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Abstract. The aim of the paper is the axiomatic justification of the theory of experience and chance,one of the dual halves of which is the Kolmogorov probability theory. The author’s main idea was thenatural inclusion of Kolmogorov’s axiomatics of probability theory in a number of general concepts ofthe theory of experience and chance. The analogy between the measure of a set and the probability of anevent has become clear for a long time. This analogy also allows further evolution: the measure of a set iscompletely analogous to the believability of an event. In order to postulate the theory of experience andchance on the basis of this analogy, you just need to add to the Kolmogorov probability theory its dualreflection — the believability theory, so that the theory of experience and chance could be postulated asthe certainty (believability-probability) theory on the Cartesian product of the probability and believabilityspaces, and the central concept of the theory is the new notion of co∼event as a measurable binary relationon the Cartesian product of sets of elementary incomes and elementary outcomes. Attempts to build thefoundations of the theory of experience and chance from this general point of view are unknown to me,and the whole range of ideas presented here has not yet acquired popularity even in a narrow circle ofspecialists; in addition, there was still no complete system of the postulates of the theory of experienceand chance free from unnecessary complications. Postulating the theory of experience and chance can becarried out in different ways, both in the choice of axioms, and in the choice of basic concepts and relations.If one tries to achieve the possible simplicity of both the system of axioms and the theory constructedfrom it, then it is hardly possible to suggest anything other than axiomatization of concepts co∼event andits certainty (believability-probability). The main result of this work is the axiom of co∼event, intendedfor the sake of constructing a theory formed by dual theories of believabilities and probabilities, each ofwhich itself is postulated by its own Kolmogorov system of axioms. Of course, other systems of postulatingthe theory of experience and chance can be imagined, however, in this work a preference is given toa system of postulates that is able to describe in the most simple manner the results of what I call anexperienced-random experiment.
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1 Co∼event as a set of dual pairs
The solution to any problembegins with correcting the names.If the names are wrong,then the concepts have no basis.If the concepts have no basis,then the events can not occur.

Confucius (551 – 479 BC)Analects (Edited Conversations)Chapter XIII, 3.
I’ll start with one detail at which you should linger. Among the reasons that gave rise to the theory ofexperience and chance, for a long time it would be possible to linger on the philosophy of the duality ofbeing. But our milestone is quite different.
The “tacit” Kolmogorov axiom defines each event x as some subset x ⊆ Ω of elementary outcomes ω ∈ Ωsuch that
• when a one ω ∈ x happens,they say that the event x happens;
• otherwise, when no elementary outcome ω ∈ x happens,they say that the event x does not happen.

So, the fact that the event x happens for an elementary outcome ω ∈ Ω is defined by the “tacit” Kolmogorovaxiom as a realization of the membership relation: ω ∈ x (see Axiom 0 on page 32). For reasons unknownto us, this postulate is not included in Kolmogorov’s axiomatics of probability theory explicitly: it receivedfrom its creator the role of only a preliminary definition.
At the same time, it is this statement, as the axiom of the event, that can serve as an essential aid indelimiting probability theory and general measure theory. Moreover, in the new theory of experience andchance (TEC) this axiom of the event enters as one of the dual halves in the axiom of the co∼being (seeAxiom 1 on page 32), without explicit support for which the new theory can not take place because theTEC sees in everything, that we have always understood under the events, dual pairs1:⟨bra-event (experience) ∣∣∣ket-event (chance)⟩. (1.1)
and defines its central concept, co∼event (experience∼chance), as the set of such dual pairs.
The definition of co∼event as a set of dual pairs (1.1) is not someone’s whim, and certainly not mine. Iwill venture to say that this is only the “wish” of Kolmogorov’s theory of probability, which despite itsperseverance is still hidden from prying eyes. And the point is this.
It suffices to imagine a finite set of Kolmogorov events X ⊂ A, chosen from the sigma-algebra of theprobability space (Ω,A,P), which consists of Kolmogorov events x ∈ X, defined in Kolmogorov’s theoryof probability as measurable subsets x ⊆ Ω of elementary outcomes ω ∈ Ω; so that before your eyes thereis such the following chain of two relations of membership:

ω ∈ x ∈ X, (1.2)
where the Kolmogorov event x ⊆ Ω acts in dual roles: an element of the set X, and a subset of the set Ω.
Such a dilemma is not only uncommon in a hard-to-see corpus of mathematical theories using thelanguage of set theory, but rather it is truism. But in probability theory, this truism has proved to bea natural carrier of the deep sense of definition (1.1), which suggests working with each concept of theKolmogorov theory of events and their probabilities as with a dual pair consisting of an experience ofobservers and an observation of chance. As a result of such element-set duality, the Cartesian product

⟨Ω|Ω⟩ = ⟨Ω| × |Ω⟩ , (1.3)
1 This one and a number of subsequent formulas use the bra-ket terminology and bra-ket notation ⟨·|·⟩, which are defined belowand which largely rely on what I call an element-set labelling (see [1]).
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of the bra-set ⟨Ω| (the set of experiences of observes) and the ket-set |Ω⟩ (the set of chances of observation)becomes the mathematical model of Ω, and the dual pair
⟨x|x⟩ ⊆ ⟨Ω|Ω⟩ , (1.4)

becomes the mathematical model of each event x ⊆ Ω as the co∼event. The first element of the pair, thebra-event ⟨x| ⊆ ⟨Ω|, plays a role of the event x as an element of the set X and describes an experience ofobserver of what xwas, and the second element, the ket-event |x⟩ ⊆ |Ω⟩, plays a dual role of the event x asa subset of the set Ω and describes an observation of what x is.
Moreover, a duality of an element and a subset [1], which naturally manifests itself in the concept ofthe Kolmogorov event in probability theory, ensures the continuation of the chain of two membershiprelations (1.2) to the following:

ω ∈ x ∈ X ∈ SX ⊆ P(X), (1.5)
where now a subset of the Kolmogorov events X ⊆ X also appears in the dual role as an element of theset SX ⊆ P(X− {∅Ω}), and a subset of the set X. This time another dual pair:⟨TerX//X

∣∣ ter(X//X)
⟩
⊆ ⟨Ω|Ω⟩ (1.6)

becomes the mathematical model of each so called terraced event numbered by X as the terracedco∼event. The left element of the pair, terraced bra-event⟨TerX//X

∣∣ = ∑
x∈X

⟨x| ⊆ ⟨Ω| , (1.7)
numbered byX ⊆ X, as by subset of the set X, is defined by the union of subset of experiences of observes
⟨x| , x ∈ X , and the right element, terraced ket-event

|ter(X//X)⟩ =
∩
x∈X

|x⟩
∩

x∈X−X

|x⟩c ⊆ |Ω⟩ , (1.8)

numbered by X ∈ SX, as by element of the set SX, is defined as the observation of intersection of the setof chances |x⟩ , x ∈ X and |x⟩c = |Ω⟩−|x⟩ , x ∈ X−X , where |x⟩c = |Ω⟩−|x⟩ is a complement of the ket-event
|x⟩ to the ket-set |Ω⟩.
Although the previous preliminary text “slightly” runs ahead and contains some mathematicalmisunderstandings due to the premature use of the still-unknown bra-ket concepts and notations ofthe element-set labelling, but we will still have time and the possibility of their correct definition toshow convenience, practicality and unbearable fruitfulness of dual mathematical models co∼event (1.4)and terraced co∼event (1.6) as dual pairs that are unusually effective not only in theory but also inapplications.
2 Warnings
Warning 1 (dual interpretation of a chain of memberships). I consider it my duty to warn the reader of aperfectly understandable desire not to detain a glance at the chain of three relations of memberships

ω ∈ x ∈ X ∈ SX ⊆ P(X), (2.1)
which for all and at once seems to be not worthy of attention as any other set-theoretical banality (seeWarning 2). In fact, (2.1) does not contain any set-theoretic news. However, one news for the theoryof experience and chance and, in particular, for the probability theory in it all the same is: the dualinterpretation of the chain of membership relations rightfully plays, in my opinion, a key role in definingthe basic concepts of TEC. This role is so key that this duality is considered by me as the basis of theaxiomatics of the new theory. The ordinary chain of membership relations, a simple sequence of binaryrelations of elements, subsets and sets of subsets, serves as an inevitable set-theoretic cause that forcesthe modern understanding of Kolmogorov’s theory of probability to be transformed from an important
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but special case of general measure theory to one of the dual halves of the new theory of experienceand chance. This news is naive as a too literal adherence to the meaning of binary relations betweenset-theoretic concepts, and is revealing, revealing something that is still unknown, in the theoreticaldisclosure of our own practices of observers and observations. And sometimes, as in the study ofexperience and chance, such disclosure turns out to be an incomprehensible exact theory.
Warning 2 (membership relations and paradoxes of naive set theory). Somemathematical relations suchas “member of” and “subset of”, generally speaking, should not be understood as binary relationsbecause its domains and codomains cannot be sets in usual systems of axiomatic set theory. For example,if you try to model the general concept of membership as a binary relation “∈”, then then for this youwill have to define the domain and the codomain, which can be a class of all sets. But such a class isnot a set in the naive set theory, and the assumption that the relation “∈” is defined on all sets leads toa contradiction from the well-known Russell paradox. At the same time, in the overwhelming majorityof mathematical contexts, links to the relation “member of” and “subset of” are absolutely harmless,because they are tacitly limited to some set which is clear from the context. The removal of this problemconsists in choosing each time a sufficiently large set A, which contains all objects of interest, and workwith the restriction “∈A” instead of “∈”. Similarly, the relation “⊆” must also be limited to the relation“⊆A” to have some domain A and the codomain P(A), set of all subsets of A. Therefore, the chain of threemembership relations (2.1) will always be understood by me as

ω ∈Ω x ∈X X ∈ SX SX ⊆P(X) P(X), (2.2)
the chain of limited by defaultmembership relations.
Warning 3 (relative subsets and relative empty subsets). Since in the theory of experience and chanceone has to deal simultaneously with subsets of sets of different levels, we will need unusual, butconvenient notation, directly indicating what subsets of which set is spoken. For example, if we aretalking about subsets x ⊆ Ω,X ⊆ X, or O ⊆ P(X), then denotations of subsets x,X , or O, when appropriate,we will write more fully: x//Ω, X//X, or O//P(X), directly specifying in which sets these subsets contain.Especially we will have to deal with empty subsets: ∅//Ω, ∅//X, or ∅//P(X), for which we introduce morecompact notation: ∅Ω = ∅//Ω, ∅X = ∅//X, or ∅P(X) = ∅//P(X), we will talk about them as relatively emptysubsets, and call Ω-empty, X-empty, or P(X)-empty subsets correspondingly.
Warning 4 (to happen, to be experienced, to occur). Theory of experience and chance, or theory ofcertainties, is a theory of co∼events. It is a synergy of two interrelated dual theories — the theory ofbelievabilities and the theory of probabilities that study two dual faces of the co∼event — a ket-event,which can happen or not happen, and a bra-events, which can be experienced or not be experienced,in order to the co∼event itself could occur or not occur. For a long time I selected the words to happen,to be experienced, to occur to describe the way of existence of a co∼event and its dual faces. It is possiblethat my choice to someone seems not entirely successful. However, these words, in my opinion, are mostsimilar to expressing two dual parts of what could previously be expressed in one word: to occur. In thetheory of co∼events the expression “to occur” is understood as “to be experienced what happens” and isassociated only with a co∼event, and for its dual parts “new” terms: to happen for ket-events, and to beexperienced for bra-events, are fixed. I could not find these three words right away, which helped me inthe selection process to make myself forget and to ask the reader now to try to forget that the words tohappen, to be experienced, to happen are usually perceived, rather, as synonyms for each other. This isimportant because in this text I intend to use them exclusively as three different mathematical terms,denoting three different concepts. Of course, this will make the style of the presentation much moredifficult, but I’m ready to sacrifice the style for the sake of accuracy of expressing the main idea of thenew theory about dual nature of co∼event: “something occurs when one is experienced what happens”(See Axiom 1 on page 32).
3 “Element-set coordinates” generated by a binary relation
Our goal is to divide each concept of the theory of experience and chance into two dual parts andpresent it in the form of a conveniently written dual pair. For the recording of such dual pairs, we are



OLEG YU VOROBYEV. POSTULATING THE THEORY OF EXPERIENCE AND CHANCE 29

proposing, for the time being, only formally to borrow the Dirac notation [2, 3], which are quite suitablefor our purposes and well-proven in quantum mechanics. In order to continue the study of the dualityof elements and sets in bra-ket notations, it is necessary to begin with the definition of some preliminaryterminological set-theoretic constructions necessary for constructing the bra-ket presentation of the newtheory. It is a question of the notion of a measurable binary relation as the most suitable applicant forthe mathematical model of an event as a dual pair. It turned out that the measurable binary relationhas very convenient labelling properties [1]. The point is that for work in a set-theoretic space whoseobjects of interest serve simultaneously space elements, sets of elements, and sets of subsets of elements, itis necessary to have in stock a certain coordinate system suitable for labelling both the space itself and itsparts. Here, in my opinion, a slightly peculiar but effective system of set-theoretic coordinates, generatedby the measurable binary relation and quite based on some labelling set X and some set SX ⊆ P(X)of its labelling subsets, and also on the M-complement2 X(c) of the labelling set X and on the one-to-one
corresponding SX set of its labelling subsets SX(c)

=
{
Xc(c) : X ∈ SX} ⊆ P

(
X(c)
).

Consider themeasurable space (Ω,A) composed of some set Ω and a sigma-algebraA of its subsets and weemphasize that: elements ω ∈ Ω; measurable subsets x ⊆ Ω; some set X = {x : x ∈ A} ⊆ A, composed frommeasurable subsets x ∈ X; and some set SX ⊆ P(X− {∅Ω}) of subsets X ⊆ X, consisting from measurablesubsets x ∈ X ⊆ X; until they have no meaningful interpretation and form only a basisΛ peculiar element-set labels λ ∈ Λ (tags, dockets, tickets, or names), intended for a element-set labelling, or a nominatingthe parts and details of the construction that we are going to propose in the theory of experience andchance as a mathematical model of an event as a dual pair.
Predefinition 1 (Basic element-set labels). Basic element-set labels λ ∈ Λ are called as elements,sets and sets of subsets of the measurable space (Ω,A), and also results of terraced set-theoreticoperations over them, equipped with their own titles.
We’ll fill up the stock of Λ tags with one more label, Cartesian product

X× SX =
{
(x,X) : x ∈ X, X ∈ SX} , (3.1)

which defines a binary relation
RX, SX =

{
(x,X) : x ∈ X,x ∈ X, X ∈ SX} ⊆ X× SX (3.2)

as a membership relation x ∈ X between elements x ∈ X and subsets X ∈ SX; and also a complementarybinary relation
Rc

X, SX =
{
(x,X) : x ̸∈ X,x ∈ X, X ∈ SX} ⊆ X× SX (3.3)

as a non-membership relation x ̸∈ X between elements x ∈ X and subsets X ∈ SX; so that
RX, SX + Rc

X, SX = X× SX. (3.4)
Finally, we add to the stock Λ so called terraced3 label(TerX//X, ter(X//X)

)
=

( ∪
x∈X

x,
∩
x∈X

x
∩

x∈X−X

(Ω− x)

)
⊆ Ω× Ω, (3.5)

numbered by labels-subsets X ∈ SX and while defined simply as a pair of indicated measurable subsetsof Ω.
2The set X(c) = {xc : x ∈ X} is called a complement by Minkowski (an M-complement) of the set X.3Those who are familiar with the beginnings of the eventological theory [4, 2007] should keep their attention to the amazinginevitability of the “splitting” of the previously unified concept of the terrace event into two dual halves, the right of which is the

terraced ket-event which is defined as a terrace event of the first kind ter(X//X) =
∩

x∈X

x
∩

x∈X−X

(Ω− x) ⊆ Ω from the eventological
part of the Kolmogorov probability theory, and the left one is a terraced bra-event, a new concept from the theory of believabilities,
dual to the probability theory, which is defined as terraced event of the 5th kind TerX//X =

∪
x∈X

x ⊆ Ω from the eventological
classification.
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To have a full stock we’ll stock up in the literal sense “complementary” element-set labels, constructedfrom: 1) the complements xc = Ω − x to measurable subsets x ⊆ Ω, 2) the М-complementary set X(c) =

{xc : x ∈ X} ⊆ A composed from these complements, and 3) the sets SX(c)

=
{
Xc(c) : X ∈ SX} ⊆ P

(
X(c)
) of

subsets Xc(c) = (Xc)(c) = (X−X)(c) ⊆ X(c), i.e., such that Xc(c) = {xc : x ∈ Xc} ∈ SX(c) .
There we also place a label similar to (3.1), the Cartesian product

X(c) × SX(c)

=
{
(xc, Xc(c)) : xc ∈ X(c), Xc(c) ∈ SX(c)

}
, (3.6)

which defines analogous to (3.3) a complementary binary relation
Rc

X(c), SX(c) =
{
(xc, Xc(c)) : xc ∈ Xc(c), xc ∈ X(c), Xc(c) ∈ SX(c)

}
⊆ X(c) × SX(c) (3.7)

as a membership relation xc ∈ Xc(c) between elements xc ∈ X(c) and subsets Xc(c) ∈ SX(c) ; and also acomplementary binary relation
R

X(c), SX(c) =
{
(xc, Xc(c)) : xc ̸∈ Xc(c), xc ∈ X(c), Xc(c) ∈ SX(c)

}
⊆ X(c) × SX(c) (3.8)

as a non-membership relation xc ̸∈ Xc(c) between elements xc ∈ X(c) and subsets Xc(c) ∈ SX(c) ; so that
Rc

X(c), SX(c) + R
X(c), SX(c) = X(c) × SX(c)

. (3.9)
Finally, do not forget the similar to (3.5) terrace label

(TerXc(c)//X(c) , ter(Xc(c)//X(c)
))

=

 ∪
xc∈Xc(c)

xc,
∩

xc∈Xc(c)

xc
∩

xc∈X(c)−Xc(c)

(Ω− xc)

 ⊆ Ω× Ω, (3.10)

numbered by labels-subsets Xc(c) ∈ SX(c) .
The stock Λ of element-set labels λ ∈ Λ is intended to construct such a system of element-set“coordinates”, which, relying on a duality “element–set”, will allow us to divide each concept of thetheory of experience and chance (TEC) into two dual parts and present it in the form of a convenientlywritten dual pair, i.e., pairs composed of two dual parts. In the bra-ket notation [1], the dual parts ofpairs labelled with the labels λ, λ′ ∈ Λ, are denoted by ⟨λ| and |λ′⟩ correspondingly, the entire dual pair isdenoted by ⟨λ|λ′⟩ and is defined as the Cartesian product ⟨λ|λ′⟩ = ⟨λ| × |λ′⟩ of their dual parts, placing thecorresponding concept of the theory of experience and chance in the system of “element-set coordinates”.
4 Co∼event as a binary relation
Let ⟨Ω,A|Ω,A⟩ =

(
⟨Ω|Ω⟩ , ⟨A|A⟩

) be a measurable bra-ket space4, labelled by the measurable binaryrelation R ⊆ ⟨Ω|Ω⟩ using R-labels from the measurable space (Ω,A) with R-labelling sets XR ⊆ A andSXR ⊆ P(XR), which are defined the following way [1].
Definition 1 (basic R-labelling set XR). The basic R-labelling set XR ⊆ A of measurable subset of
Ω is defined by the binary relation R ⊆ ⟨Ω|Ω⟩ as the set of labels

XR =
{
x ∈ A : |x⟩ = R|⟨ω∗|, ⟨ω∗| ∈ ⟨Ω|

}
⊆ A, (4.1)

composed from measurable subsets x ⊆ Ω labelling ket-subsets |x⟩ ⊆ |Ω⟩ that serve by values of thecross-sections: |x⟩ = R|⟨ω∗| ⊆ |Ω⟩ of binary relation R by bra-points ⟨ω∗| ∈ ⟨Ω|.
Note, if there is the bra-point ⟨ω∗| ∈ ⟨Ω| such that R|⟨ω∗| = ∅|Ω⟩ then R|⟨ω∗| = |∅Ω⟩, i.e. the empty cross-section R|⟨ω∗| coincides with the ket-subset |∅Ω⟩ where ∅Ω ∈ XR is the Ω-empty label.

4In the following discourse, I use the notions and notations of the element-set labelling, introduced in the preliminary work [1],without necessarily defining them again here for the sake of space saving.
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Definition 2 (basic set SXR of R-labelling subsets). The basic set SXR ⊆ P(XR − {∅Ω}) of R-labellingsubsets of measurable subsets of Ω is defined by the binary relation R ⊆ ⟨Ω|Ω⟩ as the set of set-labels
SXR =

{
X ⊆ XR − {∅Ω} : ter(X//XR) ̸= ∅Ω

}
⊆ P(XR − {∅Ω}), (4.2)

composed only from labelling subsetsX ⊆ XR that do not contain theΩ-empty label:∅Ω /∈ X , and numberthe Ω-nonempty terraced labels: ter(X//XR) ̸= ∅Ω.
The measurable relation R generates the following element-set R-labelling quotient-sets.

⟨Ω|/R = ⟨XR| = {⟨x| : x ∈ XR} (4.3)
is the R-labelling bra-quotient-set ⟨Ω|/R by the binary relation R ⊆ ⟨Ω|Ω⟩, under which the labels x ∈ XRof labelling set XR label all bra-subsets ⟨x| ∈ ⟨Ω|/R of the quotient-set ⟨Ω|/R;

|Ω⟩/R =
∣∣∣ SXR

⟩
=
{
|ter(X//XR)⟩ : X ∈ SXR

} (4.4)
is the R-labelling ket-quotient-set |Ω⟩/R by the binary relation R ⊆ ⟨Ω|Ω⟩, under which the subsetsX ∈ SXR

from the set of labelling subsets SXR label the terraced ket-subsets |ter(X//XR)⟩ ∈ |Ω⟩/R of the quotient-set
|Ω⟩/R;

⟨Ω|Ω⟩/R =
⟨
XR

∣∣∣ SXR

⟩
=
{
⟨x|ter(X//XR)⟩ : x ∈ XR, X ∈ SXR

} (4.5)
is the R-labelling bra-ket-quotient-set ⟨Ω|Ω⟩/R by the binary relation R ⊆ ⟨Ω|Ω⟩, under which the pairs
(x,X), where x ∈ XR is an element of the labelling set XR, and X ∈ SXR is a subset from the set SXR oflabelling subsets, label all bra-ket-subsets ⟨x|ter(X//XR)⟩ ∈ ⟨Ω|Ω⟩/R of the quotient-set ⟨Ω|Ω⟩/R.
Predefinition 2 (events and co∼events).
⋆ The bra-points ⟨ω| ∈ |Ω⟩ are called elementary bra-incomes (incomes).
⋆ The bra-subsets ⟨x| ⊆ ⟨Ω| and terraced bra-subsets ⟨TerX//XR

| ⊆ ⟨Ω| of the bra-set ⟨Ω| are called bra-eventsand terraced bra-events correspondingly.
⋆ The ket-points |ω⟩ ∈ |Ω⟩ are called elementary ket-outcomes (outcomes).
⋆ The ket-subsets |x⟩ ⊆ |Ω⟩ and terraced ket-subsets |ter(X//XR)⟩ ⊆ |Ω⟩ of the ket-set |Ω⟩ are called ket-events and terraced ket-events correspondingly.
⋆ The bra-ket-subsets ⟨x|x⟩ ⊆ ⟨Ω|Ω⟩, ⟨TerX//XR

|ter(X//XR)⟩ ⊆ ⟨Ω|Ω⟩ and ⟨x|ter(X//XR)⟩ ⊆ ⟨Ω|Ω⟩ are calledelementary bra-ket-events.
⋆ The bra-ket-subset R ⊆ ⟨Ω|Ω⟩, i.e., any measurable binary relation, generating the R-labelling, is calleda co∼event (an experienced-random co∼event).
Predefinition 3 (full-believable, certainty, non-experienced, and impossible events and full-
believable-certainty and non-experienced-impossible co∼events).
⋆ The bra-events ⟨Ω| and ⟨∅| are called full-believable and non-experienced correspondingly.
⋆ The ket-events |Ω⟩ and |∅⟩ are called certainty and impossible correspondingly.
⋆ The co∼events ⟨Ω|Ω⟩ and ⟨∅|∅⟩ are called full-believable-certainty and non-experienced-impossiblecorrespondingly.
⋆ The co∼events ⟨Ω|x⟩ and ⟨x|Ω⟩ are called full-believable-random and experienced-certaintycorrespondingly.
⋆ The co∼events ⟨∅|x⟩ and ⟨x|∅⟩ are called non-experienced-random and experienced-impossiblecorrespondingly.
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⋆ The co∼events ⟨Ω|∅⟩ and ⟨∅|Ω⟩ are called full-believable-impossible and non-experienced-certaintycorrespondingly.
Predefinition 4 (R-labelled events). For the sake of brevity, the following general notation of
R-labelled events, and suited general denotations:

⟨λ∗
R| =

{
⟨x| , x ∈ XR,

⟨TerX//XR
| , X ∈ SXR ,

|λR⟩ =

{
|x⟩ , x ∈ XR,

|ter(X//XR)⟩ , X ∈ SXR ,

⟨λ∗
R|λR⟩ =

{
⟨x|x⟩ , x ∈ XR,

⟨TerX//XR
|ter(X//XR)⟩ , X ∈ SXR ,

⟨λ∗
R|λ′

R⟩ = ⟨x|ter(X//XR)⟩ , x ∈ XR, X ∈ SXR

(4.6)

are introduced for ket-events |x⟩ ⊆ |Ω⟩, terraced ket-events |ter(X//XR)⟩ ⊆ |Ω⟩, bra-events ⟨x| ⊆ ⟨Ω|, terracedbra-events |TerX//XR
⟩ ⊆ |Ω⟩, and also for elementary bra-ket-events: ⟨x|x⟩ ⊆ ⟨Ω|Ω⟩, ⟨TerX//XR

|ter(X//XR)⟩ ⊆
⟨Ω|Ω⟩ and ⟨x|ter(X//XR)⟩ ⊆ ⟨Ω|Ω⟩; which are defined in Predefinition 3 and labelled by the co∼event
R ⊆ ⟨Ω|Ω⟩.
Predefinition 5 (bra-ket-duality of R-labelled events). They say that the R-labelled bra-event
⟨λ∗

R| and the R-labelled ket-event |λR⟩ are bra-ket-dual each other and form the pair of bra-ket-dual eventsas the Cartesian product ⟨λ∗
R|λR⟩ = ⟨λ∗

R| × |λR⟩.
5 “Something happens when that is experienced, what happens”

Die Welt ist alles, was der Fall ist.5
Ludwig Wittgenstein [5, 1921]
The world is all that occurs,when that is experienced, what happens.

Theory of experience and chance [2017]

5.1 The axiom of co∼event as of what occurs, when that is experienced, what happens
Before the axioms 1 (the axiom of co∼event), which is central to the theory of experience and chance,I will formulate for comparison, in the same notation, what I called the “silent” Kolmogorov axiom. Itsnumber is zero.
Axiom 0 (an event happens, when its elementary outcome happens [Kolmogorov theory of probabilities]).
(1) The elementary outcome ω ∈ Ω is what happens: ω = ω↑, or does not happen: ω ̸= ω↑.
(2) Any event λ ⊆ Ω happens: λ = λ↑, when the elementary outcome happens: ω = ω↑, which belong to it:
ω↑ ∈ λ.
Axiom 1 (co∼event occurs, when that is experienced, what happens [theory of experience and chance]).
(1) The elementary ket-outcome |ω⟩ ∈ |Ω⟩ is what happens: |ω⟩ = |ω⟩↑, or does not happen: |ω⟩ ≠ |ω⟩↑.

5“The world is all that is the case.”
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(2) For any R ⊆ ⟨Ω|Ω⟩ any R-labelled ket-event |λR⟩ ⊆ |Ω⟩ happens: |λR⟩ = |λR⟩↑, when the elementaryoutcome happens: |ω⟩ = |ω⟩↑,which belong to it: |ω⟩↑ ∈ |λR⟩.
(3) For any R ⊆ ⟨Ω|Ω⟩ any R-labelled bra-event ⟨λ∗

R| ⊆ ⟨Ω| is experienced: ⟨λ∗
R| = ⟨λ∗

R|
↓, when dual R-labelledket-event happens: |λR⟩ = |λR⟩↑.

(4) The elementary bra-income ⟨ω∗| ∈ ⟨Ω| is expereinced ⟨ω∗| = ⟨ω∗|↓, when R-labelled bra-event: ⟨λ∗
R| =

⟨λ∗
R|

↓ is experienced, to which ⟨ω∗| belongs: ⟨ω∗| ∈ ⟨λ∗
R|

↓.
(5) The elementary income-outcome ⟨ω∗|ω⟩ ∈ ⟨Ω|Ω⟩ is what occurs: ⟨ω∗|ω⟩ = ⟨ω∗|ω⟩↓↑, when the elementaryket-outcome: |ω⟩ = |ω⟩↑ happens and the elementary bra-income: ⟨ω∗| = ⟨ω∗|↓ is experiencred; or does notoccur: ⟨ω∗|ω⟩ ̸= ⟨ω∗|ω⟩↓↑, when |ω⟩ ̸= |ω⟩↑ or ⟨ω∗| ̸= ⟨ω∗|↓.
(6) The co∼event R ⊆ ⟨Ω|Ω⟩ occurs: R = R↓↑, when the elementary income-outcome: ⟨ω∗|ω⟩ = ⟨ω∗|ω⟩↓↑occurs,which belongs to it: ⟨ω∗|ω⟩↓↑ ∈ R.
5.2 Kolmogorov axioms
5.2.1 Kolmogorov axioms of believability theory
Let ⟨Ω| be the bra-set of bra-points ⟨ω| ∈ ⟨Ω|, which we shall call the elementary bra-incomes (or simplythe elementary incomes), and ⟨A| be the set of subsets from ⟨Ω|. For any R ⊆ ⟨Ω|Ω⟩ elements ⟨λ∗

R| ∈ ⟨A| arecalled the R-labelled bra-events, and ⟨Ω| be the bra-set of elementary incomes.
Axiom 2 (algebra of bra-events). ⟨A| is an algebra of bra-events. The algebra of bra-events is alsocalled the bra-algebra.
Axiom 3 (believability of bra-events). For any R ⊆ ⟨Ω|Ω⟩ each R-labelled bra-event ⟨λ∗

R| ∈ ⟨A| isassigned the nonnegative real number B(⟨λ∗
R|). This number is called the believability of R-labelled bra-event ⟨λ∗

R|.
Axiom 4 (normalization of believability). B(⟨Ω|) = 1.
Axiom 5 (additivity of believability). If R-labelled bra-events ⟨λ∗

R| and ⟨λ∗
R
′| are not intersected in

⟨Ω|, then
B(⟨λ∗

R|+ ⟨λ∗
R
′|) = B(⟨λ∗

R|) +B(⟨λ∗
R
′|).

Axiom 6 (continuity of believability). For a decreasing sequence ⟨λ∗
R|1 ⊇ ⟨λ∗

R|2 ⊇ . . . ⊇ ⟨λ∗
R|n ⊇ . . .

of R-labelled bra-events from ⟨A| such that∩
n

⟨λ∗
R|n = ∅⟨Ω|, the equality lim

n
B(⟨λ∗

R|n) = 0 takes place.
Aggregate of objects ⟨Ω,A,B| = (⟨Ω| , ⟨A| ,B), which is satisfied to axioms 2, 3, 4, 5 and 6 we shall call thebelievability bra-space, or simply the believability space.
5.2.2 Kolmogorov axioms of probability theory
Let |Ω⟩ be the ket-set of ket-points |ω⟩ ∈ |Ω⟩which we shall call the elementary ket-outcomes (or simply theelementary outcomes), and |A⟩ be the set of subsets from |Ω⟩. For any R ⊆ ⟨Ω|Ω⟩ the elements |λR⟩ ∈ |A⟩ ofthe set |A⟩ we shall call the R-labelled ket-events, and |Ω⟩ be the ket-set of elementary outcomes.
Axiom 7 (algebra of ket-events). |A⟩ is an algebra of ket-events. The algebra of ket-events is alsocalled the ket-algebra.
Axiom 8 (probability of ket-events). For any R ⊆ ⟨Ω|Ω⟩ each R-labelled ket-event |λR⟩ ∈ |A⟩ is assignedthe nonnegative real number P(|λR⟩). This number is called the probability of R-labelled ket-event |λR⟩.
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Axiom 9 (normalization of probability). P(|Ω⟩) = 1.
Axiom 10 (additivity of probability). If R-labelled ket-events |λR⟩ and |λ′

R⟩ are not intersected in |Ω⟩,then
P(|λR⟩+ |λ′

R⟩) = P(|λR⟩) +P(|λ′
R⟩).

Axiom 11 (continuity of probability). For a decreasing sequence |λR⟩1 ⊇ |λR⟩2 ⊇ . . . ⊇ |λR⟩n ⊇ . . . of
R-labelled ket-events from |A⟩ such that∩

n

|λR⟩n = ∅|Ω⟩ the equality lim
n

P(|λR⟩n) = 0 takes place.
The aggregate of oblects |Ω,A,P⟩ = (|Ω⟩ , |A⟩ ,P), which is satisfied to axioms 7, 8, 9, 10 and 11 we shallcall the probability ket-space, or simply the probability space.
5.3 Axioms of the theory of certainties (believabilities-probabilities)
Let ⟨Ω|Ω⟩ = ⟨Ω| × |Ω⟩ be the set of bra-ket-points ⟨ω∗|ω⟩ = ⟨ω∗| × |ω⟩ ∈ ⟨Ω|Ω⟩, which we shall call theelementary bra-ket-incomes-outcomes (or simply the elementary incomes-outcomes), and ⟨A|A⟩ be the setof subsets from ⟨Ω|Ω⟩. For any R ⊆ ⟨Ω|Ω⟩ the elements ⟨λ∗

R|λR⟩ ∈ ⟨A|A⟩ are called the R-labelled bra-ket-events, and ⟨Ω|Ω⟩ be the bra-ket-set of elementary incomes-outcomes.
Axiom 12 (algebra of bra-ket-events). ⟨A|A⟩ = α

(
⟨A| × |A⟩

) is a minimal algebra of bra-ket-events,which contains the Cartesian product of algebras ⟨A| × |A⟩. This algebra is also called bra-ket-algebra.
Axiom 13 (certainty of bra-ket-events). For any R ⊆ ⟨Ω|Ω⟩ each R-labelled bra-ket-event ⟨λ∗

R|λR⟩ ∈ ⟨A|A⟩is assigned the nonnegative real numberΦ(⟨λ∗
R|λR⟩) = B(⟨λ∗

R|)P(|λR⟩). This number is called the certainty of
R-labelled bra-ket-event ⟨λ∗

R|λR⟩.
Property 1 (normalization of certainty). Φ(⟨Ω|Ω⟩) = 1.Proof. Φ(⟨Ω|Ω⟩) = B(⟨Ω|)P(|Ω⟩) = 1 by axioms 4, 9 and 13.
Property 2 (additivity of certainty). If R-labelled bra-ket-events ⟨λ∗

R|λR⟩ and ⟨λ∗
R
′|λ′

R⟩ are not intersectedin ⟨Ω|Ω⟩, then
Φ(⟨λ∗

R|λR⟩+ ⟨λ∗
R
′|λ′

R⟩) = Φ(⟨λ∗
R|λR⟩) +Φ(⟨λ∗

R
′|λ′

R⟩).

Proof. An additivity of product of additive functionsB andP is a fact of general measure theory. So thatan additivity of certainty Φ on ⟨A|A⟩ follows routinely from the axioms 5, 10 and 13.
Property 3 (continuity of certainty). For a decreasing sequence ⟨λ∗

R|λR⟩1 ⊇ ⟨λ∗
R|λR⟩2 ⊇ . . . ⊇ ⟨λ∗

R|λR⟩n ⊇
. . . of R-labelled bra-ket-events from ⟨A|A⟩ such that∩

n

⟨λ∗
R|λR⟩n = ∅⟨Ω|Ω⟩, the equality lim

n
Φ(⟨λ∗

R|λR⟩n) = 0

takes place.Proof. A continuity of certainty Φ on ⟨A|A⟩ as a product of the continuous believability B on ⟨A| andthe continuous probability P on |A⟩ follows from the general measure theory by axioms 6, 11 and 13.
The aggregate of objects ⟨Ω,A,B|Ω,A,P⟩ = (⟨Ω|Ω⟩ , ⟨A|A⟩ ,Φ), which is satisfied to axioms 12 and 13 weshall call the certainty (believability-probability) bra-ket-space, or simply the certainty space.
Property 4 (believability, probability and certainty of some events and co∼event). From the axiomsof the theory of certainties it follows that
⋆ Φ(⟨Ω|Ω⟩) = B(⟨Ω|) = P(|Ω⟩) = 1,
⋆ Φ(⟨∅|∅⟩) = B(⟨∅|) = P(|∅⟩) = 0,
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⋆ Φ(⟨Ω|∅⟩) = Φ(⟨∅|Ω⟩) = 0,
⋆ Φ(⟨∅|λR⟩) = Φ(⟨λ∗

R|∅⟩) = 0,
⋆ Φ(⟨Ω|λR⟩) = P(|λR⟩),
⋆ Φ(⟨λ∗

R|Ω⟩) = B(⟨λ∗
R|).

Note 1 (on infinity spaces). For an exhaustive presentation of innovations in the postulating ofthe theory of experience and the chance, it is quite sufficient to have the finite space and four firstKolmogorov axioms in both the believability bra-space (axioms 2 — 5), and the probability ket-space(axioms 7 — 10). And to postulate the theory of experience and chance in infinite spaces, it takes onlya long-known necessary, but routine procedure, to linger here on which I do not see any special need.Therefore, dropping the routine, we will always assume that we have at our disposal the smallestsigma-algebras ⟨A|, |A⟩ and ⟨A|A⟩, containing those sigma algebras that are sufficient for finite space;and the believability B, the probability P and the certainty Φ are countably additive functions obtainedas a result of unique extensions to all sets from the corresponding sigma-algebras ⟨A|, |A⟩ and ⟨A|A⟩.Thus, it is always assumed that the believability bra-space ⟨Ω,A,B|, the probability ket-space |Ω,A,P⟩and the certainty bra-ket-space ⟨Ω,A,B|Ω,A,P⟩ are Borel spaces, so that the new theory of experienceand chance had complete freedom of action, not connected with the danger of coming to events or toco∼events, which have no believability, no probability or no certainty.
5.4 Properties of co∼events and its dual halves: bra-events and ket-events

Property 5 (bra-event is experienced, when ket-event happens). If the ket-event |x⟩ ⊆ |Ω⟩ happens:
|x⟩ = |x⟩↑, then the bra-event ⟨x| ⊆ Ω is experienced: ⟨x| = ⟨x|↓. Otherwise, when ket-event |x⟩ ⊆ |Ω⟩ does nothappen: |x⟩ ̸= |x⟩↑, the bra-event isn’t experienced: ⟨x| ̸= ⟨x|↓.
Proof follows from the item (3) of Axiom 1.
Property 6 (bra-events from which something follows; ket-events that follow from something).
(1) If the ket-event |x⟩ ⊆ |Ω⟩ happens: |x⟩ = |x⟩↑, then all ket-events which contain it: |x⟩↑ ⊆ |y⟩ ⊆ |Ω⟩happens: |y⟩ = |y⟩↑; in other words, all ket-events, which follow from |x⟩↑, happens.
(2) If the bra-event ⟨x| ⊆ ⟨Ω| is experienced: ⟨x| = ⟨x|↓, then all bra-events, which are contained in it:
⟨y| ⊆ ⟨x|↓ ⊆ ⟨Ω|, are experienced: ⟨y| = ⟨y|↓; in other words, all bra events, from which ⟨x|↓ follows, areexperienced.
Proof follows from the items (2) and (4) of Axiom 1.
Property 7 (terraced bra-event is experienced, terraced ket-event happens).
(1) The terraced ket-event

|ter(X//XR)⟩ =
∩
x∈X

|x⟩
∩

x∈XR−X

(|Ω⟩ − |x⟩) ∈ |A⟩

happens: |ter(X//XR)⟩ = |ter(X//XR)⟩↑, when the ket-outcome, which belongs to it: |ω⟩ ∈ |ter(X//XR)⟩,happens: |ω⟩ = |ω⟩↑. Otherwise, the terraced ket-event does not happens: |ter(X//XR)⟩ ̸= |ter(X//XR)⟩↑.
(2) The terraced bra-event

⟨TerX//XR
| =

∑
x∈X

⟨x| ∈ ⟨A|

is experienced: ⟨TerX//XR
| = ⟨TerX//XR

|↓, when the terraced ket-event |ter(X ′//XR)⟩ = |ter(X ′//XR)⟩↑, such
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that X ⊆ X ′ (see Footnote6) happens. Otherwise, the terraced bra-event isn’t experienced: ⟨TerX//XR
| ̸=

⟨TerX//XR
|↓.

Proof of (1) follows from the item (2) of Axiom 1, and the proof of (2) follows from the item (3) ofAxiom 1 and the item (1) of Property 6.
Property 8 (co∼event as a membership relation). Any co∼event R ⊆ ⟨Ω|Ω⟩ in the measurable bra-ket-space ⟨Ω,A|Ω,A⟩ is equivalence to the membership relation

R⟨XR| SXR ⟩ =
{
⟨x|ter(X//XR)⟩ : x ∈ X

}
⊆
⟨
XR

∣∣∣ SXR

⟩ (5.1)
on element-set R-labelling ⟨XR| SXR⟩ of the quotient-set ⟨Ω|Ω⟩/R. In other words,

R =
{
⟨ω∗|ω⟩ ∈ ⟨Ω|Ω⟩ : ⟨ω∗|ω⟩ ∈ ⟨x|ter(X//XR)⟩ ∈ R⟨XR| SXR ⟩

}
⊆ ⟨Ω|Ω⟩ . (5.2)

Wherein the co∼event R occurs then and only then, when the elementary income-outcome ⟨ω∗|ω⟩ = ⟨ω∗|ω⟩↓↑occurs, such that ⟨ω∗|ω⟩↓↑ ∈ ⟨x|ter(X//XR)⟩, and the membership relation: x ∈ X holds.
Proof relies on equivalence of the inclusion relation ⊆⟨Ω|Ω⟩ and the membership relation ∈XR

(see [1])
⟨x|ter(X//XR)⟩ ⊆ R ⇐⇒ x ∈ X, (5.3)

from which it follows that the co∼event R occurs, i.e., ⟨ω∗|ω⟩↓↑ ∈ R, then and only then, when twomembership relations ⟨ω∗|ω⟩↓↑ ∈ ⟨x|ter(X//XR)⟩ and x ∈ X hold. This proves the property.
6 Beliavability, probability and certainty (believability-probability) measures inthe theory of experience and chance
For convenience, we introduce abbreviated notation for the probability, believability and certainty ofsome bra-events, ket-events and bra-ket-events7:

bx = B(⟨x|) — believability of the bra-event ⟨x| ∈ ⟨A| ,
px = P(|x⟩) — probability of the ket-event |x⟩ ∈ |A⟩ ,

b(X//XR) = B(⟨TerX//XR
|) — believability of the terraced bra-events ⟨TerX//XR

| ∈ ⟨A| ,
p(X//XR) = P(|ter(X//XR)⟩) — probability of the terraced ket-event |ter(X//XR)⟩ ∈ |A⟩ ,

φx = Φ(⟨x|x⟩) — certainty of the bra-ket-event ⟨x|x⟩ ∈ ⟨A|A⟩ ,
φ(X//XR) = Φ(⟨TerX//XR

|ter(X//XR)⟩) — certainty of the bra-ket-event ⟨TerX//XR
|ter(X//XR)⟩ ∈ ⟨A|A⟩ ,

φx(X//XR) = Φ(⟨x|ter(X//XR)⟩) — certainty of the bra-ket-event ⟨x|ter(X//XR)⟩ ∈ ⟨A|A⟩ .

(6.1)

By Axiom 13 we have
φx = bxpx — certainty of the bra-ket-event ⟨x|x⟩ ∈ ⟨A|A⟩ ,

φ(X//XR) = b(X//XR)p(X//XR) — certainty of the bra-ket-event ⟨TerX//XR
|ter(X//XR)⟩ ∈ ⟨A|A⟩ ,

φx(X//XR) = bxp(X//XR) — certainty of the bra-ket-event ⟨x|ter(X//XR)⟩ ∈ ⟨A|A⟩ .
(6.2)

6In the evenology [4] this event has a special denotation: terX//XR
=

∑
X⊆X′

ter(X′//XR) and is called the terraced event of the 2-d
type.7 The bra-events from the set ⟨XR| = {⟨x| : x ∈ XR} are disjoint and form a partition of the bra-space ⟨Ω| =

∑
x∈XR

⟨x|. The
such set ⟨XR| it generates only two kinds (of the six standard kinds [6]) “non-trivial” terraced bra-events. These are terraced bra-events of the fifth kind ⟨TerX//XR

| =
∑

x∈X ⟨x| and of the third kind ⟨terXc//XR | =
∩

x∈Xc ⟨x|, which, moreover, are correspondingcomplements of each other in the bra-space ⟨Ω|: ⟨Ω| − ⟨TerX//XR
| = ⟨terXc//XR

| , X ⊆ XR. The remaining four kinds of events areconstants for all X ⊆ XR, which are equal to either ∅⟨Ω|, or⟨Ω|. This is easy to verify. In the bra-ket formalism of the theory ofexperience and chance, one pair of dual terraces is singled out: the terraced bra-event of the fifth kind ⟨TerX//XR
| and the terracedbra-event of the first kind |ter(X//XR)⟩ [7], which serve as the dual “vis-a-vis”. And the terraced events of other kinds do not playa significant role. This fact and concern for the brevity of the bra-ket formalism is the reason for my deviation from the standardterraced designations: to indicate the believability of terraced bra-events of the fifth kind I use not the standard abbreviation

bX//XR
= B(⟨TerX//XR

|), the subindex in which repeats the subindex in the record of the terrace bra-event, but the abbreviation
b(X//XR) = B(⟨TerX//XR

|), which clearly corresponds to the designation for the probability of its dual “vis-a-vis”, the terraced ket-event of the first kind: p(X//XR) = P(⟨ter(X//XR)|).
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Theorem 1 (certainty of a co∼event, Robbins-Fubini theorem [8, 9]). The certainty (believability-probability) Φ(R) = Φ(⟨ω∗|ω⟩ ∈ R) of the co∼event R ⊆ ⟨Ω|Ω⟩ can be calculated from two equivalentformulas:
Φ(R) =

∑
x∈XR

φx, (6.3)
Φ(R) =

∑
X∈ SXR

φ(X//XR). (6.4)

Proof of formulas (6.3) and (6.4) is based on a change in the order of the iterated sums and is analogousto the proof of the well-known theorem of Fubini on reducing the calculation of the double sum to thecalculation of iterated sums:
Φ(R) =

∑
x∈XR

∑
x∈X∈ SXR

Φ
(
⟨ω∗|ω⟩ ∈ ⟨x|ter(X//XR)⟩

)
=
∑

x∈XR

∑
x∈X∈ SXR

bxp(X//XR) =
∑

x∈XR

bxpx =
∑

x∈XR

φx,
(6.5)

Φ(R) =
∑

X∈ SXR

∑
x∈X∈ SXR

Φ
(
⟨ω∗|ω⟩ ∈ ⟨x|ter(X//XR)⟩

)
=

∑
X∈ SXR

∑
x∈X∈ SXR

bxp(X//XR) =
∑

X∈ SXR

b(X//XR)p(X//XR) =
∑

X∈ SXR

φ(X//XR).
(6.6)

7 Experienced, random and experienced-random variables in the theory ofexperience and chance
Experienced, random and experienced-random variables are a part of the basic concepts of the theoryof experience and chance. Complete and free from any unnecessary restrictions the presentation of thefoundations of the theory of probabilities on the basis of measure theory is given by Kolmogorov [10,1933]; it made it quite obvious that the random variable is nothing more than a measurable functionon the probability space. The theory of experience and chance also relies on the measure theory, whichmakes it equally obvious that the experienced variable dual to random one, in turn, is nothing more thana measurable function on the believability space dual to the probability one. An experienced-randomvariable is defined as a measurable function on the Cartesian product of believability and probabilityspaces, the certainty space. These circumstances can not be ignored in the presentation of the beginningof the theory of experience and chance, which succeeded in combining the theory of believabilities andthe theory of probabilities on the basis of the concepts of the space of elementary incomes and the spaceof elementatry outcomes and their Cartesian product, the space of elementary incomes-outsomes, and onemust not forget, each time emphasizing, that only when one is immersed in a dual context of the theoryof experience and chance, representations about experienced, random and experienced-random variablesacquire the mathematical and applied content.
7.1 Experienced variable

Definition 3 (experienced variable). The function ⟨ξR| : ⟨Ω,A| → (R,B) is called the experiencedvariable, if
⟨ξR|−1

(B) ∈ ⟨A| (7.1)
for any Borel set B ∈ B, i.e., a set ⟨ξR|−1

(B) is a bra-event. Equivalently speaking, the function ⟨ξR| =

⟨ξR|(⟨ω|), which defined on the bra-set ⟨Ω| with values in R, is called the experienced variable, if{
⟨ω| : ⟨ξR|(⟨ω|) < r

}
∈ ⟨A| (7.2)
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for every choice of a real number r ∈ R, in other words, the set of elementary bra-incomes ⟨ω| such that
⟨ξR|(⟨ω|) < r belongs to the bra-algebra ⟨A|.
Example 1 (probability of ket-events as an experienced variable). Probabilities px = P(|x⟩) of ket-events |x⟩ ⊆ |Ω⟩, x ∈ XR define on the believability space ⟨Ω| the function ⟨ξR| that takes on ech dualbra-event ⟨x| ⊆ ⟨Ω| the corresponding constant value

⟨ξR|(⟨ω|) = px (7.3)
for all ⟨ω| ∈ ⟨x|. Since ⟨Ω| =

∑
x∈XR

⟨x| then the function ⟨ξR| is defined on all the bra-set ⟨Ω| and for any Borel
B ∈ B the set ⟨ξR|−1

(B) is a bra-event:
⟨ξR|−1

(B) =
∑
x∈XR
px∈B

⟨x| ∈ ⟨A| , (7.4)

and the function ⟨ξR| is the experienced variable by Definition 3.
7.2 Random variable

Definition 4 (random variable). The function |ξR⟩ : |Ω,A⟩ → (R,B) is called the random variableif
|ξR⟩−1

(B) ∈ |A⟩ (7.5)
for any Borel set B ∈ B, i.e., a set |ξR⟩−1

(B) is a ket-event. Equivalently speaking, the function |ξR⟩ =

|ξR⟩(|ω⟩), which is defined on the ket-set |Ω⟩ with values in R, is called the random variable if{
|ω⟩ : |ξR⟩(|ω⟩) < r

}
∈ |A⟩ (7.6)

for every choice of a real number r ∈ R, in other words, the set of elementary ket-outcomes |ω⟩ such that
|ξR⟩(|ω⟩) < r belongs to the ket-algebra |A⟩.
Example 2 (believability of bra-events as a random variable). The believability b(X) = B(⟨TerX//XR

|) of
terraced bra-events ⟨TerX//XR

| ⊆ ⟨Ω|, X ∈ SXR define on the probability space |Ω⟩ the function |ξR⟩, whichtakes on every dual terraced ket-event |ter(X//XR)⟩ ⊆ |Ω⟩ the corresponding constant value
|ξR⟩(|ω⟩) = b(X) (7.7)

for all |ω⟩ ∈ |ter(X//XR)⟩. Since |Ω⟩ =
∑

X∈ SXR

|ter(X//XR)⟩ the the function |ξR⟩ is defined ob all the ket-set
|Ω⟩ and for any Borel B ∈ B the set |ξR⟩−1

(B) is a ket-event:
|ξR⟩−1

(B) =
∑

X∈ SXR

b(X)∈B

|ter(X//XR)⟩ ∈ |A⟩ , (7.8)

and the function |ξR⟩ is a random variable by Definition 4.
7.3 Experienced-random variable

Definition 5 (experienced-random variable). The function ⟨ξR|ξR⟩ : ⟨Ω,A|Ω,A⟩ → (R,B) is called theexperienced-random variable if
⟨ξR|ξR⟩−1

(B) ∈ ⟨A|A⟩ (7.9)
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for any Borel set B ∈ B, i.e. a set ⟨ξR|ξR⟩−1
(B) is a bra-ket-event. Equivalently speaking, the function

⟨ξR|ξR⟩ = ⟨ξR|ξR⟩(⟨ω∗|ω⟩) defined on the bra-ket-set ⟨Ω|Ω⟩with values in R is called the experienced-randomvariable if {
⟨ω∗|ω⟩ : ⟨ξR|ξR⟩(⟨ω∗|ω⟩) < r

}
∈ ⟨A|A⟩ (7.10)

for every choice of a real number r ∈ R, in other words, the set of elementary bra-ket-incomes-outcomes
⟨ω∗|ω⟩ such that ⟨ξR|ξR⟩(⟨ω∗|ω⟩) < r belongs to the bra-ket-algebra ⟨A|A⟩.
Example 3 (certainty of bra-ket-events as an experienced-random variable). Certainties φx(X//XR) =

Φ(⟨x|ter(X//XR)⟩) of bra-ket-events ⟨x|ter(X//XR)⟩ ⊆ ⟨Ω|Ω⟩, x ∈ XR, X ∈ SXR define on the certainty space
⟨Ω|Ω⟩ the function ⟨ξR|ξR⟩ which takes on each bra-ket-event ⟨x|ter(X//XR)⟩ ⊆ ⟨Ω|Ω⟩ the correspondingconstant value

⟨ξR|ξR⟩(⟨ω∗|ω⟩) = φx(X//XR) (7.11)
for all ⟨ω∗|ω⟩ ∈ ⟨x|ter(X//XR)⟩. Since ⟨Ω|Ω⟩ =

∑
x∈XR

∑
X∈ SXR

⟨x|ter(X//XR)⟩ then the function ⟨ξR|ξR⟩ is defined
on all the bra-ket-set ⟨Ω|Ω⟩ and for any Borel B ∈ B set ⟨ξR|ξR⟩−1

(B) is a bra-ket-event:
⟨ξR|ξR⟩−1

(B) =
∑

(x,X)∈XR× SXR

φx(X//XR)∈B

⟨x|ter(X//XR)⟩ ∈ ⟨A|A⟩ , (7.12)

and the function ⟨ξR|ξR⟩ is an experienced-random variable by Definition 5.
Definition 6 (functions of distributions of believabilities, probabilities and certainties). Thefunctions

F⟨ξR|(r) = B({⟨ω| : ⟨ξR|(⟨ω|) < r}) = B(⟨ξR| < r),

F|ξR⟩(r) = P({|ω⟩ : |ξR⟩(|ω⟩) < r}) = P(|ξR⟩ < r),

F⟨ξR|ξR⟩(r) = Φ({⟨ω∗|ω⟩ : ⟨ξR|ξR⟩(⟨ω∗|ω⟩) < r}) = Φ(⟨ξR|ξR⟩ < r),

(7.13)

where −∞ and +∞ are allowed as values r, are called the function of believability distribution of theexperienced variable ⟨ξR|, the function of probability distribution of the random variable |ξR⟩, and thefunction of certainty distribution of the experienced-random variable ⟨ξR|ξR⟩ correspondingly.
8 Dual inducing the nonadditive functions of a set by believability andprobability
In the theory of experience and chance for each co∼event R ⊆ ⟨Ω|Ω⟩ the believabilityB defined on sigma-algebra of believability space ⟨Ω,A,B| R-induces on the probability space, and the probability P definedon sigma-algebra of probability space |Ω,A,P⟩ R-induces on the believability space the functions of a setwhich do not possess a property of additivity on these spaces.
Let us consider this fact in more detail, since it is, in my opinion, for a long timemisleads the apologists offuzzymathematics [11, 12, 13, 14, 15] and forces them in their articles tomakemandatory statements thatthose set functions that they intend to deal with (possibilities, beliefs, etc.) are not absolutely a probability,so as they do not have the property of additivity, and they are not related to a probability. The origins ofthese misconceptions are outlined in my works [16, 17]. Now my explanations of this aberration arebased entirely on the axiomatics of the theory of experience and chance and consist in the following.Those set functions that are of interest in fuzzy math are always so or otherwise R-induced by theprobability the set functions on the believability space, which, naturally, do not possess an additivityof this space, but in the theory of experience and chance are mutually unambiguously associated withthe additive on this space the set function, which I also call a believability. In the theory of experience andchance, the dual assertion is also true: the believability measure, additive on the believability space, in itsturn R -induces on the probability space, the non-additive functions of a set that are one-to-one related



40 THE XV FAMEMS’2016 AND G6P SEMINAR

to the probability. So, consider the relationships between R-induced nonadditive functions of a set on theone hand and a believability and a probability on the other.
The co∼event R ⊆ ⟨Ω|Ω⟩ by probability P defined on |Ω⟩, and by believability B defined on ⟨Ω| induces:
• on ⟨Ω,A,B| the nonadditive set function P′ defining its values on each bra-event ⟨x| ⊆ ⟨Ω| , x ∈ XR,dual to the ket-event |x⟩ ⊆ |Ω⟩, and on each terraced bra-event ⟨TerX//XR

| ⊆ ⟨Ω| , X ∈ SXR , dual to theterraced ket-event |ter(X//XR)⟩ ⊆ |Ω⟩, by the formulas:
P′(⟨x|) = P(|x⟩),

P′(⟨TerX//XR
|) = P(|ter(X//XR)⟩);

(8.1)
• on |Ω,A,P⟩ the nonadditive set function B′, defining its values on each ket-event |x⟩ ⊆ |Ω⟩ , x ∈ XR,dual to the bra-event ⟨x| ⊆ ⟨Ω|, and on each terraced ket-event |ter(X//XR)⟩ ⊆ |Ω⟩ , X ∈ SXR , dual to theterraced bra-event ⟨TerX//XR

| ⊆ ⟨Ω|, by formulas:
B′(|x⟩) = B(⟨x|),

B′(|ter(X//XR)⟩) = B(⟨TerX//XR
|).

(8.2)

Property 9 (non-additivity of induced set functions). The induced set functions P′ and B′ are notadditive on ⟨Ω,A,B| and |Ω,A,B⟩ correspondingly.
Proof. Since the probability P is additive on the ket-space |Ω,A,B⟩, and

|x⟩ =
∑

x∈X∈ SXR

|ter(X//XR)⟩ ,

then for x ∈ XR

P(|x⟩) =
∑

x∈X∈ SXR

P(|TerX//XR
⟩).

From this and (8.1) we get that
P′(⟨x|) =

∑
x∈X∈ SXR

P′(⟨TerX//XR
|),

but since for X ∈ SXR

⟨TerX//XR
| =

∑
x∈X∈ SXR

⟨x| ,

then, generally speaking,
⟨x| ̸=

∑
x∈X∈ SXR

⟨TerX//XR
| ,

which proves the non-additivity of the induced set function P′ on ⟨Ω,A,B|. Similarly, since thebelievability B is additive on the bra-space ⟨Ω,A,B|, and
⟨TerX//XR| =

∑
x∈X∈ SXR

⟨x| ,

then for X ∈ SXR

B(⟨TerX//XR
|) =

∑
x∈X∈ SXR

B(⟨x|).

From this and (8.2) we get that
B′(|ter(X//XR)⟩) =

∑
x∈X∈ SXR

B′(|x⟩),

but since for x ∈ XR

|x⟩ =
∑

x∈X∈ SXR

|ter(X//XR)⟩ ,

then, generally speaking,
|ter(X//XR)⟩ ̸=

∑
x∈X∈ SXR

|x⟩ ,

which proves the non-additivity of induced set function B′ on |Ω,A,B⟩.
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9 Examples of the use of certainty theory
We will mention only two examples of the use of the new theory of experience and chance, one of which(“student delights”) is discussed in this article and shows for the time being only a curious connectionbetween the two dualities: in the theory of experience and chance and in the theory of optimization;and the second (“the bet on a bald”) is discussed in detail in my other work [18] and is devoted to thecorrect mathematical description of experienced-random experiment, which, although carried out at themacro level, but in which the observer clearly affects the outcome of the observation accurately just asin physics at the quantum level.
9.1 Problem of “student delicacies”
The student decides which purchase to make in the bakery for an after-dinner delicacy. There is the set
XR of delicacies x ∈ XR. The delicacies contain healthy ingredients X ∈ SXR forming the set SXR . “Thedelicacy x ∈ XR the student buys, i.e., the ket-event |x⟩ ⊆ |Ω⟩ happens” with probability px. Taking careof his health, the student decided that his believability “in the benefits of ingredients (in terraced bra-events)” ⟨TerX//XR

| ⊆ ⟨Ω| , X ∈ SXR should be at least b(X//XR):∑
x∈X

bx > b(X//X), (9.1)
where bx is the believability “in the benefits of delicacies (in bra-events)” ⟨x| ⊆ ⟨Ω| , x ∈ XR for her/hishealth.
The problem of “student delicacies” can be formulated as follows:

min
bx, x∈XR

∑
x∈XR

bxpx

subject to ∑
x∈X

bx > b(X//X), X ∈ SXR ,∑
x∈XR

bx = 1, bx > 0, x ∈ XR

(9.2)

— she/he is looking for a believability distribution {bx : ∈ XR} on which the mean-believableprobability Ebx(px) =
∑

x∈XR
bxpx of “purchases of delicacies (the ket-events)” |x⟩ ⊆ |Ω⟩ , x ∈ XRtakes a minimal value under the constraints (9.1) made. Here bx is the believability “in the benefitsof delicacies (in bra-events)” ⟨x| ⊆ ⟨Ω| , x ∈ XR for her/his health; px is the probability of “purchases ofdelicacies (the ket-events)” |x⟩ ⊆ |Ω⟩ , x ∈ XR; b(X//XR) is the believability “in the benefits of delicacies (interraced bra-events)” ⟨TerX//XR
| ⊆ ⟨Ω| , X ∈ SXR .
believability in the benefits ingredient X1 ingredient X2 ingredient X3 probability of purchasesof delicacies x ∈ XR of delicacies x ∈ XRprobability of purchases

a set of delicacies X ∈ SXR p(X1) = 0.2 p(X2) = 0.3 p(X3) = 0.5delicacy x1 bx1 = 0.6 0.12 • 0.18 • 0.30 ◦ px1 = 0.5

delicacy x2 bx2
= 0.4 0.08 ◦ 0.12 • 0.20 • px2

= 0.8

believability in the benefit
of ingredients X ∈ SXR b(X1) = 0.6 b(X2) = 1.0 b(X3) = 0.4

Table 1: Data for the problem “student delicacies” with 2 delicacies forming the doublet XR = {x1, x2}, and 3 ingredients forming the tripletSXR = {X1, X2, X3} = {{x1}, {x1, x2}, {x3}}. Table cells marked with black circles correspond to the co∼event R = ⟨x1|ter(X1//XR)⟩ +
⟨x1|ter(X2//XR)⟩ + ⟨x2|ter(X2//XR)⟩ + ⟨x2|ter(X3//XR)⟩ ⊆ ⟨Ω|Ω⟩.
We now accept the dualistic point of view of the student, from which she/he places a restriction on theprobability of “purchases of delicacies (the ket-events)” |x⟩ ⊆ |Ω⟩ , x ∈ XR:∑

x∈X∈ SXR

p(X//XR) 6 px, (9.3)
where p(X//XR) is the probability of “purchaces of ingredients (the terraced ket-events)” |ter(X//XR)⟩ ⊆
|Ω⟩ , X ∈ SXR .
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The dual problem solved by the student is as follows:
max

p(X), X∈ SXR

∑
X∈ SXR

b(X//XR)p(X//XR)

subject to ∑
x∈X∈ SXR

p(X//XR) 6 px,∑
X∈ SXR

p(X//XR) = 1, p(X//XR) > 0, X ∈ SXR

(9.4)

— the student looks for a probability distribution {p(X//XR) : X ∈ SXR} on which the mean-prabable believability Ep(X)(b(X)) =
∑

X∈ SXR b(X//XR)p(X//XR) “in the benefits for her/his health of
ingredients (in terraced bra-events)” ⟨TerX//XR

| ⊆ ⟨Ω| , X ∈ SXR takes a maximal value under theconstraints (9.3) made. Here p(X//XR) is the probability of “purchases of ingredients (the terraced ket-events)” |ter(X//XR)⟩ ⊆ |Ω⟩ , X ∈ SXR ; px is the probability of “purchases of delicacies (the ket-events)”
|x⟩ ⊆ |Ω⟩ , x ∈ XR; b(X//XR) is the believability “in the benefits of ingredients (in terraced bra-events)”
⟨TerX//XR

| ⊆ ⟨Ω| , X ∈ SXR .
In the matrix form, the direct problem can be expressed as: “To minimize pT b̆ under the condition Ab̆ > b,
b̆ > 0, ĬT b̆ = 1”; with the corresponding dual problem: <To minimize b̆T p under the conditionAT p 6 p̆, p > 0,
IT p = 1”; where b̆ = {bx : x ∈ XR}, p̆ = {px : x ∈ XR}, b =

{
b(X//XR) : X ∈ SXR

}, p =
{
p(X//XR) : X ∈ SXR

},
Ĭ = {1: x ∈ XR}, I =

{
1: X ∈ SXR

} are set-columns, b̆T , p̆T , bT , pT , IT are set-rows correspondingly, and
A =

{
1X(x) : x ∈ XR, X ∈ SXR

} is the set-matrix.
10 Instead of discussing
Before the finish I have to slow down on three sharp corners.
On the first one, we need to stop and carefully study the main innovation of this work, Axiom 1 on page32, which expands the “silent” Kolmogorov axiom of an event, so that this axiom together with its dualreflection allowed a new theory to jointly explore both the future randomness of observations, and thepast experience of observers (see also [19]).
On the second, it is impossible to rush past the very curious temporal bra-ket-duality of statements fromthe property 6 on the page 35, which states that
• from the Kolmogorov theory of probabilities: If there is some ket-event, then with it all ket-eventsoccur, in which it is contained as a ket-subset. In other words, all the ket-events which follow fromit, i.e. which can serve as its consequences in the future.
• from the dual theory of believabilities: If some bra-event is experienced then with it are experiencedall the bra-events, which it contains as bra-subsets. In other words, all bra-events from which itfollows, i.e., which could serve as its causes in the past.

This remarkable property of temporal duality ket-events and bra-events clearly shows the similarityand difference between the future chance and the past experience, which for the first time are jointlymathematically correctly studied in the theory experience and chance postulated in this article.
And finally, on the third one, it is worthwhile once again to linger on explaining the new theory (seeProperty 9 on the page 40) for quite a long time confusing the apologists of fuzzy mathematics [11, 12,13, 14, 15] on the non-additivity of the set functions of interest, the origins of which are considered in myworks earlier [16, 17, 2009].
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