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Abstract

Bayesianism and likelihoodism are two of the most important frameworks
philosophers of science use to analyse scientific methodology. However, both frameworks
face a serious objection: much scientific inquiry takes place in highly idealized
frameworks where all the hypotheses are known to be false. Yet, both Bayesianism and
likelihoodism seem to be based on the assumption that the goal of scientific inquiry is
always truth rather than closeness to the truth. Here, I argue in favor of a verisimilitude
framework for inductive inference. In the verisimilitude framework, scientific inquiry is
conceived of, in part, as a process where inference methods ought to be calibrated to
appropriate measures of closeness to the truth. To illustrate the verisimilitude framework,
I offer a reconstruction of parsimony evaluations of scientific theories, and I give a
reconstruction and extended analysis of the use of parsimony inference in phylogenetics.
By recasting phylogenetic inference in the verisimilitude framework, it becomes possible
to both raise and address objections to phylogenetic methods that rely on parsimony.
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1 Introduction

Suppose you have evidence that bears on a number of competing hypotheses. How should you
determine which hypothesis is most favored by the evidence? According to likelihoodists, you
should come up with a likelihood function that says how probable each hypothesis makes the
evidence. The likelihood of a particular hypothesis is then a measure of the extent to which
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the evidence supports the hypothesis.1 Bayesians agree that likelihoods are important, but
argue that the likelihood function should be supplemented with a prior probability distribution
that reflects how plausible each hypothesis is before the evidence is taken into account, and
that the prior and likelihood should be combined using Bayes’s formula2 in order to produce a
posterior probability distribution over the various hypotheses. According to Bayesians, the
posterior probability of a given hypothesis reflects how plausible the hypothesis is, all things
considered.3

Some sciences use explicitly Bayesian or likelihoodist methodology, but many do not.
Many disciplines have organically developed their own ways of evaluating hypotheses. It may
be that every scientific discipline would be better off it adopted Bayesian or likelihoodist
methodology—but this is contentious. It is not always easy to come up with well motivated
numerical prior probabilities or likelihoods for hypotheses.

Meanwhile, likelihoodism and Bayesianism have proven to be quite useful in philosophy of
science for illuminating the inferential methods that scientists actually employ. By treating
these frameworks as normative, it is possible to get a better understanding of when and why,
exactly, an inferential rule or principle may be expected to lead scientists towards the truth. In
this way, philosophers have in recent years given likelihoodist or Bayesian accounts of, for
example, inference to the best explanation (Cabrera [2017]), the comparative method in
historical linguistics (Okayasu [2017]), parsimony reasoning (Sober [2015]), ‘no-alternatives’
style arguments (Dawid et al. [2015]), and robustness analysis (Schupbach [2018]).

Unfortunately, even if they are construed only as normative frameworks rather than
inferential procedures that should always be carried out in detail, Bayesianism and
likelihoodism face serious objections. In my view, perhaps the most serious objection is
that—as I explain in the next section of the paper—both frameworks seem to assume that the
true hypothesis is one of the hypotheses under consideration. As philosophers of science
realized decades ago, scientific inquiry tends to be open-ended—the true hypothesis is rarely
one of the hypotheses under consideration. Even worse, the set of hypotheses is often framed
on the basis of highly idealized assumptions that essentially guarantee that all the hypotheses
under consideration are false. For these reasons, identifying the hypothesis under
consideration that is closest to the truth—and not the truth itself—is the realistic goal of
scientific inference in many if not most cases (as also emphasized by Forster [2002]).

The study of closeness to the truth—or ‘verisimilitude’—was initiated by Popper ([1963])
and has since amassed a large literature.4 The most influential contemporary approach—and
the approach that will be assumed in this paper—understands verisimilitude quantitatively:
that is, verisimilitude is conceptualized in terms of a real-valued function v, such that H1 is
closer to the truth than H2 if and only if v(H1) > v(H2). In general, I agree with Northcott
([2013]) that the specific form the verisimilitude function should take will depend on the
context.

1Importantly, likelihoodists do not consider the likelihood of a hypothesis a measure of the
plausibility of the hypotheses—rather, the likelihood is a measure of evidential favoring (see
Royall [1997] or chapter 1 of Sober [2008] for more detailed descriptions of likelihoodism).

2Bayes’s formula has the following form, where p(H) is the prior distribution of H, p(E|H)
is H’s likelihood on E, and p(H|E) is the posterior probability of H given E:
p(H|E) =

p(E|H)p(H)∑
i p(E|Hi)p(Hi)

.
3This is a simplified description of Bayesian inference. More sophisticated Bayesian

statistical inference crucially involves predictive model checking (see, for example, Gelman
et al. [1996], Gelman and Shalizi [2013]) and various forms of robustness analysis.

4See Niiniluoto ([1998]) for a survey.
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What is the relationship between verisimilitude and inferential frameworks such as
likelihoodism and Bayesianism? By and large, this question has been neglected in the
literature, although there are important exceptions (Rosenkrantz [1980]; Niiniluoto [1986],
Niiniluoto [1987]; Festa [1993]; Cevolani et al. [2010]; Oddie [Forthcoming]).5 For example,
Niiniluoto ([1986]) conceives of verisimilitude as a kind of utility, and shows how
verisimilitude theory may be integrated into Bayesian decision theory. However, as far I am
aware, none of these earlier accounts consider the possibility that the verisimilitude
framework, on the one hand, and Bayesianism and likelihoodism, on the other, may be in
tension with each other.6 I will argue that they are.7

More precisely, I will argue the likelihood is not always an appropriate way of measuring
evidential favoring. The evidential principle that is usually associated with the likelihood is
the so-called Law of Likelihood; hence my criticism of the likelihood will proceed by way of a
criticism of the Law of Likelihood. I will then suggest a different framework for understanding
inductive inference which I call the ‘verisimilitude framework’. In the verisimilitude
framework, the goal of scientific inference is conceived of, in part, as identifying a measure of
evidential favoring that is calibrated against an appropriate measure of closeness to the truth. I
illustrate the verisimilitude framework with two examples: the first example is a speculative
reconstruction of parsimony evaluations of scientific theories. The second example is a
reconstruction of parsimony inference in phylogenetics. Importantly, we will see that by
reconstructing phylogenetic parsimony inference in the verisimilitude framework, we will be
in a better position to understand its limitations and possible improvements.

2 Problems With the Law of Likelihood

The evidential principle that most commonly is taken to justify using the likelihood as a
measure of evidential favoring is the Law of Likelihood (LL), which may be stated in the
following way:8

Law of Likelihood, Standard Version: Evidence E favors the proposition that H1

is true over the proposition that H2 is true if and only if p(E|H1) > p(E|H2).9

5There have been more analyses of the relationship between verisimilitude and AGM
belief revision. See, in particular, the Erkenntnis september 2011 special issue on the
relationship between verisimilitude and belief revision, especially Baltag and Smets ([2011]);
Cevolani et al. ([2011]); Kuipers ([2011]); Renardel de Lavalette and Zwart ([2011]); and
Schurz ([2011]).

6Oddie ([Forthcoming]) argues that verisimilitude theory is in conflict with a certain
approach within Bayesian epistemology known as the ‘accuracy framework’ (Joyce ([1998]);
Pettigrew ([2016]), but he does not argue that the conflict lies with the Bayesian framework
itself.

7Interestingly, Niiniluoto’s expected verisimilitude account may avoid the tension, but at
the cost of often being inapplicable in practice in the kinds of inferential problem scientists
typically study, as I explain in footnote 13.

8As far as I know, likelihoodists universally accept the Law of Likelihood. In the Bayesian
framework, there are multiple versions of the Law of Likelihood (Festa and Cevolani [2017]),
and there has been some debate over which version is the best one. Here I will discuss
counter-examples to the standard version of the Law of Likelihood, but I hope it’s clear to
those concerned that my counter-examples are equally counter-examples to the other variants
of the Law of Likelihood.

9The Law of Likelihood is often phrased in the following way:
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Figure 1. A phylogenetic tree of some European languages.

I have called the above formulation of LL the ‘standard version’ to contrast it with other
versions that will be considered later. Both likelihoodists and Bayesians tend to accept the
standard version of LL. Some think it is a primitive postulate about evidential favoring (for
example Edwards [1972] or Sober [1988]). Others argue that the standard version of LL is
supported by various mathematical results, for example convergence results (Hawthorne
[1994]) or the ‘Universal Bound’ (Royall [1997]), or proofs for the so-called ‘Likelihood
Principle’, which is a related evidential principle (see Birnbaum [1962] and Gandenberger
[2015]).

However, a fundamental problem with the standard version of LL is that it plainly fails to be
useful if all the hypotheses under consideration are already known to be false—if we know
that all our hypotheses are false, then why would we care about which one is favored to be
true? Indeed, in such cases, the standard version of LL is arguably false. To see why, suppose
we have just two hypotheses under consideration, H1 and H2, that both hypotheses are known
to be false, and that p(E|H1) > p(E|H2). As Good ([1967]) famously pointed out, all
confirmation is relative to background knowledge. If our background knowledge is that both
the hypotheses under consideration are false, it would seem to follow that no evidence can
support the proposition that H1 is true over the proposition that H2 is true. Thus, the left-hand
side of the biconditional in the standard version of LL is false. Yet, since p(E|H1) > p(E|H2),
the right-hand side of the biconditional is true. Hence, the standard version of LL is false in
this case.10

It happens quite often that all the hypotheses under consideration are known to be false,
because scientific hypothesizing very often (perhaps usually) takes place in highly idealized
frameworks. To take just one example to which I will return later in the paper, phylogenetic
hypotheses in both biology and historical linguistics often assume a ‘tree model’ of evolution.
Figure 1 gives an example of what a typical linguistic tree looks like.

Even though phylogeneticists use trees to model phylogenetic relationships, it is widely
acknowledged among biologists and linguistics alike that tree reconstruction rest on several
highly idealized and false assumptions (See, for example, O’Malley et al. [2010]; Heggarty
et al. [2010]; Velasco [2012]), including the following three: (1) evolutionary divergence

Law of Likelihood, standard version: Evidence E favors H1 over H2 if and only if
p(E|H1) > p(E|H2).

By an application of Tarski’s T-schema (Tarski [1944]), the two formulations of the Law of
Likelihood are equivalent.

10A referee points out that there are also counter-examples to the standard version of LL in
which the left-hand side is true and the right-hand side is false. I agree, but I will not discuss
such cases here.
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happens through bifurcations, (2) divergences happen instantaneously, (3) descendent lineages
do not influence each other after splitting. The last assumption, in particular, is known to be
false both in biology and historical linguistics. In biology, species sometimes hybridize, and in
linguistics it often happens that languages influence each other through borrowing. Hence, the
real question isn’t whether biological or linguistic history can be represented in the form of a
tree, but rather how tree-like the actual histories are. Even so, most phylogeneticists restrict
themselves to considering only tree hypotheses, and in that case the standard version of the
law of likelihood has no sensible application, since all the hypotheses will then already be
known to be false.11

When all the hypotheses under consideration are known to be false, Bayesians face the
additional problem of how to sensibly interpret the prior and posterior probabilities of
hypotheses. According to the standard Bayesian interpretation, the prior or posterior
probability assigned to a hypothesis is supposed to represent how plausible it is that the
hypothesis is true. However, this interpretation clearly does not make sense in cases where all
the hypotheses are already known to be false. Recently, Sprenger ([2017]) and Vassend
([2018]) have suggested two reinterpretations of the Bayesian framework that are each
intended to address this interpretive problem. Sprenger’s proposal is that probabilities
assigned to known false hypotheses should be understood as counterfactual degrees of belief.
That is, p(H) is construed as a counterfactual degree of belief that H would be true if it were
the case that one of the hypotheses under consideration were true. Vassend’s suggestion is that
such probabilities should be understood as verisimilitude degrees of belief; i.e. rather than
interpreting p(H) as a degree of belief that H is true, the verisimilitude interpretation says that
p(H) instead should be construed contrastively as a degree of belief that H is closest to the
truth (according to a reasonable verisimilitude measure) out of the hypotheses under
consideration. Both of these interpretations have implications for how LL ought to be
interpreted. Indeed, on the verisimilitude interpretation, the natural reading of LL is as
follows:

Law of Likelihood, Verisimilitude Version: Evidence E favors the proposition that
H1 is closest to the truth over the proposition that H2 is closest to the truth (out of
the hypotheses under consideration) if and only if p(E|H1) > p(E|H2).

On the other hand, the natural counterfactual reading of LL is as follows:

Law of Likelihood, Counterfactual Version: Evidence E favors the proposition
that H1 would be true over the proposition that H2 would be true (if the world
were such that one of the hypotheses under consideration were true) if and only if
p(E|H1) > p(E|H2).

The verisimilitude and counterfactual versions of LL are both better than the standard
version in the sense that they are both applicable when all the hypotheses under consideration
are false. The question is, however, whether the counterfactual and verisimilitude versions
may sometimes be violated in the sense that the likelihood may show a systematic preference
for hypotheses that are further from the truth. The answer, as I will argue, is yes. For

11Of course, as Gray et al. ([2010]) point out, some parts of the actual history may be more
tree-like than others: hence, the tree assumption may be more realistic for some parts of the
phylogenetic history than for others. Nonetheless, for the phylogenetic history as a whole, the
tree-model is clearly unrealistic.
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simplicity, I will only discuss the verisimilitude interpretation of probability. As argued by
Vassend ([2018]), the counterfactual and verisimilitude interpretations are
inter-translateable—they are two equivalent formulations of what is essentially the same
interpretation. Hence, there is no loss in restricting discussion to the verisimilitude
interpretation.

Some of the clearest violations of the verisimilitude version of LL happen in statistical
model selection. As Forster and Sober ([1994]) point out, predictive accuracy (quantified in
terms of Kullback-Leibler divergence (Kullback and Leibler [1951])) may be regarded as a
kind of verisimilitude measure. Moreover, as Forster and Sober ([2004]) show, if there are
multiple models, and if the competing models have different numbers of parameters, then the
model with the best likelihood-fit to the data (where the likelihood-fit of a model is quantified
as the likelihood score of the best-fitting hypothesis in the model) will often not be the model
that is most predictively accurate. Hence, the likelihood is not an appropriate measure of
evidential favoring if the verisimilitude measure is predictive accuracy, because the model that
is most predictively accurate (i.e. closest to the truth in the relevant sense) will often not be the
model that has the best likelihood-fit. In place of the likelihood, Forster and Sober recommend
AIC as a superior measure of evidential favoring for models, where the AIC score of a model
is equal to log(L̂) − k. Here L̂ is the likelihood of the model when the parameters are set at the
values that maximize likelihood, and k is the number of parameters in the model.

Although Forster and Sober think the likelihood is a poor measure of evidential favoring in
the case of model selection, they maintain that it’s a fine measure in cases where the
competing hypotheses are not models with different numbers of adjustable parameters.
However, contrary to what Forster and Sober claim, there are violations of the verisimilitude
version of LL even when the inferential problem is not to select between models that have
different numbers of parameters.

For example, suppose we are concerned with identifying the functional relationship between
two quantities y and x. To make the example concrete, suppose x and y represent the minimal
pressure and maximum windspeed in tropical storms, respectively. Suppose we model the
relationship between x and y as a straight line (with measurements distributed stochastically
about the line), even though we know that strictly speaking the true relationship, t, is not a
line. Since t is not among our hypotheses, we need some way of measuring the degree to
which our hypotheses fall short of the truth. That is, we need a measure of verisimilitude.
There are many candidates and the choice we make should be guided by our interests.

For example, suppose that we are interested in building a structure that will be capable of
withstanding strong winds. In that case, it is very important that we minimize the maximum
error we are likely to make in our prediction of windspeed, since we certainly want our
structure to be able to withstand worst-case windspeeds.12 Our average prediction error, on the
other hand, is less important. Thus, a sensible measure of closeness to the truth of some given
line, L(x) = αx + β, given this goal, is given by the following formula:
vMax(L) = −Maxx∈[a,b]|t(x) − L(x)|, where [a, b] is the range of relevant pressures. This
verisimilitude measure is also depicted in Figure 2.

Our inferential goal, then, is to identify the hypothesis in our linear model that is closest to
the truth in the sense of vMax. Will using the likelihood enable us to achieve this goal? In order
to calculate the likelihoods of the hypotheses, we need to make more precise probabilistic
assumptions. Suppose that our measurements of windspeed are normally (i.i.d) distributed
around L(x), for each x, with a mean centred on L(x) and a (constant) standard deviation of σ.

12I borrow this example from Vassend ([2018]).
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Figure 2. A measure of closeness to the truth.

Suppose, moreover, that we sample values of x uniformly from the interval [a, b]. Given these
assumptions, we can calculate the likelihood of each line, L, given a set of data points, (x1, y1),
(x2, x2), . . ., (xn, xn), and we get (Wasserman [2004], p. 213):

p((x1, y1), (x2, x2), . . . , (xn, xn)|L) =
1

(b − a)
√

2πσ2
e
∑n

i=1 −(yi−L(xi))
2

2σ2 (2.1)

Now, the line, L̂ that has maximal likelihood, given the data, is also the line that has
maximal log-likelihood. And thus, ignoring constants, L̂ minimizes the sum

∑n
i=1(yi − L(xi))2,

or equivalently, 1
n

∑n
i=1(yi − L(xi))2.

Suppose now that the number of data points increases towards infinity. Then, by the Weak
Law of Large Numbers (Wasserman [2004], p. 76), 1

n

∑n
i=1(yi − L(xi))2 converges in

probability to the expected value, E(y − L(x))2. Thus, as the amount of data increases to
infinity, the likelihood will increasingly favor the line that minimizes E(y − L(x))2. But, given
our verisimilitude measure, what we are interested in is actually the line that maximizes
vMax(L) = −Maxx∈[a,b]|y − L(x)|. Unless there is a remarkable coincidence, the line that
minimizes E(y − L(x))2 will not be the line that maximizes −Maxx∈[a,b]|y − L(x)|.
Consequently, if we use the likelihood as our measure of evidential favoring, we will never
successfully infer the line that is closest to the truth in the sense that we care about.13

13The previously mentioned (and by now standard) account of expected verisimilitude due
to Niiniluoto ([1986]) gets around the preceding problem, but at a cost that often makes the
account inapplicable in practice. Glossing over some of the nuances, the account is basically
as follows: let v be a verisimilitude measure, then Niiniluoto recommends that we keep track
of the evidential standing of hypothesis H given E by calculating its expected verisimilitude,
which is given by the following formula: E[v(H, E)] =

∑
wi

p(wi|E)Tr(H,wi), where the sum is
over every possible world wi. This might avoid the problem pointed out in this section because
using Niiniluoto’s formula requires that we calculate p(wi|E) rather than p(E|H).
However, there is a new problem because p(wi|E) will, in general, not be epistemically
accessible. In particular, in the example in this section, calculating p(wi|E) would require us to
have available the partition of every possible functional relationship between pressure and
maximum windspeed, but of course scientists do not have this. In general, they restrict
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The above example illustrates a violation of the verisimilitude version of LL: it’s an
example where the likelihood can be expected to pull systematically in a different direction
than what we want given the verisimilitude measure in which we are interested. This type of
example motivates the search for measures of evidential favoring other than the likelihood.
Indeed, in Bayesian statistical inference, modifying or replacing the likelihood has recently
been explored by, among others, Zhang ([2006]), Jiang and Tanner ([2008]), and Bissiri et al.
([2016]). Here, the same possibility will be explored in a verisimilitude framework. The
guiding idea will be that the evidential measure should be calibrated to whatever the
appropriate measure of verisimilitude is.

3 Introducing Verisimilitude-based Inference

As was suggested at the end of the previous section, conceiving of inductive inference in a
verisimilitude framework—where the goal is to get close to the truth in some particular
sense—motivates the idea that any proposed measure of evidential favoring should be suitably
calibrated to whatever the appropriate measure of verisimilitude happens to be. But what does
it mean for a measure of evidential favoring to be ‘calibrated to’ a verisimilitude measure? To
get a better grip on this question, note that given any measure of verisimilitude and measure of
evidential favoring, there is an associated law of evidential impact:

Law of Evidential Impact: Evidence E favors the proposition that H1 is closest to
the truth over the proposition that H2 is closest to the truth (out of the hypotheses
under consideration) if and only if Ev[E|H1] > Ev[E|H2].

Intuitively, evidential measure Ev is calibrated to verisimilitude measure v (or, perhaps
better, they are calibrated to each other) if and only if their associated law of evidential impact
is satisfied, given most pieces of evidence. That is, there should be a systematic fit between
the verisimilitude measure and the evidential measure, such that—in general—hypotheses that
are close to the truth ‘do well’ with respect to the evidential measure, and vice versa. As a
minimal constraint, it needs to be the case that—as the amount of evidence increases without
bound—Ev favors those hypotheses that are closest to the truth according to v. More precisely,
the following consistency constraint ought to be satisfied:

Consistency Constraint: Suppose Ht is a hypothesis that is maximally close to the
truth according to v and suppose H f is a hypothesis that is not maximally close to
the truth. Then, as the amount of evidence E = E1, E2, . . . , En increases to infinity,
Ev is consistent with v if and only if the following inequality is true:

Ev(E|Ht) > Ev(E|H f ) (3.1)

For example, to take our earlier case concerning the relationship between min pressure and
max windspeed, if maximal vertical distance from the truth is used to measure verisimilitude
and the likelihood is used to measure evidential impact, then the analysis in the preceding
section shows that the Consistency Constraint will be violated because even after arbitrarily
large amounts of evidence, the hypothesis that has the best likelihood-score will not be the
hypothesis that is closest to the truth. On the other hand, the AIC score of a model satisfies the

themselves to simple classes of functional relationships, none of which will contain the true
functional relationship.
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Consistency Constraint given that the intended verisimilitude is the Kullback-Leibler
divergence (see Forster and Sober [1994]). Note that the statement of the Consistency
Constraint is intentionally a bit vague. This is because it is supposed to cover a wide range of
situations, including situations in which the hypotheses are probabilistic and situations in
which the hypotheses are non-probabilistic.

Even diehard likelihoodists agree that the likelihood ought to be combined with a prior
probability distribution if a well-justified prior probability distribution is available. Hence, in
addition to being calibrated to the appropriate verisimilitude measure, any decent evidential
measure needs to be capable of replacing the likelihood in Bayesian calculations. Now,
Bayesian updating is clearly an instance of the following more general schema:

(Posterior plausibility of H given E1, . . . , En) ∝ (Evidential impact on H of
E1, . . . , En) * (Initial plausibility of H)

Here ∝ means ‘is proportional to’. Let’s call any inference procedure that instantiates the
above schema ‘quasi-Bayesian’. Thus, the additional requirement we make of Ev is that it be
capable of entering into quasi-Bayesian inferences. Now, the likelihood has the crucial
property that the likelihood of a hypothesis given two pieces of evidence can be decomposed
as the evidential impact that the first piece of evidence has on the hypothesis alone multiplied
by impact that the second piece of evidence has given the first one. In other words,
p(E1, E2|H) = p(E1|H) ∗ p(E2|H&E1). To be capable of replacing the likelihood in Bayesian
calculations, any evidential measure therefore needs to have the following formally equivalent
property:

Coherence Requirement: Ev(E1, E2|H) = Ev(E1|H, E2) ∗ Ev(E2|H)

The Coherence Requirement of the likelihood is not just important in Bayesian
calculations; it’s also crucial in frequentist inference. For example, the Coherence
Requirement is one of the most important properties of the likelihood that allows for the
derivation of the previously mentioned AIC measure of evidential favoring.14

Furthermore, note that what the Coherence Requirement in effect demands is that whether
we evaluate the evidential impact that E1 and E2 have on H by considering the two pieces of
evidence together or one after the other—and regardless of the order in which we consider the
two pieces of evidence15—we end up with the same verdict of how much E1 and E2 jointly
impact H. This seems to be a reasonable property to require of a measure of evidential
favoring.16 Thus we see that the Coherence Requirement is motivated from several different
perspectives.

14In this context, it may be worth noting that even if the likelihood is replaced with a
different measure of evidential favoring, the derivation of AIC will still go through in amended
form in many cases. Hence, the general form of the AIC score of a model, M, that has k
parameters and where M̂ is the setting of the parameters of M that maximizes Ev(E|M) is as
follows:

AIC(M) = log Ev(E|M̂) − k (3.2)

15I thank a referee for pointing out that the Coherence Requirement also implies an
irrelevance of order.

16Coherence of this type is heavily emphasized by E. T. Jaynes ([2003]) and also by Bissiri
et al. ([2016]).
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Whenever Ev(E1|H, E2) = Ev(E1|H), the Coherence Requirement entails that
Ev(E1, E2|H) = Ev(E1|H) ∗ Ev(E2|H), i.e. the evidential impact that E1 and E2 jointly have on
H is equal to the product of the evidential impact that they have separately. Now, when
p(E1|E2&H) = p(E1|H), E1 and E2 are standardly said to be ‘probabilistically independent’
conditional on H. So let’s define the following more general concept:

Evidential Independence: Given evidence E1 and E2 and evidential measure Ev,
E1 and E2 are evidentially independent conditional on H if and only if
Ev(E1|H, E2) = Ev(E1|H) and Ev(E2|H, E1) = Ev(E2|H)

‘Evidential independence’ and ‘probabilistic independence’ are often treated as
synonymous in the philosophical literature, but as we will see in the next section, there are
other ways in which several pieces of evidence can be independent.

The Consistency Constraint and Coherence Requirement are the only general requirements
I will make; in the next section, we will see how these requirements, and the details of the
cases, lead to particular evidential measures.

4 Examples of Verisimilitude-based Inference Procedures

4.1 Parsimony inference over theories

The verisimilitude framework is general and flexible enough that it allows us to reconstruct
inferential methods that cannot be adequately reconstructed in a traditional likelihoodist or
Bayesian framework. To illustrate the generality of verisimilitude-based inference, I will start
with a rather speculative example. My discussion of this example is mostly intended to
illustrate how inferential methods may be reconstructed in the verisimilitude framework, and
in particular how a reasonable evidential measure may be derived given a completely specified
verisimilitude measure. The verisimilitude measure that I will introduce in this section is
admittedly not without its difficulties and has been chosen mainly for its theoretical simplicity
rather than its plausibility. In the next section, I will discuss an example where the
verisimilitude measure is not completely specified.

Suppose we are interested in evaluating scientific theories (for example the theory of
evolution, quantum mechanics, etc) and that we accept the following (no doubt controversial)
ontological parsimony principle: the true theory is the one that is as simple as possible while
accounting for all relevant empirical phenomena.17 Of course, measuring simplicity is a
fraught matter, but suppose we choose to measure the simplicity of a theory by the sum of the
number of basic entities posited by the theory and the number of ad hoc auxiliary assumptions
that must be added to the theory in order for it to account for all the relevant phenomena.18

This understanding of simplicity is consonant with the traditional vera causa understanding of
parsimony summarized by Isaac Newton in his first first rule for scientific reasoning (Newton

17I’m using the rather vague phrase of a theory’s ‘accounting for the phenomena’ because
the criteria for when a theory accounts for a set of phenomena vary between different
disciplines. Also the ‘relevant’ qualifier has been added since it would clearly be unreasonable
to require, say, quantum mechanics to account for phenomena in economics.

18I will put aside the vexed and well known question of how to count the number basic
entities or the number of auxiliary assumptions.
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[1999], p. 794).19 If you add enough ad hoc auxiliary assumptions, just about any theory can
account for just about any empirical phenomenon, but the idea is that a theory that is close to
the truth will require comparatively fewer ad hoc assumptions than a theory that is far from
the truth. Thus, on this construal of simplicity, our parsimony-motivated measure of
verisimilitude is as follows:

Parsimony Verisimilitude Measure: The verisimilitude of a theory T is the
(negative20) sum of the number of basic entities posited by T and the number of
auxiliary assumptions that must be added to T in order for T to account for all the
relevant empirical phenomena.

Suppose we want a verisimilitude-based inference procedure that will lead us to infer
theories that are close to the truth in the above sense. The first thing we need to do is come up
with an appropriate measure of evidential impact. For the moment, let’s suppose that all of the
theories under consideration posit the same number of basic entities; in that case, the theory
that is closest to the truth will simply be the theory that requires the fewest number of
auxiliary assumptions. Let n(D|T ) be a function that has as its input a data set D and a theory
T and that outputs the minimal number of ad hoc auxiliary assumptions that must be added to
T in order to account for D. Then, intuitively, any parsimony-tracking evidential measure of
the evidential impact that D has on T should be some function of n, and in particular it should
be a monotonically decreasing function of n, since a theory that requires more ad hoc
assumptions is worse than one that requires fewer. That is, if Ev is the evidential measure,
then we should have Ev[D|T ] = F[n(D|T )] where F is some monotonically decreasing
function. Any measure of evidential impact that has this form will plausibly satisfy the
Consistency Constraint, whereas any measure that does not will not.

How should the conditional impact that D1 has on T given D2 be defined? Intuitively, we
should not ‘double count’ any auxiliary assumptions. Hence, the evidential impact that D1 has
on T given that we have already considered D2 ought to be a function of the number of
auxiliary assumptions required to account for D1 minus the auxiliary assumptions required to
account for D1 that are also required to account for D2. In other words, we define
Ev[D1|T&D2] = F[n(D1&D2|T ) − n(D2|T )]. Note that this implies that D1 is evidentially
independent of D2 conditional on T if and only if n(D1&D2|T ) − n(D2|T ) = n(D1|T ), i.e. if
and only if the number of auxiliary assumptions required to account for D1&D2 is just the sum
of the auxiliary assumptions required to account for D1 and D2 separately. Clearly, this will
happen if and only if the auxiliary assumptions required to account for the two data sets are
completely non-overlapping. Hence, the relevant notion of evidential independence at work
here is not probabilistic independence, but rather set independence.

Now, suppose we have two data sets D1 and D2. In order for Ev to satisfy the Coherence
Requirement, F needs to satisfy the following equation:

19Newton arguably endorsed an ontological, not merely methodological, reading of the vera
causa principle, as evidenced by the following famous quote:

‘Nature does nothing in vain, and more causes are in vain when fewer suffice. For
nature is simple and does not indulge in the luxury of superfluous causes’
(Newton [1999], p. 794).

See the first chapter of Sober ([2015]) for more discussion.
20We need the negative sum here since a theory that has more basic entities or more

auxiliary assumptions is further from the truth.
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F[n(D1&D2|T )] = F[n(D1&D2|T ) − n(D2|T )] ∗ F[n(D2|T )] (4.1)

Since there is no a priori limitation on which number n(D|T ) can be (aside from the fact that
it must be a non-negative integer), equation (4.1) implies that F must satisfy the following
equation for all non-negative integers x and y:

F[x] = F[x − y] ∗ F[y] (4.2)

It is easy to show by induction that if F is monotonically decreasing, then equation (4.2) has
the following unique solution: F[x] = a−x, where a is some real number greater than 1.21

Hence we reach the following conclusion:

Parsimony Evidential Measure: Given the parsimony verisimilitude measure, the
appropriate way of measuring the evidential impact that D has on T is given by
the following formula:

Ev[D|T ] = a−n(D|T ) (4.3)

Where a is some real number greater than 1.

Interestingly, but perhaps not surprisingly, (4.3) has a form similar to the evidential
measures (implicitly) derived by Bissiri et al. ([2016]), even though the derivation by Bissiri
et al. ([2016]) is a quite different decision theoretic argument.22 If the evidential measure is
used by itself to evaluate and compare theories, then the choice of a clearly does not matter.
However, if a prior distribution is placed over the alternative theories and a full
verisimilitude-based analysis is performed, then the choice of a might be important.

Earlier we made the simplifying assumption that the theories under consideration all posit
the same number of basic entities. But suppose they do not. Then, given the parsimony
measure of verisimilitude, a theory that posits fewer basic entities will a priori plausibly be
closer to the truth than a theory that posits more basic entities. Hence, if we are evaluating
multiple theories with a different number of basic entities, the prior probability assigned to any
given theory should arguably be a reflection of the number of basic entities, n(Ti) posited by
the theory. Note that, in the parsimony verisimilitude measure, the total verisimilitude score of
a theory is determined by the sum of the number of basic entities and auxiliary assumptions
posited by the theory. In other words, auxiliary assumptions and basic entities count equally in
determining the total verisimilitude score. Hence, the prior distribution should arguably be of
the form a−n(Ti), because then—and only then—will the evidential measure and the prior play
an equally important role in determining the posterior probability of the theory. Note that the

21Proof: plug in x = 2 and y = 1. Then F(2) = F(1)2. Now suppose F(N − 1) = F(1)N−1.
Then F(N) = F(N − 1 + 1) = F(1)N−1F(1) = F(1)N . Since F is monotonically decreasing, F(1)
must be less than 1. Hence, if we put a = 1

F(1) , we get that F(N) = a−N , with a greater than 1.
22Strictly speaking, the evidential measure in (4.3) cannot be derived in the decision

theoretic framework assumed by Bissiri et al. ([2016]). Among other reasons, n(D|T ) is not an
additive loss function: it is not necessarily the case that n(D1&D2|T ) = n(D1|T ) + n(D2|T ) for
all D1 and D2. But in Bissiri et. al’s decision theoretic derivation, an additive loss function is
assumed. For reasons of space, I cannot pursue a more detailed and complete comparison with
Bissiri et al.’s derivation here.
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fact that the sum of the prior probabilities of the theories under consideration should sum to 1
will in fact determine the numerical value of a.

So suppose such a prior p is assigned over each of the theories under consideration. Then
the posterior probability of T will be given by the following quasi-Bayesian formula:

p(T |D) =
a−n(D|T ) ∗ a−n(T ))∑
i a−n(D|Ti) ∗ a−n(Ti)

(4.4)

Here, the expression p(T |D) should be interpreted as how plausible it is that T is closest to
the truth out of the theories under consideration, given data D. This interpretation is consonant
with the verisimilitude version defended by Vassend ([2018]).

The reconstruction of parsimony inference undertaken in this section is mostly intended to
illustrate the verisimilitude framework; it is doubtful whether the above
verisimilitude-motivated quasi-Bayesian inference procedure will be useful for understanding
how actual scientific inference works, since few people these days accept Newton’s vera causa
principle. In the next section of the paper, I give an application of the verisimilitude
framework that is more relevant to contemporary scientific practice.

4.2 Parsimony inference in phylogenetics

As was noted earlier in the paper, phylogeneticists in both biology and linguistics model
historical relationships using tree topologies that, in almost every case, will be known to be
false even before any evidence is collected, simply because every phylogenetic tree is based
on highly idealized assumptions. For that reason, the goal of phylogenetic research cannot
reasonably be taken to be inferring the tree topology that is true (or most probably true).
Instead, it is closeness to the truth that must be the goal, given some reasonable measure of
verisimilitude.

What exactly the intended measure of verisimilitude is supposed to be is rarely made
explicit by phylogeneticists. If we assume that the true phylogeny is some type of topological
network (not necessarily a tree) and that the goal is to discover the tree that is maximally
similar to the true network, then presumably the verisimilitude measure should be some sort of
topological or geometric similarity measure—and there are many reasonable candidate
measures (see Jurman et al. [2015] for some of the possibilities). On the other hand, if the goal
is just to estimate some parameter within the true phylogeny, for example the approximate
time when proto-Indo-European was spoken (Bouckaert et al. [2012]), then the verisimilitude
measure ought to be targeted towards that parameter. In either case, the evidential measure
ought to be calibrated to whatever the appropriate verisimilitude measure happens to be.

Currently, the inference methods employed by phylogeneticists tend to be based on the
likelihood or on parsimony considerations, and there appears to be a consensus that
likelihood-based methods are better. Much of the philosophical discussion of phylogenetics
has focused on what substantive (for example biological) assumptions the various methods do
or do not make (for example Sober [1988]). However, in order to evaluate a given evidential
measure, it’s also necessary to investigate whether it is calibrated in the appropriate way to the
relevant verisimilitude measure. I will not try to determine what verisimilitude measure or
evidential measure phylogeneticists ought to use, or whether the evidential measures
phylogeneticists already use are adequate to the task. Here I will just note that, as things stand,
it is not obvious that likelihood-based measures necessarily are better than parsimony-based
measures for all purposes (i.e. regardless of how verisimilitude is measured).
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In the remainder of this section, I will discuss a particular inferential framework employed
by phylogeneticists, namely cladistic parsimony. As will hopefully become clear, recasting
cladistic parsimony in the verisimilitude framework enables us to get a better understanding of
its limitations and possible improvements.

The principle of parsimony says that when you are deciding between several possible tree
topologies, the evidence favors the tree topology that requires the fewest number of
‘homoplasies’ in order to account for the evidence. So, if T1 implies that at least m
homoplasies have occurred and T2 implies that at least n homoplasies have occurred, then the
principle of parsimony says that we should prefer T1 to T2 if and only if m > n. Roughly
speaking, a homoplasy occurs whenever an evolutionary innovation occurs independently in
multiple lineages. For example, in biological phylogenetics, a genetic mutation that occurs in
two species, but not in their most recent common ancestor, is one kind of homoplasy. But
phenotypic traits can also be homoplasies: if two species both have eyes, but their most recent
common ancestor does not, then having eyes is a homoplasy—it’s a shared evolutionary
innovation. In historical linguistics, on the other hand, homoplasies often take the form of
phonological traits. For example, if a certain sound occurs in two languages, but not in their
most recent common ancestor, then that sound is a homoplasy.

Note that, as Farris ([1983]) points out, the principle of parsimony does not assume that the
true phylogeny is the most parsimonious tree (as noted earlier, we already know that the true
phylogeny is not a tree at all) or even that the true phylogeny is particularly parsimonious. If
the true phylogeny were one of the hypotheses under consideration, then the Consistency
Constraint would indeed imply that the principle of parsimony is a sound principle only if we
assume that the true phylogeny is maximally parsimonious. However, we know that the true
phylogeny is not one of the hypotheses under consideration. Hence, as things stand, the
Consistency Constraint only implies that among all possible phylogenetic trees (in the limit as
the amount of evidence increases), the principle of parsimony can be sensibly applied only as
long as we assume that more parsimonious trees are closer to the true phylogeny than less
parsimonious trees. But this leaves it open that the principle of parsimony may be compatible
with a wide range of different verisimilitude measures.23 Again, in the rest of the section, I
will leave the precise form of the verisimilitude measure unspecified, although I will assume
that more parsimonious trees are closer to the truth than less parsimonious trees. The goal is to
show that even if the underlying verisimilitude measure is unspecified, we can use the
verisimilitude framework (and in particular the verisimilitude version of Bayes’s formula) to
get a better understanding of cladistic parsimony.

According to the principle of parsimony, then, one should count the number of homoplasies
required by each tree; the most favored tree will be the one that requires the smallest number
of homoplasies in order to account for all the data.24 More formally, let D be a data set that
consists of the distribution of a set of traits among several species/languages/etc., let T be a
tree topology, and let n(D|T ) be the number of homoplasies that must be posited in order for T
to account for D. Then the principle of parsimony says that D favors T1 over T2 if and only if
n(D|T1) < n(D|T2).

Note that n(D|T ) has exactly the same form and properties as n(D|T ) from the previous
subsection (hence the same notation). For the same reasons as before, in the verisimilitude
framework, the evidential measure therefore takes the following form:

23I thank a referee for pressing me on this point.
24The are also refinements of cladistic parsimony, where some homoplasies are weighted

more than others. I will not discuss those refinements here.
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Ev[D|T ] = a−n(D|T ) (4.5)

Note moreover that, once again, the relevant sort of ‘evidential independence’ here is
set-independence, not probabilistic independence. Hence, two data sets are evidentially
independent, conditional on T , if and only if the set of homoplasies T must posit in order to
account for the first data set does not overlap with the set of homoplasies that T must posit to
account for the second data set.

In contrast to traditional cladistic parsimony analysis, verisimilitude-based cladistic
parsimony allows for the inclusion of a prior probability distribution. Thus, given a prior
probability distribution, p, over the various possible trees Ti under consideration, we may
calculate the posterior probability of each tree using the verisimilitude version of Bayes’s
formula:

p(T |D) =
a−n(D|T ) ∗ p(T )∑
i a−n(D|Ti) ∗ p(Ti)

(4.6)

This is significant, for it means that we are now in a position to critique cladistic parsimony
in the same way that Bayesians sometimes critique methods that rely on using only the
likelihood. In particular, a standard Bayesian criticism is that maximum likelihood
estimation—i.e. inferring the hypothesis that has the highest likelihood given the evidence—in
general is equivalent to doing Bayesian inference with a ‘flat’ prior that assigns the same
probability to each hypothesis, because on a Bayesian calculation, the hypothesis that receives
the highest posterior probability will—in general—be equivalent to the hypothesis that has the
highest likelihood if a flat prior is used in the calculation.25 Depending on the details of the
problem, a flat prior may not be appropriate. The point of this criticism isn’t that maximum
likelihood estimation is ‘wrong’, but rather that—from a Bayesian point of view—it can be
improved upon in cases where a flat prior is clearly suboptimal or unreasonable.

We can now level the same criticism against cladistic parsimony, because given the
verisimilitude version of Bayes’s formula, the tree that has the best parsimony score, n(D|T ),
will—in general—be equivalent to the tree that has the highest posterior probability if
p(Ti) = p(T j) for all i and j, i.e. if the prior probability assigned to each tree topology is the
same. This can most easily be seen from the versimilitude version of the odds formulation of
Bayes’s formula:

p(Ti|D)
p(T j|D)

=
a−n(D|Ti)

a−n(D|T j)
∗

p(Ti)
p(T j)

(4.7)

From 4.7, we see that if p(Ti) = p(T j) for all i and j, then p(Ti|D) > p(T j|D) if and only if
a−n(D|Ti) > a−n(D|T j), which in turn is true if and only if −n(D|Ti) > −n(D|T j). Hence, if we rank
the posterior verisimilitude probabilities of all the hypotheses from highest to lowest, their
order will be equivalent to the order we get if we rank the hypotheses by their parsimony
scores. Thus, from the point of view of the verisimilitude framework, using the principle of
parsimony amounts to doing quasi-Bayesian inference with a flat prior. The question to ask,
then, is this: is it reasonable to assign the same prior probability to every tree topology?

25To see why, consider the odds formulation of Bayes’s formula: p(Hi |E)
p(H j |E) =

p(E|Hi)
p(E|H j)

∗
p(Hi)
p(H j)

. If
the prior is flat, p(Hi) = p(H j), and so p(Hi|E) > p(H j|E) if and only if p(E|Hi) > p(E|H j),
and so the hypothesis with the highest likelihood will also be the hypothesis that has the
highest posterior probability.
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In the case of biological phylonegetics, Velasco ([2008]) convincingly argues that the
answer is ‘no’. We need not go into the details of Velasco’s argument here, but the upshot of
the argument is that if a flat prior is to be used at all, then the prior should be flat over all
possible labeled histories. A labeled history is a tree topology in which the internal vertices of
the tree are time-ordered. Importantly, some tree topologies are consistent with more labeled
histories than others. Hence, a flat prior over all the labeled histories will necessarily induce a
non-flat prior over the possible tree topologies.

Velasco is primarily concerned with critiquing Bayesian phylogeneticists, but he notes that
his criticism will apply to any inferential method that does not explicitly take account of the
prior probabilities of trees, including cladistic parsimony. Our reconstruction of cladistic
parsimony in the verisimilitude framework has allowed us to raise Velasco’s criticism of
cladistic parsimony in a more explicit manner.

However, the verisimilitude framework does not just enable us to raise Velasco’s criticism
in a more explicit manner, it also enables us to respond to the criticism. This is because our
verisimilitude reconstruction of cladistic parsimony in (4.6) allows for the explicit inclusion of
any prior, including the prior recommended by Velasco. In particular, let n(Ti) be the number
of labeled histories consistent with Ti and let L be the total number of labeled histories. Then,
in light of Velasco’s argument, a reasonable prior to assign to Ti is p(Ti) =

n(Ti)
L .

Hence, if we use the prior suggested by Velasco and update the probability of Ti with the
parsimony-version of Bayes’s formula, the result will look like this:

p(Ti|D) =
a−n(D|Ti) ∗ n(Ti)∑
j a−n(D|T j) ∗ n(T j)

(4.8)

Here, a is a constant (again, greater than 1) that implicitly balances how bad positing an
extra evolutionary innovation is compared to positing a tree that is consistent with fewer
labeled histories. Or, on a more abstract level, a balances how weighty the evidential measure
is when compared to the prior. If a is bigger, then the data will influence the posterior more
than if a is smaller. If a is set so that is greater than Maxi, j(

n(Ti)
n(T j)

), then the prior will have no
influence on the posterior ranking of hypotheses.26 Hence, a should presumably be set
somewhere lower. For example, if there are four taxa, then Maxi, j(

n(Ti)
n(T j)

) = 2 (Velasco [2008],
p. 469), so a should be set somewhere between 1 and 2.

From a verisimilitude perspective, the goal is to infer the hypothesis that is closest to the
truth. Presumably, there is some value of a that will accomplish this more efficiently than any
other value. Indeed, if we had a completely specified verisimilitude measure, then the
verisimilitude measure would uniquely determine the value of a, as was the case in the
preceding section. However, if we do not have a completely specified verisimilitude measure,
then we do not know what the value of a is. Hence, it’s natural to regard a as a parameter.
From a Bayesian perspective, it’s reasonable to quantify uncertainty concerning the value of a
with a prior probability function. Note that p(a = 1.5) = 0.3, say, is a verisimilitude
probability—it reflects a degree of belief of 0.3 that 1.5 is the value of a that is closest to the
truth in the sense that a = 1.5 is the value of a that will most efficiently lead one to infer
hypotheses that are closest to the truth according to whatever verisimilitude measure is
appropriate. Importantly, p(a = 1.5) = 0.3 should not be interpreted as a degree of belief that

26If a is greater than Maxi, j(
n(Ti)
n(T j)

), then the prior will have no influence on the posterior
ranking in the following sense: if Ev[E|T1] > Ev[E|T2], then p(T1|E) > p(T2|E) and if
Ev[E|T1] < Ev[E|T2], then p(T1|E) < p(T2|E). These facts can most easily be seen by
considering the odds formulation of the verisimilitude version of Bayes’s formula (4.7).
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1.5 is the true value of a—there is no clear sense in which any value of a can be said to be
‘true’.

Without a specific verisimilitude measure, it’s unclear how we should go about determining
a prior distribution over the possible values of a, since the value of a that is closest to the truth
is inextricably linked to how verisimilitude is measured. However, a conservative option that
makes sense regardless of how verisimilitude is measured is to assign a flat prior over all the
possible values of a, keeping in mind the restriction that a should be between 1 and
Maxi, j(

n(Ti)
n(T j)

). That way, the prior will at least play some role in the inference, which is a good
thing if we think the prior suggested by Velasco is reasonable.

To give a concrete example, in the case with four taxa, we may choose to assign a flat prior
over all possible values of a between 1 and 2. If we do that, then Ev[D|Ti] takes the following
form:27

Ev(D|Ti) =
1 − 21−n(D|Ti)

n(D|Ti) − 1
(4.9)

The posterior probability of Ti can then be calculated by combining the evidential measure
in (4.9) with the prior suggested by Velasco.

I will not discuss further the practical issue of how the value of a should be determined.28

The more important theoretical upshot for our purposes is that verisimilitude-based cladistic
parsimony apparently occupies an intermediate spot between traditional cladistic parsimony
and a traditional Bayesian analysis: it allows for the incorporation of background information
through a prior, while also using a parsimony-motivated evidential measure rather than the
likelihood. Thus, by recasting cladistic parsimony in the verisimilitude framework, we have
apparently strengthened it.

Furthermore, the example in this section shows how we may improve our inference
procedures even if we do not have a fully specified verisimilitude measure. As was noted
earlier, the only assumption that we have made about the verisimilitude measure is that more
parsimonious trees are closer to the truth than less parsimonious trees. Given this assumption,
the principle of parsimony is a reasonable evidential principle, and the principle of parsimony
and Coherence Requirement jointly entail that the evidential measure takes the form shown in
(4.5). If we do not have a precise idea of the form that the verisimilitude measure ought to
take, then a reasonable fully specified evidential measure is given in (4.9).29 However, to the
extent that we do have an idea of what sort of verisimilitude is relevant, the verisimilitude
framework enables us to optimize the inference procedure by assigning a more opinionated
prior probability distribution over the parameter a in (4.5). In the case where the verisimilitude
measure is completely specified, the precise numerical value of a may even be determined, as
was the case in (4.4) of the preceding section. Hence, in the same way that standard Bayesian
inference allows us to incorporate relevant background information through a prior and
thereby improve our inferences—provided that we have background knowledge—the
verisimilitude framework allows us to improve our evidential measures, provided that we have
some idea of what the verisimilitude measure we care about looks like.

27This form of Ev is arrived at by integrating Ev[D|Ti, a]p(a|Ti) over a, on the assumption
that a and Ti are independent.

28The problem of how to set ‘tuning’ constants such as a has been explored recently by, for
example, Ibrahim et al. ([2015]) and Bissiri et al. ([2016]).

29Given that there are four taxa; otherwise, the evidential measure will obviously look a bit
different.
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5 Conclusion

I have argued that the standard version of the Law of Likelihood often fails to make sense in
practice. The verisimilitude version is better than the standard version, but even the
verisimilitude version often faces difficulties. The problem is that, when the hypotheses under
consideration are all known to be false and the goal is simply to find the hypothesis that is
closest to the truth, then the hypothesis that has the highest likelihood will not necessarily be
the hypothesis that is closest to the truth in the relevant sense. Hence, the likelihood
sometimes needs to be replaced by a different measure of evidential impact, and I have argued
that the alternative evidential measure ought to be chosen so that it is calibrated against a
verisimilitude measure that is appropriate in the given context. Finally, I have illustrated the
verisimilitude framework by reconstructing parsimony evaluations of theories and parsimony
inference in phylogenetic inference.

My main contention is that the verisimilitude framework is a better—and more
general—framework for philosophy of science than either Bayesianism or likelihoodism. The
verisimilitude framework is better because it allows us to reconstruct in a broadly probabilistic
framework inferential methods where the goal is merely closeness to the truth rather than truth
itself, and were Bayesian or likelihoodist reconstructions are consequently not possible.
Reconstructing inferential methods in the verisimilitude framework allows us to better
understand the presuppositions and limitations of those inferential methods, as well as
possible ways in which the methods may be improved.

This paper has focused on Bayesianism and likelihoodism in philosophy of science.
However, as was noted in the introduction, Bayesianism and likelihoodism are not just
frameworks that are useful in philosophy of science; they are also frameworks for statistical
inference. Furthermore, in statistical inference—as in scientific inference in general—it’s
often the case that all the hypotheses under consideration are known to be false. The following
question therefore arises: is the verisimilitude framework a viable—and better—framework
statistical inference as well? That is a question for another paper.
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