 

Genetic disorders can be classified as either dominant or recessive [44]. A 

mutation, associated to a dominant disease, is present in a single allele and such is 

enough to cause a disorder; on the other hand, a recessive mutation can only lead to a 

disorder if both alleles are mutated. Disease associated mutations can be classified in 

two major groups: in-frame mutations (that include missense mutations, in-frame 

insertions and deletions) or truncating mutations (that include nonsense mutations, 

frameshift deletions and insertions). An in-frame mutation can eventually produce a 

protein but with a given defect, whereas a truncating mutation frequently lead to a 

loss-of-function of the allele, with no protein being produced [44]. Furthermore, these 

mutations can have various molecular mechanisms that lead to a certain disease. As 

already mentioned, a recessive mutation usually leads to a loss-of-function; either an 

in-frame or truncating mutation can be the cause [44]. A dominant mutation can have 

one of these mechanisms: haploinsufficiency, gain-of-function or a dominant negative 

effect [44-46]. Haploinsufficiency means that the wild-type allele does not produce 

enough protein for a normal cell function. An example of this, are missense mutations 

in the PDK1 gene leading to polycystic kidney disease; or mutations in the MYBPC3 

gene leading to HCM, due to a truncated protein [8, 45].  An example of gain-of-

function mutations are mutations in the RHO gene that cause autosomal dominant 

retinitis pigmentosa; and several missense mutations in the MYH6 and MYH7 genes 

were predicted to produce a gain of function of the proteins and lead to an HCM 

phenotype [10, 45, 47]. A dominant negative effect involves the coexistence of wild-

type and altered protein in the same multimeric protein complexes, disrupting the 

normal function of the complex [44, 45]. An example of the dominant negative effect 

are mutations in MYBCP3 gene leading to HCM [45]. 

 For autosomal dominant monogenic diseases such as HCM, an increase of the 

ratio of healthy vs. deleterious protein is not always a viable option [43, 48, 49]. HCM is 

a disease with low penetrance and variable clinical outcomes, ranging from 
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haploinsufficiency, gain of function or even malfunctioning protein [6, 8, 10]. A normal 

gene therapy targeting the DNA could be insufficient but a strategy targeting the RNA 

will be much better as it would also resolve gain of function or even malfunctioning 

protein situations. [43, 45] 

 

The concept of gene therapy was first introduced in 1972 and was described as 

the delivery of DNA or RNA to cells in order to treat a disorder using a vector [50, 51]. 

In order to design a gene therapy, the gene and the mutation that causes the disease 

must be known, the use of a suitable delivery system is desirable and a disease model 

for a better understanding of the connection between the mutation and the disease is 

very helpful [45, 52]. Gene therapies can target two different types of cells: germ cells 

or somatic cells. When it comes to the germ cells, means that the cells targeted (sperm 

or egg) with a therapeutic gene would possibly be transmitted to the following 

generations. This gene therapy in germ cells is not performed in humans due to ethical 

issues. Somatic cells are all the cells of an organism except the germ cells. When gene 

therapy is performed on somatic cells, means that the cells are targeted with a 

therapeutic gene, these would only remain in the target organism and the following 

generation would not inherit this alteration [52, 53]. In order to correct altered genes 

with a disease causing-mutation through gene therapy, one of the following 

approaches can be used: (1) insertion of a wild-type gene somewhere in the genome, 

(2) replacement of the defective gene by a wild-type one, by homologous 

recombination (HR), (3) the defective gene could be corrected through reverse 

selective mutation (returning a gene to a normal functioning) or (4) the controlled 

expression of a gene (controlled turn on-off of the gene) [52, 54].  

In general, gene therapies used can act at two different levels: (1) at the gene 

level (DNA) and (2) at the transcript level (RNA). Therapeutic molecules can be made 

from different types of nucleotides such as: double stranded or single stranded DNA or 

RNA [45, 51, 53]. These must reach their desired target and avoid degradation, and to 

do so they have to be associated to a delivery system [52, 53]. These can be of two 

kinds: viral vectors (retrovirus, adenovirus, adeno-associated virus) and non-viral 

methods (direct injection, electroporation, sonoporation, gene guns, magnetofection, 

lipoplexes, polyplexes, among others) [52, 53]. Cells to be repaired, can be through two 
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different ways: ex-vivo (repaired and then delivered to the organism) or in-vivo (vector 

directly administered to the organism) [51].  

At the gene level several tools are available, but lately the most promising ones 

are genome-editing techniques [51, 55]. Basically, they resort to custom nucleases to 

perform either a gene inactivation (knockout), a gene insertion (knock in) or a gene 

repair [55]. This editing by nucleases involves the production of a double strand break 

(DSB) in a given region of the genome and then the repair of the DSB by the cell. 

Double strand DNA breaks can be repaired by two different strategies, either by 

homologous recombination (HR) or nonhomologous end joining (NHEJ) [51, 55]. Briefly, 

HR is the repair the cell performs after a DSB using the replicated sister chromatid for 

repair, without loss of genetic information, occurring only in the S/G2 phase of the cell 

cycle. NHEJ is an error prone repair mechanism, which originates insertions and 

deletions at the site of repair and occurs throughout the cell’s life cycle [55, 56]. There 

are four types of available custom nucleases: meganucleases, zinc finger nucleases 

(ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered 

regularly interspaced short palindromic repeats (CRISPR)/ Crispr associated nucleases 

(CRISPR/Cas system) [51].  The meganucleases are homing nucleases that perform DSB 

in determined loci of the genome and they only recognize certain sequences. Even 

being less toxic to cells than ZFNs, there are a limited number of them for each 

sequence, which limits the genome editing approaches [51]. ZFNs are composed of zinc 

finger, which are DNA binding domains and each domain only recognizes a set of three 

specific nucleotides. The ZFNs also have a nuclease domain that is the restriction 

nuclease FokI. In order for a ZFN to perform a DSB, there must be a set of two ZFN to 

dimerize in each side of the DNA double helix. Usually, each ZFN recognizes a set of 18 

nucleotides and the need for dimerization diminishes the possibility of off-target 

events, but it is time consuming to develop [51, 55]. The TALENs are also a combination 

of a DNA binding domain and the nuclease FokI. This binding domain is derived from 

the TALE protein and each one recognizes one nucleotide. As for the ZFN, two TALEN 

are necessary to perform the DSB and together they usually recognize 18-20 

nucleotides [51, 55]. Finally, the CRISPR/Cas system was adapted from bacteria in order 

to allow mammalian genome editing. It consists of the Cas (nuclease) together with a 

guide RNA. The two together are essential to perform the DSB. The guide RNA 
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recognizes a 20 nucleotides sequence (protospacer) in the genome. Nevertheless to 

have a successful DSB, this sequence in the genome must be next to a PAM 

(protospacer adjacent motif) sequence of NGG, where N is any nucleotide. The 

advantage of this system is that it is very quick to engineer, affordable and highly 

specific [51, 55].  

At the RNA level, there are various techniques available to develop RNA-based 

gene therapies that go from splicing modulation through anti-sense oligonucleotide 

(ASOs) to spliceossome-mediated RNA trans-splicing [43]. These RNA-based strategies 

will be discussed later with further detail. 

A viable therapeutic approach for HCM would necessarily include a strategy to 

impair the expression of un-functional protein in cardiac tissue [43, 48, 49]. The 

conventional gene therapy does not seem to be the best choice for correcting genetic 

defects in a complex and highly differentiated tissue such as cardiac muscle. An RNA 

based approach, aiming at correcting the genetic defect at the mRNA level, may be a 

better choice, as it does not imply modification of the genomic loci and, in principle, 

might work efficiently in a wide range of cells.   
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1.2. RNA therapeutics - an alternative to DNA gene therapy 

 

1.2.1. Mechanics behind the splicing reaction 

 

A possible approach as a gene therapy for HCM would be targeting at the RNA 

level, to diminish the levels of the mutated transcripts and so of the mutant proteins 

responsible for the haploinsufficiency, gain-of-function or a dominant negative effect, 

possible causes of this autosomal dominant disease. Until date, the RNA therapeutic 

techniques available rely in the interference at the pre-mRNA (messenger RNA) level 

mainly in a process called splicing. The RNA polymerase II is responsible for the 

transcription of a gene. During transcription, the pre-mRNA is synthesized and splicing 

occurs in a co-transcriptional manner for the vast majority of the human transcripts 

[57]. 

Splicing can be defined as the removal of introns (non-coding region between 

exons) from the pre-mRNA and joining of the exons (coding region of the gene) and so 

producing a mature mRNA, for future translation into a protein [57-59]. The splicing 

process is represented in Figure 1.3.  

A complex of several ribonucleoproteins forms the spliceosome, which is 

responsible for performing the splicing reaction [57, 58]. The exon/intron boundaries, 

which allow the spliceosome to recognize them and join the exons together after 

intron excision, are the splice sites (ss). There is the 5’ss (donor site) that is located on 

the 5’ end of the intron and the 3’ss (acceptor site), which is in the on the 3’ end of a 

given intron. These are two of the most conserved sequences in the pre-mRNA, besides 

the branchpoint (BP, which is an intronic region, with an adenosine involved in the 

lariat formation) and the polypyrimidine (Py) tract (an intronic region rich in 

pyrimidine) [57, 58, 60]. Each of these features is in most cases recognized by different 

spliceosome components [57]. The spliceosome is made from five different small 

nuclear ribonucleoproteins (snRNPs: U1, U2, U4, U5, U6) and other splicing auxilary 

factors, such as U2AF65, U2AF35 and SF1 (branch point binding protein) [57-60]. The 

splicing reaction starts with identification of the 5’ss by U1 snRNP, of the BP by the 

branchpoint binding protein (BBP), of the 3’ss by U2AF35 and of the Py tract by U2AF65 

[57, 58, 60]. The binding of U1 and the U2AF factors to the respective splice sites leads 
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to the early formation of the spliceosome, the so called complex E [60]. Then, U2 

snRNP binds to the BP, forming complex A of the spliceosome. After this, complex B is 

formed with the recruitment of U4, U5 and U6 snRNP. These three snRNPs assemble 

into the active spliceosome and the two splice sites come together, with U1 and U4 

snRNPs being released, and leading to the formation of the complex C [59, 60]. Then, 

the first transesterification reaction occurs between the 2’-OH group of the adenosine 

that attacks the 5’ss, forming the intron lariat. The second transesterification reaction 

occurs when the 3’-OH group exposed of the exon upstream attacks the 3’ss and so the 

two exons are joined together and the intronic lariat is released and degraded [57-60]. 

 

 

Figure 1.3 - Spliceosome assembly and splicing of the pre-mRNA. 

The splicing reaction is the excision of introns and joining of exons, which is performed by the 

spliceosome. Adapted from [57]. 
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 The choice by the spliceosome between splice sites can give rise to different 

mRNAs and proteins [60].  The splice sites can either be strong or weak (depending on 

the consensus sequence conservation), and these are the regulatory sequences that 

make possible alternative splicing. The process of alternative splicing consists of 

different combinations of exons joined together through splicing and thus, obtaining 

different mRNAs and protein isoforms from the same gene, based on the choice of a 

given splice site [61]. If an exon has a strong splice site rather than a weak one, it will 

more likely be a constitutive exon. The presence of regulatory sequences helps regulate 

this process and determine the strength of a splice site. Some regulatory sequence can 

act as an intron or exon splicing silencer or enhancer (ISS, ISE, ESS, ESE) depending of 

the respective splicing regulatory proteins that bind to these motifs [57, 58]. These 

regulatory proteins can be from the Ser/Arg-rich and heterogenous nuclear 

ribonucleoproteins (hnRNPs) families, or be tissue specific and they can promote or not 

the use of a given splice site [57]. 

 Several of the RNA therapies in study nowadays were designed to interfere in 

these splicing regulatory steps. 

 

1.2.2. Different RNA therapies 

 

The ability to modulate splicing, with different RNA therapies in order to 

overturn the possible damage caused by a mutation that could interfere in splicing is 

becoming a reality, without the need to interfere at the genomic level [58]. Pathogenic 

mutations that affect splicing are usually located in intronic regions. They usually affect 

splicing consensus sequences such as 5’ss, 3’ss, BP, Py tract and can result in exon 

skipping or even intron retention. A splice site mutation can even make the 

spliceosome use a weaker or cryptic splice site (splice site created by a mutation). 

Mutations in either exons or introns can also originate splicing regulatory sequences 

such as enhancers or silencers or even cryptic splice sites. The mutations in these 

regulatory motifs can interfere in exon inclusion or skipping and so in alternative 

splicing. Exonic mutations associated to a disease can be classified as missense (a point 

mutation in which a single nucleotide changes into a codon that codes for a different 

amino acid), as nonsense (a single nucleotide changes introduces a stop codon) or as 
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synonymous/silent mutations (resulting in no change of the amino acid) but all can 

interfere in splicing [58]. The identification of the mutation is key and its impact on the 

transcript is essential to understand the molecular pathology, mainly, in the case of an 

autosomal dominant disorder such as HCM, in order to develop an RNA-based 

approach to target and rescue the mutant transcript, and so the resulting protein.   

 

To date, there are essentially three different RNA therapies described: modified 

snRNAs, antisense oligunucleotides (ASO) and RNA trans-splicing [43, 58, 62].  

The modified snRNAs based approach can be exemplified for example by U1 

snRNA that is part of the U1 snRNP and interacts with the 5’ss. If a mutation occurs in 

the 5’ss it could alter the binding of U1 snRNP and compromise splicesosome assembly. 

The idea is to create an altered U1 snRNA that could allow binding of the U1 snRNP to 

the altered 5’ss and resume normal splicing. A disadvantage of this method is the need 

to develop a vector to express the modified snRNA and arrange for its delivery [58, 63]. 

However, this approach was successfully performed on several disease models, such as 

cystic fibrosis, haemophilia B, Fanconi anemia, retinitis pigmentosa, among others [58].  

On the other hand, antisense oligonucleotides can work either as splicing 

modulators or inductors of RNA degradation with the help of enzymes existing in the 

cell [62]. In a broader sense, antisense oligonucleotides (ASOs) can be defined as 

oligonucleotides with 15-25 nucleotides, which hybridize with a specific target RNA 

region. The sequence of the ASO is complementary to its target by Watson-Crick base 

pairing [58, 62]. ASOs can be used with the objective of promoting degradation of a 

target RNA and so leading to lower levels of a given protein. There are two sets of 

enzymes that can be used for this purpose by the cell: RNaseH and Argonaute 2 (Ago2) 

by RNA interference. Basically, the ASO binds to its target sequence in the RNA, 

forming a RNA duplex, which is then recognize and cleaved. This strategy was 

successfully used to perform knockdown of the expression of several genes. An 

example of this is an ASO against the immediate-early gene (IE2) transcript with 

indication against Cytomegalovirus infection, or even an ASO against the 

Apolipoprotein B transcript, with an indication in cholesterol management [62]. 

Moreover, ASOs may be used as splicing modulators; in this situation, they may be 

designed to target one essential splicing sequence to block or favour splicing in order to 
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produce a ‘healthy’ mature mRNA molecule. So, ASOs can either block the consensus 

sequences (5’ss, 3’ss, BP or Py tract) or a splicing regulatory motif (enhancer or 

silencer) by binding to it [43, 58, 62]. These ASOs can be specific enough to bind to 

different isoforms of a pre-mRNA, or specifically to a mutated one. They do not 

interfere at the genomic level; in the last few years, advances in the ASO design have 

increased their specificity and stability while decreasing toxicity. The delivery is simpler 

than other techniques, as cells uptake them easily. These characteristics make them 

very appealing for RNA therapeutics, being that the ultimate goal is to block the 

production of a mutant protein or to re-establish normal splicing to produce a normal 

protein [58]. When, the ASO blocks a splice site and induce exon inclusion or exclusion, 

it may re-establish the frame-shift of a previous mutated transcript [58]. A good 

example of this was in dystrophin gene (DMD), responsible for Duchenne muscular 

dystrophy, where a mutation in the 3’ss was causing exon skipping and so a premature 

termination codon (PTC). An ASO was used to block this mutated 3’ss and promote the 

exon skipping in a way to restore the frame-shift [58, 64]. In another case, ASOs proved 

to be useful in blocking cryptic splice sites and promote the use of the ‘real’ splice sites. 

This was applied in several diseases models, like β-thalassemia in β-globin gene (HBB) 

[58, 65].  Furthermore, an ASO can also block a splicing regulatory motif and induce 

exon inclusion or exclusion and so re-establish the frame-shift. When a mutation 

creates a new splicing regulatory motif the use of an ASO that can block it may restore 

normal splicing. A mutation in the fibrinogen β-chain gene (FGB) that causes 

afribrinogenemia, creates a binding site for a splicing factor that caused a pseudo exon 

inclusion and the use of an ASO to block this new motif restored splicing [58, 66]. In the 

context of HCM, ASO-based approaches had already been performed, namely for an 

HCM mutation located in the 5’ss of exon 6 of the MYBPC3 gene. In this study, the 

ASOs were designed to block certain exon splicing enhancer existing in exon 5 and 6, in 

order to promote the use of an alternative splice site versus the mutated 5’ss in exon 6, 

which led to skipping of the two exons and a viable mRNA transcript [43]. 

 

The RNA trans-splicing approach will be discussed further in the next topic. 
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1.2.3. Trans-splicing as gene therapy strategy at the mRNA level 

 

Since the molecular pathology in HCM is generally attributed to a mutated 

transcript and in order to target and rescue altered transcripts and the resulting 

rescued proteins the use of an RNA based therapy such as splicesosome mediated RNA 

trans-splicing is a very good candidate, namely for not interfering at the genome level 

[43, 67]. 

Spliceosome-mediated RNA trans-splicing intend to use the cellular machinery 

of the spliceosome to promote trans-splicing between an endogenous pre-messenger 

RNA (pre-mRNA) and an exogenous therapeutic trans-splicing molecule (TSM) instead 

of cis-splicing within the pre-mRNA. The result is a wild-type repaired transcript. The 

TSM must include essential features such as annealing sequences (AS) to the target 

pre-mRNAs, consensus splicing regions (splice sites, branch point and pyrimidine tract), 

the coding region to be trans-spliced together with the target pre-mRNA and 

eventually, splicing enhancers to increase the success of trans-splicing [43, 58, 67]. The 

TSM is only active in cells expressing the pre-mRNA to be targeted and repaired. This 

approach allows to replace a mutated exon by a wild-type one in any part of the 

transcript [43]. There are three types of trans-splicing approaches, represented in 

Figure 1.4. The 5’ trans-splicing occurs with the 5’end of the transcript and the TSM 

and so it allows the replacement of any mutated exon in the 5’end (Figure 1.4A). In the 

3’ trans-splicing the only difference from the 5’ is that the replacement occurs in the 3’ 

end of the transcript (Figure 1.4B). The last one, the double trans-splicing, is the most 

challenging from the technical point of view due to the need of a double trans-splicing 

event; it allows the replacement of any mutated exon in the middle of the transcript 

[67].  When designing a trans-splicing strategy for a TSM, an important feature for an 

efficient trans-splicing is the choice of the annealing sequences. The position where it 

binds in the intron, if it blocks any splicing consensus sequence, its length and GC 

content will impact in its efficiency [48, 67]. The first application of trans-splicing was a 

3’ approach for the treatment of haemophilia A [68]. Several successful studies using 

the 3’ trans-splicing strategy showed it to be the most efficient one [48, 49, 67, 69, 70]. 

There was also a study that combined a 3’trans-splicing approach and ASOs against 
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intron 102 of the COL7A1 gene (mutations in this gene cause epidermolysis bullosa), 

which helped increase efficiency of trans-splicing [48].  

 

 

 

Figure 1.4 – Three different approaches of RNA trans-splicing 

In the three approaches, the binding domain of the TSM allows for the pre-mRNA and the TSM to be in 

close proximity and for trans-splicing occurrence. (A) In the 5’ trans-splicing approach, the 5’ end of the 

pre-mRNA would be replaced by the coding part of the TSM. (B) The 3’trans-splicing consists in the 

replacement of the 3’ end of the pre-mRNA by the corresponding present in the TSM. (C) In the double 

trans-splicing, there is a double trans-splicing reaction, where the TSM binds to both sides of the exon to 

be replaced.  

 

An RNA trans-splicing approach has three advantages over conventional gene 

therapy: 1) the normal gene sequence is maintained and the trans-splicing will only 

work in cells that express the mutated transcript; 2) the delivery is easier than a 

delivery of a full length cDNA (when using a viral vector due to packaging size 
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restriction using this type of vector); 3) the mutant transcript is restored, which is why 

this approach is efficient in an autosomal dominant disorder with the reestablishment 

of wild-type protein production [67]. 

Some of the difficult issues found in trans-splicing approaches described were 

the low efficiency of production of wild-type protein especially in in vivo models and 

also the translation of the TSM, which is undesirable [48, 49, 70, 71]. Nevertheless, a 

successfully trans-splicing assay was already described in vitro and in vivo in HCM for 

the MYBPC3 gene. The repair efficiency was around 30-60% in the cellular model, but 

in mouse model the results were less promising with only 7% of the mRNA being 

repaired and less than 4% of the protein being translated [43, 72]. These reports reveal 

that there is still room for improvement until trans-splicing can be considered as a 

viable option for autosomal dominant disease treatment. 

 

HCM-causing mutations in the TNNT2 gene are associated with the presence of 

a poorly functioning protein with a dominant negative effect. They are usually 

associated to myofibrillar disarray and changes in the Ca2+ regulation, leading to altered 

myocardial energetics and contractile capacity [26, 73, 74]. Here, an RNA based-

therapy is a very attractive approach to decrease the amount of these deleterious 

proteins.  

In ClinVar (an archive of variants reported in humans), there are 206 mutations 

identified in the TNNT2 gene, of which 44 are associated to HCM. Of these 44, 19 were 

found to be pathogenic, 10 of uncertain significance and 11 had conflicting information 

[75]. The ones identified as pathogenic are possible candidates for RNA-based therapy.   
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1.3. Next-Generation Sequencing (NGS) in HCM 

 

1.3.1. NGS nowadays 

 

For more than 30 years, the sequencing reference method was automatic 

sequencing based on the Sanger method, developed in the 70s. It was an exceptional 

technique that allowed sequencing of whole genes and eventually whole genomes [76, 

77]. The technique evolved over the years allowing, back in 2004, for the first human 

genome to be sequenced [77, 78]. The only issue was the time, cost and resources 

needed to sequence a single genome and so the need for a cheaper and quicker 

method arose [77]. In 2005, the first next-generation sequencing (NGS) technologies 

came to the market [76, 77]. Several of them were developed: 454, Illumina, SOLiD and 

Ion Torrent [77, 79, 80]. 

These new techniques consist in two major steps. The first one consists in the 

preparation of the library, where the DNA or RNA to be sequenced is fragmented to the 

desired size, followed by the ligation of adapters to each fragment. The adapters are 

specific of each system, and are used to attach the fragment to a surface, allowing 

sequencing to take place [76, 77]. The fragments are then amplified on the surface they 

are attached to, and this step is essential to get enough signal to be detected with an 

enormous amount of sequencing reactions taking place at the same time (high-

throughput technique) (Figure 1.6) [76]. In opposition to Sanger sequencing 

techniques, in NGS, the sequencing and detection are performed at the same time. 

Also, the size of the reads is much longer in Sanger sequencing compared to NGS; the 

read length in NGS is influenced by the signal-to-noise ratio, which varies between NGS 

platforms and the sequencing reactions. The noise varies from one NGS platform to the 

other; the biggest issue with this is the read size limitation [76]. Nevertheless, the 

Sanger sequencing method remains the go-to technique to check for a particular 

known mutation [81]. The short reads from NGS are aligned to reference genome 

thanks to newly developed algorithms and the read length and quality of the signal-to-

noise ratio has been improved over the last few years [76, 77]. An improvement to the 

quality of the data was the use of paired sequencing, where the sense and antisense 

are sequenced [76]. After obtaining the reads, these are aligned to a reference genome 
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and then all variants detected are annotated for further processing using various 

bioinformatics tools [81, 82].   

  

 

 
 

Figure 1.5 – The two major steps of NGS 

The NGS techniques involve two steps: library preparation and the product to be sequenced attached to 

the sequencing platform by the adaptor. After sequencing the reads are aligned to the reference 

genome. Adapted from [83]. 

 

The advances in this field make the cost for genome sequencing very affordable 

for various clinical and research institutions. Also, whole genome sequencing is more 

and more present in basic and translational studies and in clinical settings. NGS is also 

being used for screening in genetic disorders to help better understand of the 

pathogenesis and then contributing to a better management of a disease [77]. For 

some applications, there is no need to sequence the whole genome but only the coding 

region (exome sequencing) or even a panel of genes associated to the disease in study. 

An advantage for a more selected panel is the higher level of coverage of the reads and 

no variants going undetected [77, 84].  
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1.3.2. NGS and the HCM patient screening 

 

The NGS has been evolving over the years making possible the identification of 

novel pathogenic mutations and contribute to the understanding of pathogenesis of 

genetic disorders [5, 81]. When it comes to inherited cardiomyopathies there is a wide 

panel of 30 genes that could be studied easily and fast by NGS, and which are already 

available in several laboratories [6, 81]. Nevertheless, in 50% of HCM cases a mutation 

has yet to be identified [5]. In 50-60% of patients who were screened and had an HCM 

associated mutations identified, one of the following sarcomeric genes were 

implicated: ACTC1, MYBPC3, MYH7, MYL2, MYL3, TNNI3, TNNT2, TPM1 [1, 82]. The 

main reason for genetic testing of patients and their relatives that might be at risk is to 

help in their diagnosis and disease management [5, 6]. A downfall from the amount of 

data obtained from NGS is that the number of variants with unknown significance 

increases, which will influence the genetic diagnosis of HCM [1, 5, 6, 82]. 

 

As mentioned previously, NGS has rapidly evolved over the years and offered a 

new possibility for genetic screening, clinical management for genetic disorders and 

contribute in the understanding of these disorders [85, 86]. It offers the possibility to 

assess a greater number of genes in a shorter time frame and at a lower cost [85]. 

There are different types of clinical screening possible: a single gene, a gene panel, 

exome sequencing and whole genome sequencing. Each one is more suited for a given 

disease [85]. 

When the association between a disease and a gene is well known, a single 

gene screening is more reliable. There is less probability of finding variables of 

unknown significance, which can be a confounding factor and it is more time and cost 

effective [85]. This type of screening is not applicable in a complex disease like HCM. 

When a disorder has such a heterogeneous genotype and phenotype as HCM, 

the best option is the use of a gene panel to determine the genetic cause of a patient’s 

disorder, the so-called ‘molecular diagnosis’ in which HCM-associated genes are 

completely sequenced, allowing the discovery of new or already reported coding and 

non-coding variants. The screening with a gene panel for a particular disease might 
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vary among laboratories, due to the regional, institutional guidelines and scientific 

evidence of a gene being associated to a disease. Even though some laboratories might 

choose to screen all genes associated, some choose not to and only screen the ones 

with more clinical significance. In order to include a gene in a gene panel, it should be 

described extensively and have reported association to the disorder or to genes of 

diseases with similar phenotypes [85]. The gene panel will also be useful for the 

detection of variants in introns that might interfere in splicing or even transcription 

factor binding sites and impact in a disease’s phenotype. 

In order to find new genes that might be associated to a disease, a promising 

approach is exome sequencing [85, 87]. Basically, it consists in just sequencing the 

exons. It allows the screening for new or already characterised coding variants so that 

they can be associated to a given clinical setting [88]. Besides research purposes, the 

analysis of the sequencing data from exome sequencing might only focus on a gene 

pool associated to the disease to allow the molecular diagnosis. Nevertheless, to obtain 

a genetic profile besides using NGS, other techniques must be used such as Sanger 

sequencing to confirm NGS results. Another issue that arises with NGS is the increase in 

the number of variants with unknown significance found. These variants will be 

considered as potential disease causing mutation candidates if they are expected to 

affect transcription or RNA processing of a gene reported to be associated with the 

disorder but they are not represented in any database as disease associated mutations.  

Since HCM is such a heterogeneous disease either phenotypically or genetically 

and the variants of unknown significance are abundant, this makes clinical 

interpretation and pathogenesis more complex [81, 82]. In order to understand better 

the impact of newly discovered variants, they should undergo in vitro and in vivo 

testing, using cell and animal models [82].  
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1.4. HCM and genome editing 

 

 Hypertrophic Cardiomyopathy (HCM) is an autosomal dominant disorder with 

low penetrance and variable clinical outcomes, a conventional gene therapy is not 

applicable [6, 8, 10, 45]. One of the criteria to develop an efficient gene therapy is to 

better understand phenotype/genotype relationships present in the disease and, for 

this, cellular and animal models are needed [52]. HCM is a phenotypically 

heterogeneous and genetically complex disorder, where tractable and accurate disease 

models are essential for better understanding of its genotype/phenotype relationships. 

Cellular models are easier to manipulate and to work with when compared with animal 

ones, and may provide valuable information regarding disease pathogenesis and the 

development of new therapeutics. However, there is still a grey area when it comes to 

the understanding of the HCM phenotype at the cellular level, due to the large HCM 

associated variants and also to the complexity of the affected organ, the heart, where 

functional impairment may not be reflected in a simplistic cellular model. In order to 

create reliable HCM cell models, not only a careful characterization of HCM 

cardiomyocytes is required, but also a simple, time and cost-efficient genome-editing 

tool is needed. A tool meeting these criteria was developed and used during the past 5 

years: the clustered regularly interspaced short palindromic repeats, the CRISPR/Cas9 

technology. 

 

1.4.1. The CRISPR/Cas9 genome editing system 

 

Bacteria have developed the equivalent of an adaptive immune system: the 

CRISPR-Cas9 system [89]. It was first reported in 1987 and found to be present in 50% 

of all bacteria and most archae [89-91].  

CRISPR-Cas systems were shown to be an efficient tool against foreign DNAs in 

prokaryotes, and multiple variants of the system were found that carried different 

coding sequences for the Cas proteins and different repeat sequences. The different 

CRISPR/Cas9 systems were further separated in three groups (type I-III) with various 

sub-groups (A-E) [92]. It took several years to understand the way the system works 

and to start using it to edit eukaryote genomes [89, 92]. The system preferably used for 

this purpose belongs to the organism Streptococcus pyogenes, which is a type II 
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CRISPR-Cas system [93-96]. The way this CRISPR-Cas system works in bacteria is 

represented in Figure 1.6. First, the immunization step involves a first contact with a 

foreign DNA (either a phage or a plasmid DNA). Fragments of the foreign DNA, known 

as ‘spacer’, are processed by the Cas complex and then are incorporated in the CRISPR 

locus between identical sequences called ‘repeats’, of around 36 nucleotides. The 

information from different foreign agents is stored for further use, in case the bacteria 

comes in contact with them again [89, 94-97]. If the latest one occurs, a second phase 

of immunity takes place with the CRISPR array being transcribed and giving rise to pre-

crRNA transcripts that are cleaved into short crRNAs containing the individual spacer 

sequences and the repeats. In the same CRISPR array, there is also the presence of a 

sequence that when transcribed codes for another non-coding RNA, the tracrRNA that 

hybridizes to the repeat regions of the pre-crRNA and mediates the processing of pre-

crRNA into mature crRNA/tracrRNA complexes. The crRNA/tracrRNA complexes then 

directs the Cas9 nuclease (also encode by the CRISPR array) to the target region in the 

genome by binding by Wastson-Crick base-pairing between the spacer on the crRNA 

and the protospacer on the target DNA next to the protospacer adjacent motif (PAM). 

The PAM, a 5’-NGG sequence, where N is any nucleotide, is an additional requirement 

for target recognition by the crRNA/tracrRNA complexes. This PAM sequence is on the 

3’ end of the protospacer. Finally, Cas9 mediates cleavage of target DNA by creating a 

double-stranded break within the target region in the genome [89, 94-96]. 
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Figure 1.6 – Type II CRISPR-Cas9 system in Streptococcus pyogenes bacteria 

In the first phase of immunization, bacteria take advantage of the CRISPR locus to store a fragment of 

DNA from an invading phage or plasmid DNA that is called ‘spacer’ and will be located between repeat 

regions in this locus. Upon a secondary contact with the same foreign DNA, the bacteria will express the 

transcript from the CRISPR locus that includes the spacer and repeats (pre-crRNA). After this, tracrRNA 

will bind to the repeat regions of the pre-crRNAs and a nuclease Cas9 binds to the each hybrid of crRNA 

and a tracrRNA. Then, RNaseIII proceeds to the final processing by separating each complex (Cas9-

crRNA-tracrRNA). Each complex will bind to the foreign DNA of which the crRNAs is complementary and 

in the presence of a PAM sequence cleaves it by a DSB (adapted from [89]). 

 

The previously described type II CRISPR-Cas9 system was further adapted to 

create a simple eukaryote genome editing tool, in which by creating a DSB promotes 
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either non-homologous end joining (NHEJ) or homologous recombination (HR) through 

a given donor DNA. Indeed, when a cell suffers a DSB in its genome, it undergoes one 

of these two pathways. NHEJ is an error filled process, which consists of joining the two 

ends of the strands where insertions and deletions (indels) can occur. HR consists in the 

repair using a homologous sequence; usually using the sister chromatid of the gene but 

in genome editing assay a donor DNA can be used as template [94, 96]. The desired 

DNA sequence to be inserted in the DSB locus must be flanked by homology arms (HA) 

with defined size, in order to take advantage of the HR process. For example, to 

perform a custom homologous recombination the HA can be of the size of 500bp to 

1000bp for an insertion of less than 8kb, if the insertion should happen to be bigger 

than 8kb the HA must be bigger than 1kb [98]. 

 Furthermore, to simplify the use of the CRISPR-Cas9 system a single guide RNA 

(sgRNA) was created, which is a chimeric RNA that includes the spacer region and the 

tracrRNA region essential for Cas9 binding [94, 96]. The binding of Cas9 and sgRNA to a 

target region is represented in Figure 1.7, as well the site where the Cas9 performs the 

DSB: three nucleotides upstream the 3’ end of the PAM sequence [96]. 

 

 

Figure 1.7 – Representation of the CRISPR-Cas9 binding using the chimeric sgRNA 

This adaptation of the CRISPR-Cas9 system from S. pyogenes uses the Cas9 (in yellow), and instead of the 

crRNA and tracrRNA complex a single guide RNA (sgRNA) was developed which has the spacer sequence 

(in blue) and part of the tracrRNA essential for binding of Cas9 (in red). The red arrows represent the site 

where the DSB is performed. (Adapted from [96]) 
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2. Objectives 

 

For my PhD training, I proposed to explore applications of recent molecular 

genetics tools to improve the diagnosis of hypertrophic cardiomyopathy patients and 

develop potential new treatment strategies for this disease. My work focused on three 

main hypotheses: 

 

Hypothesis I: Trans-splicing may efficiently correct the expression of mutant 

sarcomeric genes in cardiac cells. 

To address this view, my first objective was to investigate the feasibility of 

inducing trans-splicing in murine cardiomyocytes to replace a specific exon in TNNT2 

pre-mRNA that is frequently mutated in hypertrophic cardiomyopathy patients. 

 

Hypothesis II: Mutations located deep within the introns, which are not 

detected by conventional sequencing analysis restricted to exons and exon-intron 

boundaries, may contribute to the pathogenesis of hypertrophic cardiomyopathy. 

My second objective was to develop a bioinformatics pipeline for scrutinizing 

variation along the complete intronic sequence of disease-associated genes and 

prioritizing candidates for mechanistic and functional analysis. 

 

Hypothesis III: Cardiomyocytes derived from gene-edited embryonic stem cells 

recapitulate hypertrophic cardiomyopathy characteristics. 

To pursue this idea, my last objective was to to use the CRISPR-Cas9 genome-

editing technology to produce isogenic embryonic stem cells harboring either a wild-

type or mutated TNNT2 locus.   
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correction of HCM-causing TNNT2 mutations   
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3. RESULTS I:  Spliceosome-mediated RNA trans-splicing approach for 

correction of HCM-causing TNNT2 mutations 

 

3.1. Summary 

 

The objective of this work was to investigate the feasibility of inducing trans-

splicing in murine cardiomyocytes to replace a specific exon in TNNT2 pre-mRNA that is 

frequently mutated in hypertrophic cardiomyopathy patients. 

Two different trans-splicing approaches were chosen as an RNA-based therapy. 

Briefly, mouse atrial cardiomyocytes (HL-1 cells) were transfected with trans-splicing 

constructs designed to anneal the two introns flanking the murine Tnnt2 exon 8 or only 

the intron upstream of exon 8, which in humans contains a cluster of HCM-associated 

mutations. These two strategies, double trans-splicing and 3’ trans-splicing, 

respectively, were used with trans-splicing constructs being driven by the endogenous 

Tnnt2 promoter or the cytomegalovirus (CMV) promoter. The efficiency of these trans-

splicing strategies was evaluated using RT-PCR based techniques, where the 

replacement of murine exon 8 by the human equivalent exon 9 or the replacement of 

the murine exons 8-15 by the equivalent human cDNA was assessed. Detection of a 

residual amount of trans-splicing product was only possible by PCR with a radioactive 

γ32P-labelled primer, which binds specifically to double trans-splicing molecules. All 

together, these results argue that trans-splicing does not ensure efficient correction of 

expression of a mutated TNNT2 gene in cardiac cells. This could be due to inefficiency 

of trans-splicing reactions in general, or a particular resistance to trans-splicing of the 

targeted region in the TNNT2 pre-mRNA.  

 

The experimental design in this chapter was developed by Prof. Doutora Maria 

do Carmo Fonseca, Prof. Doutora Teresa Carvalho, Prof. Doutora Sandra Martins and 

myself. Furthermore, the experimental work presented was performed by myself, 

except for the immunofluorescences presented on page 50. These were performed 

during a GAPIC project with the collaboration of Prof. Doutora Teresa Carvalho and Ana 

Carolina Freitas, entitled ‘A novel RNA-based therapy to Hypertrophic 

Cardiomyopathy’.  



	

	 37	

3.2. Material and Methods 

 

Cloning of the Tnnt2 promoters in the pcDNA3 plasmid 

The entire Tnnt2 promoter was amplified by PCR with the following primers 

ForTNNT2entpro: 5’-TACAGATCTTAGTGAGCAAGCCAGACACAGC-3’ and 

RevTNNT2entpro: 5’-CCAAGCTTCAACTCACTTCCCGTCAAGAAT-3’ from mouse genomic 

DNA [99]. Each primer contains, respectively, the BglII and HindIII restriction sites, for 

directional cloning into the pcDNA3 plasmid, giving rise to pcDNA3-EntTNNT2 

construct.  The minimal Tnnt2 promoter was amplified from mouse genomic DNA with 

the forward primer (ForTNNT2mpro: 5’-GCTAGATCTCATCTGCTTTATCGGGATTCTCA-3’) 

and reverse primer (RevTNNT2mpro: 5’-CCAAGCTTCACACAGGTCTTGAGGTATCTGTTC-

3’) [100, 101]. These primers also bear the BglII and HindIII restrictions sites, 

respectively, for directional cloning into the pcDNA3 plasmid, to originate pcDNA3-S 

construct. The promoter fragments were amplified using the NZYLong DNA polymerase 

(Nzytech, Lisboa, Portugal) and purified from agarose gel prior ligation to pcDNA3 by 

High Pure PCR Product Purification Kit (Roche, Mannheim, Germany) (Figure 3.1). The 

DNA of plasmid constructs (pcDNA3-S and pcDNA3-EntTNNT2) was isolated by GeneJET 

Plasmid Miniprep Kit (Life Technologies, Paisley, United Kingdom) and sequenced by 

Sanger sequencing at Stabvida (Stabvida, Caparica, Portugal). 

 

	
	
Figure 3.1 - Cloning strategy of the TNNT2 promoter.  

The minimal TNNT2 promoter was amplified by PCR with the forward primer For TNNT2 pro and reverse 

primer Rev TNNT2 pro from mouse genomic DNA. Each primer contains respectively the BglII and HindIII 

restrictions sites, which were used to clone the mentioned promoter in the pcDNA3 plasmid. 

	
Cloning of GFP reporter downstream of the TNNT2 promoters 
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The green fluorescence protein (GFP) sequence was excised with KpnI and NotI 

from the pEGFP-N1 plasmid (Clontech, California, USA) and cloned between KpnI and 

NotI restriction sites downstream of the promoters in pcDNA3-S and pcDNA3-

EntTNNT2 constructs. 

 

Construction of the double trans-splicing plasmids 

 

Cloning of an array containing three muscle specific enhancer (MSE2 3x)  

A MSE2 (3x) array was assembled in the pTRE-tight plasmid. Briefly, an oligo was 

designed with one copy of the MSE2 sequence flanked by PvuII and HindIII restriction 

sites: 5’-CTGTTACTAGTACTGCACCTTTCTTTGTTCCATCTCTCCACCTCTGCTGTGCCTAGGCC 

A-3’ [102], and inserted between these restriction sites of the pTRE vector. In order to 

insert the second MSE2 copy, pTRE-MSE2(1x) was digested with PvuII and AvrII to 

obtain the MSE2(1x) fragment, which was then cloned in PvuII and SpeI (an AvrII 

compatible site) sites of the pTRE-MSE2(1x), generating the pTRE-MSE2(2x) construct. 

The same approach was performed to insert the third copy of MSE2 in the pTRE-

MSE2(2x) to generate pTRE-MSE2(3x) construct (Figure 3.2).  
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Figure 3.2 - Cloning strategy of the MSE2 array in intron 8 and 9 of the trans-splicing construct. 

The MSE2(3x) array was assembled in the pTRE-tight plasmid. An oligo with one copy of the MSE2 

sequence was designed flanked by restriction sites. One MSE2 copy was inserted in PvuII and HindIII sites 

of the pTRE vector. In order to insert the second MSE2 copy, pTRE-MSE2(1x) was digested with PvuII and 

AvrII to obtain the MSE2(1x) fragment, which was then cloned in PvuII and SpeI sites of the pTRE-

MSE2(1x), generating the pTRE-MSE2(2x) construct. The same approach was performed to insert the 

third copy of MSE2 in the pTRE-MSE2(2x) and generate pTRE-MSE2(3x) construct.  

 

Cloning and mutagenesis of the human TNNT2 Intron8/Exon9/Intron9 TNNT2 fragment 

The Intron8/Exon9/Intron9 fragment of the human TNNT2 gene was amplified 

by PCR from human genomic DNA (ForhuInt8: 5’-GAATTCCTGGGTTCAGGCCACAGTTAC-

3’, RevhuInt8: 5’-AAGCTTCTGTGCCATATGCTTGGATAGAT-3’) and then inserted between 

the EcoRI and HindIII restriction sites of the pTRE vector. To insert the MSE2(3x) array 
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in the pTRE Int8/Ex9/Int8 hTNNT2 construct , two sequential rounds of mutagenesis 

were performed on the human TNNT2 intron 8 and 9 sequence in order to generate 

PvuII and AvrII restriction sites in intron 8 and NaeI site in intron 9 (Figure 3.3). pTRE-

MSE2(3x) was then digested with PvuII and AvrII and the MSE2 (3x) array was cloned in 

the intron 8 of the Int8/Ex9/Int9 hTNNT2 construct. In Intron 9, the same MSE2(3x) 

array was cloned, in blunt, between the NaeI generated ends (Figure 3.4). In the end, a 

Int8-MSE2(3x)/Ex9/Int-9-MSE2(3x) fragment was obtained. 

	
	

Figure 3.3 - Cloning of the Int8/Ex9/Int9 hTNNT2 in pTRE.  

To insert the MSE2(3x) array in the pTRE Int8/Ex9/Int9 hTNNT2 construct , in the human TNNT2 the 

enzymes PvuII and AvrII were used in intron 8 and NaeI enzyme in intron 9.  
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Figure 3.4 - Cloning of the MSE2 (3x) array.  

The pTRE-MSE2(3x) vector was then digested with PvuII and AvrII and the MSE2 (3x) array was cloned in 

the intron 8 of the Int8/Ex9/Int9 hTNNT2 construct. In Intron 8, the same MSE2(3x) array was cloned, in 

blunt, between the NaeI generated ends. 

 

Cloning of two annealing sequences into pcDNA3 constructs 

 

 The pcDNA3-S construct containing the minimal TNNT2 promoter and the 

original pcDNA3 plasmid that bears a CMV promoter were then used to insert the two 

annealing sequences AS-Int7: 5’-CACTGGCTTGGCTTAGCGCCTGAACCTGAACCATCC 

TGCCAACAACGGCCTGCTCGCAGCCCACAAGATCAGGAACTCTGTCACTTGTATGAAAGCTCG

GTCACCACCCCAGCCTGGCTCGCTCCACCG-3’ and AS-Int8: 5’-ACAAGCTGATCCCA 

TGCTCCCTACGTTAGTGAGGCAGCTCTGACTGATGGGGTCAGGAACAGGGAGAGCACAGACA

TTTGACTCGTCTGTGGTCTATAGCCAGTGGTGCCTAGTTAGGCTCCGCGAGAGCCAGAACTTAT

CAGGGTCAGTTCCTGTTGGCAAGGAGCACCCACA-3’ immediately downstream of each 

promoter between KpnI and BamHI sites for the AS-Int7, and NotI and ApaI for AS-Int8. 

The obtained plasmids were named: pcDNA3-AS-Int7/AS-Int8 and pcDNA3-S+AS-

Int7/AS-Int8 (Figure 3.5).  

 

	
	

Figure 3.5 - Cloning of the annealing sequences downstream of the promoters.  

The pcDNA3 plasmids with the minimal TNNT2 promoter (pcDNA3-S) and the CMV promoter (pcDNA3) 

were used to insert both annealing sequences AS-Int7 and AS-Int8 immeadiately downstream of these 

promoters between KpnI and BamHI sites for the AS-Int7, and NotI and ApaI for AS-Int8 and thus 

obtaining: pcDNA3-S+AS-Int7/AS-Int8 and pcDNA3-AS- Int1/AS-Int8.  
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Cloning of the human TNNT2 Intron8-MSE2/Exon9/Intron9-MSE2 fragment between 

the two annealing sequences of pcDNA3 constructs 

 After the insertion of both annealing sequences, the Int8-MSE2(3x)/Ex9/Int-9-

MSE2(3x) fragment was inserted between both of them into pcDNA3-AS-Int7/AS-Int8 

and pcDNA3-S+AS-Int7/AS-Int8. The Int8-MSE2(3x)/Ex9/Int-9-MSE2(3x) fragment was 

cut from the pTRE vector by EcoRI and EcoRV double digest and was cloned into the 

pcDNA3-S+AS-Int7/AS-Int8 plasmids using the same sites. The final double trans-

splicing constructs were named pcDNA3-ASInt7-Ex9-ASInt8 and pcDNA3-S-ASInt7-Ex9-

ASInt8 (Figure 3.6). 

 

	
Figure 3.6 - Cloning of the MSE2 (3x) array in the introns flanking the human Exon 9.  

The Int8-MSE2(3x)/Ex9/Int-9-MSE2(3x) fragment was obtained from the pTRE vector by EcoRI and EcoRV 

double digestion and was cloned into the pcDNA3-S+AS-Int7/AS-Int8 plasmids using the same sites. 

 

Construction of the 3’ trans-splicing plasmids 

The fragment AS-Int7-Int8-MSE2(3x)-Ex9 from the pcDNA3-ASInt7-Ex9-ASInt8 

trans-splicing plasmid was amplified by PCR using ForAS7KpnI: 5’- 

GCGGGTACCACTGGCTTGGCTTAGCG-3’ and RevEx9EcoRV: 5’-GCGGATATCAGCGC 

CTGCAACTCATTC-3’ and cloned in pcDNA3 and pcDNA3-S between the KpnI and EcoRV 

restriction sites, obtaining the first fragment for the 3’ trans-splicing construct pcDNA3-

AS7-Int8-Ex9 and pcDNA3-S-AS7-Int8-Ex9. The human TNNT2 cDNA from exon 9 to 16 
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was amplified from human cardiac cDNA using the primers ForcDNAhuEx9: 5’- 

CGAGGCTCACTTTGAGAACAGGAAG-3’/ RevcDNAEx16NotI: 5’-TAAGCGGCCGCAT 

TACTGGTGTGGAGTGG-3’ and cloned between the EcoRV and NotI sites of pcDNA3-

AS7-Int8-Ex9 and pcDNA3-S- AS7-Int8-Ex9 to generate the final construct pcDNA3- AS7-

Int8-Ex9-16 and pcDNA3-S- AS7-Int8-Ex9-16. These are the final 3’trans-splicing 

constructs (Figure 3.7).  

 

	
	
	
Figure 3.7 - Cloning of the 3’ trans-splicing construct.  

The fragment AS-Int 7-Int8-MSE2(3x)-Ex9 from the pcDNA3-AS-MSE2(3x)-trans-splicing plasmid was 

amplified by PCR using For AS7 KpnI and Rev Ex9 EcoRV. It was cloned in pcDNA3 and pcDNA3-S using 

the KpnI and EcoRV restriction sites, obtaining the first fragment for the 3’ trans-splicing construct. The 

human TNNT2 cDNA from exon 9 to 16 was amplified from human cardiac cDNA using the primers For 

cDNA CGA huEx9 / Rev cDNA Ex16 NotI. These were cloned in the EcoRV and NotI sites. 

 

 

HL-1 cell culture 

HL-1 cells were a kind gift from Dr. William Claycomb. HL-1 cells are a mouse 

atrial cardiomyocyte cell line [103]. They were maintained in Gelatin/Fibronectin 

coated flasks in Claycomb Medium (Sigma-Aldrich, St.Louis, USA) supplemented with 

10% Fetal Bovine Serum (FBS) (Sigma-Aldrich), 100µg/ml Penicillin/ Streptomycin 

(Sigma-Aldrich), 0,1mM Norepinephrine (Sigma-Aldrich) and 2mM L-Glutamine (Sigma-

Aldrich). The medium was changed every 24h. Cells were split at 100% confluency, 

when they exhibit a spontaneous contraction phenotype [103]. Cells were dissociated 
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using 0,05% Trypsin-EDTA (Sigma-Aldrich) inactivated by a Soybean Trypsin Inhibitor 

(Sigma-Aldrich) and centrifuged 5 min at 500g before plating.  

 

Plasmid transfection of HL-1 cells 

For transient transfections, HL-1 cells were seeded in 35mm dishes and 

transfected with 2,5μg of plasmid DNA using Lipofectamine 2000 (Life Technologies). 

For stable transfections, HL-1 cells from a confluent T75 flask were electroporated 

using Gene Pulser Xcell™ Electroporation Systems (Bio-Rad, California, USA) under the 

following conditions of 250V, 960µF and 100Ω; followed by 2µg/ml neomycin selection 

started 48h after electroporation. 

 

RNA isolation and cDNA synthesis 

RNA was collected 48h after transient transfections and from the stable 

transfection after 100% confluency was reached in a T75 flask. RNA was isolated using 

Purezol reagent (Bio-Rad) and cDNA synthesis was prepared according to protocol of 

the Transcriptor High Fidelity cDNA Synthesis Kit (Roche) using random primers or a 

specific reverse primer for exon 13 of the mouse TNNT2. 

 

RT-PCR and PCR 

The expression of the GFP transcript under the Tnnt2 promoters was assessed 

using the following primers: ForGFP: 5’-CACATGAAGCAGCACGACTT-3’ and RevGFP: 5’-

AGTTCACCTTGATGCCGTTC-3’.  

In order to check transfection efficiency of the trans-splicing plasmids, PCR was 

performed with primers against the trans-splicing construct (ForAS7: 5’-

CACTGGCTTGGCTTAGCGCCTGAAC-3’ and RevInt8: 5’- AAGGGGTAACTGTGGCCTG 

AACCCA-3’). The same pair of primers was used in RT-PCR reaction to detect trans-

splicing transcripts. A pair of primers was also used to detect the endogenous Tnnt2 

transcript levels as loading control (ForEx13: 5’-CGGAAGAGTGGGAAGAGACA-3’ and 

RevEx14/15: 5’-CGCAGAACGTTGATTTCGTA-3’). All PCRs were performed using the 

NzyLong DNA Polymerase (Nzytech). 

Taking advantage of a unique restriction site present in the human exon 9, 

trans-splicing occurrence was analysed by RT-PCR amplification of mTnnt2 Ex7-Ex9 
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fragment (ForEx7: 5’-AGGCTCTTCATGCCCAACTT-3’ and RevEx9: 5’-

GGTTCTGCCTTTCCTTCTC-3’) followed by SacI digestion. Alternatively, a degenerate and 

specific reverse primer against the human exon9 (RevhuEx9: 5’-CGAGCTCCTCC-3’) was 

used to generate a PCR product in case of occurrence of trans-splicing events.  

 

Fluorescence in situ hybridization (FISH) 

Four FISH probes were designed against the endogenous mTnnt2 transcripts. 

For intron 7, one probe of 128bp was generated by PCR amplification using the 

following pair of primers ForI7: 5´-GGTGGAGCGAGCCAGGCTGG-3’/ RevI7T7: 5’- 

TAATACGACTCACTATAACTGGCTTGGCTTAGCGCCT-3’. For intron 8, two probes of 174bp 

and 165bp were made using the following pair of primers respectively ForI8-1: 5’-

TGTGGGTGCTCCTTGCCAAC-3’/RevI8-1T7: 5’-TAATACGACTCACTATAACAAGCTGA 

TCCCATGCTCC-3’ and ForI8-2: 5’-AACCACCCATTTTTCTCAAC-3’/ RevI8-2T7: 5’-

TAATACGACTCACTATACTAGAGGCTGTCTCAACTTT-3’. As a control, a probe for exon 8 

was also generated, ForEx8: 5’-GACATCCACAGGAAGCGCGT-3’/ RevEx8T7: 5’-

TAATACGACTCACTATAACAAGCTGATCCCATGCTCC-3’. Probes were labelled by in vitro 

transcription with digoxigenin-UTP (Sigma-Aldrich) or directly labelled with Alexa488-

UTP (Thermo Scientific, Massachusetts, USA) using T7 RNA polymerase (Promega, 

Madison, USA). Probes directly labelled with digoxigenin-UTP were detected using an 

antibody anti-Dig D488 (Vector Laboratories, California USA). 

 

Radioactive PCR using γ
32

P-ATP labelled oligonucleotide 

The primer RevhuEx9 was labelled using γ32P –ATP nucleotide with activity 6000 

Ci/mmol (PerkinElmer, Massachusetts, USA). The labelling was performed using 10U of 

T4 Polynucleotide Kinase (10 U/µL) (Thermo Scientific, Massachusetts, USA) for 30 

minutes at 37ºC and another 10U added for another 30 minutes at 37ºC. 500ng of 

φX174 DNA BsuRI/HaeIII (Thermo Scientific) were also labelled as described above. The 

reactions were purified by Sephadex G-25 column (GE Healthcare Life Sciences, UK) in 

Tris-EDTA (TE) buffer. PCR reactions were then performed using mTnnt2 ForEx7 and the 

γ 32P -labelled RevhuEx9 primer under the following conditions: 5min at 95ºC, 30 cycles 

of 30sec at 95, 1min at 57ºC, 1,5min at 68ºC and a final step of 68ºC for 10 min. All 

reactions were run on 15% acrylamide gel with 6M urea for 45min at 250V. The gels 
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were then fixed for 5min in a solution of glacial acetic acid/methanol/H2O (10:20:70 

V/V/V), dried for 2h at 50ºC, and exposed to the films (Agfa, Belgium) either at room 

temperature or at -80ºC for varying amounts of time. 
 

3.3. Results 

 

3.3.1. Trans-splicing strategy 

 

In this study, we established two different trans-splicing strategies, both 

targeting the murine Tnnt2 gene, using as a model mouse atrial cardiomyocyte cell line 

HL-1 [103]. The first strategy consists in a double trans-splicing (DTS) in which the 

trans-splicing molecule containing the human TNNT2 exon 9 binds to both flanking 

introns of the homologous murine exon, and replaces it by trans-splicing (Figure 3.8A). 

The second strategy is a 3’ trans-splicing approach, where the trans-splicing molecule 

contains the human TNNT2 cDNA from exon 9 to 16 binds to murine Tnnt2 intron 7 

leading to the replacement of all downstream murine TNNT2 exons (Figure 3.8B).  

 

	
	
Figure 3.8 - Trans-splicing strategy.  
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(A) For the double trans-splicing (DTS) approach, the human trans-splicing molecule binds to both 

flanking introns of murine Tnnt2 exon 8 and, the latter one, is eventually replaced by its human 

equivalent. (B) In the 3’ trans-splicing approach, the trans-splicing molecule binds to murine Tnnt2 intron 

7 and, upon trans-splicing, all murine exons downstream of exon 8 are replaced by the human TNNT2 

cDNA (Ex 9-16). 

 

3.3.2. Selection of TNNT2 promoters for cardiac expression at physiological 

levels 

	
A minimal promoter of the cardiac troponin T gene (Tnnt2) has been shown to 

confer cardiac specificity in chicken and rat cardiomyocytes; indeed a fragment of c. 

around 300 nucleotides of the rat promoter was identified as the minimal sequence 

that allows cardiac-specific expression [100, 101]. The homologous 

(orthologous/similar) sequence was identified in the mouse genome. To test the 

expression of the minimal promoter in HL-1 cells, the entire and minimal Tnnt2 

promoters (Figure 3.9A) were cloned into pcDNA3 vector replacing the CMV promoter 

to drive the expression of a GFP reporter. The two plasmids were transiently 

transfected in HL-1 cells and RNA samples collected at 24h, 48h and 96h. GFP 

expression from both promoters had comparable levels and showed similar increase 

through time (Figure 3.9B). Since both promoters exhibited similar behaviour, the 

minimal promoter was chosen for subsequent experiments. 

 



	

	 48	

	
	
Figure 3.9 - Tnnt2 promoters expression in HL-1 cells.  

(A) The minimal Tnnt2 promoter is essential for cardiac specific transcription; its sequence is in the 

center of the entire Tnnt2 promoter, which include essential promoter features such as the TATA box. 

(B) Two different plasmids containing a GFP reporter and that are driven by the two versions of the 

Tnnt2 promoters were transfected in HL-1 cells and samples collected at different time points. The 

amplification of GFP transcripts was done using specific primers,showing an increased expression 

through time and efficient expression of the GFP transcript with both promoters. The U6 mRNA was used 

as a loading control. 

 

 Based on these results, both the double and the 3’ trans-splicing constructs 

were cloned under the control of the minimal Tnnt2 promoter or the CMV promoter. 

The CMV promoter-bearing constructs were used as a control, to ensure high 

expression levels of the constructs. 

	
3.3.3. Trans-splicing molecule design: enhancers, annealing sequences and 

final assembly 

 

The human sequence containing intron 8, exon 9 and intron 9 of the human 

TNNT2 was chosen because of the existence of a cluster of pathogenic HCM mutations 

in exon 9; the few differences between the human exon 9 and the murine exon 8 allow 
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to determine the occurrence of the trans-splicing event by RT-PCR and restriction 

analysis. 

Instead of amplifying by PCR the whole genomic sequence between the human 

introns 8 and 9, a study was performed using the Human Splicing Finder online tool, to 

identify and preserve all possible intronic enhancers alongside with the 3’splice site of 

intron 8 and 5´splice site of intron 9 [104]. 

The presence of an array of three muscle specific splicing enhancers, MSE2 

intronic sequences, flanking the exon on both sides, has been described as sufficient 

for the inclusion of that exon in the processed transcript of the Tnnt2 gene [102]. Thus, 

for all constructs, three copies of intronic MSE2s were inserted in each intronic 

sequence in order to increase trans-splicing efficiency  (Figure 3.10A, C) [102].  

To determine the best annealing sequences for the trans-splicing constructs, 

four FISH probes were designed to check the accessibility for annealing of different 

regions in the endogenous mTnnt2 transcripts. Due to the small size of the intron 7, 

only one probe of 128bp was designed, whereas for intron 8, two probes of 174bp and 

165bp were designed. As a control, a probe for exon 8 was also generated. All probes 

were labelled by in vitro transcription with digoxigenin-UTP or directly labelled with 

Alexa488-UTP nucleotides.  

FISH data on HL-1 cells show that both intronic regions flanking mTNNT2 exon 8 

are accessible for annealing with trans-splicing molecules (Figure 3.10B). The probe 

sequence nearest to exon 8 was chosen as the most specific for intron 8. Based on the 

same results for intron 7, the sequence of the probe was used as the annealing 

sequence in the trans-splicing constructs. So, the final constructs for the double trans-

splicing approach were designed to possess these tested annealing sequences that 

target intron 7 and intron 8 of the endogenous mouse Tnnt2 transcripts. Between 

these two annealing sequences, trans-splicing constructs bear human TNNT2 exon 9 

flanked by its own intronic sequences with the MSEs(3x) array and the essential 

features to allow the occurrence of trans-splicing (Figure 3.10C).  
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Figure 3.10 - Trans-splicing construct features.  
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(A) An array of three muscle- specific splicing enhancers (MSE) was cloned in each of the introns flanking 

the human exon 9, to favour trans-splicing occurrence. (B) Three antisense sequences designed to 

anneal to the two introns in the target pre-mRNA (flanking endogenous mTnnt2 exon 8) were cloned 

upstream and downstream of the trans-splicing molecule. Probes were either labelled directly with Dig 

or Alexa C488. The Dig-probes were then detected by an anti-Dig D488 antibody and nuclei stained with 

DAPI. (C) For the double trans-splicing approach, trans-splicing plasmids containing the human TNNT2 

exon 9, flanked by its intronic sequences and enhancers, were constructed. In the 3´trans-splicing 

approach, trans-splicing constructs contain a human TNNT2 cDNA (Ex 9-Ex16). A single antisense 

sequence designed to anneal to intron 7 of murine Tnnt2 target pre-mRNA was further cloned upstream 

of the trans-splicing cDNA molecule. 

 

In the 3´trans-splicing approach, similar constructs were generated but this time 

containing the human TNNT2 cDNA from exon 9 to exon 16. Here, the 3´trans-splicing 

cassette contains a single antisense sequence that anneals to intron 7 of murine Tnnt2, 

cloned upstream of the trans-splicing cDNA molecule. (Figure 3.10C).  

 

3.3.4. Detection of trans-splicing transcript and of trans-splicing events 

 

Double (DTS) and 3’ trans-splicing (3´TS) constructs were transfected into HL-1 

cells in order to test their efficiency in inducing trans-splicing events. The success of 

trans-splicing was evaluated by the replacement of murine exon 8 in Tnnt2 pre-mRNA 

by the human exon 9 via double trans-splicing or by the replacement of all murine 

exons downstream of exon 8 by the human cDNA from exon 9 to 16 via single 3’ trans-

splicing. The presence of trans-splicing constructs in HL-1 cells and their transcripts 

were detected by PCR and RT-PCR using primers ForAS7/RevInt8 (Figure 3.11A, 3.11B, 

3.12A). All constructs were transiently or stably transfected with success as judged by 

PCR results (Figure 3.11A, B and Figure 3.12A). Moreover, regardless of the promoter 

used (Tnnt2 or CMV), both DTS and 3’TS constructs were shown to express the 

therapeutic transcript (Figure 3.11A, B and Figure 3.12A). Detection of double trans-

splicing events was performed by RT-PCR amplification of both endogenous cis-spliced 

and trans-spliced products using a pair of primers against the murine Tnnt2 exons 7 

and 9, which are flanking the trans-spliced exon 8. Trans-splicing products containing 

the human exon 9 differ in nucleotide composition, by existence of a unique restriction 

site for SacI in human exon 9, which can then be used to distinguish the cis-spliced 
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product from the trans-spliced one. As a positive control, RT-PCR products amplified 

using the human cardiac cDNA as template were also digested with SacI, to 

demonstrate the availability of this restriction site in the human TNNT2 exon 9 (Figure 

3.11C). However, the digestion was not as efficient as expected. In all transient and 

stable transfections tested, the restriction approach failed to detect occurrence of 

trans-splicing (Figure 3.11C, 3.12C). These results suggested the use of other detection 

techniques. In an alternative approach, a small degenerate reverse primer that only 

hybridizes with the human TNNT2 exon 9 was used for the detection of double trans-

splicing events. However, the trans-splicing-specific 160bp PCR band was only detected 

on the control human cardiac cDNA (Figure 3.11D). The detection of 3´ trans-splicing 

events was performed by using the same small degenerate primer (Fig 3.12D), yielding 

no positive results.  
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Figure 3.11 - Detection of double trans-splicing events.  

(A) The efficiency of transient transfection and of transcription driven by either the CMV promoter or the 

minimal Tnnt2 promoter was evaluated by PCR and RT-PCR, respectively, in HL-1 cells, using a pair of 

primers that allow specific amplification of double trans-splicing molecules. Levels of endogenous Tnnt2 
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transcripts were used as loading control. (B) The efficiency of stable transfection and transcription driven 

by both promoters was also evaluated, as previously described. (C) Detection of double trans-splicing 

events by RT-PCR amplification of both endogenous cis-spliced and trans-spliced products using a pair of 

primers against the murine Tnnt2 exons 7 and 9. Amplified PCR products were further digested by the 

SacI enzyme, with only trans-splicing PCR products being cleaved due to the presence of SacI restriction 

sites, which only exists in the human TNNT2 exon 9. (D) Detection of double trans-splicing events was 

also performed by using a small degenerate reverse primer that only hybridizes with the human TNNT2 

exon 9. A human cardiac cDNA was used as a positive control (160bp band). 

	
	

	

 

Figure 3.12 - Detection of 3’ trans-splicing events.  



	

	 55	

(A) The efficiency of transcription driven by the CMV and by the endogenous murine Tnnt2 promoter 

was evaluated by RT-PCR, in HL-1 cells, using a pair of primers that allow specific amplification of 3’ 

trans-splicing molecules. (B) As loading control, levels of endogenous murine Tnnt2 transcripts were also 

accessed. (C) Detection of 3´ trans-splicing events by RT-PCR amplification of both endogenous cis-

spliced and trans-spliced products using a pair of primers against the murine Tnnt2 exons 7 and 9. 

Amplified PCR products were further digested by the SacI enzyme, with only trans-splicing PCR products 

being cleaved due to the presence of SacI restriction sites, which only exists in the human TNNT2 exon 9. 

(D) Detection of 3 trans-splicing events was also performed by using a small degenerate reverse primer 

that only hybridizes with the human TNNT2 exon 9. A human cardiac cDNA was used as a positive control 

(160bp band). 

 

To rule out the possibility that the lack of detection of trans-splicing events 

might be due to insufficient sensitivity of the techniques used, radioactive RT-PCR with 

a γ32P-ATP radiolabelled primer was performed. This RT-PCR was performed with the 

same pair of primers ForEx7/RevhuEx9 as above, with γ32P-labelled RevhuEx9. As 

expected, a 160-bp RT-PCR product was amplified from human cardiac cDNA; 

additionally, a band was also detected in the stably transfected cells with the double 

trans-splicing construct under the control of the CMV promoter (Figure 3.13), proving 

that trans-splicing of the mouse Tnnt2 exon 8 using these constructs does occur. 

 

	
 

Figure 3.13 - Detection of trans-splicing events by radioactive RT-PCR.  

Detection of trans-splicing events by using a small γP32-ATP-labelled reverse primer that only hybridizes 

in the human exon 9. A human cardiac cDNA was used as a positive control (160bp band).  
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3.4. Discussion 

 

In several previous studies, RNA trans-splicing was shown to be a promising 

therapeutic approach for autosomal dominant monogenic diseases, by allowing an 

increase in the levels of a healthy protein [43, 48, 49]. HCM is an autosomal dominant 

disease with low penetrance and variable clinical outcomes, ranging from gain of 

function to haploinsufficiency or malfunctioning protein [6, 8, 10]. In the case of TNNT2 

mutations, the presence of a poorly functioning protein with a dominant negative 

effect is usually associated to a myofibrillar disarray and changes in the Ca2+ regulation, 

leading to altered myocardial energetics and contractile capacity of the myocardium 

[26, 73, 74]. Henceforth, an RNA based-therapy is a very attractive approach to 

decrease the amount of deleterious proteins.  

 Previous attempts of using trans-splicing strategies in cell culture models with a 

minigene as target for trans-splicing showed variable efficiencies, ranging 30-60% in 

vitro and 1-10% in vivo for the case of adeno-associated viral vectors [49, 71, 72, 105]. 

The efficiency of trans-splicing also can vary depending on specific gene location. In 

theory, the 3’ trans-splicing appears to be the most efficient strategy. The use of a 

binding domain closer to the 5’ splice site also seems to increase trans-splicing 

efficiency due to close vicinity of the two splice sites (the endogenous and the 

construct one) [43, 48, 49, 71, 105]. Moreover, the use of muscle splicing enhancers, 

carefully chosen annealing sequences, two different promoters, as well as keeping the 

splicing enhancers of the human TNNT2 intron 7 and 8 and placing the intron 

sequences between the annealing sequence and the coding region are all crucial for 

increasing the chances of trans-splicing. Still, the lack of detection of trans-splicing 

events with any of the described strategies either by restriction analysis, or by the use 

of a degenerate primer against the human exon 9 in a conventional RT-PCR clearly 

shows that there is not enough trans-spliced product to be detected by these 

techniques. Nevertheless, the detection of a very faint band by RT-PCR when using a 

radioactively labelled primer clearly demonstrates that trans-splicing events occur even 

with low efficiency. 
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 One of the reasons for the observed low efficiency of trans-splicing events 

might be related to the difficulty of choosing the best annealing sequence for introns 7 

and 8 of the mouse Tnnt2 gene because of their small size. In other trans-splicing 

studies, several annealing regions were tested to choose the best candidate; for 

example, Koller et al [48] and Berger et al [49] tried to mask different splicing features 

whenever the intron size allowed to see the effect on trans-splicing [48, 49, 71, 105]. 

These features can determine the success or not of a given region to be a target for this 

strategy. In our case, the detection of trans-splicing was more difficult than in these 

studies because we used the endogenous gene instead of a minigene, to better 

reproduce physiological conditions.  

Another reason for the low efficiency of trans-splicing might be due to 

endogenous factors that interact with this locus, such as for example, eventual 

presence of a natural antisense transcript in this particular region, if transcription 

occurs in the antisense strand it will interfere with sense strand. Additionally, binding 

of different proteins, such as splicing factors, might explain why the modulation of 

splicing did not work so efficiently either by trans-splicing or even by the use antisense 

oligonucleotides (ASO) [43, 48]. Three different ASO LNA (locked nucleic acid) were 

tested to induce skipping of endogenous mouse exon 8 in order to favour trans-splicing 

occurrence. Two of the ASOs targeted the 3’splice site of endogenous murine TNNT2 

intron 7, whereas the other one target the 5’splice site of intron 8 of the same 

transcripts. Unfortunately, none of the ASOs was able to promote endogenous exon 

skipping in the preliminary assays, either alone or in different combinations of the 

three.  

In the future, to increase efficiency of this approach, a new region within the 

murine TNNT2 gene could be tested in order to target another intron; alternatively, 

modulation of different splicing enhancers/silencers may also be address. In fact, the 

success of trans-splicing is highly variable and has to be evaluated on a case-by-case 

basis.  

In conclusion, these results argue that trans-splicing does not ensure efficient 

correction of expression of a mutated TNNT2 gene in cardiac cells. This could be due to 

inefficiency of trans-splicing reactions in general, or a particular resistance to trans-

splicing of the targeted region in the TNNT2 pre-mRNA.   
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4.  RESULTS II: Whole gene sequencing identifies novel deep-intronic 

variants with potential functional impact in patients with HCM 

 

4.1. Summary 

 

Background High throughput sequencing technologies have revolutionized the 

identification of mutations responsible for genetic diseases such as hypertrophic 

cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical 

diagnosis of HCM have no causal mutation identified. This may be due to the presence 

of pathogenic mutations located deep within the introns, which are not detected by 

conventional sequencing analysis restricted to exons and exon-intron boundaries.    

Objective The aim of this study was to develop a whole-gene sequencing 

strategy to prioritize deep intronic variants that may play a role in HCM pathogenesis.  

Methods and Results The full genomic DNA sequence of 26 genes previously 

associated with HCM was analysed in 16 unrelated patients. We identified likely 

pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. These variants, which 

are predicted to act through disruption of either splicing or transcription factor binding 

sites, are 3-fold more frequent in our cohort of probands than in normal European 

populations. Moreover, we found a patient that is compound heterozygous for a splice 

site mutation in MYBPC3 and the deep intronic VCL variant. Analysis of family members 

revealed that carriers of the MYBPC3 mutation alone do not manifest the disease, 

while family members that are compound heterozygous are clinically affected.  

Conclusion This study provides a framework for scrutinizing variation along the 

complete intronic sequence of HCM-associated genes and prioritizing candidates for 

mechanistic and functional analysis. Our data suggest that deep intronic variation 

contributes to HCM phenotype. 

 

The experimental design in this chapter was developed by Prof. Doutora Maria 

do Carmo Fonseca, Prof. Doutor Luís Lopes, Prof. Doutora Teresa Carvalho, Prof. 

Doutora Sandra Martins, Joana Tavares and myself. Furthermore, the experimental 

work presented was performed by Joana Tavares and myself. The bioinformatics data 

analysis and quality assessment of the data was performed by Joana Tavares. The 
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interpretation of the data (pedigree, transcription binding site assessment, splicing 

motifs and interpretation of the frequencies in the population) was done by myself. All 

the results were discussed with all the above responsible for the experimental design. 

   



	

	 61	

4.2. Material and Methods 

 

Patients 

The study population comprised 16 unrelated consecutively evaluated patients 

(8 males, 8 females) referred to the Cardiology Department at University Hospital Santa 

Maria. For all probands, the personal and family history, physical examination, ECG and 

echocardiography were consistent with a diagnosis of HCM according to international 

criteria [107]. Patients were genetically tested at a mean age of 49 years. In addition, 

family members of two selected probands were clinically and genetically tested. Before 

blood collection, all patients and relatives provided written informed consent for DNA 

analysis and received genetic counselling in accordance with guidelines [107]. DNA 

samples used in this study were residual after conventional diagnostic screening by 

targeted exome and Sanger sequencing. The project was approved by the Lisbon 

Academic Medical Center Ethics Committee.  

 

Targeted gene enrichment and sequencing 

Blood samples (5-8 mL) were collected into EDTA tubes at routine clinic visits, 

and DNA was isolated from peripheral blood lymphocytes using standard methods. The 

study was designed to screen the full genomic DNA sequence of 26 genes indicated in 

Table 1. These genes are included in many commercially available testing panels. A 

capture library was designed using SureSelect (Agilent) and target regions were 

sequenced (paired-end) on an Illumina HiSeq platform with 30-97 base read length. 

Highly repetitive sequences were excluded. Sample preparation was carried out as 

recommended by the manufacturer. Relatives were genotyped for selected variants by 

Sanger sequencing. 

 

Bioinformatic data analysis 

Raw sequencing paired-end reads (in .fastq format) were aligned using BWA 

software (version 0.7.12) [108] on the human reference genome (GRCh37) using 

quality score calibration and Illumina adapter trimming. Following the exclusion of 

duplicate reads using Picard MarkDuplicates tool (version 1.96) 

(http://broadinstitute.github.io/picard/), regions around insertion-deletions (indels)
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were realigned and each base quality score was recalibrated. For variant calling, we 

used four distinct tools: GATK-UnifiedGenotyper (version 3.4-46) [109] and SAMtools 

mpileup (version 1.2) [110], which use alignment-based approaches, and GATK-

HaplotypeCaller (version 3.4-46) [109] and FreeBayes (version 0.9.21.26) [111], which 

use haplotype-based approaches. By comparing the performance of each tool against a 

standard reference (NA12878, published by Genome in a Bottle consortium [112], we 

observed a concordance of ~85% (Figure 4.1). To take advantage of the strengths of 

the different tools, we selected variants that were independently called by at least two 

of them. This strategy showed a better sensitivity (~97%) and precision (~98%) 

compared to analysis using a single tool (Figure 4.1). Variants that were independently 

selected by at least two tools, and presented a read depth of 20 or more in the 

targeted genes, were annotated with ANNOVAR [113] (Figure 4.2).  

For analysis of the clinical impact of coding variants we used the NCBI ClinVar 

database (http://www.ncbi.nlm.nih.gov/clinvar/) [75] and classified the variants 

according to the American College of Medical Genetics and Genomics (ACMG) 

guidelines [114]. Prediction of pathogenicity was performed with SIFT [115], PolyPhen2 

HVAR [116], Human Splicing Finder (version 3.0) [104], Mutation taster [117], UMD-

predictor [118], PROVEAN [119] and FATHMM [120]. Prioritization of noncoding 

variants was achieved using GWAVA (version 1.0) [121], CADD (version 1.3) [122], 

SPIDEX [123] and Genomiser [124]. To determine whether a variant may disrupt 

splicing motifs we used Human Splicing Finder (version 3.0), a tool that predicts 

potential splice sites, branch points and enhancer/silencer splicing motifs [104]; 

RegRNA (version 2.0), which searches for enhancer/silencer splicing motifs [125]; and 

Regulatory Genomics: Branch point analyser, that predicts the presence of branch 

points and respective polypyrimidine tracts [126]. 

As deep intronic mutations may result in altered gene expression through either 

cryptic splicing or disruption of transcription regulatory motifs [127], we investigated 

whether the identified intronic variants may disrupt transcription factor binding sites 

(TFBS). We used available tracks in the UCSC genome browser [128-130] (Transcription 

Factor ChIP-seq Uniform Peaks from ENCODE/Analysis and HMR Conserved 

Transcription Factor Binding Sites), focusing on TFBS predicted to be targets for 
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transcription factors that have been implicated in pathways related to cardiac 

regulation, development or pathophysiology. 

Variant frequency was determined using the allele frequency estimates from 

the 1000 genomes project [131] and gnomAD [132] databases (accessed on June 2017).  

Finally, we searched for the potential association of the candidate deep intronic 

variants with cardiac diseases identified through GWAS 

(https://www.genome.gov/gwastudies/index.cfm?gene=ESRRG and http://www.ebi.ac.

uk/gwas/). 
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Figure 4.1. Comparison of variant calling strategies.  

A) Variants identified by each individual tool and variants that were independently called by at least two 

tools (combined) were compared to a standard reference (NA12878, [112]).   Concordant or true positive 

(TP) variants are defined as those present in the reference and identified by the indicated calling tool. 

Discordant extra or false positive (FP) variants are variants not detected in the reference but identified 

by the calling tool. Discordant missing or false negative (FN) variants are those present in the reference 

but undetected by the calling tools. (B) Sensitivity was assessed by calculating the ratio between 

TP/(TP+FN). Precision was assessed by calculating the ratio between TP/(TP+FP).  



	

	 65	

 

 

 

 

 

 

Figure 4.2 - Flowchart of noncoding data analysis.  

Variants that were independently selected by at least two tools and presented a read depth of 20 or 

more in the 26 targeted genes were annotated with ANNOVAR. In silico predictions were carried out for 

noncoding variants that were not classified as either benign/likely benign or pathogenic/likely 

pathogenic in NCBI ClinVar. All variants with scores above the indicated threshold were single nucleotide 

substitutions (SNVs). GWAVA: Genome-Wide Annotation of Variants.  CADD: Combined Annotation 

Dependent Depletion. SPIDEX: Splicing Index.  R.S.: Region score. PHRED: phred quality score. dPSI: 

percent of spliced in.  
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4.3. Results 

 

4.3.1. Quality of sequencing data 

 

Analysis of sequencing data yielded an average of 96.64% confidently mapped 

reads per gene. For 69% of the targeted genes the average read depth was above 200, 

and for the remaining genes the average read depth ranged between 130 and 200 

(Figure 4.3A). The average read depth was slightly lower over noncoding regions 

(Figure 4.3B). The average percentage of covered base pairs was higher than 90 for 

85% of the genes, and the lowest coverage was 76% for both coding and noncoding 

regions (Figure 4.3A, B). Following alignment to the reference genome (GRCh37) and 

variant calling, we removed variants that were off-target, or had an average read depth 

below 20 (Figure 4.2). Single nucleotide substitutions and insertions or deletions of a 

few bases were identified and considered for further analysis.  
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Figure 4.3 - Characterization of sequence data.  

(A) Box plots show the read-depths across the targeted genes and the average percentage of covered 

base pairs per gene is depicted in red. (B) Box plots show the read-depths in coding (orange) and 

noncoding (grey) regions. The average percentage of covered base pairs in each region per gene is 

depicted in red. 

 

 

4.3.2. Spectrum of exonic and splice site variants 

 

Previously described disease-causing variants in the MYBPC3 gene were 

detected in 3 patients (Table 4.1). Rare variants classified in the NCBI ClinVar database 

and according to the ACMG guidelines as of uncertain significance were additionally 

detected in the TNNT2, MYBPC3, TTN, TPM1 and MYH6 genes; all these scored as likely 

pathogenic according to multiple in silico prediction tools (Table 4.1). Noteworthy, one 

of the patients harboured, in addition to MYH6 variant rs140596256, a novel variant in 
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the GLA gene that is not listed in online databases but is predicted to be pathogenic by 

multiple prediction tools (Table 4.1).  
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Table 4.1 - Putative HCM-causing variants located in exons and exon-intron boundaries.  

VUS, variant of uncertain significance. ACMG, American College of Medical Genetics and Genomics.  

Patient # Exonic and splice-site variants ClinVar/Reference ACMG classification In silico predictions 

1 TNNT2: c.198G>C (p.Lys76Asn) Het 

(rs727504869)  

ClinVar - VUS VUS UMD-predictor: probably pathogenic 

SIFT: deleterious 

PROVEAN: damaging 

PolyPhen2 HVAR: probably damaging 

FATHMM: damaging 

Mutation Taster: disease causing 

2 MYBPC3: c.1224-19G>A Het  

(rs587776699)  

ClinVar - Conflicting 

interpretations 

VUS Mutation Taster: disease causing 

Human Splicing Finder: activation of intronic 

cryptic acceptor site 

5 TTN: c.57478C>G (p.Leu19160Val) Het  

(rs781121273)  

ClinVar- VUS VUS UMD-predictor: probably pathogenic 

SIFT: deleterious 

FATHMM: damaging 

Mutation Taster: disease causing 

6 MYBPC3: c.1227-13G>A Het  

(rs397515893)  

[133] Pathogenic (IC)  

7 TPM1: c.62G>T (p.Arg21Leu) Het 

(rs730881151)  

ClinVar - Conflicting 

interpretations 

VUS UMD-predictor: pathogenic 

SIFT: deleterious 

FATHMM: damaging 
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Mutation Taster: disease causing 

Human Splicing Finder: potential alteration of 

splicing 

8 MYBPC3: c.2827C>T (p.Arg943*) Het 

(rs387907267)  

[134]  

[135] 

Pathogenic (ID)  

12 TPM1: c.841A>G (p.Met281Val) Het  

(rs397516394)  

ClinVar - VUS VUS UMD-predictor: pathogenic 

SIFT: deleterious 

PROVEAN: damaging 

FATHMM: damaging 

Human Splicing Finder: potential alteration of 

splicing 

14 MYH6: c.292G>A (p.Glu98Lys) Het  

(rs140596256)  

 

 

 

 

GLA: c.187T>A (p.Cys63Ser) Het 

 

ClinVar - VUS 

 

 

 

 

 

[136] 

VUS UMD-predictor: pathogenic 

SIFT: deleterious 

PROVEAN: damaging 

PolyPhen2 HVAR: probably damaging 

FATHMM: damaging 

Human Splicing Finder: potential alteration of 

splicing 

 

 

UMD-predictor: pathogenic 

PolyPhen2 HVAR: probably damaging 

FATHMM: damaging 
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Mutation Taster: disease causing 

Human Splicing Finder: potential alteration of 

splicing 

15 MYBPC3: c.1484G>A (p.Arg495Gln) Het 

(rs200411226)  

[134] Likely pathogenic (III)  

16 MYH6: c.292G>A (p.Glu98Lys) Het  

(rs140596256)  

ClinVar - VUS VUS UMD-predictor: pathogenic 

SIFT: deleterious 

PROVEAN: damaging 

PolyPhen2 HVAR: probably damaging 

FATHMM: damaging 

Human Splicing Finder: potential alteration of 

splicing 
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4.3.3. Assessment of deep intronic variants 
 

The noncoding variants were prioritized using GWAVA [121], CADD [122], 

SPIDEX [123], and Genomiser [124]. The genome-wide annotation of variants (GWAVA) 

is a computational approach that integrates a wide range of available genomic and 

epigenomic annotations to predict the functional impact of variants. GWAVA results 

are in the range 0-1, with higher values indicating variants predicted as more likely to 

be functional. Variants with a GWAVA score above 0.5 were classified as functional, as 

in previous studies [121]. The Combined Annotation-Dependent Depletion (CADD) 

method provides a metric (C score) for deleteriousness, a property that strongly 

correlates with functionality and pathogenicity [122]. Variants at the top 10% of 

deleteriousness are assigned a C score of 10, whereas variants at the top 1% are 

assigned a C score of 20. Variants with C score greater than 15 were selected, as 

previously described [137]. SPIDEX is a computational model that uses the Percentage 

of Spliced-In (PSI) metric to evaluate whether a certain splicing isoform is more 

enriched under the presence/absence of a given variant. SPIDEX scores higher than 5 

predict that the variant affects RNA splicing [123]. The Genomiser framework combines 

a machine learning method and an integrative algorithm for ranking noncoding variants 

in whole-genome sequence data [124]. Genomiser results are in the range 0-1, with 

values higher than 0.6-0.9 indicating variants more likely to be pathogenic [124]. 

We found that all noncoding variants with higher scores for the different 

prediction metrics correspond to single nucleotide substitutions, the vast majority of 

which are located within introns (Figure 4.2). The position of each variant relative to 

the nearest canonical splice site ranged between 20 and 2000 nucleotides (Figure 

4.4A). A comparison of variants prioritized as likely pathogenic by the different tools 

resulted in the identification of 6 variants that scored with high values using GWAVA, 

CADD and Genomiser metrics (Figure 4.4B). These include two variants in VCL, two 

variants in TTN, one variant in ACTC1 and one variant in PRKAG2 (Table 4.2). Analysis of 

allele frequency data available for European populations in the 1000 Genomes project 

[131] and gnomAD [132] databases reveals that two of these variants are more 

frequent in the patient population than in healthy individuals (Table 4.2). Namely, the 

VCL variant c.499+367T>C (rs113195070) was detected in 6 probands, corresponding to 
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an allele frequency of 19% in the patient population. This contrasts with a frequency of 

6-7% in control populations. Similarly, the PRKAG2 variant c.1234-317T>G was present 

with an allele frequency of 3% in the patient population contrasting with a frequency of 

0.1-0.3% in healthy individuals. Such specific enrichment of certain deep intronic 

variants in the patient population suggests that these may be contributing to the 

disease phenotype.  

 

 

Figure 4.4 - Assessment of intronic variants.  

(A) Schematic diagram depicting the position of intronic variants prioritized by each prediction tool. (B) 

Venn diagram illustrating intronic variants that are simultaneously prioritized by multiple prediction 

tools.   
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Table 4.2 - Prioritized intronic variants.  

For each variant, minor allele frequency (MAF) was determined using European populations in the 1000 genomes project database [131] and gnomAD database [132]. 

CADD Phred score [122]; GWAVA Region score [121]; Genomiser Variant score [124]; SPIDEX dPSI score [123]. HGVS, Human Genome Variation Society. 

	
Tools Gene symbol dbSNP ID HGVS 

CADD 

score 

GWAVA 

score 

GENOMISER 

score 

SPIDEX 

score 

MAF 

1000G 

MAF 

gnomAD 

Frequency in 

probands 

CADD, GWAVA, 

GENOMISER 

VCL rs77884406 c.169-2410A>C 17.55 0.59 0.910891 NA 0.019 0.0273 0.03125 

VCL rs113195070 c.499+367T>C 16.93 0.6 0.963367 NA 0.06 0.0671 0.1875 

ACTC1 rs28595759 c.129+472T>C 21.9 0.53 0.9792082 NA 0.07 0.0604 0.03125 

TTN rs2243452 c.32929+72T>C 22.2 0.53 0.939604 0.6211 0.029 0.0247 0.03125 

TTN rs2253324 c.10361-138C>T 18.03 0.51 0.825743 3.3164 0.048 0.0441 0.03125 

PRKAG2 rs141541040 c.1234-317T>G 15.20 0.58 0.872277 NA 0.003 0.0010 0.03125 

CADD, 

GENOMISER 

VCL rs7079796 c.168+1165C>T 15.74 0.35 0.812872 NA 0.2 0.2191 0.15625 

VCL - c.169-7572C>T 15.88 NA 0.905941 NA . . 0.03125 

VCL - c.239+4299C>A 18.78 NA 0.983169 NA . 0.0001 0.0625 

LDB3 rs12570315 c.93+1827G>A 16.75 0.23 0.858416 NA 0.3 0.3436 0.25 

LDB3 - c.548+1914C>T 21.4 NA 0.970297 NA . . 0.03125 

LDB3 rs779483568 c.548+1993C>T 17.35 NA 0.990099 NA . 0.0001 0.03125 

MYL2 rs2040571 c.3+604C>T 15.58 0.36 0.89703 NA 0.086 0.0888 0.03125 

PRKAG2 rs62478182 c.467-44847T>G 17.95 0.26 0.880198 NA 0.34 0.3721 0.25 

PRKAG2 rs114394151 c.115-30242C>T 18.38 0.49 0.925743 NA . 0 0.0625 

LAMP2 rs5956217 c.1094-2886A>G 15.93 0.42 0.881188 NA 0.004 0.0009 0.03125 
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LAMP2 rs42887 c.1094-2924C>T 20.4 0.43 0.929703 NA 0.11 0.1711 0.125 

CADD, GWAVA 
TTN rs12693162 c.37112-700G>A 18.66 0.5 0.190099 NA 0.22 0.2261 0.21875 

LAMP2 rs141348126 c.1094-140A>G 15.68 0.5 0.545545 NA . 0 0.03125 

GWAVA, 

GENOMISER 

VCL rs2131959 c.2132-437G>C 10.13 0.57 0.89604 NA 0.75 0.7445 0.84375 

ANKRD1 rs10509614 c.207+239G>T 13.87 0.52 0.838614 0.7561 0.04 0.0314 0.03125 

TTN rs80259697 c.10360+317T>C 13.04 0.51 0.821782 NA . 6.68e-05 0.03125 

CADD, SPIDEX TTN rs142156368 c.31484-286G>T 15.63 0.38 0.425 6.092 0.0089 0.0047 0.0625 

SPIDEX 

TTN rs2562845 c.32593+111A>G 3.232 0.29 0 9.1111 0.21 0.2015 0.15625 

TTN rs72650063 c.32077+31C>G 0.713 0.41 0.019802 5.8489 0.021 0.0218 0.0625 

TTN rs2742353 c.31484+1715A>C 10.79 0.26 0.556436 6.2975 0.029 0.0247 0.03125 
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We focused on the VCL variant c.499+367T>C. We found that two of the 

probands were compound heterozygous for this variant and a MYBPC3 mutation 

previously described as disease-causing. Genotyping of family members of proband #6 

showed that the dual presence of the MYBPC3 splice site mutation (c.1227-13G>A) and 

the VCL variant is associated with the manifestation of the phenotype in the proband 

(I-2) and his son (II-1), both diagnosed in their 40s (Figure 4.4). The other children of 

the proband (II-2 and II-3), while carrying the MYBPC3 mutation, did not develop 

signs of cardiomyopathy when assessed at a similar age. This suggests a possible 

modifier effect of the VCL variant, since the presence of the MYBPC3 mutation alone is 

not sufficient for the phenotype to be manifested. Analysis of this family further 

suggested that the VCL variant on its own is not sufficient to cause disease. Genotyping 

of family members of proband #15 (Figure 4.5) indicated that presence of the MYBPC3 

missense mutation (p.Arg495Gln) in the absence of the VCL variant appears sufficient 

to cause the phenotype, even at a pediatric age (III-1). Clinical characteristics for the 

two families are detailed in Table 4.3.  
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Figure 4.5 - Family pedigrees.  

The MYBPC3 splice site (c.1227-13G>A Het) and missense  (p.Arg495Gln) mutations, and the VCL variant 

(c.499+367T>C) identified in probands (arrows) were studied in family members, and their clinical status 

was ascertained. Circles denote females, squares males, solid symbols clinically affected individuals, 

open symbols clinically unaffected individuals, and NA unknown clinical status. 
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Table 4.3 - Clinical, electrocardiographic and echocardiographic data for the proband and relatives of families 6 and 15 (pedigrees are illustrated in figure 3).  

Legend: G+= carrier of the causative mutation in the MYBPC3 gene; G-= not carrier of the causative mutation; Ph+= positive phenotype; Ph-= negative phenotype; 

Hypertrophic cardiomyopathy (HCM); *diagnosis by familial screening (not symptoms);**symptoms related to HCM; ASH= asymmetrical septal hypertrophy; LVH= left 

ventricular hypertrophy; & maximal wall thickness (WT) in any left ventricular segment; LA= left atrial dimension (M-mode echocardiography); LVDD= left ventricular 

diastolic diameter; LVSD= left ventricular systolic dimension; FS= fractional shortening of the left ventricle; LVEF= left ventricular ejection fraction (Simpson method); OB= 

presence of left ventricular obstruction at rest (left ventricular outflow gradient ≥ 30 mmHg on Doppler evaluation); £ - left ventricular hypertrophy considering pediatric 

criteria for HCM; Vs= Velocity of the mitral annulus (lateral ) by Tissue Doppler imaging (TDI); E/e= ratio of early diastolic velocity of mitral inflow to early diastolic velocity 

of the mitral annulus (lateral) by TDI. 

 

 Status Age at 

clinical 

diagnosis 

or 

genetic 

testing 

(y) 

Symptoms** 

(Yes/No) 

Abnormal 

ECG 

(Yes/no) 

LVH 

(Yes/No) 

Maximal 

WT 

(mm) 

Type 

of LVH 

OB LA 

(mm) 

LVDD 

(mm) 

LVSD 

(mm  

FS (%) LVEF Vs´ 

(lateral; 

cm/s) 

 

E/e’ 

(lateral; 

cm/s) 

Family 

6 

               

I-2  G+/Ph+ 49 Yes Yes Yes 30 ASH Yes 48 40 20 50 82 4 6.85 

II-1  G+/Ph+ 44* No Yes Yes 16 ASH No 32 44 23 57 87 9 5.9 

II-2  G+/Ph- 42* No No No 11 - - 33 44 23.6 46 76 14 4.5 

II-3  G+/Ph- 40* No No No 12 - - 41 48 25.6 47 78 13 6.18 

II-4  G-/Ph- 43 - - - 9 - - 28 43 21.6 52 83 10 6.6 

II-5  G-/Ph- 40 - - - 11 - - 32 41 22 46 78 12 5.33 
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Family 

15 

               

II-1  G+/Ph+ 20 Yes Yes Yes 19.8 ASH No 41 39 21.35 44 66 10 7.38 

I-1  G+/Ph+ 21 Yes Yes Yes 15 ASH No 46 42 22 48 62 9 6.9 

III-1  G+/Ph+ 3* No Yes Yes 8.8 £ ASH No 22.34 32 19.7 40 72 7 6.63 
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We found that, based on Chip-seq experiments [128, 129], the deep intronic 

VCL variant enriched in the patient population (rs113195070) localizes in a region 

associated with FOS, JUN and EP300 (Figure 4.6A). A deep intronic variant in the 

PRKAG2 gene (rs114394151) prioritized by CADD and Genomiser is enriched in the 

patient population (Table 4.2) and localizes in a region associated with FOS and JUN 

(Figure 4.6B). FOS and JUN transcription factors are thought to be among the first set 

of genes to be expressed in the context of pathological cardiac hypertrophy [138], and 

EP300 has been associated with cardiomyocyte enlargement [139].  

Finally, using the SPIDEX tool we identified a variant in the TTN gene 

(rs72650063) that occurs with a frequency of 2% in control European populations and 

is present in two probands, corresponding to an allele frequency of 6% in the patient 

population (Table 4.2). This variant is predicted by Human Splicing Finder to disrupt 

binding of splicing factor SRSF1 (Figure 4.6C) [140]. Another variant in the TTN gene 

(rs142156368) appears highly enriched in our cohort relative to the general population 

(Table 4.2).    

No potential association of the candidate deep intronic variants with cardiac 

diseases identified through GWAS was found. 
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Figure 4.6 - Variants located at binding sites for transcription and splicing factors.  

(A) The VCL variant c.499+367T>C (rs113195070) is located at a binding site for transcription factors FOS, 

JUN and EP300. (B) The PRKAG2 variant c.115-30242C>T (rs114394151) is located at a binding site for 

transcription factors FOS and JUN. (C) The TTN variant c.32077+31C>G (rs72650063) is predicted to 

disrupt the binding site of splicing factor SRSF1. 
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4.4. Discussion 
 

Motivated by the clinical heterogeneity of HCM and the lack of a conclusive 

genetic diagnosis in approximately 50% of the patients [141-143], we hypothesized that 

genetic variation within deep intronic regions of sarcomere and sarcomere-related 

genes contributes to the disease mechanism. Using a targeted high-throughput 

sequencing strategy, we did a comprehensive screening of 26 genes in a cohort of 16 

unrelated HCM patients using recently developed computational models to assess 

variants. 

We identified 3 probands carrying previously described disease-causing variants 

in the MYBPC3 gene [133-135, 144], in agreement with the finding that mutations in 

this gene account for the great majority (30-40%) of identified genetic causes of HCM 

[145, 146]. We further identified additional probands harbouring rare coding variants 

of uncertain significance, that are likely pathogenic as assessed by multiple prediction 

tools, in TNNT2, MYBPC3, TPM1, TTN and MYH6 genes. In one patient we identified a 

novel variant in the GLA gene, associated with Fabry disease [136]. 

In agreement with previous studies on larger HCM patient cohorts [134, 147], 

we identified missense and stop-codon mutations, as well as splice site mutations 

(Table 4.1). While missense mutations may code for a pathogenic protein that would 

cause HCM by a gain-of-function mechanism, stop-codon and splice site mutations are 

more likely to act through a loss-of-function mechanism due to reduced levels of the 

normal protein. Demonstrating that particular mutations act through a dominant gain-

of-function mechanism and others cause loss-of-function would be critical to 

understand phenotype-genotype correlations.  

In this regard, we analysed the family members of two probands with either a 

missense or a splice site mutation in MYBPC3 (Figure 4.5) and found that all carriers of 

the missense mutation (family #15) were clinically affected, as expected for a dominant 

gain-of-function mechanism. In contrast, in the other family, two individuals are 

carriers of the splice site mutation (family #6) and do not manifest the disease, 

consistent with a loss-of-function model. Possibly, the MYBPC3 splice site mutation 

present in family members of proband #6 results in mis-splicing by either decreasing 

the specificity or fidelity of splice site selection or activating cryptic splice sites that are 
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normally not used. Abnormal splicing often results in a frameshift and consequent 

introduction of premature termination codons (PTCs), which trigger degradation of the 

mRNA by nonsense-mediated decay [148]. Thus, this mutation can be functionally 

equivalent to a null or hypomorphic allele associated with loss-of-function of the 

protein. In contrast, the MYBPC3 missense mutation present in family members of 

proband #15 presumably leads to an abnormal protein containing an amino acid 

substitution that may cause a gain-of-function phenotype.  

We further show that both probands are compound heterozygous for the 

missense or splice site MYBPC3 mutation and a deep intronic variant in VCL. This 

variant (rs113195070) is predicted to be pathogenic based on three independent 

computational tools, GWAVA, CADD and Genomiser (Table 4.2). Moreover, it is 3-fold 

more frequent in our cohort of probands than in normal European populations (Table 

4.2), further suggesting a direct contribution to the disease phenotype. The variant, 

which consists of a single nucleotide substitution located at position 367 from the 

nearest canonical splice site (c.499+367T>C), can potentially disrupt the binding of 

transcription factors that have been reported as implicated in pathways related to 

cardiac regulation, development or pathophysiology such as FOS, JUN and EP300 [138, 

139]. By interfering with the binding of transcription regulatory factors, the variant is 

expected to alter the transcription rate of the VCL gene. Consistent with this view, 

sequence elements located within introns of large human genes have been shown to 

act as transcriptional enhancers [149], and a recent study reported an IRF4 gene 

variant located in intron 4 that strongly affects IRF4 transcription through disruption of 

an enhancer element [150].  

Analysis of family #6 reveals that the presence of the VCL variant or the 

MYBPC3 mutation in isolation is not sufficient to cause disease phenotype. Indeed, the 

two clinically affected individuals in this family are compound heterozygous for the VCL 

variant and the MYBPC3 splice site mutation (Figure 4.5), suggesting that the 

combination of the two mutations triggers the disease. A loss-of-function mechanism 

for the MYBPC3 mutation could explain why in family #6 only compound heterozygous 

members manifest the disease, whereas the presence of the heterozygous gain-of-

function mutation in family #15 would be sufficient to cause disease. Complex 

genotypes, including individuals that carry 2 or more variants in the same or different 
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sarcomere-related genes, have been reported in 8% of HCM patients [133], and there is 

evidence indicating that patients with complex genotype and multiple simultaneous 

mutations may have more severe or early disease expression [151]. However, complex 

genotype-phenotype correlations focusing specifically on carriers of splice site 

mutations remain to be investigated.  

We further identified two single nucleotide substitutions in the titin gene 

(rs142156368 and rs72650063) that are 3 to 6-fold more frequent in our cohort of 

probands than in normal European populations (Table 4.2).  These variants are located 

in the PEVK domain that plays a role in extensibility of the sarcomere and contractility 

of the titin protein [152, 153].  Titin is prone to extensive alternative splicing that can 

change its size and its elastic/stiffness properties; associations have been established 

between the ratio of expression levels for the main cardiac isoforms (N2BA and N2B) 

and genetic and non-genetic forms of cardiac diseases [154, 155]. If these variants do 

interfere with titin splicing, as predicted by the SPIDEX computational model, they are 

likely to contribute to HCM phenotype, particularly in combination with other HCM-

associated alleles. Supporting this view, titin-truncating splicing isoforms, which are 

encountered in approximately 1% of the general population are sufficient to induce 

molecular and physiological effects on the heart [156]. 

In conclusion, this study provides a framework for scrutinizing variation along 

the complete sequence of HCM-associated genes and prioritizing candidates for further 

analysis. Our data suggest that deep intronic variation contributes to HCM phenotype. 

Translation of genetic information found in an individual to clinical decision taking 

requires a precise understanding of the molecular mechanisms underlying the disease 

phenotype. To date, mechanistic and functional studies have been largely restricted to 

animal models in part due to difficulties in obtaining human tissue from patients. 

However, the recent emergence of patient-derived induced pluripotent stem cells 

(iPSCs) that can be differentiated into functional cardiomyocytes recapitulating HCM-

specific characteristics [157, 158] holds great promise as an exciting new approach to 

study how gene mutations relate to clinical outcomes and might be applied to test our 

hypothesis-generating data. 
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CHAPTER 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESULTS III: Generation gene-edited cellular models of HCM  
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5. RESULTS III: Generation gene-edited cellular models of HCM 
 

5.1. Summary 
 

The CRISPR-Cas9 genome-editing technology was used to introduce patient 

mutations in the genome of embryonic stem (ES) cells that were subsequently 

differentiated in cardiomyocytes. A set of isogenic ES cells that differ exclusively by the 

presence of HCM-causing mutations in the Tnnt2 gene were generated.  

To target the Tnnt2 gene we used a plasmid developed by Zhang and colleagues 

that is represented in Figure 5.1A. It includes the sequence that codes for Cas9 and 

downstream of the U6 promoter, a site to clone the guide RNA wanted or ‘spacer’, 

between two BbsI sites. The red sequence represents the tracrRNA portion, in order to 

generate a working chimeric RNA, the sgRNA, mentioned above [96]. Usually, several 

sgRNAs are chosen, cloned and tested in order to choose the one that most efficiently 

induces DSBs in the target sequence [94, 96]. The plasmid represented in Figure 5.1A is 

pX459, which is the available from the laboratory of Zhang and colleagues. The 

following plasmid pX459 has a puromycin cassette that can be used to select 

successfully transfected cells. 

 

 

Figure 5.1 - The CRISPR plasmid and the candidate guides cloned 
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(A) Representation of the plasmid pX459 used for cloning of the guide RNAs in the BbsI sites (adapted 

from [96]), that also has a puromycin cassette. (B) Representation of the mouse Tnnt2 locus with the 

several tested guides RNAs. 

 

Several well-characterised mutations of Tnnt2 were mapped downstream of 

exon 7 and associated to a severe HCM prognosis. Four of these well-characterised 

mutations were chosen to develop HCM cellular models: rs121964855 (exon 7, 

g.135847744 T>A) [159], rs121964856 (exon 8, g. 135847991 G>A) [160], rs121964858 

(exon 11, g.135848044 T>A) [161] and rs121964857 (exon 15, g.135852036 C>T) [162]. 

The variants rs121964855, rs121964856 and rs121964857 were associated to a higher 

risk of cardiac sudden death, but a lower degree of hypertrophy [159, 160, 162]. The 

variant rs121964858 presents with different cardiac phenotypes with a more 

favourable prognosis than the three previous mutations [161]. Each of these 4 

mutations was reproduced in two different cell lines using CRISPR genome editing 

technology. For this purpose, several sgRNAs were tested and cloned in the pX459 

plasmid to target the Tnnt2 locus. The target region in the Tnnt2 gene was exon 7 

because as mentioned above the four mutations chosen are downstream of this exon. 

The guides were chosen using software available from the Zhang Lab that identifies and 

scores the potential guides according to the presence of a PAM and off-targets (regions 

in the genome where the guide might also bind that are not the intended target, 

available at http://crispr.mit.edu/). The various candidate guides tested are 

represented in Figure 5.1B. The most promising guides were pX459-G1 and pX459-G8; 

despite G1 showed less off-targets, G8 was the one chosen to follow with most of the 

further experiments since it was the only one that simultaneously allow the 

introduction of HCM-associated mutation and of a silence mutation of its PAM 

sequence in order to prevent further cleavage upon homology recombination events 

[163]. Exception was the generation of a homozygous knockout of the Tnnt2 gene by 

transfection of E14-tg2a cells with pX459-G1, without further mutation of its PAM 

sequence. 

 

As template for homologous recombination in the Tnnt2 locus, a homology 

donor vector (HDV) was constructed containing two homology arms (HA) of around 
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800bp flanking the Tnnt2 cDNA from exon 7 to 15 and a selection cassette for 

puromycin (Figure 5.2). The 5’HA corresponds to around 830bp of intron 6 and the 

3’HA to intron 7, exon 8 and a part of intron 8; since the DSB is induced on the Tnnt2 

exon 7 everything between these two HAs can be incorporated in the DSB site, as 

shown on Figure 5.2A. The HDV was developed as a plasmid (Figure 5.2B) by Santos, C. 

[163]. This HDV carries the wild-type (WT) version of the Tnnt2 cDNA (exon7-15) and 

was further used to introduce by direct point mutagenesis the four different HCM 

associated mutations giving rise to four different HDV, each carrying a specific HCM-

associated mutation. 
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Figure 5.2 - Representation of the Tnnt2 locus before and after homologous recombination with the 

HDV 

(A) Representation of the Tnnt2 locus before and after homologous recombination at the DSB performed 

by Cas9, using the HDV as template. (B) Representation of the HDV, which has the respective homology 

arms (HA) in either side of the cassette and in the middle the Tnnt2 cDNA 7-15 and the puromycin 

cassette that would be inserted at the DSB site. (HA: homology arm) 

 

The experimental design in this chapter was developed by Prof. Doutora Maria 

do Carmo Fonseca, Prof. Doutora Teresa Carvalho, Prof. Doutora Sandra Martins, 
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Catarina Santos and myself. The experimental work involving the cloning of the guides, 

guide cleavage assay and cloning of the original HDV was performed by Catarina 

Santos. The other experimental work mentioned in this chapter was developed by 

myself. 

 

5.2. Material and Methods 
 
5.2.1. Donor plasmid directed mutagenesis 
 

The homology donor plasmid, pPUR+5’HA+cDNA7-15+3’HA or HDV, was 

developed previously by Santos, C. [163].  The HDV was used as a template to induce 

the four chosen TNNT2 mutations. These mutations were introduced in HDV by site 

directed point mutagenesis. Primer pairs for each mutation are listed in Table 5.1: 

 

Table 5.1 - Primers used in the mutagenesis assays to obtain cDNAs carrying the four TNNT2 mutations 

Mutation Primer Sequence (5’ to 3’) 

 

rs121964855 

ForEx7T/A TGGTGCCACCCAAGAACCCCGATGGAGAGAGAGTG 

RevEx7T/A CACTCTCTCTCCATCGGGGTTCTTGGGTGGCACCA 

rs121964856 
ForEx8G/A GGACTTTGATGACATCCACAAGAAGCGCGTGGAGAAGGACC 

RevEx8G/A GGTCCTTCTCCACGCGCTTCTTGTGGATGTCATCAAAGTCC 

rs121964858 
ForEx8T/A GACTCTGATCGAGGCTCACATCGAGAACAGGAAGAAGGAG 

RevEx8T/A CTCCTTCTTCCTGTTCTCGATGTGAGCCTCGATCAGAGTC 

rs121964857 
ForEx15C/T GAAAGTCTCCAAAACTTGTGGGAAGGCCAAAGTC 

RevEx15C/T GACTTTGGCCTTCCCACAAGTTTTGGAGACTTTC 

 

In summary, we were able to originate the following donor plasmids: HDV-7T/A, 

HDV-8G/A, HDV-8T/A and HDV-15C/T, each harbouring the indicated HCM-associated 

mutation. 

Then, in all generated donor plasmids, a second mutation was induced in order 

to create a silent mutation of the PAM sequence of Guide 8 [163]. The following 

primers were used to perform this site directed mutagenesis, ForPAMG8: 5’-

CTCTTCATGCCCAACTTAGTGCCACCCAAGATCC-3’ and RevPAMG8: 5’- GGGATCTTG 

GGTGGCACTAAGTTGGGCATGAAGAG-3’. The positive clones obtained from this second 

mutagenesis were named HDV-7T/A+mutPAM, HDV-8G/A+mutPAM, HDV-
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8T/A+mutPAM and HDV-15C/T+mutPAM. A wild-type HDV with only the PAM 

mutation, HDV-WT+mutPAM, was used as a control.   

 
5.2.2. E14-tg2a and HL-1 cells cultures 

 

The HL-1 cells were cultured as described in Cap2, session 2.4 of this thesis.  

E14-tg2a mouse embryonic stem cells were cultured in Dulbecco’s Modified 

Eagle’s medium (Thermo Scientific) supplemented with 15% of FBS embryonic stem 

cell-qualified (Thermo Scientific), 50mM of β-mercaptoethanol, 2mM L-Glutamine, 

1000U/ml of Leukemia Inhibitory Factor (LIF) (Merck Millipore, Darmstadt, Germany) 

and the 2i inhibitors: 1μM PD0325901 (inhibitor of mitogen-activated protein kinase), 

3μM CHIR99021 (inhibitor of glycogen synthase kinase-3) at 37ºC and 5% CO2 in 0,1% 

gelatin coated dishes [164-166]. The cells were sub-cultured every 2-3 days using 0,25% 

trypsin (Thermo Scientific) and split according to the desired density.  

 

In order to obtain embryoid bodies with beating cardiomyocytes (EBs), E14-tg2a 

cells were plated in hanging drops, at the density of 500 cells per drop, in bacterial 

grade petri dishes in ES medium without 2i and LIF for two days. Then, dishes were 

turned in the upright position and filled with 10 ml of ES medium without 2i and LIF. 

These low adherence conditions were maintained for a total of 6 days since the first 

plating in drops. The EBs were then collected, replated in a 90mm gelatin coated dish 

and cultured for a total of 15 days. During this period, cultures were daily observed 

under light microscopy, checking for spontaneous contractile activity [34, 167]. 

 

 

5.2.3. Transfection of E14-tg2a and HL-1 cells 
 
 E14-tg2a and HL-1 cells were transfected using the Neon transfection system 

(Thermo Scientific), following the manufacturer protocol. Briefly, 3x105 cells of either 

E14-tg2a or HL-1 were ressuspended in buffer R, containing 5μg of one of the five HDV 

(HDV-7T/A+mutPAM, HDV-8G/A+mutPAM, HDV-8T/A+mutPAM, HDV-15C/T+mutPAM 

or HDV-WT+mutPAM) and 5 μg of the pX459-G8. Transfection conditions for the HL-1 

cells were the following: 1700V, 20ms, 1 pulse; whereas for the E14-tg2a cells: 1400V, 
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10ms, 3 pulses. After electroporation, cells were immediately plated onto 35mm dishes 

with fresh medium.  After 48h, puromycin selection was started with 2μg/ml for the 

E14-tg2a or with 3μg/ml for the HL-1 cells. Individual clones of E14 7TA/mutG8, E14 

8TA/mutG8, E14 8GA/mutG8 and E14 15CT/mutG8 were further picked from each dish 

and transferred into 24well plates for further expansion. 

 
5.2.4. Genomic DNA extraction and PCR genotyping 
 

Cells from all the puromycin selected individual clones growing in 24well plates 

were trypsinized and collected for genomic DNA extraction and genotyping. Briefly, cell 

pellets were washed twice in 1x PBS, resuspended in a nuclear lysis buffer (1:1:4:2:12 

Tris-HCl 1M pH 8; NaCl 3M;EDTA 0,5M; SDS 10% ; H2O) and incubated overnight at 

55ºC with 80 μg/μl of Proteinase K. After two extractions with phenol/ chloroform/ 

isoamilic alcohol, and one chloroform extraction, the upper phase was precipitated 

with 2 volumes of 100% ethanol and 0,1 volume of sodium acetate 3M. After 

centrifugation, genomic DNA pellets was washed twice with 70% ethanol and 

resuspended in H2O. 

To genotype the site of the DSB in the Tnnt2 gene, and address whether or not 

each allele underwent homologous recombination and whether each clone is an 

homozygous or heterozygous, a pair of primers was chosen that allow the 

homozygosity determination of each clone by PCR: ForEx6TNNT2 (5’-

TCCAGTAGAGGACACCAAACC-3’) and RevI7TNNT2 (5’-CATGAAATGGGTGGCTCAAT-3’). 

PCR bands of the homozygous or heterozygous clones were purified from the agarose 

gel using NZYGelpure (Nzytech, Lisboa, Portugal), subsequently cloned in the 

pBluescript ks+ in the EcoRV site (Thermo Scientific) and sequenced with the primers 

T7 (5’- TAATACGACTCACTATAGG-3’) or T3 (5’- CCCTTTAGTGAGGGTTAATT-3’). The 

sequencing results will help determine the presence or absence of indels in each allele. 

 
5.2.5. Evaluation of cardiac gene expression in selected clones by RT-PCR 

 

In order to evaluate the expression of cardiac markers in the several generated 

clones, RNA was collected from clones-derived EBs after they start exhibiting 

spontaneous contractility (day 8 of culture, see above). RNA was isolated using Purezol 
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reagent (Bio-Rad) and cDNA synthesis was prepared according to protocol of the 

Transcriptor High Fidelity cDNA Synthesis Kit (Roche) using random primers.  

Specific pairs of primers were chosen to evaluate expression of relevant cardiac 

genes, as depicted in the following table:  

 
Table 5.2 - Primers used for evaluation of cardiac gene expression in selected clones 

 

 
5.3 Results 
 
5.3.1. Generation and characterization of a knockout TNNT2 cell line 

 

5.3.1.1. Generation of a Tnnt2 homozygous knockout cell line  

 

Gene / Protein Primer name Primer sequence (5’ to 3’) 

MYH7 (β- myosin heavy 

chain) 

For MYH7 GGAAGAGCGAGCGGCGCATCAAGG 

Rev MYH7 CTGCTGGAGAGGTTATTCCTCG 

ACTC1 (α-actin) For ACTC1 TGTTACGTCGCCTTCCATTTTGAG 

Rev ACTC1 AAGAGAGAGACATCTCAGAAGC 

GJA1 (connexin 43) For GJA1 GTTCAAGTATGGGATTGAAGAACACGGCAA 

Rev GJA1 TGGTTTTCTCCGTGGGACGTGAGAGGAAGC 

ANF (atrial natriuretic 

factor) 

For ANF CGTGCCCCGACCCACGCCAGCATGGGCTCC 

Rev ANF GGCTCCGAGGGCCAGCGAGCAGAGCCCTCA 

MYH6 (α- myosin heavy 

chain) 

For MYH6 GACAATGCCAATGCGAACAAG 

Rev MYH6 GAAGATCACCCGGGACTTCTC 

MYL2 (myosin light chain 2) 

 

For MYL2 CTGAGAGACACCTTTGCTGC 

Rev MYL2 TCCCGAACGTAATCAGCCTT 

Ppp3ca (Calcineurin) For Ppp3ca CGTTCCATTTCCACCAAGTC 

Rev Ppp3ca GCGTCGATATCCAGCAAGTT 

GATA4 For GATA4 TCTCTTTCCCGGGGACTACT 

Rev GATA4 GGTAGGGGCTGGAGTAGGAG 

MEF2C  (Myocyte Enhancer 

Factor 2C)  

ForMEF2C CCGATGCAGACGATTCAGTA 

RevMEF2C CCAGTGTGCTGACAGGATTG 

TNNT2 (cardiac troponin T) ForEx12/13TNNT2 CGGAAGAGTGGGAAGAGACA 

RevEx14TNNT2 CGCAGAACGTTGATTTCGTA 
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In order to understand the potential impact of a Tnnt2 knockout at the 

cardiomyocyte differentiation that occurs in embryoid bodies, a homozygous knockout 

was performed in E14-tg2a cells [34, 167]. The knockout of the Tnnt2 gene was 

obtained by double transfection of E14-tg2a cells with pX459-G1 and WT-HDV without 

any silence mutation in G1 PAM sequence. After puromycin selection, several clones 

were tested by PCR and checked by sequencing. One of the clones was successfully 

characterized as being a homozygous knockout, mainly by the presence of indels in the 

cleavage site of guide 1 (Figure 5.3). This cell line (E14 Tnnt2 hKO) will be further used 

as a HCM positive control.  

 

 

Figure 5.3 – Sequencing of the Tnnt2 double knockout E14-tg2a clone 

Sequencing of both alleles of the Tnnt2 homozygous knockout clone, revealing indels at the cleavage site 

of G1, due to further activity of Cas9 upon HR events.  

 

5.3.1.2. Embryoid bodies (EB) differentiation of Tnnt2 homozygous knockout 

cell line 

 

 In two sets of independent experiments, Tnnt2 homozygous knockout EBs were 

cultured as floating aggregates until day 5 and showed no difference from non-

transfected, wild type ones. However, after being transferred to a gelatin-coated plate 

at day 5, the homozygous knockout EBs were more irregular and showed no contractile 

cardiomyocytes on day 8, when compared to the control EBs, which exhibited 

numerous beating areas and regular edges (Figure 5.4).  
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Figure 5.4 - Embryoid bodies of E14-tg2a wild type and Tnnt2 homozygous knockout 

(A) Embryoid bodies (EBs) derived from wild type E14-tg2a cells. From day 0 to day 2, cells were plated in 

hanging drops-wise manner. On day 3, cells were plated in non-adherent petri dishes, and on day 5 were 

transferred to gelatin-coated dishes. On day 8, beating EBs were collected and RNA was further 

extracted to analyse expression of specific cardiac genes. (B) EBs derived from Tnnt2 homozygous 

knockout. Cells were platted and analysed as described above. 
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As previously mentioned, to further characterize the two different set of EBs in 

terms of cardiomyocyte differentiation potential, RNA was extracted from the EBs (WT 

and KO) at day 8. A panel of genes known to be expressed at the early stage of 

cardiomyocyte development (Tnnt2, Actc1, Mef2c, Gata4, Gja1) or to be altered in 

cardiomyopathy (Anf, Myh6, Myh7, Pp3ca) were assessed by RT-PCR (Table 5.2). 

Results show that cardiac specific genes such as α-myosin heavy chain (Myh6), β-

myosin heavy chain (Myh7), α-actin (Actc1), myocyte enhancer factor 2C (Mef2c), 

cardiac troponin T (Tnnt2) are not expressed in none of the EBs at day 1, as expected 

(Figure 5.5). Interestingly, at day 8, only control WT EBs show expression of this set of 

cardiac specific genes (Myh6, Myh7, Actc1, Mef2c, Tnnt2), suggesting that 

cardiomyocyte differentiation is delayed in EBs derived from Tnnt2 homozygous KO. On 

the other hand, GATA4 factor is only expressed in 8 days old EBs and in the HL-1 cells. 

The calcineurin (Pp3ca) is more expressed in 8 days old EBs when compared to EBs of 

day 1. These last two (GATA4 and Pp3ca) show no difference between WT and Tnnt2 

KO- derived cells. As a control, the level of expression of all tested genes was also 

analysed in primary cardiomyocytes (HL-1). The atrial natriuretic factor (Anf) is only 

expressed in these cells, whereas the connexion 43 (Gja1) is expressed in all analysed 

samples (Figure 5.5). 
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Figure 5.5 - Evaluation of cardiac gene expression in wild-type E14-tg2a and Tnnt2 homozygous KO-

derived EBs (day 1 and day 8), by RT-PCR. 

The levels of several cardiac-specific genes, such as α-myosin heavy chain (Myh6), β-myosin heavy chain 

(Myh7), α-actin (Actc1), myocyte enhancer factor 2C (Mef2c) and cardiac troponin T (Tnnt2) were 

analysed by RT-PCR in WT and Tnnt2 homozygous KO-derived EBs at day 1 and day 8. Levels of GATA4, 

atrial natriuretic factor (Anf), Connexion 43 (Gja1), calcineurin (Pp3ca) were also evaluated. The HL-1 

mouse cardiomyocyte cell line was used as a positive control. 

  

5.3.2. Generation of cell lines containing HCM-associated mutations in the 
TNNT2 gene using the CRISPR/Cas9 technology 
 

The previously described plasmid pPUR+5’HA+cDNA7-15+3’HA (or homology 

donor vector, HDV) was used for the development of HCM disease cell models. Four 

previously mentioned TNNT2 mutations were introduced separately by directed point 

mutagenesis in the HDV. And so, 4 different HDV were originated: HDV-7T/A, HDV-

8G/A, HDV-8T/A and HDV-15C/T. In order to create the HCM cell models, each of the 

HDV plasmids was co-transfected with the CRISPR-Cas9 plasmid px459-G8, in order to 

favour HR events at the Tnnt2 endogenous locus, and so introduction of each specific 

TNNT2 HCM-associated mutation (Figure 5.6). TNNT2 mutations were introduced in 

two different cell lines: cardiomyocyte cell line HL-1 [168] and mouse embryonic stem 

cell line E14tg2a. 

 

 

Figure 5.6 - Homologous recombination at the TNNT2 endogenous locus with representation of the 

four TNNT2 HCM-associated mutations.  

The red crosses represent the approximate position of the 4 TNNT2 HCM-associated mutations created 

by directed point mutagenesis in the HDV, which were incorporated by HR in the TNNT2 endogenous 

locus after guide8-mediated cleavage by Cas9. 
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Notice that in order to avoid further Cas9 cleavage in the Tnnt2 alleles after 

recombination, a silent mutation in the PAM sequence recognized by guide 8 was 

performed in all HDV plasmids (represented in blue, Figure 5.7), to avoid the DSB 

performed by Cas9. To do that site directed point mutagenesis was used to introduce 

the following silent mutation g.135847730G>A (Leu86Leu) into the HDV-WT, HDV-

7T/A, HDV-8G/A, HDV-8T/A and HDV-15C/T (Figure 5.7). 

 

 

Figure 5.7 - Homologous recombination at the Tnnt2 locus with representation of the four TNNT2 

HCM-associated mutations and of the silent mutation in the PAM sequence of guide 8.  

The red crosses represent the approximate position of the 4 TNNT2 mutations and the blue one the 

silent mutation of the PAM sequence created by directed point mutagenesis in the HDV. These were 

incorporated by HR in the TNNT2 locus thanks to the DSB created by the CRISPR-Cas9 system. 

 

Due to the low frequency of HR in HL-1 cells, a very low number of clones were 

obtained from this cell line and so, only E14-tg2a derived-clones were used for further 

characterization. Briefly, E14-tg2a cells were co-transfected with each of the five 

different linearized HDV plasmids (HDV-WT, HDV-7T/A, HDV-8G/A, HDV-8T/A and HDV-

15C/T) together with the pX459-G8. After puromycin selection, PCR screening for the 

HR-directed incorporation of each HDV was performed by using the pair of primers 

ForEx6/RevInt6 that allows to distinguish homozygous and heterozygous clones. The 

appearance of a 3394bp band means that a homologous recombination event had 

occurred, and a fragment with the cDNA exon10-exon16 was inserted; on the other 

hand, the presence of a smaller 1220bp band means that no homologous 

recombination event had occurred. A mutated homozygous clone, where both alleles 

had suffered a HR event, gives rise to amplification of a single PCR band of 3394bp, 
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whereas the presence of 3394bp and 1220bp PCR bands simultaneously means a 

heterozygous clone, with only one of the Tnnt2 endogenous alleles being target of a HR 

event  (Figure 5.8A). 

 

 

Figure 5.8 - PCR genotyping of selected clones upon co-transfection of E14-tg2a with each of HDV 

plasmids (HDV-WT, HDV-7T/A, HDV-8T/A, HDV-8G/A and HDV 15C/T) and pX459-G8. 

(A) Schematic representation of the position of the pair of primers ForEx6/RevInt7 used for PCR 

genotyping of selected clones. The size of PCR fragments amplified from TNNT2 alleles that had suffered 

or not HR events is also represented. (B-F) Screening by PCR of the selected clones co-transfected with 

pX459-G8 and the various HDV: HDV-WT (B), HDV-7T/A (C), HDV-7T/A (D), HDV-8G/A (E) and HDV 15C/T 

(F). The PCR reactions were performed using with the pair of primers ForEx6/RevInt7 to determine the 
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Tnnt2 cDNA incorporation upon a HR event using genomic DNA extracted from clones transfected with 

the various HDV, after puromycin selection. 

 

For each of the introduced Tnnt2 mutations, several homozygous or 

heterozygous clones were obtained as shown in Figure 5.8B. The summary of all the 

clones obtained is resumed in Table 5.3. Both PCR products of one of the heterozygous 

clones, E14-15CT-A6, were cloned into pBluescript for further sequencing analysis. 

Sequencing results from the 3394bp PCR product revealed that, as expected, Cas9 did 

not induce DSB at the mutated PAM sequence (Figure 5.9A) and that the 15C/T 

mutation was successfully introduced into one of the Tnnt2 locus (Figure 5.9B).  

 

Table 5.3 - Summary of the genotyping results  

HR: homologous recombination 

Cell type  Mutation Clone Genotype 

E14tg2a 

8TA 

A5 Heterozygous for HR 

A6 Heterozygous for HR 

B2 Heterozygous for HR 

15CT 

A1 Heterozygous for HR 

A4 Heterozygous for HR 

A6 Heterozygous for HR 

B1 Heterozygous for HR 

B2 Heterozygous for HR 

B4 Heterozygous for HR 

B5 Homozygous for HR 

B6 Heterozygous for HR 

WT 

A1 Heterozygous for HR 

A2 Heterozygous for HR 

A3 Heterozygous for HR 

A4 Heterozygous for HR 

A5 Heterozygous for HR 

B1 Heterozygous for HR 

B2 Heterozygous for HR 

B4 Heterozygous for HR 

8GA 

A2 Homozygous for HR 

A6 Heterozygous for HR 

B2 Heterozygous for HR 

B4 Heterozygous for HR 

B5 Homozygous for HR 

C1 Heterozygous for HR 
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C2 Heterozygous for HR 

C3 Heterozygous for HR 

7TA 

A4 Heterozygous for HR 

A6 Homozygous for HR 

B1 Homozygous for HR 

B4 Homozygous for HR 

B5 Heterozygous for HR 

 

 

 

Figure 5.9 - Sequencing of the E14-15CT-A6 clone PCR products. 

Sequencing results from the 3394bp PCR product revealing that the silent mutation of the PAM 

sequence of guide 8 is present without indels (A) and also the presence of the HCM-associated mutation 

15C/T (B). 

 
5.4. Discussion 
 

To date, few studies have been performed in specific HCM cell models to assess 

the impact of HCM mutations at cell level. Some studies were done for the MYH7 gene 

in human patient specific induced pluripotent stem cell derived cardiomyocytes (iPSCs-

CM), where the authors were able to reproduce a specific patient/mutation R663H and 

R442G in the MYH7 gene [35, 39].  Nevertheless, the use of patient derived cell-lines 

per se does not allow the observation of the phenotype of a single mutation due to 

patient-to-patient specific genomic context and it also does not allow the study of the 

phenotype at tissue level, such as fibrosis or even myocyte disarray [35]. So at least, 

isogenic HCM cell models are required in order to study the phenotypically impact of a 

single HCM-associated mutation. The use of the CRISPR-Cas9 system allowed during 



	

	 103	

this work the development of specific mutated HCM cell lines in mouse ES cells. Since, 

mouse ES cells are of easier manipulation and less time consuming than human ES 

cells, these were used instead of patient iPSCs cells as a first approach to establish a 

proof of principle for establishing of HCM cell lines by CRISPR-Cas9 system; hopefully, 

in the future, and despite the need of generation of human HCM cell models for further 

comparison with patient iPSC-CMs, these studies may serve as a first cell model to 

address the morphological and functional consequences of a given HCM-associated at 

the cell level. 

A first step towards this characterization was the development of a homozygous 

knockout of the Tnnt2 gene in E14-tg2a cells to assess cardiac specific gene expression 

in DKO-derived EBs when compared with WT-derived ones, so that the same could 

later be done with our isogenic Tnnt2 cell lines. A screening was performed on Tnnt2 

DKO-derived EBs in order to assess the possible impact on the spontaneous beating of 

the EBs on day 8 of differentiation, showing that these EBs behaved in a similar way 

until day 5 when compared with WT-derived ones; however, after being seeded in 

gelatin-coated dishes, DKO-derived EBs begin to be more irregular and show no sign of 

beating areas when compared to the WT-derived ones on day 8 of differentiation 

(Figure 5.4). Supporting our data, previous studies performed in homozygous KO mice 

where both alleles of the Tnnt2 gene were knockdown showed that hearts from mouse 

embryos around day 8-10 did not beat [169, 170]. Furthermore, these embryo hearts 

showed sarcomere disassembly and the thin filaments of the sarcomere did not 

assemble, due to the lack of the troponin T, which is essential for sarcomere assembly 

[169, 170]. Analysis of RT-PCR results for a set of cardiac specific genes in both WT and 

Tnnt2 DKO-derived EBs on day 8 of differentiation show that α-myosin heavy chain 

(Myh6), β-myosin heavy chain (Myh7), α-actin (Actc1), myocyte enhancer factor 2C 

(Mef2c) and cardiac troponin T (Tnnt2) were expressed only in WT-derived EBs and not 

in the Tnnt2 DKO-derived ones (Figure 5.5). In contrast, the expression of Gata4 was 

detected in both Tnnt2 DKO- and WT-derived EBs. It has been documented both on 

mouse EBs and in mouse embryos that GATA4 and MEF2C are transcription factors 

involved in early cardiac development [171-173]; moreover, these factors were 

reported to be overexpressed in HCM phenotypes [35]. As mentioned above, Gata4 is 

expressed in both control and Tnnt2 DKO-derived EBs, whereas Mef2c is present only in 
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the control WT-derived ones. It has been shown that GATA4 regulates expression of 

MEF2C, controlling cardiomyocyte proliferation [173, 174]; so, the expression of GATA4 

combined with the lack of Mef2c expression in Tnnt2 DKO-derived EBs might indicate 

that expression of Tnnt2 could be also required for sustained expression of Mef2c, an 

essential factor for cardiac muscle development, namely of the left ventricle [175]. On 

the other hand, calcineurin (Pp3ca) is expressed in both WT- and Tnnt2 DKO-derived 

EBs, showing increased levels of expression at day 8 of differentiation when compared 

to day 1. The expression of calcineurin and NFAT pathway is essential for early 

embryonic development since they are involved in the signalling for cardiovascular 

development [176, 177]; curiously its overexpression may lead to cardiac hypertrophy 

[13, 177]. So, the slightly higher calcineurin levels in the Tnnt2 DKO-derived EBs when 

compared to the control ones are in agreement with these early observations 

suggesting a correlation between higher levels of this factor and a hypertrophic clinical 

condition. Regarding  connexin 43 (Gja1) levels, they are similar in all analysed samples. 

This gene was used as a positive control [168], since it encodes a well-known gap 

junction protein expressed in cardiomyocytes and also in ES cells [178, 179]. Finally, the 

expression of the ANF factor was also assessed. The expression of ANF is usually 

observed in embryoid bodies after day 8.5 of differentiation, with this factor being 

chronically expressed in cases of HCM [13]. In agreement with these findings, ANF 

expression was only detected in control HL-1 cardiomyocytes, being absent in all 

analysed EBs at day 8 of differentiation [180, 181]. As previously mentioned, in Tnnt2 

DKO-derived EBs, at day 8 of differentiation, there is no expression of sarcomeric genes 

(Myh6, Myh7, Actc1, Tnnt2). Other studies showed that β-myosin heavy chain (MYH7) 

is expressed earlier during EB development, around day 3-4, and α-myosin heavy chain 

(MYH6) starts to be expressed later, around day 8 [182]. Our data is in agreement with 

these results, with both MYH6 and MYH7 genes being expressed only in WT-derived 

EBs at day 8 of differentiation; moreover, and due to its early expression during EB 

development, the levels of MYH7 are higher than the ones of MYH6 in WT-derived EBs 

at day 8 of differentiation. In wild-type developing EBs, α-actin and troponin T levels 

start being expressed as early as day 8 and day 5 respectively [183, 184], in the same 

direction of our RT-PCR results where both genes only show expression in WT-derived 

EBs at day 8 of differentiation. All together, our data reveal an important role of Tnnt2 
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gene for proper embryonic cardiac development. Also, these results may be a valuable 

asset to be used in the further characterization of each of our HCM cell lines carrying 

specific Tnnt2 HCM-associated mutations in order to assess their impact on embryonic 

cardiac development. Quantitative RT-PCR will be essential to determine the relevance 

of these preliminary results.  

 

In a second step of our work, and to further understand the morphological and 

functional consequences of a specific HCM-associated at the cell level, HCM cell lines 

carrying four different TNNT2 HCM-associated mutations were generated. Briefly, E14-

tg2a cells were co-transfected with a plasmid containing a specific mutated Tnnt2 cDNA 

pPUR+5’HA+cDNA7-15+3’HA (HDV) together with the CRISPR-Cas9 plasmid containing 

guide 8 (pX459-G8)[163]. Cells that undergo a Cas9-mediated DSB either repair the 

DNA by non-homologous end joining (NHEJ) or homologous recombination [96, 185, 

186]. Taking advantage of this fact, the HDV was developed to promote the insertion of 

the mutated cDNAs carrying one of the four Tnnt2 HCM-associated mutations by HR 

into the endogenous Tnnt2 locus by the presence of two homology arms that flank the 

Tnnt2 cDNA from exon 7 to 15 and a selection cassette for puromycin. Furthermore, 

and to avoid the occurrence of multiple Cas9-mediated DSB after HR events take place 

(which could be responsible for indels occurrence in the inserted Tnnt2 cDNA), a silent 

mutation of the PAM sequence of guide 8 in the HDV was performed; this has been 

reported in the literature as being enough to prevent further Cas9 cleavage upon an HR 

event[187]. After the co-transfection of the various versions of HDV and the pX459-G8 

in E14-tg2a cells, several clones were obtained. Notice that HL-1 cells were not used in 

these assays due to the low rate of HR events observed in this primary cell culture. 

Genotyping results of the selected clones show that most of them are 

heterozygous clones (81%), with only 5 being homozygous (19%). Sequence analysis of 

one of these clones (E14-15CT-A6) revealed that both mutations, the silent one in the 

PAM sequence of guide 8 and the Tnnt2 HCM-associated one, are present without any 

other alteration in whole sequence of the Tnnt2 cDNA, proving that mutation of the 

PAM sequence of guide 8 was sufficient to prevent further Cas9-mediated cleavage.  

In order to further carry out this work, all the remaining clones need to be 

sequenced to confirm that they carry indeed the desired cDNA mutated with each 
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specific Tnnt2 HCM-associated mutation. Once this is done, the next step would be to 

differentiate Tnnt2 mutated E14-tg2a cell lines into cardiomyocytes and characterised 

them at the RNA level by RT-PCR and qRT-PCR for the same panel of cardiac specific 

genes to assess if there are changes in their levels of expression that may be associated 

to an HCM phenotype. In parallel, immunofluorescence assays will be perform using 

antibodies to detect specific cardiac proteins, such as troponin t protein and actin, to 

determine the effect of TNNT2 mutations on sarcomere assembly, protein distribution 

and cardiomyocyte morphology. These two proteins were used in another study to 

verify increased cellular size and multinucleation associated to the HCM phenotype at 

cell level [35]. Another assay to be performed in order to further characterise the Tnnt2 

mutated cell lines is calcium influx fluorescence imaging. Calcium gradients are an 

essential part of cardiomyocyte contraction and action potential and this technique is 

very helpful to detect alterations in the calcium transduction signal in both normal and 

diseased cardiomyocytes [188]. The ultimate goal of these experiments is to obtain 

well-characterised HCM cell models in order to use them for further comparison with 

on patient derived iPSCs-CM. 
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CHAPTER 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

General Discussion   
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6. GENERAL DISCUSSION 
 

The work in this thesis was performed in Maria Carmo-Fonseca´s Lab, at 

Instituto de Medicina Molecular, giving me a unique opportunity to match basic science 

with translational one. This thesis focuses in a disease that is the most common 

hereditary disease of the heart: Hypertrophic Cardiomyopathy (HCM). HCM affects 

1:500 individuals and, currently, only symptomatic treatment is available [2]. The 

genetic basis of the disease is largely known with new knowledge being added to it 

over the years, thanks to genotype/phenotype association analysis and candidate gene 

approaches. Nevertheless, causal mutations are identified in only 50% of the patients 

[5]. Even amongst members of the same family, carrying the same HCM-causing 

mutation, the disease is characterized by a large phenotypic variability [189].  

 

The main goals of this thesis are: 1) to establish a proof-of-principle for a novel 

gene therapy for HCM at the cell level; 2) the identification of new pathogenic HCM-

causing mutations by next-generation sequencing; and 3) the development of new 

HCM cell models for a better understanding of the HCM genotype/phenotype 

relationships.  

 

The results obtained during this research project allowed an insight on the 

future development of RNA based gene therapy for HCM (Chapter 3), the identification 

of candidate HCM causing-mutations that might interfere in splicing or transcription 

factor binding sites (Chapter 4) and the development of cell models of HCM using a 

cutting-edge technique of genome editing: CRISPR-Cas9 system (Chapter 5). 

 

Several types of gene therapy have been designed to target different types of 

diseases. There are gene therapies that range from gene supplementation, gene 

silencing, genome editing to spliceosome-mediated mRNA trans-splicing [190, 191]. 

These are not yet completely efficient to guarantee a reliable therapeutic alternative 

and so several studies are presently needed. When it comes to recessive disorders, 

gene supplementation might be used with the delivery of a full cDNA of the respective 

mutated gene, but this is limited by (1) potential harmful effects due to random 
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insertion of therapeutic cDNA and (2) the packaging size of current delivery vectors, 

like the AAV vector[190, 191]. In the latter one, a smaller therapeutic molecule would 

be the answer like in spliceosome-meditated mRNA trans-splicing. But, when it comes 

to dominant disorders, there is a need of endogenous regulation of the mutated allele 

[190]. A dominant disorder can be due to (1) haploinsufficiency, where the levels of 

wild-type protein produced from the WT allelle are insufficient to maintenance of 

normal cell function, or to (2) a gain of function of the altered protein produced by the 

mutated allelle, or even both [191]. In these diseases, a promising gene therapy 

approach would be eliminate the mutated proteins and keep normal levels of the wild-

type ones. A gene therapy capable of targeting both issues is spliceosome-meditated 

mRNA trans-splicing, either for recessive or dominant diseases [190, 191]. 

In Chapter 2, through a strategy to correct the mutated protein by RNA 

manipulation, the development of a potential therapeutic approach for HCM is 

presented [43, 48, 49]. Since HCM is a complex autosomal dominant disease, 

spliceosome-meditated mRNA trans-splicing was the chosen strategy. In previous 

studies, an RNA trans-splicing strategy was shown to be a promising gene therapy 

approach for autosomal dominant disorders, such as retinitis pigmentosa, 

epidermolysis bullosa, dysferlinopathies, myotonic dystrophy type 1, Huntington’s 

disease and also, hypertrophic cardiomyopathy [43, 48, 49, 190]. One of the most 

frequently affected genes in HCM is the TNNT2 gene and some mutations in this gene, 

mostly downstream of exon 7, show a worst clinical prognosis. The common outcome 

of these mutations is a poorly functioning protein with a dominant negative effect on 

myofibrillar organisation and regulation of the intracellular calcium (Ca2+), leading to 

altered myocardial energetics and reduced contractile capacity of the myocardium [26, 

73, 74]. The phenotype resulting from these mutations are well characterized and 

severe in HCM patients. In order to establish a proof-of-principle to target these 

mutations at the RNA level, two different RNA trans-splicing strategies were used: 

double trans-splicing (DTS) and 3’trans-splicing (3’TS). One of the HCM pathogenic 

mutations in exon 8 of the TNNT2 gene, the rs121964856 (R92Q) mutation [192], was 

targeted with a strategy of double trans-splicing approach of exon 8. Other pathogenic 

HCM mutations downstream of exon 7, such as rs121964858 (exon 8), rs121964857 

(exon 15) [162], were targeted using a 3’trans-splicing approach. 
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When planning a trans-splicing strategy, in the design of the trans-splicing 

molecule (TSM), there are several features that influence its success, such as: splicing 

motifs and their strength (splice sites, branch point, polypyrimidine tract), location of 

the annealing sequences (AS), addition of intronic splicing enhancers and proximity to 

the target transcript (Figure 3.8) [190, 191]. In our assays, all these features were 

analysed and carefully chosen in order to increase the efficiency of the trans-splicing 

process. Despite this, is important to take in consideration that the efficiency of trans-

splicing can also vary based on specific gene location. So, in the two strategies that 

were designed in this work, the DTS and 3’TS, all these features were taken in 

consideration to maximize the success odds of both strategies. Initially, annealing 

sequences (AS) were carefully chosen and tested by immunofluorescence (IF) to 

determine if and which endogenous target sequences were available for binding 

(Figure 3.10B). On the other hand, specific muscle splicing enhancers were included in 

the intronic portion of the TSM, to increase the odds of trans-splicing events (Figure 

3.10A). Moreover, two different promoters that drove the expression of the TSM were 

used, an endogenous one (minimal Tnnt2 mouse promoter) and a viral one (CMV 

promoter) (Figure 3.10C). Finally, carefully selected intronic sequences from the human 

endogenous intron 8 and 9 that had predicted endogenous enhancers were 

maintained. Nevertheless, the lack of detection of trans-splicing events with DTS and 

3’TS strategies, either by restriction analysis or by the use of a degenerate primer 

against the human exon 9 in a conventional RT-PCR, showed that there is not enough 

trans-spliced product to be detected by any of these techniques (Figure 3.11, 3.12). 

The detection of a very faint band by RT-PCR using a radioactively labelled primer 

clearly demonstrates that the efficiency of the trans-splicing, under these conditions, is 

very limited (Figure 3.13).  The small size of introns 7 and 8 of the mouse Tnnt2 gene 

may be an obstacle in the choice of the annealing sequences, since there were fewer 

AS that could be tested for this locus. In some previous studies, it was advantageous to 

mask certain endogenous splicing features (splice sites, branch point, polypyrimidine 

tract) to force the spliceosome to choose the splice sites present in the trans-splicing 

molecule [48, 190]. A good example of this was, the use of antisense nucleotides 

(ASOs) that successfully promoted trans-splicing by blocking the endogenous splice site 

forcing the spliceosome to choose the splice site of the TSM, in the RHO gene and 
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COL7A1 gene [48, 190]. According with this point of view, to increase the success rate 

of double trans-splicing, we had also used different antisense nucleotides (ASOs) that 

specifically block the endogenous splice sites around murine Tnnt2 endogenous exon 8. 

This strategy was tested in WT cultured cells but without success since there was no 

detection of endogenous exon 8 skipping. Based on this, we decided to not proceed 

with the use of these ASOs in further trans-splicing assays. 

There might be also other important factors, such as an antisense transcription 

or binding of splicing factors that have a potential to interfere in this given locus of the 

Tnnt2 gene. Both may difficult the occurrence trans-splicing reaction and thus interfere 

with its success. Until date, the efficiency of trans-splicing in several studies ranges 

from 30-60% in vitro and 1-10% in vivo, which is still very low for a significant 

therapeutic effect. However, most of these studies were carried on using artificial 

systems such as a minigene, and so their efficiency cannot be directly compared with 

our system, that uses the endogenous gene [49, 71, 72, 105]. Despite this, all together, 

these assays show that more studies in the design of an optimized TSM are needed 

[190]. 

In summary, our data suggest that murine endogenous Tnnt2 locus around exon 

8 is not the best candidate for either 3’TS or DTS. To test the feasibility of trans-splicing 

in the Tnnt2 gene, an alternative approach would be the choice of other target introns 

thus allowing several ASs to be tested; also, other splicing enhancers could be inserted 

in the TSM in order to favour trans-splicing events. Finally, hiding endogenous splice 

sites taking advantage of the used ASs could also improve the efficiency of our 

approaches. Notice that trans-splicing strategies are highly influenced by all the factors 

discussed above and so their success may vary from case to case. Nevertheless, and 

despite its low efficiency until date, this RNA-based gene therapy still the most 

attractive to target autosomal dominant disorders by impairing the production of 

mature mutated transcripts and so, avoiding the production of a deleterious, gained-

of-function protein.  

 

Since, HCM is a complex genetic disorder, with only 50% of patients having a 

genetic diagnosis [82, 145], there is a need to further screen for HCM pathogenic 

mutations to better understand the disease and the current knowledge about its 
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genotype/phenotype relationships [193]. Through the increase number of HCM 

variants being found by NGS approaches and with the use of cellular or animal disease 

models more information can be gathered for this end, allowing the genetic 

sequencing of HCM genes in these patients to help establish a possible genetic 

diagnosis, with the identification of new pathogenic variants. 

 

So, in Chapter 3, we presented a method that may expand the number and type 

of new candidate HCM causing-mutations. It hypothesizes that the expression of 

certain HCM related genes could also be affected by changes in non-coding regulatory 

regions of the genome. These may be putative targets for transcription factors or 

splicing regulation and thus influence the HCM phenotype. To test this hypothesis, 

using targeted high throughput sequencing and computational approaches to identify 

the noncoding variants, we had identify new HCM candidate mutations that can 

interfere in those regions. 

In a cohort of 16 HCM-diagnosed patients, we had three patients with disease-

causing coding mutations in the MYBC3 gene, and additional patients with variants of 

uncertain significance in the TNNT2, MYBPC3, TTN, TPM1 and MYH6 genes; all these 

scored as likely pathogenic according to multiple in silico prediction tools.  

In this set of patients, 6 variants were identified that scored with high values 

using GWAVA, CADD and Genomiser metrics (Figure 4.4B). These included two variants 

in VCL, two variants in TTN, one variant in ACTC1 and one variant in PRKAG2 (Table 

4.2). The VCL variant c.499+367T>C (rs113195070) was detected in 6 patients. One of 

these patients was a compound heterozygous for a splice site mutation in MYBPC3 and 

the VCL variant. Analysis of family members revealed that carriers of the MYBPC3 

mutation did not manifest the disease, but family members that are compound 

heterozygous are clinically affected (Figure 4.5). Furthermore, this variant was enriched 

in the patient population (rs113195070) localized in a region associated with FOS, JUN 

and EP300 (Figure 4.6A).  

Also, two single nucleotide substitutions in the titin gene (rs142156368 and 

rs72650063) were identified that are 3 to 6-fold more frequent in our cohort of 

probands than in normal European populations. If these two variants do interfere with 

titin splicing, as predicted by the SPIDEX computational model, they are likely to 
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contribute to HCM phenotype. One of these variants (rs72650063) was even predicted 

by Human Splicing Finder to disrupt binding of splicing factor SRSF1 (Figure 4.6C).  

 

In this part of the current work, we developed and described a pipeline analysis 

that can be used to prioritize the variants found within the non-coding regions and 

identify those with a potential impact on HCM. One of the main challenges with the 

NGS gene panels still remains the increasing number of variants, and the ability to 

distinguish a polymorphism from a potential pathogenic mutation [194]. These variants 

will require experimental and functional studies to determine the final impact of these 

potential pathogenic noncoding variants in cell and animal models. Based on this, in 

the last Chapter of this work, HCM cell models were developed in order to determine 

the functional impact of a given HCM-associated variant.   

 

In fact, nowadays, there is a clear need for HCM cell models in order to expand 

the knowledge about the genotype/phenotype relationships at the cellular level. 

Previous studies of several HCM patient specific iPSCs cardiomyocytes with specific 

mutations in the genes MYH7, MYBPC3, TPM1 were developed and proved to be very 

helpful in that endeavour [35, 39-41].  However, patient specific cell lines might have 

other mutations contributing to the HCM phenotype and so the use of isogenic cell 

lines is of great value, to specifically study the effect of a given variant. This can be 

accomplished thanks to genome editing techniques, like the CRISPR-Cas9 system, 

either by creating the desired mutation in a wild-type ES cell line or by correcting any 

other mutations in patient specific cell lines [195]. 

In Chapter 4, we present custom engineered E14-tg2a-based cell lines, by using 

the powerful CRISPR/Cas9 genome-editing tool to induce a desired HCM-associated 

mutation. We had chosen 4 well-known TNNT2 HCM-causing mutations and mouse ES 

cells as cell model due to technical constraints (easier manipulation and less time 

consuming than human ES cells). Our results establish a proof of principle that by using 

the CRISPR-Cas9 gene-editing tool we are able to developed mouse ES cell lines 

carrying specific HCM-causing mutations, which in the future may serve as control to 

morphological and functional characterization of patient specific iPSC-CMs at the 

cellular level.  
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A first step towards this characterization was the production of EBs derived 

from a double knockout (DKO) of the Tnnt2 gene to assess its potential impact on stem 

cell differentiation into cardiomyocytes. Briefly, both WT and Tnnt2 DKO murine ES 

cells were differentiated into EBs and, at day 8 of differentiation. Morphologically, the 

most significant differences were observed at day 8 of differentiation, where the Tnnt2 

DKO derived-EBs were more irregular and had no beating areas (Figure 5.4). Previous 

studies performed in Tnnt2 DKO mice documented that hearts from mouse embryos 

around day 8-10 also did not beat [169, 170]. When analysing the results of a set of 

cardiac specific genes in both WT and Tnnt2 DKO derived-EBs by RT-PCR (Figure 5.5), at 

day 8 of differentiation, a pattern became apparent with Myh6, Myh7, Actc1, Mef2c 

and Tnnt2 genes being expressed only in WT EBs and not in the Tnnt2 DKO ones. In 

contrary, expression of Gata4 was detected in both WT and Tnnt2 DKO EBs. It has been 

shown that Gata4 regulates expression of Mef2C controlling cardiomyocyte 

proliferation [173, 174]. So, the lack of Mef2c expression in Tnnt2 DKO derived-EBs 

might indicate that expression of Tnnt2 could be also required for sustained expression 

of Mef2c. As previously mentioned, at day 8 of differentiation, sarcomeric genes 

expression (Myh6, Myh7, Actc1, Tnnt2) was absent in the Tnnt2 DKO derived-EBs. In 

other studies using Tnnt2 DKO mice, the embryo hearts showed sarcomere disassembly 

and the thin filaments of the sarcomere did not assemble, due to the lack of the 

Troponin T, which is essential protein for sarcomere assembly [169, 170]. Our results 

from the DKO of the Tnnt2 gene show a possible role of this gene in embryonic cardiac 

development.  

Next, and in order to create isogenic HCM cell models, puromycin-resistant 

homology donor vectors, (HDV) containing cDNAs carrying one of four well-known 

HCM-causing mutations were generated and used to edit the murine endogenous 

Tnnt2 locus taking advantage of a CRISPR/Cas9 genome editing approach. Also, a silent 

mutation was induced by site directed point mutagenesis in the PAM sequence of 

guide 8 in all HDV, to prevent Cas9 from performing a DSB in the allele where HR 

occurred. Upon co-transfection of E14-tg2a cells with each of the linearized HDV 

plasmids together with the pX459-G8 that encodes the Cas9 nuclease and the gRNA8, 

several clones were isolated by puromycin selection. PCR genotyping of these clones 

revealed that they were mostly heterozygous (81%), with only 5 being homozygous 
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(19%). Sequencing analysis of one of the clones (E14-15CT-A6) revealed that both the 

silent PAM mutation of guide 8, as well the specific HCM causing-mutation was present 

in the murine endogenous Tnnt2 locus. Once the rest of the clones are sequenced, they 

can be differentiated into cardiomyocytes and further characterized. In the time frame 

of this project, these were the reachable results. But, we were able to establish a 

proof-of-principle of the development of mouse HCM isogenic ES cell models with the 

use of the genome-engineering tool, CRISPR-Cas9 system. 

The ultimate goal of these experiments is to obtain well-characterised HCM cell 

models that can be use in the future to compare with patient specific ones, allowing a 

better understanding of genotype/phenotype relationships in HCM.  

 

The findings reported in this thesis meet the goals establish when it was first 

defined as a project. They will contribute, either at cell level or in a clinical setting, to 

the understanding and management of HCM.  

 First, we attempted to develop an RNA based gene therapy for HCM in the 

TNNT2 gene. Despite the low efficiency, the double trans-splicing approach for exon 11 

leaves some room for improvement. Second, a pipeline was developed to prioritize 

non-coding variants that might interfere in splicing or in transcription factor binding 

sites and have an impact in HCM. Third, HCM isogenic cell models were developed with 

the CRISPR-Cas9 system for further studies of the HCM genotype/phenotype 

relationships. 

 

In the near future, RNA based therapy for HCM should be further investigated. 

The pipeline developed can be further used for the identification of novel variants in 

new cohorts of HCM patients and even contribute for their ‘molecular diagnosis’. 

Finally, the developed HCM cell lines carrying the 4 well-known TNNT2 HCM-causing 

mutations need to be fully characterized so they can be further used as controls for 

characterizing patient derived HCM cell lines.  

Overall, the work presented here contributes with novel knowledge for the 

HCM field at three different levels: mutation screening for HCM diagnosis/prognosis, 

HCM cell models for genotype/phenotype relationships studies, and RNA trans-splicing 

assays as a potential HCM RNA based gene therapy. 
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