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I argue that the gravitational redshift effect cannot be explained purely by way of uni-
formly accelerated frames, as sometimes suggested in the literature. The concepts in need of
clarification are spacetime curvature, inertia, and the weak equivalence principle with respect
to our understanding of gravitational redshift. Furthermore, I briefly discuss gravitational
redshift effects due to charge. Considering charge and mass together seems to give rise to a
way of (locally) shielding gravity.
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1 Introduction

In 1911 Einstein foresaw a phenomenon
thereafter known as ‘gravitational redshift’
[Einstein, 1911]. His thought experiment ini-
tiated the revolutionary idea that mass warps

space and time. There exist some misconcep-
tions, as evidenced in the literature, regarding
the nature of the gravitational field in Einstein’s
General Theory of Relativity (GR) and how it
relates to redshift effects. My aim is to give
a consistent analysis of the gravitational red-
shift effect, in the hope of thereby advancing in
some small measure our understanding of GR.
Moreover, I will show that when charge is taken
into account, gravitational redshift is subject to
further corrections.

In the first part of this paper I shall de-
rive and discuss the gravitational redshift in the
framework of GR, from the equivalence princi-
ple, and from energy conservation principles to
then compare and relate the different results.
In the second part of this paper I shall examine
effects on the redshift due to charge with some
remarks on the relationship between GR and
electromagnetism, and the possibility of locally
shielding gravity with charge.

2 Gravitational redshift

It is a straightforward task to derive the rela-
tive shift in coordinate time of two clocks in a
given gravitational field with metric gµν . Since
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we will employ some alternative approximate
approaches to derive the gravitational redshift
in the following sections, we shall choose to
present the exact and most general derivation
from GR first, variants of which are standard
fare (see for example, [Wald, 2010, p. 136]).

Figure 1: Two observers at different heights ex-
perience a time dilation effect in Earth’s gravi-
tational field. Emitter O1 on the surface of the
Earth sends a train of electromagnetic pulses
from point P1 with energy momentum 4-vector
ka to a receiver O2, placed at point P2, at height
h above P1. We assume O1 and O2 are static,
i.e. their 4-velocities ua1 and ua2 are tangential
to the Killing field ξa =

(
∂
∂t

)a
.

An emitter O1 on the surface of the Earth
sends a train of electromagnetic pulses from
point P1 with energy momentum 4-vector ka

to a receiver O2, placed at point P2, at height
h above P1. We assume the two observers O1

and O2 to be static, which is to say, their 4-
velocities ua1 and ua2 are tangential to the static
Killing field ξa =

(
∂
∂t

)a
. Since the 4-velocities

of the two observers are unit vectors pointing

in the direction of ξa, we have ua1 = ξa√
−ξbξb

∣∣∣∣
P1

and ua2 = ξa√
−ξbξb

∣∣∣∣
P2

. The lengths
√
−ξbξb =

√
−gbcξbξc are obtained by contraction with the

metric. We let the observers O1 and O2, whose
clock rates we wish to compare, describe their
world-lines. The difference in the world-lines’
lengths in spacetime consequently determines
the amount of gravitational redshift. Figure 1
illustrates the thought experiment.

Recall that for a given energy-momentum 4-
vector pa = mua of a particle, with respect to a
local inertial frame, the energy observed by an
observer that moves with 4-velocity va is

E = −pava.1 (2.1)

Therefore, for the frequency νi of the photon
observed by Oi, which moves with 4-velocity
uai , we find the relation hνi = Ek = −kauai |Pi

(compare Equation 2.1), where Ek is the energy
of the photon. By definition of the vector field
ξa, we have ξaξ

a|Pi
= g00|Pi

since ξa has van-
ishing spatial components. It would involve a
fair amount of work to derive the gravitational
redshift by finding the geodesic equation. How-
ever, this can be avoided by taking advantage
of a useful proposition. Light travels on null
geodesics (in the geometrical optics approxima-
tion, i.e. the spacetime scale of variation of the
electromagnetic field is much smaller than that
of the curvature), from which it follows that the
inner product kaξ

a is constant along geodesics,
that is kaξ

a|P1
= kaξ

a|P2
.2

Spacetime around Earth (if considered as
generated by a point mass M at r = 0) can
be modelled by the Schwarzschild metric

ds2 = gµνdx
µdxν =−

(
1− rS

r

)
c2dt2

+
(

1− rS
r

)−1
dr2

+ r2(dϑ2 + sin2 ϑdϕ2),
(2.2)

where

rS =
2GM

c2
(2.3)

is the so-called Schwarzschild radius, r the dis-
tance from the Earth’s centre, G the gravita-
tional constant, c the speed of light, and M the
mass of the Earth. This yields

1In particular, if ua = va, i.e. the particle’s 4-velocity aligns with the observer’s, then E = −mvava = mc2.
2For a detailed proof see for instance, [Wald, 2010, p. 442]
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ν1
ν2

=

√
−ξbξb

∣∣∣
P2√

−ξbξb
∣∣∣
P1

=

√
1− 2GM

c2r2√
1− 2GM

c2r1

≈ 1 +
GM

c2

(
1

r1
− 1

r2

)
≈ 1 +

gh

c2
, (2.4)

or
∆ν

ν
≈ GM

c2

(
1

r1
− 1

r2

)
, (2.5)

with g := GM
c2r21

the gravitational constant at r1,

ν = ν1, ∆ν = ν1 − ν2, and r2 − r1 = h. For
the last approximation in the second last line
we have used 1

r1
− 1

r2
= r2−r1

r2r1
≈ h

r21
if r1 ≈ r2

and r1, r2 � h. Moreover, we used the approx-
imations

√
1 + x ≈ 1 +

1

2
x

1√
1 + x

≈ 1− 1

2
x. (2.6)

Experimental tests of the gravitational
redshift were first conducted by Cranshaw,
Schiffer and Whitehead in the UK in 1960
[Cranshaw et al., 1960]. It was not clear
whether significant conclusions could be drawn
from their results. In the same year, the ex-
periments by Pound and Rebka in Harvard suc-
cessfully verified the gravitational redshift effect
[Pound and Rebka Jr, 1960].

3 Uniformly accelerated frames
and the equivalence principle

Einstein’s equivalence principle (also called the
weak equivalence principle) assumes that any
experiment in a uniform gravitational field
yields the same results as the analogous exper-
iment performed in a frame removed from any
source of gravitational field but moving in uni-
form accelerated motion with respect to an in-
ertial frame [Norton, 1985].3

However, it is clear that Einstein was well
aware of the mere linearly approximate validity
of the equivalence principle when he wrote:

‘...we arrive at a principle [the
equivalence principle] which, if it is
really true, has great heuristic im-
portance. For by theoretical consid-
eration of processes which take place
relative to a system of reference with
uniform acceleration, we obtain in-
formation as to the behaviour of
processes in a homogeneous gravi-
tational field. ... It will be shown
in a subsequent paper that the grav-
itational field considered here is ho-
mogeneous only to a first approxi-
mation.’ [Einstein, 1911, p. 900]

The principle, thus, only holds in a ‘small neigh-
bourhood’ of a point-like observer. Nonethe-
less, a treatment of the redshift effect in a uni-
form static gravitational field proves instruc-
tive, insofar as it shows that certain conse-
quences of GR can be explained by means of ge-
ometry without resorting to gravitational fields.
Dealing with uniform accelerations to derive
the gravitational redshift, however, is a deli-
cate business, and we shall see that the field,
resulting from uniform (proper) acceleration, is
not uniform if we demand a constant (proper)
distance between emitter and observer!

We consider a spaceship that is uniformly
accelerated. An emitter E and receiver R inside
the spaceship, separated by a height h, compare
frequencies of signals ascending the spaceship.
For an illustration, see Figure 2.

As in the derivation of the gravitational red-
shift from the Schwarzschild metric, we let the
observers describe their world-lines. It suffices
to consider only one spatial dimension x. Accel-
eration a is measured in an inertial frame S with
momentary velocity v relative to the inertial
frame S ′ outside the spaceship, inside of which

3Note that [Brown and Read, 2016] use ‘Einstein equivalence principle’ to refer to what is often called the ‘strong
equivalence principle’.

4It is implicitly assumed that the proper time of co-moving clocks depends only on velocity and is independent
of acceleration. This assumption is often called the Clock Hypothesis (see for example, [Brown and Read, 2016,
Section 3]).
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the acceleration is measured to be a′.4 Rela-
tivistic transformation of 3-acceleration gives

a = γ3a′, (3.1)

where γ = 1√
1− v2

c2

is the Lorentz factor.5

Figure 2: The gravitational redshift experiment
in a uniformly accelerated spaceship. The red-
shift effect can be explained by the equivalence
principle (to first order).

Note that the acceleration of the spaceship
needs to be measured in the (momentary) in-
ertial frame with instantaneous velocity v such
that a′ = dv

dt
(proper acceleration). With re-

spect to the accelerated frame, sure enough, the
ship’s acceleration is zero. However, the princi-
ple of relativity — the requirement according to
which the laws of physics take the same form in
any inertial frame — no longer holds in acceler-
ated, hence non-inertial, frames. Therefore, as
expected, the two observers in the spaceship are
going to feel a (pseudo)force F = m0a, where
m0 is the rest mass (invariant mass) of an ob-
ject in the spaceship.

We want the (proper) acceleration a of the
spaceship to be constant. The right hand side
of Equation 3.1 is equal to d

dt
(γv). Since a is

constant we integrate Equation 3.1 twice to find
the trajectory — so-called Rindler hyperbola —
of a uniformly accelerated spacetime point as
observed by the inertial frame S ′:

x(t) =
c2

a

√
1 +

(
at

c

)2

+ C, (3.2)

with C a constant from integration. The sec-
ond constant from the first integration was set
to zero such that v(0) = 0. Without loss of gen-
erality we can also set C = 0. The result rep-
resents a hyperbolic path in Minkowski space,
i.e.

x2 − c2t2 =
c4

a2
, (3.3)

from which the term ‘hyperbolic motion’ is de-
rived. We assume the back of the spaceship be

subject to this motion. Note that ẋ
t→∞→ c, as

expected.
We recover uniform acceleration in the New-

tonian sense for t� 1. That is,

x(t) = x0 +
at2

2
, (3.4)

with x0 = c2/a the position at t = 0.
For an exact derivation, it would lead

to inconsistencies to assume emitter and re-
ceiver be subject to the same Rindler hy-
perbola with only an additional spatial dis-
tance h in the coordinate x. For if we main-
tained a constant height between E and R rel-
ative to the inertial observing frame S ′, length
contraction, as predicted by special relativ-
ity, would stretch the spaceship and eventually
tear it apart (cf. also Bell’s spaceship paradox
in [Dewan and Beran, 1959] and [Bell, 1987,
Chapter 9]). This is key. As was also pointed
out by [Alberici, 2006], assuming the gravita-
tional acceleration to be the same for the top
and bottom observers leads to all kinds of para-
doxes. Most notably, it is not possible in this
case to define a globally freely falling inertial
frame because the corresponding metric would
lead to a non-vanishing Riemann tensor, and

5To find the transformation of acceleration, one has to differentiate the spatial coordinates of the Lorentz trans-
formation with respect to the time coordinates to first find the 3-velocity transformation (velocity-addition formula).
Another differentiation of the velocities yields the transformation law for 3-acceleration.
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hence curvature! The receiver R in the bow
lying higher by height h with respect to the
emitter E must follow the hyperbola

x2 − c2t2 =

(
c2

a
+ h

)2

, (3.5)

for the proper height (relative to S) to be con-
stant. These are the two desiderata to sim-
ulate reasonably the gravitational redshift by
uniform acceleration: First, the ship must have
a constant acceleration; and second, the ship
must have a constant proper height. The world-
lines of emitter and receiver are denoted in Fig-
ure 3.

Figure 3: The world-lines of emitter E and re-
ceiver R are Rindler hyperbolae when experi-
encing constant proper acceleration.

Due to relativistic length contraction, the
receiver’s proper acceleration needs to be
slightly greater. By comparing the two hyper-
bolae it immediately follows that the accelera-
tion gR of the receiver is related to the emitter’s
acceleration gE by

gR =
gE

1 + gEh
c2

. (3.6)

Compare also the treatment and related para-
doxes in [Fabri, 1994]. Therefore, the gravita-
tional field is not constant over the extended
region of the spaceship. That is, however, not
a surprise, for we would not expect the equiva-
lence principle to hold globally in the first place.
Further, it follows that proper time intervals
along two different Rindler hyperbolae between
two events having the same coordinate velocity
are in a fixed proportion,

τR
τE

=
gE
gR

= 1 +
gEh

c2
, (3.7)

yielding the exact gravitational redshift formula
for uniform acceleration. Alternatively, we can
write

νR =
νE

1 + gEh
c2

= νE

(
1− gRh

c2

)
(3.8)

for the corresponding observed frequencies, to
highlight the dependence on the two differ-
ent proper accelerations of emitter and receiver
(cf. also the results in [Alberici, 2006]). From
the preceding derivations we readily find for the
(Rindler) metric of an accelerated frame

ds2 = gµνdx
µdxν =

(
1 +

gEx

c2

)2
c2dt2 − dx2.

(3.9)
Thus, the gravitational redshift according to
this metric reads

νE
νR

=
∆tx=h
∆tx=0

= 1 +
gEh

c2
, (3.10)

which is consistent with the first order approx-
imation of the gravitational redshift from the
Schwarzschild metric in Equation 2.4. Clocks
at E and R, whose rates one wishes to compare,
are permitted to describe their world-lines, i.e.
Rindler hyperbolae, with respect to the inertial
frame, and the value for the redshift is obtained
by comparing the lengths of their world-lines in
spacetime. Therefore, the treatment here is ex-
act. The Rindler metric is, in fact, a solution
to the vacuum Einstein field equations and has
vanishing curvature (Rµνρσ = 0).

In the experiments of Pound-Rebka to con-
firm gravitational redshift, the emitter sends a
signal at equal intervals on a clock at the sur-
face of the Earth. The receiver measures the
time interval between receipt of the signals on
an identical clock at height h (see Figure 4).
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Figure 4: The Pound-Rebka experiment.

Merely when the experiment is taken to be
at rest in a Rindler field, the equivalence princi-
ple implies that the relation between the clock
times of emitter and receiver must be the same
as if a spaceship were to accelerate vertically
upwards in free space, as shown in Figure 2.
The signals at the back are received at longer
intervals than they are emitted because they
are catching up with the accelerated bow of
the spaceship and thus exhibit a Doppler shift.
Note that the equivalence principle is a local
law. Thus, in a field like that of the Earth it
holds only approximately (to first order) for a
small spacetime region.

4 Equivalence and gravitational
redshift

Although GR is a well-established framework,
it often occurs that its application amounts to
an analysis that renders conclusions equivocal.
This, in particular, happens to be the case for
gravitational redshift. For instance, Brown and
Read comment on the gravitational redshift ef-
fect as follows:

‘The second possible misconception
relates to the notion that gravi-
tational redshift experiments pro-
vide evidence for spacetime curva-
ture. They do, but contrary to
what is claimed in some important

modern textbooks on GR, a sin-
gle gravitational redshift experiment
does not require an explanation in
terms of curvature. Rather, it is
only multiple such experiments, per-
formed at appropriately different lo-
cations in spacetime, that suggest
curvature, via the notion that in-
ertial frames are only defined lo-
cally, ...This “redshift” effect fol-
lows directly from the claim that the
emitter and absorber are accelerat-
ing vertically at a rate of g m/s2 rel-
ative to the (freely falling) inertial
frames.’ [Brown and Read, 2016,
p. 327, 329]

Here, Brown and Read assume the ‘redshift’ ef-
fect to be independent of ‘tidal effects’ (which
is what they refer to as curvature). We have
in fact already shown such a derivation is lim-
ited and does not fully account for gravitational
redshift. There are indeed tidal effects in a sin-
gle redshift experiment as outlined above in the
most general derivation. Moreover, as we have
seen, assuming both emitter and absorber to ac-
celerate at the same rate is impossible given the
two desiderata mentioned. However, they ac-
knowledge there is nonetheless a connection be-
tween spacetime curvature and redshift exper-
iments. This connection, to Brown and Read,
amounts to the fact that redshift experiments
carried out at different places on Earth reveal
‘geodesic deviation’ due to the spherical shape
of the planet. That is, relative to a global freely
falling frame at the site of one redshift experi-
ment, a freely falling frame at another site is
not moving inertially. Multiple gravitational
redshift experiments thus require for their joint
explanation the rejection of the global nature of
inertial frames. Brown and Read think it is only
geodesic deviation that reveals curvature. How-
ever, one experiment is sufficient to detect tidal
effects of Earth’s gravitational field. After all,
an extended body will experience a stronger at-
traction on its nearest side than on its furthest
side.

What Brown and Read deem to be a mis-
conception, that is

6



‘An explanation for the results of a
single gravitational redshift experi-
ment of Pound–Rebka type will ap-
peal to a notion of spacetime cur-
vature.’ [Brown and Read, 2016, p.
330],

is in fact one. However, this results not from an
absence of curvature. Rather, since the Pound-
Rebka experiment was solely designed to verify
the first order effects predicted by GR, in this
case a derivation via accelerated frames gives
the desired result.

Brown and Read’s proposal holds if the
gravitational field of the Earth was assumed
to be uniform, that is, independent of the ra-
dial distance from the centre of the earth, and
also if gh

c2
� 1. In experiments involving

larger spatial separations or stronger gravita-
tional field variations, it is necessary to use the
exact Schwarzschild solution of GR. By means
of fully formed GR, of course, all approxima-
tions are bound to disappear. Incidentally, the
second and higher order contributions to the
redshift effect amounts to a correction of a mag-
nitude of 10−9 relative to the first order result.
Clearly, in the case of the Earth’s gravitational
field, a freely falling observer does not accel-
erate uniformly relative to a static frame on
Earth, but rather her acceleration increases as
she gets closer to the surface since the gravita-
tional field strength increases.

I conclude with two clarifications. First, if
the equivalence principle is to be used to explain
the gravitational redshift, then it is important
to realise that this can only be done to first or-
der. Second, the quantitative results of Pound-
Rebka can indeed be justified without appeal-
ing to spacetime curvature, but one should be
aware that a complete theoretic description has
to take into account the inhomogeneous gravi-
tational field of Earth. After all, more sophis-
ticated experiments with higher accuracy than
those used by Pound and Rebka are in fact able
to measure effects due to curvature in a single
redshift experiment.6 Although my considera-
tions do not inhibit the successful comparison

of the results of the Pound-Rebka experiment
with first order calculation because higher order
effects are beyond their measurement accuracy,
they show that the qualitative explanation of
the result requires to invoke spacetime curva-
ture and an exact treatment of accelerations.

5 Redshift due to charge

5.1 The weight of photons

What Pound and Rebka call the ‘weight of pho-
tons’ in their experiments, in fact, aptly de-
scribes how Einstein originally had thought of
gravitational redshift and what he had termed
the inertia of energy.

5.1.1 Einstein’s thought experiment

Let us go back to the thought experiment al-
luded to in the introduction. Einstein fore-
saw the gravitational redshift on the basis of
a thought experiment using the ‘inertia of en-
ergy’ he had discovered in 1905 [Einstein, 1905],
six years before his famous paper on relativity
[Einstein, 1911]. A variant of this I shall spell
out here.

Consider a test body of mass m0 at rest at
a height h, with a total energy m0c

2 + m0gh.
The mass subsequently is dropped, and when
it reaches the ground the total energy γm0c

2

is obtained, where γ = 1√
1− v2

c2

, and v the ve-

locity of the mass at the ground (such that
m0c

2 + m0gh = γm0c
2). The mass is then

transformed into a packet of radiation of energy
hν1, which is then sent from the ground back
to height h, where the mass m0 initially had
been. There, the packet is transformed back
into a mass m. By energy conservation, m must
equal the mass m0, which amounts to saying
that hν2 = m0c

2, where ν2 is the frequency of
the packet at height h. See steps 1–4 in Figure
5.

From this we regain the first order approxima-

6Note that for the Schwarzschild metric R = 0 and Rµν = 0, but not all entries of the Riemann curvature tensor
Rµνρσ vanish.
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tion in Equation 2.4;

ν1
ν2

=
m0c

2 +m0gh

m0c2
= 1 +

gh

c2
. (5.1)

Equation 5.1 again involves an approximation
of the exact redshift formula, for we assume a
uniform gravitational field. Hence we use m0gh
for the energy of the test body. If we were to
take into account the 1

r
-dependence of the grav-

itational potential, we would obtain

ν1
ν2

=

m0c
2 +

r1∫
r2

FNdr

m0c2

= 1 +
GM

c2

(
1

r1
− 1

r2

)
≈ 1 +

gh

c2
, (5.2)

with FN Newton’s gravitational force of a mas-
sive central body.

Figure 5: Gravitational redshift as a conse-
quence of energy conservation. A test body
of mass m0 at rest at a height h is dropped.
When it reaches the ground the total energy
γm0c

2 is obtained. The mass subsequently is
transformed into a photon of energy hν1, which
is then sent from the ground back to height h.
There, the photon is transformed back into a
mass m. By energy conservation, m must equal
the mass m0, from which it follows that the
photon’s frequency must have decreased at its
ascent.

Bear in mind that neither the derivation
by means of uniformly accelerated frames nor
the derivation by means of energy conserva-
tion yield the correct value for the gravitational
redshift in the first line of Equation 2.4. The
former holds in virtue of the inhomogeneity of
Earth’s gravitational field and the merely local
validity of the equivalence principle. The lat-
ter is true because the Newtonian central body
force law is an approximate limit of GR.

5.1.2 Inertia of energy

The approach of describing the redshift effect
as a result of energy conservation suggests the
following idea:

Any ‘source’ of energy causes clocks at dif-
ferent distances from the ‘source’ to exhibit time
dilation effects.

As one example, charged particles attracted
by a charged source should likewise be expected
to give rise to redshift effects. We can, however,
not follow the procedure from above and play
the same game with charged bodies, replacing
the Newtonian potential with the Coulomb po-
tential. Consider a charged source Q and a test
particle of charge q and mass m0. We assume
the mass of the source to be negligible. The
charged particle falls under the attraction of the
source according to the Coulomb force. When
it reaches height r1, a photon is created out of
it and sent back to the particle’s initial posi-
tion, where it is transformed back into a mass
m with charge q. For this process to happen, we
can imagine annihilating the descending charge
by an anti-charge of size −q to create a pho-
ton (or actually at least two photons, which we
can think of a single photon for the discussion).
The photon is sent back, and when it reaches
the top, the initial charge q plus its anti-charge
−q is created via pair-production. We assume
the two particles have the same mass m. The
anti-charge −q subsequently is brought back to
the bottom to restore the initial situation. It
is precisely the energy contribution of this last
step that cancels a redshift effect in the calcu-
lations, which is not further analysed here.
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5.2 Reissner-Nordström metric

In fact, charge does give rise to redshift ef-
fects — and consequently time dilation — in
the standard formalism of GR, though not, in
a way analogous to how mass curves spacetime.

The Einstein equations for a charged point-
like (non-rotating) mass with stress-energy ten-
sor Tµν reads

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (5.3)

We neglect the cosmological constant Λ. From
this we obtain the Reissner-Nordström metric
(cf. [Reissner, 1916])

ds2 =−
(

1− 2GM

c2r
+

GQ2

4πε0c4r2

)
c2dt2

+

(
1− 2GM

c2r
+

GQ2

4πε0c4r2

)−1
dr2

+ r2(dϑ2 + sin2 ϑdϕ2), (5.4)

from which we recover the Schwarzschild met-
ric in the limit Q = 0. It is worth mentioning
that the charge term in the Reissner-Nordström
metric affects geodesics of particles even though
they may be uncharged. For Q 6= 0, this met-
ric gives rise to an additional gravitational red-
shift. Similar to the derivation of gravitational
redshift due to mass we obtain

ν1
ν2

=

√(
1− 2GM

c2r2
+ GQ2

4πε0c4r22

)
√(

1− 2GM
c2r1

+ GQ2

4πε0c4r21

)
≈ 1 +

gh

c2
− gC2h

c2
, (5.5)

where g defined as before, and gC2 := GQ2

4πε0c2r3
.

The approximations are as in the case without
charge (first order terms in h and large radii
r1, r2).

The effect is quadratic in the charge Q, and,
in fact, leads to a blueshift of the photon. Thus,
it partly compensates the gravitational redshift
due to mass. Note that gravity is fully ‘ge-
ometrised’ by GR. That is, geodesics of the met-
ric fully describe the motion of test particles.

Whereas for charged sources, the usual force
terms from elecrodynamics need to be consid-
ered additionally in the geodesic equation.

5.3 Shielding gravity

It is often considered to be a feature of grav-
ity that shielding an object from the influence
of a gravitational field is impossible — unlike
electromagnetism. Gravitational redshift due
to charge is, indeed, a counterexample to this
statement. Recall the Reissner-Nordström met-
ric 5.4. There, the two terms in g00, one propor-
tional to M , the other to Q, come with opposite
signs. This makes it possible to tweak the pa-
rameters such that curvature vanishes, at least
locally. If we choose

2MG

c2r
=

Q2G

4πε0c4r2
, (5.6)

then we recover the Minkowski metric for flat
space. This equality, obviously, can only be met
at one fixed radius r. But it means that gravity,
in this sense, can at least be ‘shielded’ locally.
This is surprising, since there was thought to be
no way to shield a massive test body from grav-
itational forces. What’s more, gravitational
shielding is said to be a violation of the equiva-
lence principle and thus inconsistent with both
Newtonian theory and GR, as was argued in
[Bertolami et al., 2008].

6 Conclusion

There are several lessons to be drawn. Al-
ternative derivations of gravitational redshift,
as well as Einstein’s historical ones, hold ap-
proximately only under special circumstances.
Brown and Read used the equivalence princi-
ple, in conjunction with accelerated frames, and
claimed the gravitational redshift to derive from
this. Moreover, they supposed only multiple
Pound-Rebka experiments to reveal curvature.
If Brown and Read’s statements about the in-
ertial nature of gravitational redshift are valid
in some sense, then only to first order and un-
der certain approximations. And if valid in this
sense, then only in Rindler spacetime, for it
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is the only framework that consistently treats
uniform acceleration (and uniform gravitational
fields, respectively), in which the Riemann cur-
vature tensor vanishes globally. Arguments of
equivalence can be used to infer a general re-
lationship between redshift and acceleration,
but the details are subtle. Thus, the conclu-
sion that a single gravitational redshift effect
on the Earth’s surface can be derived from the
equivalence principle and uniformly accelerated
frames should be taken with a grain of salt. In
experiments involving strong gravitational field
variations only the exact Schwarzschild solution
is accurate.

If the field generating source is charged,
a blueshift effect arises, which is captured by
the Reissner-Nordström metric. Interestingly,
this blueshift partly compensates the gravita-
tional redshift due to the mass of the source,
which could be used to locally shield gravity.
It seems not difficult to convince oneself that
any ‘sources of energy’ may likewise lead to
further redshift effects. Instances of these are
the strong and weak force, angular momentum,
magnetic fields, etc.

Acknowledgements

The author thanks Harvey Brown, James Read,
and Martin Renner for helpful discussions and
comments.

References

[Alberici, 2006] Alberici, M. (2006). Measures
and metrics in uniform gravitational fields.

[Bell, 1987] Bell, J. S. (1987). Speakable and
unspeakable in quantum mechanics. Cam-
bridge University.

[Bertolami et al., 2008] Bertolami, O.,
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