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Newtonian and Scrödinger dynamics can be formulated in a physically meaningful way within the
same Hilbert space framework. This fact was recently used in [1] to discover an unexpected relation
between classical and quantum motions that goes beyond the results provided by the Ehrenfest
theorem. A formula relating the normal probability distribution and the Born rule was also found.
Here the dynamical mechanism responsible for the latter formula is proposed and applied to mea-
surements of macroscopic and microscopic systems. A relationship between the classical Brownian
motion and the diffusion of state on the space of states is discovered. The role of measuring devices
in quantum theory is investigated in the new framework. It is shown that the so-called collapse
of the wave function is not measurement specific and does not require a “concentration” near the
eigenstates of the measured observable. Instead, it is explained by the common diffusion of state
over the space of states under interaction with the apparatus and the environment. This in turn
provides us with a basic reason for the definite position of macroscopic bodies in space.

INTRODUCTION

In a recent paper [1] that serves a foundation for the
analysis presented here an important new connection be-
tween Newtonian and Schrödinger dynamics was derived.
The starting point was a realization of classical and quan-
tum mechanics within the same Hilbert space framework
and identification of observables with vector fields on the
sphere of normalized states. This resulted in a physically
meaningful interpretation of components of the velocity
of state that surpassed the Ehrenfest results on the mo-
tion of averages. Newtonian dynamics was shown to be
the Schrödinger dynamics of a system whose state is con-
strained to the classical phase space submanifold in the
Hilbert space of states. This also resulted in a formula
relating the normal probability distribution and the Born
rule.

In this paper we continue exploring the implications of
the proposed framework. First we show that there is a
unique extension of Newtonian dynamics on the classical
phase space submanifold to a unitary theory on the entire
space of states. This allows us to find a connection be-
tween the Brownian motion of a macroscopic particle, the
diffusion of state on the projective space CPL2 and the
Born rule. It also allows us to make progress in under-
standing the process of measurement in quantum theory,
the meaning of collapse of the wave function, the cause of
the classicality of macroscopic bodies and to clarify the
role of decoherence in this. To make the paper somewhat
self-contained, we begin with a brief review of the results
reported in [1].

NEWTONIAN AND SCHRÖDINGER
DYNAMICS IN HILBERT SPACE

Macroscopic bodies have well-defined position in space
at any time. In quantum mechanics the state of a spinless
particle with a known position a ∈ R3 is described by

the Dirac delta function δ3
a(x) = δ3(x− a). The map ω :

a −→ δ3
a provides a one-to-one correspondence between

points a ∈ R3 and state “functions” δ3
a. The set R3 can

be then identified with the set M3 of all delta functions
in the space of state functions of the particle.

The common Hilbert space L2(R3) of state functions
of a particle does not contain delta functions. By writing
the inner product of functions ϕ,ψ ∈ L2(R3) as

(ϕ,ψ)L2
=

∫
δ3(x− y)ϕ(x)ψ(y)d3xd3y (1)

and approximating the kernel δ3(x−y) with the Gaussian
function one obtains the inner product

(ϕ,ψ)H =

∫
e−

(x−y)2

8σ2 ϕ(x)ψ(y)d3xd3y. (2)

The Hilbert space H with this inner product contains
delta functions and their derivatives. In particular,∫

e−
(x−y)2

8σ2 δ3(x− a)δ3(y − a)d3xd3y = 1. (3)

It follows that the set M3 of all delta functions δ3
a(x)

with a ∈ R3 form a submanifold of the unit sphere in the
Hilbert space H, diffeomorphic to R3.

The map ρσ : H −→ L2(R3) that relates L2 and H-
representations is given by the Gaussian kernel

ρσ(x,y) =

(
1

2πσ2

)3/4

e−
(x−y)2

4σ2 . (4)

In fact,

G(x,y) = (ρ∗σρσ)(x,y) = e−
(x−y)2

8σ2 , (5)

which is consistent with (2). The map ρσ transforms

delta functions δ3
a to Gaussian functions δ̃3

a = ρσ(δ3
a),

centered at a. The image Mσ
3 of M3 under ρσ is an

embedded submanifold of the unit sphere in L2(R3) made
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of the functions δ̃3
a. The map ωσ = ρσ ◦ ω : R3 −→

Mσ
3 is a diffeomorphism. In what follows, the obtained

realizations will be used interchangeably.
Let r = a(t) be a path with values in R3 and let ϕ =

δ3
a(t) be the corresponding path in M3. It is easy to see

that the norm
∥∥∥dϕdt ∥∥∥2

H
of the velocity in the space H is

given by ∥∥∥∥dϕdt
∥∥∥∥2

H

=
∂2k(x,y)

∂xi∂yk

∣∣∣∣
x=y=a

dai

dt

dak

dt
. (6)

Here k(x,y) = e−
(x−y)2

8σ2 , so that

∂2k(x,y)

∂xi∂yk

∣∣∣∣
x=y=a

=
1

4σ2
δik, (7)

where δik is the Kronecker delta symbol. Assuming now
that the distance in R3 is measured in the units of 2σ,
we obtain ∥∥∥∥dϕdt

∥∥∥∥
H

=

∥∥∥∥dadt
∥∥∥∥
R3

. (8)

It follows that the map ω : R3 −→ H is an isometric
embedding. Furthermore, the set M3 is complete in H
so that there is no vector in H orthogonal to all ofM3. By
defining the operations of addition ⊕ and multiplication
by a scalar λ� via ω(a)⊕ω(b) = ω(a+b) and λ�ω(a) =
ω(λa) with ω as before, we obtain M3 as a vector space
isomorphic to the Euclidean space R3.

The projection of velocity and acceleration of the state
δ3
a(t) onto the Euclidean space M3 yields correct Newto-

nian velocity and acceleration of the classical particle:(
d

dt
δ3
a(x),− ∂

∂xi
δ3
a(x)

)
H

=
dai

dt
(9)

and (
d2

dt2
δ3
a(x),− ∂

∂xi
δ3
a(x)

)
H

=
d2ai

dt2
. (10)

The Newtonian dynamics of the classical particle can be
now derived from the principle of least action for the
action functional S on paths in H, defined by∫
k(x,y)

[
m

2

dϕt(x)

dt

dϕt(y)

dt
− V (x)ϕt(x)ϕt(y)

]
d3xd3ydt,

(11)
where m is the mass of the particle, V is the potential
and k(x,y) = e−

1
2 (x−y)2 . Namely, under the constraint

ϕt(x) = δ3(x− a(t)) the action (11) becomes

S =

∫ [
m

2

(
da

dt

)2

− V (a)

]
dt, (12)

which is the classical action functional for the particle.
This shows that a classical particle can be considered a

constrained dynamical system with the state ϕ of the
particle and the velocity dϕ

dt of the state as dynamical
variables. As shown in [1], a similar realization exists for
mechanical systems consisting of any number of classical
particles.

Now that Newtonian dynamics is embedded in the
framework of Hilbert spaces, let’s work from the opposite
end and develop a vector representation in quantum the-
ory. This representation will allow us to consider New-
tonian and Schrödinger dynamics on an equal footing.
The starting point is an identification of quantum ob-
servables with vector fields on the space of states. Given
a self-adjoint operator Â on a Hilbert space L2 of square-
integrable functions (it could in particular be the tensor
product space of a many body problem) one can intro-
duce the associated linear vector field Aϕ on L2 by

Aϕ = −iÂϕ. (13)

The commutator of observables and the commutator (Lie
bracket) of the corresponding vector fields are related in
a simple way:

[Aϕ, Bϕ] = [Â, B̂]ϕ. (14)

The field Aϕ associated with an observable, being re-
stricted to the sphere SL2 of unit normalized states, is
tangent to the sphere.

Under the embedding, the inner product on the Hilbert
space L2 yields the induced Riemannian metric on the
sphere SL2 . The projection π : SL2 −→ CPL2 yields
the induced Riemannian (Fubini-Study) metric on CPL2 .
The resulting metrics can be used to find physically
meaningful components of vector fields Aϕ associated
with observables. Since Aϕ is tangent to SL2 , it can
be decomposed into components tangent and orthogonal
to the fibre {ϕ} of the fibre bundle π : SL2 −→ CPL2 .
These components have a simple physical meaning. From

A ≡ (ϕ, Âϕ) = (−iϕ,−iÂϕ), (15)

one can see that the expected value of an observable Â
in state ϕ is the projection of the vector −iÂϕ ∈ TϕSL2

onto the fibre {ϕ}. Because

(ϕ, Â2ϕ) = (Âϕ, Âϕ) = (−iÂϕ,−iÂϕ), (16)

the term (ϕ, Â2ϕ) is the norm of the vector −iÂϕ
squared. The vector −iÂ⊥ϕ = −iÂϕ − (−iAϕ) associ-

ated with the operator Â−AI is orthogonal to the fibre
{ϕ}. Accordingly, the variance

∆A2 = (ϕ, (Â−AI)2ϕ) = (ϕ, Â2
⊥ϕ) = (−iÂ⊥ϕ,−iÂ⊥ϕ)

(17)

is the norm squared of the component −iÂ⊥ϕ.
From the Schrödinger equation using the decomposi-

tion of −iĥϕ onto the components parallel and orthogo-
nal to the fibre we get

dϕ

dt
= −iEϕ+

(
−iĥϕ+ iEϕ

)
= −iEϕ− iĥ⊥ϕ, (18)
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where E is the expected value of the Hamiltonian ĥ in
the state ϕ. By projecting both sides of this equation by
dπ we obtain

d{ϕ}
dt

= −iĥ⊥ϕ. (19)

From this and the already derived equality ‖ − iĥ⊥ϕ‖ =
∆h, it follows that the speed of evolution of state in the
projective space is equal to the uncertainty of energy.
This gives us two physically meaningful components of
the velocity vector dϕ

dt , corresponding to the expected
value and uncertainty of the Hamiltonian.

It turns out that the orthogonal component −iĥ⊥ϕ
of the velocity can also be decomposed into physically
meaningful quantities. More importantly, the embedding
ωσ = ρσ◦ω of R3 into the space of states L2(R3) together
with the vector representation of observables provide us
with a bridge between Newtonian to Schrödinger dynam-
ics. To demonstrate this, recall first that the basic rela-
tion between the classical and quantum physics is given
by the Ehrenfest theorem

d

dt
(ϕ, Âϕ) = −i(ϕ, [Â, ĥ]ϕ). (20)

Here Â does not depend on t. Compare (20) to another
equation that follows from the Schrödinger dynamics:

2

(
dϕ

dt
,−iÂϕ

)
=
(
ϕ, {Â, ĥ}ϕ

)
−
(
ϕ, [Â, ĥ]ϕ

)
. (21)

The Ehrenfest theorem (20) for a time-independent ob-
servable amounts to using the imaginary part of (21),

i.e., the part with the commutator [Â, ĥ]. The left hand
side of (21) is twice the projection of the velocity of state

onto the vector field associated with the observable Â.
The real part of this projection (the term with the anti-

commutator {Â, ĥ}) is twice the projection in the sense of
Riemannian metric on SL2 . This Riemannian projection
will be now used to identify components of the velocity
of state.

Suppose that at t = 0 a microscopic particle is pre-
pared in the state

ϕ0(x) =

(
1

2πσ2

)3/4

e−
(x−x0)2

4σ2 ei
p0(x−x0)

~ , (22)

where σ is the same as in (4) and p0 = mv0 with v0

being the initial group-velocity of the packet. The set of
all initial states ϕ0 given by (22) form a 6-dimensional
embedded submanifold Mσ

3,3 in L2(R3). The map Ω :
R3 × R3 −→Mσ

3,3,

Ω(a,p) =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 ei
p(x−a)

~ (23)

is a diffeomorphism from the classical phase space of the
particle onto the manifold Mσ

3,3. The vectors ∂r
∂xα e

iθ and

i ∂θ
∂pβ

reiθ are tangent to the manifold Mσ
3,3 at a point ϕ0,

orthogonal to each other in the induced Riemannian met-
ric and form a basis in the tangent space Tϕ0(Mσ

3,3) at
that point. For any path ϕτ with values in Mσ

3,3 the norm

of velocity vector dϕ
dτ is given by∥∥∥∥dϕdτ

∥∥∥∥2

L2

=
1

4σ2

∥∥∥∥dadτ
∥∥∥∥2

R3

+
σ2

~2

∥∥∥∥dpdτ
∥∥∥∥2

R3

. (24)

It follows that under a proper choice of units, the map Ω
is an isometry that identifies the Euclidean phase space
R3 × R3 of the particle with the embedded submanifold
Mσ

3,3 ⊂ L2(R3) furnished with the induced Riemannian
metric. The map Ω is an extension to the phase space
of the isometric embedding ωσ = ρσ ◦ ω of the space R3,
considered earlier in this section.

To decompose the orthogonal component − i
~ ĥ⊥ϕ of

the velocity dϕ
dt , notice that the orthogonal vectors ∂r

∂xα e
iθ

and i ∂θ
∂pβ

reiθ tangent to Mσ
3,3 are also orthogonal to the

fibre {ϕ}. Calculation of the projection of the veloc-

ity dϕ
dt onto the unit vector − ∂̂r

∂xα e
iθ (i.e., the classical

space component of dϕ
dt ) for an arbitrary Hamiltonian

ĥ = − ~2

2m∆ + V (x) yields

Re

(
dϕ

dt
,− ∂̂r

∂xα
eiθ

)∣∣∣∣∣
t=0

=

(
dr

dt
,− ∂̂r

∂xα

)∣∣∣∣∣
t=0

=
vα0
2σ
.

(25)
Calculation of the projection of velocity dϕ

dt onto the unit

vector i ∂̂θ∂pαϕ (momentum space component) gives

Re

(
dϕ

dt
, i
∂̂θ

∂pα
ϕ

)∣∣∣∣∣
t=0

=
mwασ

~
, (26)

where

mwα = − ∂V (x)

∂xα

∣∣∣∣
x=x0

(27)

and σ is assumed to be small enough for the linear ap-
proximation of V (x) to be valid within intervals of length
σ.

The velocity dϕ
dt also contains component due to the

change in σ (spreading), which is orthogonal to the fibre
{ϕ} and the phase space Mσ

3,3, and is equal to

Re

(
dϕ

dt
, i
d̂ϕ

dσ

)∣∣∣∣∣
t=0

=

√
2~

8σ2m
. (28)

Calculation of the norm of dϕ
dt = i

~ ĥϕ at t = 0 gives∥∥∥∥dϕdt
∥∥∥∥2

=
E

2

~2
+

v2
0

4σ2
+
m2w2σ2

~2
+

~2

32σ4m2
, (29)

which is the sum of squares of the found components.
This completes a decomposition of the velocity of state
at any point ϕ0 ∈Mσ

3,3.
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From (25), (26) and a simple consistency check one
can see that the phase space components of the veloc-
ity of state dϕ

dt assume correct classical values at any
point ϕ0 ∈ Mσ

3,3. This remains true for the time de-
pendent potentials as well. The immediate consequence
of this and the linear nature of the Schrödinger equation
is that under the Schrödinger evolution with the Hamil-

tonian ĥ = − ~2

2m∆ + V (x, t), the state constrained to
Mσ

3,3 moves like a point in the phase space represent-
ing a particle in Newtonian dynamics. More generally,
Newtonian dynamics of n particles is the Schrödinger dy-
namics of n-particle quantum system whose state is con-
strained to the phase-space submanifold Mσ

3n,3n of the
space L2(R3)⊗ ... ⊗L2(R3) consisting of tensor product
states ϕ1 ⊗ ... ⊗ ϕn with ϕk of the form (22).

To complete a review of [1], note that isometric em-
bedding of the classical space Mσ

3 into the space of states
L2(R3) results in a relationship between distances in R3

and the projective space CPL2 . The distance between
two points a,b in R3 is ‖a− b‖R3 . Under the embedding
of the classical space into the space of states, the vari-
able a is represented by the state δ̃3

a. The set of states
δ̃3
a form a submanifold Mσ

3 in the Hilbert spaces of states
L2(R3), which is ”twisted” in L2(R3), it belongs to the
sphere SL2 and spans all dimensions of L2(R3). The dis-
tance between the states δ̃3

a, δ̃3
b on the sphere SL2 or in

the projective space CPL2 is not equal to ‖a− b‖R3 . In
fact, the former distance measures length of a geodesic
between the states while the latter is obtained using the
same metric on the space of states, but applied along a
geodesic in the twisted manifold Mσ

3 . The precise rela-
tion between the two distances is given by

e−
(a−b)2

4σ2 = cos2 ρ(δ̃3
a, δ̃

3
b), (30)

where ρ is the Fubini-Study distance between states.
This relation has an immediate implication onto the form
of probability distributions of random variables over Mσ

3

and CPL2 . In particular, consider a random variable ψ
over CPL2 . Suppose that the restricted random variable
ψ defined over Mσ

3 = R3 is distributed normally on R3.
(That is, the truncated distribution is normal.)Then, by
(30), the isotropic (i.e., direction independent) probabil-
ity distribution of ψ over CPL2 must satisfy the Born
rule. That is, the normal probability distribution of a
position random variable for a particle in the classical
space implies the Born rule for transitions between arbi-
trary quantum states of the particle and vice versa.

EXTENSION OF NEWTONIAN DYNAMICS TO
THE SPACE CPL2 OF QUANTUM STATES

Recall that the Schrödinger dynamics with the Hamil-

tonian ĥ = − ~2

2m∆ + V (x) was used to find the classical

and momentum space components of the velocity dϕ
dt for

a particle. For convenience, these results (formulae (25),
(26)) are reproduced here:

Re

(
dϕ

dt
,− ∂̂r

∂xα
eiθ

)∣∣∣∣∣
t=0

=

(
dr

dt
,− ∂̂r

∂xα

)∣∣∣∣∣
t=0

=
vα

2σ
,

(31)
and

Re

(
dϕ

dt
, i
∂̂θ

∂pα
ϕ

)∣∣∣∣∣
t=0

=
mwασ

~
, (32)

where

mwα = − ∂V (x)

∂xα

∣∣∣∣
x=a

(33)

and σ is sufficiently small for the linear approximation of
V (x) to be valid over intervals of length σ. Formulae (31),
(32) were used to establish that Newtonian dynamics of
a particle is the Schrödinger dynamics constrained to the
classical phase space Mσ

3,3 of the particle.

Suppose on the contrary that for any initial state ϕa

of the form

ϕa(x) =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 ei
p(x−a)

~ (34)

there exists a path ϕ = ϕt in L2(R3), passing at t =
0 through the point ϕa, and such that (31), (32) are
satisfied. Suppose further that the evolution ϕ = ϕt is
unitary and, therefore, by Stone’s theorem,

dϕ

dt
= − i

~
Ĥϕ (35)

for a Hermitian operator Ĥ on L2(R3). The claim is
that this implies the Ehrenfest theorem on states (34)
and, by linear extension, on the entire space L2(R3). It

then follows that the operator Ĥ is uniquely defined and

is equal to − ~2

2m∆ + V (x). More precisely,

There is a unique unitary evolution on L2(R3), which,
being constrained to the classical phase space Mσ

3,3, sat-
isfy Newtonian equations of motion for the particle. This
evolution obeys the Schrödinger equation of motion with

the usual Hamiltonian ĥ = − ~2

2m∆ + V (x).

Let’s first prove that (31) and (32) imply the Ehrenfest
theorem on states ϕ ∈Mσ

3,3. As discussed, the Ehrenfest
theorem can be written in the following form:

2Re

(
dϕ

dt
, x̂ϕ

)
=

(
ϕ,

p̂

m
ϕ

)
(36)

and

2Re

(
dϕ

dt
, p̂ϕ

)
= (ϕ,−∇V (x)ϕ) . (37)
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From (31) and (34) we have at t = 0

vα

2σ
= Re

(
dϕ

dt
,− ∂̂r

∂xα
eiθ

)
=

1

σ
Re

(
dϕ

dt
, (x− a)αϕ

)
.

(38)

Because of the unitary condition, we have Re
(
dϕ
dt , ϕ

)
= 0

and so (38) yields

2Re

(
dϕ

dt
, xαϕ

)
= vα =

pα

m
. (39)

Together with (ϕ, p̂ϕ) = (ϕ,pϕ) = p this gives the first
Ehrenfest theorem (36) on states ϕ ∈Mσ

3,3.
Similarly, from (32) and (34) we have at t = 0

mwασ

~
= Re

(
dϕ

dt
, i
∂̂θ

∂pα
ϕ

)
=

~
σ

Re

(
dϕ

dt
,
i(x− a)α

~
ϕ

)
,

(40)
with

mwα = − ∂V (x)

∂xα

∣∣∣∣
x=a

. (41)

On the other hand,

p̂ϕ = −i~∇ϕ = −i~
(
−x− a

2σ2
+
ip

~

)
ϕ. (42)

Again, from the unitary condition we have Re
(
dϕ
dt , ϕ

)
=

0 and so we can rewrite (40) as

mwασ

~
=
σ

~
Re

(
dϕ

dt
, p̂αϕ

)
, (43)

or,

2Re

(
dϕ

dt
, p̂αϕ

)
= mwα. (44)

From this and (33) we get the second Ehrenfest theorem
(37) on states ϕ ∈Mσ

3,3. From (38) and (40) one can also
see that velocity and acceleration terms are the real and
imaginary parts of a complex vector, tangent to Mσ

3,3.
Now, from the derived Ehrenfest theorems and the

Stone’s theorem for unitary evolution

dϕ

dt
= − i

~
Ĥϕ, (45)

we get the following equations for the unknown Hermi-
tian operator Ĥ, valid for all functions ϕ in Mσ

3,3:(
ϕ, i[Ĥ, x̂]ϕ

)
=

~
m

(ϕ, p̂ϕ) (46)

and (
ϕ, i[Ĥ, p̂]ϕ

)
= ~ (ϕ,−∇V (x)ϕ) . (47)

Because the operators on the right hand sides of (46),
(47) are known and defined on L2(R3), there is a unique
extension of expressions on the right from Mσ

3,3 to all
linear combinations of functions ϕ in Mσ

3,3. That is, the
right hand sides of (46), (47) become quadratic forms on

L2(R3). Let us show that there is a unique operator Ĥ
for which the equations (46), (47) remain true for these

extensions. That is, there exists a unique operator Ĥ for
which (

f, i[Ĥ, x̂]f
)

=
~
m

(f, p̂f) (48)

and (
f, i[Ĥ, p̂]f

)
= ~ (f,−∇V (x)f) (49)

for all functions f in the dense subset D of L2(R3), which
is the common domain of all involved operators. In fact,
by choosing an orthonormal basis {ej} in D and consid-
ering (48), (49) on functions f = ek + el and f = ek + iel
we conclude that all matrix elements of the operators on
the left and right of the equations (48), (49) must be
equal. So the equations can be written in the operator
form

i[Ĥ, x̂] =
~
m
p̂ (50)

and

i[Ĥ, p̂] = −~∇V (x). (51)

From (50) and (51) it then follows that, up to an irrele-

vant constant, Ĥ = p̂2

2m + V (x).

OBSERVATION OF POSITION OF
MACROSCOPIC AND MICROSCOPIC

PARTICLES

The goal here is to understand the relationship of mea-
surements in classical and quantum mechanics. This will
be done by using measurement of position as a (rather
general) example. Recall that under the isotropy con-
dition the normal probability distribution on R3 has a
unique extension to CPL2 and yields the Born rule. We
also saw that the Schrödinger dynamics restricted to the
classical phase space induces the Newtonian dynamics.
Likewise, Newtonian dynamics of a particle in a potential
V (x) extends in a unique way to the Schrödinger dynam-
ics on the space of states. To relate the measurements
we are therefore entitled to use Newtonian mechanics in
modeling the process of measuring position of a macro-
scopic particle as a first step. We will then attempt to
extend this model and to describe measurements in quan-
tum mechanics in a way consistent with the Schrödinger
dynamics.
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Under measurement of position of a macroscopic par-
ticle the position random variable satisfy generically the
normal distribution law. This is consistent with the cen-
tral limit theorem and indicates that a specific way in
which position is measured may not be important. One
common way of finding the position of a macroscopic par-
ticle (assumed to be a rigid body) is to expose it to light
of sufficiently short wavelength and to observe the scat-
tered photons. In many cases, due to the unknown path
of the incident photons, multiple scattering events on the
particle, random change in position of the particle, etc.,
the process of observation can be described by the diffu-
sion equation with the observed position of the particle
experiencing a Brownian-like motion during the time of
observation.

Let’s detail this picture of measurement. For this con-
sider the density of states functional ρt[ϕ], which mea-
sures the number of states of particles in the space of
states on a neighborhood of a point ϕ ∈ CPL2 . The func-
tional ρt[ϕ] is supposed to be an extension of the density
of particles function in the usual diffusion process on R3.
Its precise meaning for the measurements resulting in a
specific position of a microscopic particle will be soon ex-
plained. From Einstein argument, assuming the number
of states (particles) is preserved, we have:

ρt+τ [ϕ] =

∫
ρt[ϕ+ η]γ[η]Dη, (52)

where γ[η] is the probability functional of the variation
η in the state ϕ and integration goes over all possible
variations.

Let’s first obtain from this the usual diffusion equa-
tion on R3 = Mσ

3 . The idea is that if (52) induces the
usual diffusion on R3, then, as we already know, it must
also predict the Born rule on CPL2 and we may learn
something in the process. The restriction of (52) to Mσ

3

means that ϕ = δ̃3
a and η = δ̃3

a+ε − δ̃3
a, where ε is a dis-

placement vector in R3. Also, the function ρt(a) = ρt[δ̃
3
a]

must be the usual density of particles in space for which
(52) must result in the diffusion equation on R3. The
power expansion for the functional ρt[ϕ] for real valued
functions ϕ has the form

ρt[ϕ] = c0+

∫
c1(x)ϕ(x)dx+

∫
c2(x,y)ϕ(x)ϕ(y)dxdy+...,

(53)
where c0, c1, c2, ... are functions of t. To obtain the dif-
fusion equation for ρt(a) out of (52), the terms of order
higher than two in (53) must vanish. (Otherwise the
resulting second order terms for ρt(a) do not yield the
needed term ∆ρt(a).) Likewise, the first two terms in the
expansion (53) can only make a linear in a and constant
in t contribution to ρt(a) and can therefore be dropped
without affecting the equation. Then, without loss of
generality, the expression for the desired functional ρt[ϕ]

can be written as the quadratic form

ρt[ϕ] =

∫
ct(x,y)ϕ(x)ϕ(y)dxdy. (54)

To ensure that the functional is defined on complex val-
ued functions in CPL2 we need Hermiticity:

ρt[ϕ] =

∫
ct(x,y)ϕ(x)ϕ(y)dxdy, (55)

with ct(x,y) = ct(y,x).
Let’s substitute ϕ = δ̃3

a and η = δ̃3
a+ε − δ̃3

a into (52),
use (55), replace γ[η] with the corresponding probability
density function γ(ε) and integrate over the space R3 of
all possible vectors ε. Let us also make the usual in the
classical diffusion theory assumption that γ(ε) is inde-
pendent of the direction of ε (space symmetry). Then
the terms

∫
εkγ(ε)dε and

∫
εkεlγ(ε)dε with k 6= l vanish.

It follows that

∂ρt(a)

∂t
= k∆ρt(a), (56)

where ρt(a) = ct(a,a) and k = 1
2τ

∫
ε2γ(ε)dε.

Now, coming back to (55), we need to figure out the
meaning of ct(x,y). According to (56), c0(a,a) is the ini-
tial probability distribution. Suppose that initial proba-
bility distribution is given by the delta function and that
by the time τ (typical time of measurement) the distri-
bution is Gaussian, corresponding to the state δ̃3

b ∈Mσ
3 :

ρτ (a) = |δ̃3
b(a)|2 = 1

σ3 |(δ̃3
b, δ̃

3
a)|2 (see [1]). We must have

in this case

cτ (x,y) =
1

σ3
δ̃3
b(x)δ̃3

b(y). (57)

From (55), by requiring that the probability of transition
from state ψ to state ϕ is the same as the probability
of transition from ϕ to ψ (or just by the sesquilinear
extension in (57)), we get for a general state ψ(x) at the
time of measurement that

cτ (x,y) =
1

σ3
ψ(x)ψ(y). (58)

It follows that cτ (x,y) is the density matrix for the par-

ticle. For ϕ(x) = δ̃3
a(x) = σ

3
2 δ3

a(x) formula (55) yields
then

ρτ (a) =

∫
ψ(x)ψ(y)δ3

a(x)δ3
a(y)dxdy = |ψ(a)|2 , (59)

which is the Born rule.
To summarize the derivation, we assumed first that

the number of particles is conserved. This conservation
is expressed in (52) in terms of the particles’ states (the
states can only move around the sphere of states, they
don’t disappear or get created). We also required that
restriction of (52) to the classical space Mσ

3 must induce
the usual diffusion equation on R3 with the delta function
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as the initial condition (and normal distribution of width
σ by the time τ). The outcome of these assumptions is
that the density functional ρτ [ϕ] must be a sesquilinear
form given by (55) and (58), and that therefore the re-
sulting probability to find the “measured” state ψ at the
point ϕ depends only on the distance between the states
in the Fubini-Study metric and is given by the Born rule.

The derivation means that the classical Brownian mo-
tion of a particle is a restriction to the classical space Mσ

3

of a motion of state, in which the state of the particle has
equal probability to be pushed in any direction in CPL2 .
Moreover, according to the previous section, the equation
for the state can be obtained by the sesquilinear exten-
sion from the classical phase space Mσ

3,3 onto the space
of states of the appropriate classical equations of motion,
expressed in terms of the Ehrenfest theorem (39), (44).

Without pretending to be complete in any way, let us
just see how the Schrödinger evolution of state for a par-
ticle interacting with the surroundings could in fact lead
to an equal probability of any direction of displacement
of the state in the space of states. For this, let’s try to ex-
tend the Brownian motion of the components δ̃3

b of ψ on
the space Mσ

3 (equivalently, on Mσ
3,3) to the motion of ψ

itself in a way consistent with the Schrödinger evolution.
A general initial state ψ of a microscopic particle under
observation can be approximated as well as needed by a
linear combination of states (22) in the classical phase
space Mσ

3,3:

ψ(x) =
∑
b

Cbδ̃
3
b(x)ei

pb(x−b)

~ . (60)

Interaction with measuring particles in the apparatus can
be modeled by the perturbation

V̂ =
∑
b

Vb(x) cos(ωt+ γb), (61)

where Vb is a non-vanishing linear potential on a neigh-
borhood of b (containing only one of the b’s) and γb is

a phase that depends on b. The potential V̂ is a sum of
potentials commonly used in studying the emission and
absorption of radiation in Schrödinger mechanics. The
change η in the state (60) due to the potential V̂ acting
during time interval τ is given in the first order approxi-
mation in τ by

η(x) = − i
~
V̂ ψ(x)τ. (62)

Substituting ψ from (60), neglecting the impact of the
kinetic energy term in the Hamiltonian during the time
τ of interaction, except the change in phase, and using
the near-orthogonality of the components for different
values of b, we obtain

η(x) = − iτ
~
∑
b

CbVb(x) cos(ωt+ γb)δ̃3
b(x)eiθb , (63)

where eiθb is the overall phase factor.
It is possible to see now why all directions of displace-

ment η in the tangent space Tψ(CPL2) are equally likely.
Note first of all that, because the evolution is unitary,
vector η is in the tangent space Tψ(SL2) to the sphere
states. Also, the involved functions of x considered for
all b form a complete set, so that any tangent vector
is a linear combination of these functions. The phase
γb changes randomly in time, every time interval τ of a
particular encounter with a measuring particle. So it is
reasonable to assume that γb form a sequence of inde-
pendent random variables, indexed by the time interval
of interaction, with all variables distributed uniformly on
the interval [0, 2π). Furthermore, assume that the ran-
dom variables γb for different values of b are indepen-
dent. It then follows that for any particular time interval
of interaction and for all non-vanishing coefficients Cb,
the ratios

|Cb1 cos(ωt+ γb1)|
|Cb2 cos(ωt+ γb2)|

(64)

with b1 6= b2 are equally likely to take any value be-
tween 0 and infinity. Also, assume that for different time
intervals the phase factors eiθb in (63) evaluated at b
are independent random variables distributed uniformly
on the circle, and independent for different values of b.
Then, for an arbitrary time interval all complex values of
the ratio

Cb1 cos(ωt+ γb1)eiθb1

Cb2 cos(ωt+ γb2)eiθb2

(65)

are equally likely. Finally, since the ratios (65) define the
direction of η up to a constant phase factor, all obtained
directions of η in Tψ(CPL2) are equally likely. Note that
vanishing of a particular coefficient Cb in the decompo-
sition of the initial state ψ indicates that ψ is orthogonal
to the corresponding state δ̃3

b, not that the state can-

not get displaced in the direction of δ̃3
b. (Although the

probability of it reaching δ̃3
b is zero, by the derived Born

rule.)
One may question the model that led to the conclu-

sion. However, what was really used was a random
change in the modulus and the phase of the coefficients
Cb. The change in modulus is readily produced by a
“noise” in space. Acquiring random phases is also typi-
cal when a quantum system interacts with the environ-
ment. The conditions imposed on random variables are
physically sound and quite generic stochastic conditions.
This seems to suggest that the result is rather general
and robust, although this would need to be proved, of
course. At any rate, the goal here was to see in an inde-
pendent way the conclusion forced upon us by the need
to derive the classical Brownian motion of a particle from
the motion of its state constrained to the manifold Mσ

3,3.
It seems at first that not much has been achieved. The

fact that a random noise may lead to random fluctua-
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tion of state is rather simple and goes against of what
one normally tries to achieve when explaining collapse
under measurement. The collapse models utilize various
ad hoc additions to Schrödinger equation with the goal
of explaining why the state under a random walk “con-
centrates” to an eigenstate of the measured observable.
Instead, we see a clear indication that the state under a
generic measurement have equal probability of moving in
any direction and “diffuses” isotropically into the space of
states. Surprisingly, this diffusion on the space of states,
being in agreement with the Schrödinger evolution, is ca-
pable of addressing the major issues of measurement in
quantum theory.

In fact, under the diffusion, the probability of transi-
tion of ψ to any other state ϕ ∈ CPL2 was shown to
depend only on the distance between the states and to
satisfy the Born rule. The role of the measuring device
can be then seen in initializing the diffusion(creating a
“noise”) and in registering a particular location of the
diffused state. For instance, the “noise” in the posi-
tion measuring device under consideration is due to the
stream of photons. The device then registers the state
reaching a point in Mσ

3 . In a similar way, a momentum
measuring device registers the diffused states that reach
the eigen-manifold of the momentum operator (which is
the image of Mσ

3 under the Fourier transformation). It
follows, in particular, that the measuring device in quan-
tum mechanics is not responsible for creating a basis for
the state to be expanded into. If several measuring de-
vices are present they are not “fighting” for the basis.
When the eigen-manifolds of the corresponding observ-
ables don’t overlap, only one of them can “click” for the
measured particle as the state can reach only one of the
eigen-manifolds. Note finally the similarity in the role
of measuring devices in quantum and classical mechan-
ics: in both cases the devices are designed to measure
a particular physical quantity and inadvertedly create a
“noise”, which results in a distribution of values of the
measured quantity.

Coming back to the derivation of the diffusion equation
(56) and the Born rule (59), we see how the Brownian
motion experienced by the components δ̃3

b of state ψ of
the measured particle results in a ”Born-like” motion of
ψ itself. The probability density to find the state ψ at
a point δ̃3

a (particle at a point a) is given by (59). From
(59) and (60) it also follows that

ρ0(a) =
∑
b

|Cb|2 |δ̃3
b(a)|2, (66)

which is a weighted sum of the normal probability distri-
butions for each components. Furthermore, due to lin-
earity of the diffusion equation (56), the initial ”cloud”
ρ0(a) = |ψ(a)|2 evolves in time as if it was in fact a cloud
”diffusing” in R3, rather than a single state (point) mov-
ing stochastically in CPL2 . The reason for it is clear:
since we restrict the outcomes of measurements to only

those in the space Mσ
3 = R3, the probability density is

the probability of getting a particular position value in
R3. The fact that the original state does not belong to
Mσ

3 is not explicit in the density function ρt(a), giving
us the cloud interpretation in R3.

So what does it all say about measurement of position
of macroscopic and microscopic particles? During the pe-
riod of observation of position of a macroscopic particle
in the model, the position random variable experiences a
Brownian motion. Normally observation happens during
a short enough interval of time so that the particle does
not get displaced much and the spread of the probability
density is sufficiently small. A particular value of position
variable during the observation is simply a realization of
one of the possible outcomes. The Brownian motion of
macroscopic particle can be equivalently thought of as ei-
ther a stochastic process bt with values in R3 or a process
δ̃3
b,t with values in Mσ

3 . The advantage of the latter rep-

resentation is that the position random variable δ̃3
b gives

both, the position of the particle in Mσ
3 = R3 and the

probability density to find it in a different location a (in
the state δ̃3

a), due to uncontrollable interactions with the
surroundings under observation and the resulting Brow-
nian motion.

Measuring position of a microscopic particle has, in
essence, a very similar nature. Under observation each
component of the state ψ of the particle in (60) experi-
ences the usual Brownian motion on Mσ

3 (or the phase
space Mσ

3,3). As a result, the state ψ itself becomes a ran-

dom variable, taking values in the space of states CPL2 .
To measure position is to observe the state on the sub-
manifold Mσ

3 (or Mσ
3,3) in CPL2 . In this case the random

variable ψ assumes one of the values δ̃3
a, with the uniquely

defined probability density compatible with the normal
density in the space R3. This probability density (asso-
ciated with the conditional probability to find the state
ψ at δ̃3

a given that ψ has reached Mσ
3 ) is exactly the one

given by the Born rule. Here too the random variable
ψ gives both, the position of the state of the particle in
CPL2 and the probability density to find the particle in
a different state δ̃3

a.

So the difference between the measurements is two-
fold. First, under a measurement the state ψ of a mi-
croscopic particle is a random variable over the entire
space of states CPL2 and not just over the submani-
fold Mσ

3 . Second, unless ψ is already constrained to Mσ
3

(which case would mimic measurement of position of a
macroscopic particle), to measure position is to observe
the state that “diffused” enough to reach the submani-
fold Mσ

3 . To put it differently, the measuring device is
not where the initial state was. Assuming the state has
reached Mσ

3 , the probability density of reaching a partic-
ular point in Mσ

3 is given, as we saw, by the Born rule.

We don’t use the term collapse of position random vari-
able when measuring position of a macroscopic particle.
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Likewise, there is no physics in the term collapse of the
state of a microscopic particle. Instead, due to the dif-
fusion of state there is a probability density to find the
particle in various locations on CPL2 . In particular, the
state may reach the space manifold Mσ

3 = R3. If that
happens and we have detectors spread over the space,
then one of them clicks. If the detector at a point a ∈ R3

clicks, that means the state is at the point δ̃3
a ∈ CPL2

(that is, the state is δ̃3
a). The number of clicks at differ-

ent points a is given by the Born rule. The state is not a
”cloud” in R3 that shrinks to a point under observation.
Rather, the state is a point in CPL2 which may or may
not be on R3 = Mσ

3 . When the detector clicks we know
that the state is on Mσ

3 .

Note once again that there is no need in any new
mechanism of “collapse”. There is no “concentration”
of state involved and the stochastic process is in agree-
ment with the conventional Schrödinger equation with a
randomly fluctuating potential (“noise”). The origin of
the potential depends on the type of measuring device or
properties of the environment, capable of “measuring”
the system. Fluctuation of the potential can be traced
back to thermal motion of molecules, atomic vibrations
in solids, vibrational and rotational molecular motion,
and the surrounding fields. Transition from individual
effect of a “kick” on a spatial component of the state ψ
in (60) to their combined effect on ψ and the resulting
stochastic process require a change in description. The
linear equation for the state results in a linear equation
for the probability density, i.e., the diffusion equation,
which, of course, is not linear in ψ.

GENERALITIES OF THE CLASSICAL
BEHAVIOR OF MACROSCOPIC BODIES

It was shown that the Schrödinger evolution of state
constrained to the classical phase space Mσ

3,3 results in
the Newtonian motion of the particle. Similar results
hold true for systems of particles. To reconcile the laws
of quantum and classical physics one must also explain
the nature of this constraint. Why microscopic particles
are free to leave the classical space, while macroscopic
particles are bound to it? What is the role of decoherence
in this, if any?

Suppose first that the macroscopic particle under con-
sideration is a crystalline solid. Position of one cell in
the solid defines the position of the entire solid. If one
of the cells was observed at a certain point at rest, the
state of the solid immediately after the observation (in
one dimension) is the product

ψ = δ̃a ⊗ δ̃a+∆ ⊗ ... ⊗ δ̃a+N∆, (67)

where ∆ is the lattice length parameter. The general
quantum-mechanical state of the solid is then a superpo-

sition of states (67) for different values of a in space:

ψ =
∑
a

Caδ̃a ⊗ δ̃a+∆ ⊗ ... ⊗ δ̃a+N∆. (68)

Why would non-trivial superpositions of this sort be ab-
sent in nature?

By now it is a well established and experimentally con-
firmed fact that macroscopic bodies experience an un-
avoidable interaction with the surroundings. As with
the measurement of position of a microscopic particle,
the “cells” of a macroscopic solid body (either crystalline
or not) are pushed in all possible directions by the sur-
rounding particles. In the previous section it was demon-
strated that this can lead quite generally to a diffusion-
like process on the space of states, in place of the free
Schrödinger evolution. However, the solid can only be
in the state similar to (68), which means that the the
state of the solid can only be pushed within the subman-
ifold formed by these states. But the probability of such
a push formed by random and independent fluctuations
of states of each cell is vanishingly small. (This state-
ment is easy to make precise in finite dimensional spaces
of states, but is more subtle in the infinite-dimensional
case, when Lebesgue measure is not available.) This may
explain how the state of a solid initially on the manifold
Mσ

3N remains on that manifold.
The situation is surprisingly similar to that of pollen

grains and a ship in still water. While under the kicks
from the molecules of water the pollen grains experience a
Brownian motion, the ship in still water will not move at
all. Because of the established relation of Newtonian and
Schrödinger dynamics this is more than analogy. Namely,
when the state is constrained to the classical phase space
submanifold, the “pushes” experienced by the state be-
come the classical kicks in the space that lead to Brow-
nian motion of the system. Note also that this does not
seem to preclude the motion of state of a solid as a whole.
The motion of the ship under an appropriate force pro-
vides an example in classical physics. In principle, the
motion of state of a solid away from the classical space
seems also possible, although not because of its interac-
tion with the random environment.

So far the state of the system by itself was used as
a dynamical variable, available during a measurement.
This was shown to be possible because the constructed
model of measurement is an extension of the classical
model, where position variable is available. It was also
shown that the obtained extension is consistent with the
Schrödinger dynamics. However, it is well known that
interaction with the measuring device and the environ-
ment creates an entangled state of the system and the
surroundings. It is therefore impossible to talk about the
state of the system by itself, contradicting the previous
assertion.

To understand the situation, let’s begin once again
with a measurement of position of a macroscopic particle
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(i.e., the particle whose state is constrained to the classi-
cal phase space Mσ

3,3) by observing scattered photons or
other particles. When the measured particle is observed
this way, the incident particles and the measured particle
exchange energy and momentum creating what could be
called a “classical entanglement” of the particle with the
measuring device and environment. In particular, posi-
tion, energy and momentum of the measured particle are
not known until a measurement on the outgoing particle
is made. Here too, the information about the measured
particle ”leaks out” into the environment, affecting po-
tentially the entire universe. However, entanglement in
the usual sense is absent. The state of the observed par-
ticle and the surroundings has the form

δ̃3
a ⊗ Ea, (69)

where Ea represent the state of the apparatus and the
environment. The state of the system belongs to the sub-
manifold Mσ

3,3,E of the tensor product of Hilbert spaces
of the particle and the surroundings that consists of the
product states (69). The position of the particle is de-
fined and can be found at any time, at least in principle.
In some cases the surroundings can be modeled by a po-
tential and position of the particle is found by solving
Newton’s equations of motion. In some cases to predict
position of the particle we have to consider a system con-
sisting of the observed particle and particles in the sur-
roundings. When many particles of the surroundings are
involved, the position is best described in terms of the
probability. In the model considered here the diffusion
equation was used to find the probability density of the
position random variable.

Suppose now the position of a microscopic particle is
measured in the same way. In some cases interaction with
the surroundings can be modeled by a potential. In some
cases we have to deal with a many particle system and
attempt solving the Schrödinger equation for the system.
For a large number of particles in the surroundings the
Schrödinger equation may yield a stochastic equation. In
the model considered here it is the diffusion of state on
the space of states CPL2 of the particle. However, in the
most general case all we can claim is that the state Ψ of
the system consisting of the particle and the surroundings
is a sum of terms in (69). In this case the state of the
system at any time is a point on the sphere of states in
the Hilbert space, which is the tensor product of Hilbert
spaces of the particle and the surroundings. However,
the proposed model of measurement remains the same.
As before, the random nature of interaction between the
involved particles result in a random fluctuation of Ψ
along the sphere with equal probability of all directions
of displacement along the sphere. The state Ψ undergoes
a diffusion on the sphere. In particular, Ψ can reach
the submanifold Mσ

3,3,E of the sphere, consisting of the

product states δ̃3
a ⊗ Ea. If that happens, the position of

the state in Mσ
3,3 becomes defined. That is, the position

of the particle in the classical sense is defined and can be
recorded by the measuring device.

So far decoherence was not present in the discussion.
The decoherence is a mathematical expression of the fact
that a quantum system interacting with the environment
behaves like a probabilistic mixture and needs to be de-
scribed by the probability and not by the state. The
“pure” form of decoherence is the entanglement with the
environment, which does not use any dynamical change
in the components and is, therefore, rather formal. The
theory is centered around the issue of entanglement and
the resulting loss of coherence and the fact that the state
of the measured system is still present in the theory is
often overlooked. In fact, the probability of a system ex-
posed to interaction is the probability of a certain state
of the system. Decoherence theory does not usually go
beyond recognition of the loss of coherence and the re-
sulting need in probabilistic description of the system.
It does not describe the way in which specific measure-
ment results are obtained and does not derive the Born
rule. At the same time, decoherence theory consists of
an array of very useful models. These models testify to
the universal character of the loss of coherence and tran-
sition to classical probability resulting from interaction
with the environment. The results provide an additional
support for a stochastic description of measurement and
interaction with the environment. This is despite the
characterization of diffusion models such as the one used
here as “fake” decoherence in the decoherence theory, due
to their microscopically unitary character.

One could think that interaction with the environment
is the only reason for the classical behavior of macro-
scopic bodies. Note however that interactions between
atoms and cells of the solid that keep it rigid are im-
plicitly present in (67). Furthermore, there may be a
completely ”internal” way of explaining the absence of
superpositions of the states in (68). For instance, con-
sider the solid as a collection of independent two-level
systems - one for each cell in the solid. Suppose the
lower level corresponds to the state δ̃a of the cell with a
fixed position a, while the upper level is a superposition
of such states for different values of a. For instance, the
ground state of a harmonic oscillator is Gaussian and in
case of a strong enough potential can be thought of as the
state of a cell with a fixed position. Any of the higher
level states in the oscillator can be written as a super-
position of the ground states of oscillators with different
positions.

Now, from (68) it is clear that for the state ψ of the
entire solid to be a non-trivial superposition, each cell
would have to be in the upper state. In fact, if one of the
cells is in the lower state for some value of a, then only
the term with that value of a for one of the cells would be
present in (68), which means that the position of every
cell in the solid would then be fixed. However, for a
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large collection of cells it would be next to impossible to
put each cell in the upper state. More importantly, even
if this was somehow achieved, spontaneous and induced
emissions would immediately bring some of the cells to
the lower level, “collapsing” the entire solid.

More realistically, by the very meaning of a solid, a
large percentage of its cells must have a fixed position,
when position of at least one is observed. To obtain a
superposition of states of different position of the solid
in the described way it would be necessary to ”free” at
least a large part of the cells in the solid. To do this
we would have to ensure a transition of each such cell to
an upper energy level. In the nature, global transitions
of this sort can only be achieved by a dramatic increase
in temperature of the solid. To free a body would mean
to transform it from the solid state of matter to gas or
plasma state.

SUMMARY

The dynamics of a classical n-particle mechanical sys-
tem is identified with the Schrödinger dynamics con-
strained to the classical phase space submanifold in the
space of states. Conversely, there is a unique unitary
time evolution on the space of states of a quantum sys-
tem that yields Newtonian dynamics when constrained to
the classical phase space. This results in a tight, previ-
ously unnoticed relationship between classical and quan-
tum physics. In particular, under a measurement of po-

sition of a macroscopic particle the position random vari-
able obeys generically the normal distribution law. This
predicts the Born rule for transition between quantum
states. Therefore, any classical (i.e., based on Newtonian
dynamics) model of measurement of a macroscopic parti-
cle that predicts the normal distribution law of the posi-
tion random variable extends in a unique way to the cor-
responding quantum model (i.e., satisfying Schrödinger
dynamics) that satisfy the Born rule. The model used
in the paper was based on the diffusion equation. Other
models are, of course, possible. The central limit theo-
rem makes it easy for a system experiencing interaction
with the surroundings to satisfy the normal distribution
law and therefore to imply the Born rule. We see that
macroscopic and microscopic particles are not so funda-
mentally different after all. The only important differ-
ence is that microscopic systems live in the space of states
while their macroscopic counterparts line on the classi-
cal phase space submanifold of thereof. Since our own
life happens primarily in the macro-world, it is hard for
us to understand the infinite-dimensional quantum world
around us. As soon as the classical space centered point
of view is extended to its Hilbert space centered coun-
terpart, the new, clearer view of the classical-quantum
relationship emerges.
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