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David Lewis’“Principal Principle”is a purported principle of rationality connect-
ing credence and objective chance. Almost all of the discussion of the Principal
Principle in the philosophical literature assumes classical probability theory, which
is unfortunate since the theory of modern physics that, arguably, speaks most
clearly of objective chance is the quantum theory, and quantum probabilities are
not classical probabilities. Given the generally accepted updating rule for quantum
probabilities, there is a straight forward sense in which the Principal Principle is
a theorem of quantum probability theory for any credence function satisfying a
suitable additivity requirement. No additional principle of rationality is needed to
bring credence into line with objective chance.

1 Introduction

David Lewis (1980) proposed a normative principle, which he dubbed the
Principal Principle (PP), linking credence (aka degree of belief) and objec-
tive chance. Of course, it is a matter of controversy as to whether there is
objective chance in the world and, if so, what it is. Lewis wanted to allow for
the possibility that chance exists and, regardless of what “it”is, he thought
that it should constrain rational credence in the way specified by PP. Turn-
ing this around, PP serves as a functional characterization of chance– chance
is what commands rational credence. To give a concrete example of an in-
tended application, suppose that you learn that the objective chance of heads
on the next flip of a coin is 1/2, and that you update your credence func-
tion to reflect this information. Then (according to PP) in order to count as
delivering rational degrees of belief your updated credence function ought to
assign degree of belief 1/2 to said outcome, and this is so regardless of other
things you might have learned, such as the frequency of heads and tails on
past flips of the coin. Lewis intended the regardless clause to apply not just

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/160114348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to evidence about past flips of the coin but to any “admissible” evidence;
but while examples of inadmissible evidence were given (e.g. knowledge of
the outcomes of future flips of the coin) no general criterion of how to parse
the admissible/inadmissible distinction was specified. Lewis himself came to
believe that there was “bug”in his original formulation of PP, and he sought
to reformulate PP in a manner that would avoid the bug while conforming
to his desire allow for the Humean supervenience of chance (Lewis 1994).
A fairly sizable and ever growing literature has accreted around these

topics.1 The contributors are mainly analytical metaphysicians who produce
ever more nuanced treatments which are sprinkled with interesting insights
and clever, and even brilliant, moves. But since the discussion seems to be
constrained only by intuitions about how chance ought to work in the actual
and other possible worlds it is not surprising that fundamental disagreements
have arisen both about how to capture in precise form the idea behind Lewis’
PP and about how to justify PP as a principle of rationality of belief. Even
more disconcerting is the fact that the literature makes little contact with
quantum theory, despite the fact that this is inarguably one of the most
successful theories of modern physics and arguably the theory that speaks
most clearly of objective chance. This lack of contact is not an oversight that
is easily corrected; for the bulk of the philosophical discussions of the issues
surrounding Lewis’PP assume classical probability theory, whereas quantum
probabilities cannot be construed as probabilities on a classical probability
space. In particular, Bayesian conditionalization, used in updating credence
functions in classical probability, is inappropriate for credence functions de-
fined over a non-commutative event algebra such as the one encountered in
quantum theory.
The purpose of this note is to show that there is a straightforward sense

in which no new principle of rationality is needed to bring rational credences
over quantum events into line with the events’objective chances– the align-
ment is guaranteed by as a theorem of quantum probability, assuming the
credences satisfy a suitable form of additivity. The normative status the ad-
ditivity requirement is discussed. More generally, many issues discussed in
the literature on Lewis’PP– such as the admissibility of evidence– can be
given precise formulations in the context of quantum probability and settled

1For a sampling of the literature, see Arntzenius and Hall (2003); Bigelow, Collins,
and Pargeter (1993); Black (1998); Haddock (2011); Hall (1994, 2004); Ismael (2008);
Meacham (2010); Pettigrew (2012); Roberts (2001, 2013); Strevens (1995); Thau (1994);
Vranus (2002, 2004).
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by proving appropriate theorems in this context.

2 Quantum probabilities

2.1 Quantum probabilities in the algebraic formula-
tion of quantum physics

In the version of the algebraic approach used here a quantum system is char-
acterized by two objects: a von Neumann algebraB(H) of observables acting
on Hilbert space H, which may be separable or non-separable2; and a set of
states S on B(H), the members of which are regarded as physically realiz-
able for the system at issue. This subsection reviews some basic facts about
algebras that serve as the basis for a formulation of quantum probability
theory. The following subsection discusses quantum states.
Ordinary QM (sans superselection rules) deals with case where B(H) is

the Type I factor algebra B(H), the algebra of all bounded operators acting
on H. To keep this discussion as simple as possible I will concentrate on this
case. For most applications of QM it suffi ces to use an H that is separable,
but it is not hard to conceive idealized cases that require the use of a non-
separable H.3
A projection E ∈ B(H) is a self-adjoint element such that E2 = E. The

range Ran(E) of E is a closed subspace of H, and for B(H) the projections
are in one-one correspondence with the closed subspaces of H. The pro-
jections P(B(H)) have a lattice structure that derives from a partial order
whereby E1 ≤ E2 iff Ran(E1) ⊆ Ran(E2).4 That P(B(H)) forms a lattice
means that it is closed under meet E1 ∧ E2 and join E1 ∨ E2 of E1, E2 ∈

2A separable H has a countable basis. A von Neumann algebra N acting on Hilbert
space H is an algebra of bounded operators closed in the weak operator topology. By
von Neumann’s double commutant theorem the closure condition is equivalent to the
condition that N′′ := (N′)′ = N, where X ′ stands for the commutant of X, i.e. the set of
all bounded operators that commute with every element of X.
The reader interested in the details of the relevant operator algebra theory can con-

sult Bratteli and Robinson (1987) and Kadison and Ringrose (1997).
3Consider, for example, an infinite spin chain consisting of a countably infinite num-

ber of sites, each of which can be either spin up or spin down. A Hilbert space of dimen-
sion 2χ0 is needed.

4This is equivalent to requiring that E1 ≤ E2 iff E2 − E1 is a positive operator.
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P(B(H)) which are defined respectively as the greatest lower bound and the
least upper bound. They are respectively the projections corresponding to
Ran(E1) ∩ Ran(E2) and the closure of Ran(E1) ∪ Ran(E2). Projections E1
and E2 are said to be mutually orthogonal iffRan(E1)∩Ran(E2) = ∅. When
E1 and E2 are mutually orthogonal E1 ∧ E2 = E1E2 = E2E1 = E2 ∧ E1 = 0
and E1 ∨ E2 = E1 + E2.
The elements of the projection lattice P(B(H)) are referred to as quan-

tum propositions (also yes-no questions, or quantum events). Quantum prob-
ability theory may be thought of as the study of quantum probability func-
tions Pr on P(B(H)) (see Hamhalter 2003). Pr is required to satisfy the
analogs of the basic axioms of classical probability:

(a) Pr : P(B(H))→ [0, 1]

(b) Pr(I) = 1, where I is the identity operator

(c) Pr(E ∨ F ) = Pr(E + F ) = Pr(E) + Pr(F ) for all mutually
orthogonal pairs E,F ∈ P(B(H)).

The condition (c) of finite additivity may be strengthened to require complete

additivity

(c∗) Pr(
∑

a∈I Ea) =
∑

a∈I Pr(Ea) for any family {Ea} ∈ P(B(H))
of mutually orthogonal projections.5

When H is separable any family of mutually orthogonal projections is count-
able, so (c∗) reduces to the requirement of countable additivity.

2.2 Quantum states and quantum probabilities.

Quantum states S on B(H) are normed positive linear functional mapping
elements of B(H) to C. A particularly important subclass of quantum states
that will play an outsized role in what follows are the normal states N , states
with a density operator representation, i.e. there is a trace class operator %
on H with Tr(%) = 1 such that ω(A) = Tr(%A) for all A ∈ B(H).6 The
standard practice of QM has baked into it the presumption that only normal

5If I is infinite, the convergence of
∑
a∈I Ea is taken in the weak operator topology.

6This is what physicists call the Born rule for calculating probabilities see below.
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states are physically realizable. There are good, but not conclusive, reasons
to support this presumption (see Arageorgis et al. 2017 and Ruetsche 2011).
For present purposes it will be taken on board.
For future reference, some additional nomenclature should be noted. A

pure state ω is defined by the property that there are no distinct states ω1
and ω2 and real numbers λ1 and λ2, λ1+ λ2 = 1, such that ω = λ1ω1 +λ2ω2.
Impure states are also referred to as mixed states. A vector state is a state
ω such that there is a vector ψ ∈ H with ω(A) = 〈ψ|A|ψ〉 for all A ∈ B(H).
Vector states are normal, and for the algebraB(H) the vector states coincide
with the pure states.7

Quantum states induce quantum probability functions on P(B(H)): it is
easy to verify that for any ω ∈ S

Prω(E) := ω(E) for E ∈ P(B(H))

satisfies the requirements (a)-(c) for a quantum probability function. Fur-
thermore, if ω ∈ N then Prω is completely additive, whereas if ω /∈ N then
Prω will be merely countably or merely finitely additive depending on the
dimension of H.

3 Downward and upward: objective vs. sub-
jective interpretations of quantum proba-
bilities

3.1 Objectivist take: top down

The top-down approach to quantum probabilities lends itself to an objec-
tivist reading of probabilities. On this reading quantum states codify objec-
tive, observer-independent physical features of quantum systems and, thus,
the probabilities states induce are objective physical probabilities– chances,
if you like. The objectivist reading of quantum probabilities has more go-
ing for it than merely postulating theoretical entities and sticking the label
‘objective’on them; for it is supported by infrastructure of the theory which
gives an account of state preparation, at least for the normal pure states.

7When the algebra of observables is a Type III von Neumann algebra, as with the
local algebras in the algebraic formulation of relativistic QFT, all normal states are vec-
tor states and all vector states are impure. This introduces a number of complications in
the discussion of quantum probabilities which will be ignored here.

5



A basic interpretational tenet of QM holds that the elements of the pro-
jection lattice P(B(H)) are in principle verifiable/refutable by appropriate
‘yes-no’experiments. The theory itself does not provide a manual for how to
construct a laboratory device for carrying out the experiment– that belongs
to the experimental practicum of QM. Among the elements of P(B(H)) is
the support projector Sϕ for a normal state, defined as the smallest projec-
tion in P(B(H)) to which ϕ assigns probability 1. Since normal pure states
on B(H) are coextensive with the vector states and P(B(H)) contains all
projectors, the support projector Sϕ for a normal pure state ϕ is the projector
onto the ray spanned its vector representative. As a result, Sϕ for a normal
pure state serves as a filter for ϕ in the set N of all normal states, viz. for
any ω ∈ N (pure or impure) such that ω(Sϕ) 6= 0, ω(SϕASϕ)/ω(Sϕ) = ϕ(A)
for all A ∈ B(H) (see Ruetsche and Earman 2011).
By the von Neumann projection postulate, when a measurement of F ∈

P(B(H)) is made on a system initially in state ω and the measurement re-
turns a Yes answer, the new state of the system is ωF (•) := ω(F • F )/ω(F ).
It follows from this and filter property of Sϕ for a normal pure state ϕ that,
whatever the initial state ω, as long as ω(Sϕ) 6= 0, a Yes answer to a mea-
surement of Sϕ for a normal pure state ϕ ensures that the new state ωSϕ is
ϕ. A normal impure (or mixed) state does not have a filter, and so there is
no preparation procedure in this sense for impure states (see Ruetsche and
Earman 2011).
So much for the formalism. It is now time for Nature to weigh in. Prepare

a quantum system in a normal pure state ϕ. Conduct a yes-no experiment
for some E ∈ P(B(H)), and record the result. Reset the system (or a similar
system) in the same state ϕ, and repeat the yes-no experiment for E. The
probability for a Yes outcome on any trial is ϕ(E) regardless of the outcomes
on any other trials, which is to say the experimental protocol gives i.i.d. trials.
The strong law of large numbers thus implies that as the number of trials
tends to infinity the frequency of Yes responses almost surely tends to ϕ(E).
In actual realizations of such experiments expectations are fulfilled in that
there is rapid apparent convergence to the value supplied by the quantum
formalism. Of course, the inductive skeptic will caution that the apparent
convergence may disappear if trials are continued into the indefinite future,
but such skepticism if pushed too far would undermine all scientific inquiry.
In short, it is hard to resist the notion that the probabilities delivered by the
quantum formalism latch on to objective features of the physical world.
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3.2 The personalist take: bottom up

Quantum Bayesians (QBians as they style themselves) reject the top-down
approach to quantum probabilities; in particular, they reject the idea that
quantum probabilities on the projection lattice P(B(H)) arise from quantum
states onB(H) construed as codifying objective features of physical systems.8

Instead they propose a bottom-up perspective from which the starting point
is from probability functions on P(B(H)) construed as the credence functions
of actual or potential Bayesian agents. States are seen as bookkeeping devices
used to keep track of credence functions. This alternative point of view is
given an initial foothold from Gleason’s theorem, the fundamental theorem
of quantum probability theory, which shows that, with a mild restriction,
one can also move in the upward direction from probabilities on P(B(H)) to
states on B(H):

Gleason’s theorem. Let H be a separable Hilbert space with
dim(H) ≥ 3. Then any quantum probability function Pr on
P(B(H)) has a unique extension to a state ωPr onB(H). Further,
if Pr is countably additive (respectively, merely finitely additive)
then ωPr is normal (respectively, non-normal).

WhenH is non-separable it is still true that any quantum probability function
Pr on P(B(H)) has a unique extension to a state ωPr on B(H); but the the
last clause of the theorem has to be emended to: if Pr is completely additive
(respectively, non-completely additive) then ωPr is normal (respectively, non-
normal). Gleason’s theorem has also been extended to cover quite general
von Neumann algebras, but these developments will not be of concern here.
This is not the place to discuss the problems and prospects for QBian

program.9 For present purposes I accept the less contentious part of QBism
while rejecting the more interesting and controversial part: specifically, I
assume that quantum physicists are to be construed as if they were Bayesian
agents who have degrees of belief about quantum events that are codified in
quantum probability functions on P(B(H)); but I reject the notion that all
quantum probabilities are to be given a personalist reading, and I assume
that normal pure states induce objective chances on elements of P(B(H)).
Perhaps in the end the QBians will prevail on both parts; but if so the issue

8See von Baeyer (2016) for a readable overview of QBism.
9See Timpson (2008) and Earman (2018a) for a critical assessment.
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of the relation between credence and chance is a dead issue as far as QM is
concerned. Here I assuming that it is a live issue and, on the basis of this
assumption, I will argue that QM itself, without any help from philosophers,
provides a resolution.

4 Updating credences for quantum events

4.1 Motivating a quantum updating rule

As already mentioned, the typical discussion of Lewis’PP is conduced in the
context of classical probability theory where the generally accepted rule for
updating personal probabilities is Bayesian conditionalization: if an agent’s
initial probability function is pr and the agent learns that F is true then
agent’s new probability ought to be prF (•) := pr(• ∩ F )/pr(F ), provided
that pr(F ) 6= 0. In order to discern the relation between credence and
chance for quantum events the quantum-probability analog of the classical
updating rule is needed. Fortunately, others have already done the work for
us.
An elegant presentation of the argument for the probabilities on the pro-

jection lattice P(N) of a general von Neumann algebra N is provided by
Cassinelli and Zanghi (1983). Here attention is restricted to the case of ordi-
nary QM where N = B(H).10 The argument starts by motivating updating
classical probability by the following proposition:

Prop 1. Let (Ω,Σ, pr) be a classical probability space, and let
F ∈ Σ be such that pr(F ) 6= 0. Then there is a unique functional
prF (•) on Σ such that (a) prF (•) is a probability measure on Σ,
and (b) for all E ∈ Σ such that E ⊆ F , prF (E) = pr(E)/pr(F ).11

And, no surprise, this unique functional prF (•) is just the familiar classical
conditional probability functional pr(• ∩ F )/pr(F ).
Next, the argument shows that there is a parallel, but more qualified,

result for quantum probability:

10The special case of N = B(H) was treated in Bub (1977).
11Ω is the sample space; Σ (the measurable sets) consists of a set of subsets of Ω; and

Pr : Σ → [0, 1] satisfies (i) Pr(Ω) = 1 and (ii) Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) for any
E1, E2 ∈ Σ such that E1 ∩ E2 = ∅.
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Prop. 2. Let Pr be a countably additive quantum probability
measure on P(B(H)) for separable H with dim(H) > 2, and
let F ∈ P(B(H)) be such that Pr(F ) 6= 0. Then there is a
unique functional PrF (•) on P(B(H)) such that (a) PrF (•) is
a quantum probability, and (b) for all E ∈ P(B(H)) such that
E ≤ F , PrF (E) = Pr(E)/Pr(F ).

The unique PrF (•) is called Lüders updating. Prop. 2 can be extended to
cover the case of a non-separable H if Pr is completely additive.
Lüders updating can also be motivated by adapting the Lewis-Teller di-

achronic Dutch book argument for classical Bayesian updating (see Teller
1976) to show that agents who update their credence functions for quantum
events by some rule other than Lüders updating can be Dutch booked if their
updating rule is known to a canny bookie (see Earman 2018b).

4.2 What is Lüders updating?

Unlike classical probability where the updated credence function can be de-
fined in terms of the starting credences, Lüders updating requires the use of
Gleason’s theorem. Suppose that dim(H) > 2 and the agent’s initial credence
function Pr on P(B(H)) is countably additive (respectively, completely ad-
ditive) if H is separable (respectively, non-separable). Then by Gleason’s
theorem there is a unique normal state ω that extends Pr to B(H). For any
F ∈ P(B(H)) such that ω(F ) 6= 0, ωF (E) := ω(FEF )/ω(F ), E ∈ P(B(H)),
defines a new normal state ωF . Hence, ωF induces a completely additive
probability given by PrωF (E) := ωF (E), E ∈ P(B(H)). This PrωF is the
Lüders updating of Pr (denoted above by PrF above) picked out by Prop. 2.
When E,F ∈ P(B(H)) commute FEF = EF = FE = E ∧ F ∈

P(B(H)) and, Lüders updating can be expressed as PrF (E) = Pr(E ∧
F )/Pr(F ), which agrees with classical conditionalization. However, when
E and F don’t commute FEF /∈ P(B(H)) and Lüders updating cannot be
written as PrF (E) = Pr(FEF )/Pr(F ) since Pr(FEF ) is undefined. The
fact that the updating of personal probabilities on P(B(H)) requires the use
of states should be an embarrassment for the QBians; for if quantum states
are merely bookkeeping devices for tracking personal probabilities these de-
vices should be dispensable. But apparently they are not. Since I am not
concerned here with the strong form of QBism I pass on to the key issue at
hand.

9



5 Credence and chance for quantum events

5.1 A simple corollary of Gleason’s theorem

A key feature of the relation between quantum credence and chance is given
by a corollary of Gleason’s theorem:

Cor : Suppose that dim(H) > 2 and that Pr is a countably ad-
ditive (respectively, completely additive) probability function on
P(B(H)) if H is separable (respectively, non-separable). Let ϕ
be a normal pure state on B(H) and let Sϕ be its support pro-
jection. Then PrSϕ(E) = ϕ(E) for all E ∈ P(B(H)), provided
that Pr(Sϕ) 6= 0.

Proof: By Gleason’s theorem Pr extends uniquely to a normal state ω on
B(H) such that ω(Sϕ) 6= 0 provided that Pr(Sϕ) 6= 0. By the filter property

of Sϕ, ωSϕ(E) =
ω(SϕESϕ)

ω(Sϕ)
= ϕ(E) for all E ∈ P(B(H)). But the Lüders

updated Pr
Sϕ
just is the probability induced by the state ωSϕ .

The intended interpretation of this Corollary should be obvious. Suppose
that an agent whose initial credence function on P(B(H)) is Pr learns that
a Yes-No experiment for Sϕ has been performed and that a Yes answer has
been returned. Since she is rational she Lüders updates her credence function
to Pr

Sϕ
. On the objectivist interpretation of quantum probabilities, the

returning of a Yes answer implies that the normal pure state ϕ has been
prepared and, hence, that the objective chance of an event E ∈ P(B(H)) is
ϕ(E), which is the same as the agent’s updated credence Pr

Sϕ
(E). Credence

and chance have been brought into alignment without the cudgel of any extra
normative principle.
There are three caveats to this happy conclusion. The first concerns the

case of dim(H) = 2 where Gleason’s theorem does not apply. Here there are
probability measures on P(B(H)) that do not extend to any quantum states.
The objectivist will brush aside such rogue probability functions as not being
capable of representing physically realizable probabilities since they are not
induced by a quantum state.
The second caveat concerns the proviso that Pr(Sϕ) 6= 0. All that I

can say at present about this matter is that there is a general problem
for updating of personal probabilities– whether over classical or quantum
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event spaces– when the updating concerns events with zero prior probabili-
ties. Various remedies have been offered for classical probabilities, including
the use of Popper functions and probabilities taking infinitesimal values.
Whether or not such remedies can be extended to quantum probabilities
remains to be seen.
The third caveat concerns the requirement that Pr be countably or even

completely additive. I will say more about this concern in the following
section.

5.2 Additivity requirements

The probabilities induced on P(B(H)) by a normal state onB(H) are count-
ably additive when H is separable and completely additive whatever the
dimension of H. In sofar as these probabilities codify objective chances a
PP-like principle can hold for credences over B(H) only if the credence func-
tion is countably additive or completely additive as the case may be. For
those who want to maintain the idea that PP is a normative principle, a ves-
tige of normativity may be seen in the requirement that a rational credence
function ought to be countably or even completely additive.
Perhaps, however, such a requirement is redundant. Bruno de Finetti,

the patron saint of the personalist interpretation of probability, used a Dutch
book argument to justify finite additivity. He disliked countable additivity
and despised complete additivity (de Finetti 1972, 1974). But it is well known
that the Dutch book argument can be rewired to justify countable additivity
as a rationality constraint on degrees of belief (see, for example, Howson
2008). Complete additivity is more problematic since, as noted by Skyrms
(1992), if an agent is only required to stand ready to accept any bet she
regards as favorable (as opposed to merely fair) then it does not follow that
a violation of completely additivity necessarily makes the agent vulnerable
to Dutch book.
However, the need for complete additivity in ordinary QM is ameliorated

by the result that countably additive and completely additive probability
measures on P(B(H)) coincide if and only if dim(H) is less than the first
measurable cardinal (see Eilers and Horst 1975 and Drish 1979 for details).
Since there are no known applications of QM that require a Hilbert space of
such gigantic dimension, the result means that FAPP countable additivity
suffi ces. Note however that this result does not hold for the Type III von
Neumann algebras encountered in relativistic QFT (see Arageorgis et al.
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2016).
In any case, finite vs. countable vs. complete additivity remains a con-

tentious issue in the statistics literature (see Kadane et al. 1986 and Seiden-
feld 2001). Those who wish to locate the normativity of PP for quantum
probabilities in an additivity requirement on personal probabilities cannot
avoid entering this fray.

6 Admissibility of evidence

In the quantum context the question of the admissibility of evidence is not
a matter to be submitted to the intuitions of wise analytical metaphysicians
but rather a matter of proving results in quantum probability theory. When
does an agent’s learning that the support projection Sϕ for a normal pure
state ϕ obtains trump additional evidence F acquired along side of Sϕ in the
sense that her credences updated on both Sϕ and F line up with the the ϕ-
chances? Because of the non-commutative nature of quantum propositions,
the “along side”has to be treated with care. When needed, I will use the
notation PrX,Y to indicate the updating of Pr on X followed by the updating
on Y . It is assumed in what follows that dim(H) > 2 and that the agent’s
initial credence function is countably additive (or completely additive if need
be) so that Gleason’s theorem and the Corollary can be invoked.
First, that F is learned “along side”Sϕ could mean that F and Sϕ are

learned simultaneously. In this case standard quantum doctrine on simul-
taneously measurability requires that F and Sϕ commute. In addition, the
proviso (which needs to be attached to a PP-like principle) that Pr(SϕF ) =
Pr(FSϕ) 6= 0 requires that SϕF = FSϕ 6= 0. Since Sϕ is a minimal projec-
tion for B(H) the upshot is that SϕF = FSϕ = Sϕ and F is entailed by Sϕ.
Thus, PrFSϕ(E) = PrSϕF (E) = PrSϕ(E) for all E ∈ P(B(H)). And by the
Corollary, PrSϕ(E) = ϕ(E), with the upshot that F is admissible.
Now suppose that F is learned before Sϕ. The first updating of Pr to

PrF invokes the proviso that Pr(F ) 6= 0. The second updating to PrF,Sϕ
invokes the proviso that PrF (Sϕ) 6= 0, in which case the Corollary gives
PrF,Sϕ(E) = ϕ(E) for all E ∈ P(B(H)). Thus, F is admissible provided
that Pr(F ) 6= 0 and PrF (Sϕ) 6= 0, the latter of which entails the former.
Finally, consider the case where Sϕ is learned before F . Provided that

Pr(Sϕ) 6= 0, the first updating gives PrSϕ(E) = ϕ(E) for all E ∈ P(B(H)).
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The second updating gives PrSϕ,F (E) =
ϕ(FEF )

ϕ(F )
for all E ∈ P(B(H)),

provided that ϕ(F ) 6= 0. Thus, under the provisos, F will count as admissible
just in case ϕ(FEF ) = ϕ(F )ϕ(E) for all E ∈ P(B(H)). When E and F
commute (which is always the case classically), the condition of admissibility
of F reduces to ϕ(FE) = ϕ(EF ) = ϕ(F )ϕ(E), which is to say that, relative
to ϕ, F is stochastically independent of all E ∈ P(B(H)).

7 Conclusion

On the account of quantum chance on offer here Lewis’PP takes on a char-
acter quite different from what is found in treatments in the philosophi-
cal literature: to the extent that PP-like principles are valid in quantum
probability they are valid because they are theorems of quantum probability
for Bayesian agents whose credence functions are defined over the lattice of
quantum propositions and satisfy the same form of additivity as do quantum
chances. If there is a legitimate normative component to PP-like principles
in the quantum setting it lies in the demand that rational credence should
have the same form of additivity as chance.
The account of quantum chance on offer is based on several interpreta-

tional moves in quantum theory, all of which can be disputed. The basic
existential challenge comes from QBism which maintains that the relation
of credence and chance is a pseudo-topic since all probabilities in quantum
theory are to be given a personalist/subjectivist reading. Less immediately
existential but still serious is the challenge that comes from non-collapse in-
terpretations of quantum measurement. If post-measurement probabilities
are to be calculated by Lüders conditionalization– as the empirical evidence
indicates– but the von Neumann projection postulate is rejected, then post-
measurement probabilities are not those induced by the post-measurement
quantum state, and the account on offer is undermined. What this means
for the existence of quantum chance and its relation to rational credence de-
pends on the details of the various non-collapse interpretations. Evaluating
these challenges is a large and demanding project. But it can be undertaken
in the confidence that it is more apt to produce understanding of the relation
between credence and chance than the arm chair speculations of analytical
metaphysicians.

Acknowledgment. David Lewis was one of the great philosophical talents
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of the 20th century. If he is looking down from Philosophers’Heaven I hope
he would smile on the direction in which I have taken his Principal Principle.
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