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Abstract This paper gives a definition of self-reference on the basis of the depen-
dence relation given by Leitgeb (2005), and the dependence digraph by Beringer
& Schindler (2015). Unlike the usual discussion about self-reference of paradoxes
centering around Yablo’s paradox and its variants, I focus on the paradoxes of
finitary characteristic, which are given again by use of Leitgeb’s dependence re-
lation. They are called ‘locally finite paradoxes’, satisfying that any sentence in
these paradoxes can depend on finitely many sentences. I prove that all locally
finite paradoxes are self-referential in the sense that there is a directed cycle in
their dependence digraphs. This paper also studies the ‘circularity dependence’ of
paradoxes, which was introduced by Hsiung (2014). I prove that the locally finite
paradoxes have circularity dependence in the sense that they are paradoxical only
in the digraph containing a proper cycle. The proofs of the two results are based
directly on König’s infinity lemma. In contrast, this paper also shows that Yablo’s
paradox and its ∀∃-unwinding variant are non-self-referential, and neither McGee’s
paradox nor the ω-cycle liar has circularity dependence.

Keywords Circularity · Dependence · Paradox · Self-reference · Truth

1 Introduction

Provided a set of sentences represents a truth-theoretical paradox, is it self-
referential or not? For those paradoxes involving in finite sentences, such as the
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Liar paradox, this can be easily answered. But there are also paradoxical sentences
whose self-reference is still a controversial issue among contemporary truth the-
orists. One of such examples is the sentences in Yablo’s paradox (Yablo (1993)).
There had been lots of discussions around the problem whether the set of Yablo’s
sentences is self-referential: some people think that it is free of self-reference (see
Sorensen (1998), Tennant (1995) and Bringsjord & Heuveln (2003)), while others
insist that it is self-referential (see Priest (1997) and Beall (2001)). To a great
extent, the point at issue is in what sense we use the word ’self-reference’ when we
talk about the paradoxical sentences and other pathological ones. As is suggested
by Leitgeb (2002, p. 3), we has to put forward a ‘clear-cut definition’ for the self-
reference before asserting some paradox is ‘self-referential’ or not, otherwise the
relevant debates may be ‘substantially flawed’ because what we use might be an
‘unclear and inadequate’ notion of self-reference.

Literally, to say a sentence is self-referential is to say this sentence refers to or
depends on itself. And so, in order to give the notion of self-reference, we must first
define how a sentence depends on or refers to other ones. This is where we need
a notion of the ‘dependence (or reference) relation’ over sentences. Furthermore,
to incorporate the indirectly self-referential sentences into the extension of self-
reference, we have to consider not only what a sentence depends on, but also what
those sentences that the original sentence depends on depend on, and so on. Thus,
for any arbitrary set of sentences, we need to provide a device to show how these
sentences are related to each other according to the dependence relation. This
device is the concept of so-called ’dependence digraph’ or ‘reference digraph’.

Provided that we work in a sentential language, it is possible to set up the
dependence relation and the corresponding dependence digraph by an immediate
way. Actually, the dependence relation of sentences is represented as ‘sentence nets’
and the dependence digraph is defined in terms of the syntactic constituents of sen-
tences. To avoid digressing, I postpone the relevant discussions to the last section.
For now, our working language is the standard language for truth and paradoxes,
that is, the first-order language for arithmetic with a distinguished predicate T .
The situation is different and more complex. Fortunately, we already have had the
two necessary concepts for the first-order language. First, the dependence relation
was advanced by Leitgeb in his paper ‘What truth depends on’ (Leitgeb (2005), p.
161). This concept is fundamental for studying the self-reference of paradoxes. I
pay attribute to Leitgeb’s ingenious idea about the dependence relation by the use
of the title of the paper. Second, the dependence digraph was given by Beringer
& Schindler (2015). This is a derived concept from Leitgeb’s notion of dependence
relation.

It is an easy task to give the definition of self-reference once we make clear the
dependence relation and dependence digraph of sentences. Actually, Leitgeb (2005,
p. 168) gave a formal definition of self-reference by use of his dependence relation.
As we will see, Leitgeb’s notion of self-reference is something like the notion of
direct self-reference. This is too restricted because it throws these indirectly self-
referential sentences out of the extension of self-reference. What Leitgeb missed is
the concept of dependence digraph. 1 On the other hand, Beringer and Schindler

1 This is not to reproach Leitgeb but to show a key concept in search of a more general
notion of self-reference. After all, Leitgeb’s main purpose of using the dependence relation,
is not to study self-reference of paradoxes but to give an adequate definition of truth in the
first-order language of arithmetic with the unitary predicate T . See Leitgeb (2005), pp. 171ff.
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did not give a definition of self-reference yet, because their use of dependence
digraph has a different goal.

In this paper, I will give a definition of self-reference on the basis of Leitgeb’s de-
pendence relation, and Beringer and Schindler’s dependence digraph. After doing
that, I will focus on a class of paradoxes of certain finite characteristics, namely the
locally finite paradoxes.2 Again, this is defined in terms of Leitgeb’s dependence
relation. Roughly speaking, locally finite paradoxes are those paradoxes consisting
of only sentences which can depend on a finite set of sentences. The main target
of this paper is to investigate the self-reference and related issues of locally finite
paradoxes (together with some typical non-locally-finite paradoxes as a contrast).
The main results I will establish are summarized in Table 1.

Features

Paradoxes Test Group Control Group

Locally finite paradoxes
Yablo’s paradox ω-cycle liar and
and its variants McGee’s paradox

Self-reference ✓ × ✓
Circularity-dependence ✓ ✓ ×

Table 1

The third row in Table 1 stands for the results about the self-reference of para-
doxes. On one hand, all locally finite paradoxes are self-referential. More precisely,
if a locally finite set of sentences is paradoxical, it is self-referential (Theorem 2).
On the other hand, there are some non-locally-finite paradoxes that are not self-
referential: Yablo’s paradox and its variants are such examples, and at the same
time, there are also some non-locally-finite but self-referential paradoxes such as
the ω-cycle liar and McGee’s paradox.

A point worth emphasizing is that the main object of our study is the locally
finite paradoxes rather than Yablo’s paradox or any variant of it. To give a for-
mal definition of self-reference, we should first capture our intuition about those
paradoxes whose self-reference is undisputed. As we will see, it is these locally
finite paradoxes that include all the known paradoxes of finitary characteristics,
whose self-reference is generally accepted by philosophers — no matter how they
consider the self-reference of Yablo’s paradox. In this sense, a reasonable definition
of self-reference must, above all, pass the test of these paradoxes of finitary char-
acteristics. That is why we take these paradoxes into the ‘test group’. Of course,
for an adequate definition of self-reference, this is only a necessary condition and
other aspects must be considered. For instance, one may wonder whether there
exist some examples of non-self-referential paradoxes according to the definition.
The existence of such examples will make the notion of self-reference more inter-
esting. At this point, the paradoxes in the control group play their role, and they
are the candidates free of self-reference.

As far as I know, most current controversies about self-reference of paradoxes
center around Yablo’s paradox or its variants. However, Yablo’s paradox is not so
important as the locally finite paradoxes in the present work. When I prove that it

2 The notion of local finiteness, in the form of digraph, was offered by Rabern et al. (2013,
p. 754) in the context of sentential language. See the discussion of the last section. By the way,
by a paradox I always mean a paradoxical set of sentences.
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is not self-referential (Example 1), my main purpose is not to settle disputes about
the self-reference of Yablo’s paradox. Rather, Yablo’s paradox is merely something
like an element in the control group: it is a typical non-locally-finite paradox. My
focus is still on the class of locally finite paradoxes. Let me stress again: if out
target is to define a reasonable notion of self-reference, the test group, that is, the
main object that we should study, is those undisputedly self-referential paradoxes.
In this respect, Yablo’s paradox and its variants are no more than members in the
control group.

The fourth row of Table 1 is about the circularity dependence of paradoxes,
which is a notion similar to the notion of self-reference but different from the
latter. The notion of circularity dependence is introduced by Hsiung (2014, p. 35).
And this notion is founded on the notion of paradoxicality in a digraph (Hsiung
(2009a), p. 248). Roughly, when we say a paradox have circularity dependence,
we mean it is paradoxical only in a digraph containing a proper cycle. The idea
behind the notion of paradoxicality in a digraph is that paradoxes are conditionally
contradictory. As we all know, paradoxical sentences lead to a contradiction, but
unlike those contradictory sentences such as ‘the snow is white and it is not white’,
they are not absolutely contradictory so that we could find some way to make
them consistent with our cherished theories. Remember that in classical logic, a
contradiction follows from applying Tarski’s famous T-scheme (that is, T ⌜A⌝, iff
A) to any paradoxical sentence. Now if we replace Tarski’s T-scheme by Scheme
(1), then whether a contradiction follows depends on what paradox is applied to
Scheme (1) and what digraph is involved in this scheme.

T ⌜A⌝ (holds) at v, iff A (holds) at u, (1)

where u and v are any points in the domain of a digraph such that u bears the
binary relation of the digraph to v. It is at this point that we can use digraphs
to show under what conditions a paradox actually generates a contradiction.3 For
instance, it can be proved that the Liar (sentence) is paradoxical in and only in
the digraphs containing an odd cycle (Hsiung (2009a), p. 253).

Return to Table 1. The second main result I will prove about the locally finite
paradoxes is that if a locally finite set of sentences is paradoxical in a digraph,
then there is some proper cycle in this digraph (Theorem 5). Or briefly, all locally
finite paradoxes have circularity dependence. We provide specific examples to il-
lustrate this general result. Among the locally finite paradoxes, the simplest one
is the Liar paradox. It has circularity dependence: as is just mentioned, the Liar
is paradoxical only in those digraphs containing an odd cycle. More generally, for
any positive number n = 2i(2j + 1), the n-cycle liar (sometimes also called the
n-liar) is paradoxical in a digraph, iff there is a cycle whose depth is indivisible
by 2i+1 in this digraph (Hsiung (2014), p. 26). What is more, this can be further
generalized to the Boolean paradoxes (Hsiung (2017)). From these example, we
can see how their paradoxicality conditions are related to some certain circularity.
The paradoxes in these examples, as elements in test group, are concrete examples
of locally finite paradoxes. The second main result about locally finite paradoxes
shows that all these paradoxes share a common property: the circularity depen-
dence. On the other hand, there are non-locally-finite examples which have no

3 Of course, this is merely a technical explanation, and for more philosophical motivations
about paradoxicality in a digraph, please refer to Hsiung (2009a).
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circularity dependence. The ω-cycle liar and McGee’s paradox (but not Yablo’s
paradox or its variants) are such examples.

The structure of the paper is as follows. In Section 2, we first give two ba-
sic notions: one is Leitgeib’s dependence relation, and the other is the notion of
paradoxicality in a digraph. Then in Section 3, I generalize Leitgeib’s notion of
self-reference by use of his dependence relation, and then prove the self-reference
of locally finite paradoxes. The circularity-dependence of locally finite paradoxes
and related results will be proved in section 4. As we will see, both proofs are an
application of König’s infinity lemma. In section 5, we turn to discuss some typical
non-locally-finite paradoxes. In the last section, we compare the present approach
to the self-reference with the one in the context of a sentential language.
Graph-theoretical Preliminaries. A digraph (or a relational frame) is a pair
⟨G,R⟩, consisting of a non-empty set G, and a binary relation R on G.4 In a
digraph G = ⟨W,R ⟩, two points u and v in W are adjacent if either ui Rui+1 or
ui+1 Rui holds. Let u0, u1, . . . , ul be points in W . If ui and ui+1 are adjacent for
all 0 ≤ i < l, the sequence ξ = u0 u1 . . . ul is a walk from u0 to ul in G, u0 and ul

are two endpoints of ξ, and l is the length of ξ.

(a) ξ is closed , if its two endpoints are equal, i.e. u0 = ul.
(b) ξ is directed , if ui Rui+1 for all 0 ≤ i < l.
(c) ξ is a cycle, if none of the points in ξ is repeated except that u0 = ul.

a loop is a directed cycle of length 1. An odd cycle is a cycle whose length is an
odd number. A directed acyclic digraph (DAG) is a digraph which has no directed
cycles (or equivalently, no closed directed walks, see Lemma 3).

Let ξ = u0 u1 . . . ul be a walk in G. A sub-walk of ξ is a walk from uaua+1 . . . ub

for some number a and b with 1 ≤ a ≤ b ≤ l. The inverse of ξ is the walk
ul ul−1 . . . u0, which is denote by ξ−. Let ζ = v0v1 . . . vm be another walk in G.
If ul = v0, we can define the concatenation of ξ and ζ (at ul), denoted by ξ⌢ζ, to
be w0w1 . . . wl+m, where wi = ui for 0 ≤ i ≤ l and wi = vi−l for l < i ≤ l +m.

A digraph is connected, if any two different points are connected by some walk.
A connected component of a digraph is a sub-digraph of this digraph such that
it is connected but any proper super-digraph of it is not connected. A digraph is
minimal reflexive, if it consists of a single point that bears the binary relation R
to itself. Clearly, all minimal reflexive digraphs are isomorphic, and so we can say
the minimal reflexive digraph.

2 Dependence relation and Paradoxicality

Let L be the first-order language of the arithmetic, which includes S, +, ·
and 0 as its non-logical symbols. Let L + be the language obtained from L by
augmenting a distinguished unary predicate symbol T . Unless otherwise claimed,
when we say a formula, we mean a formula of L +. We will also use L + to denote
the set of all sentences, and so by A ∈ L +, we mean A is a sentence of L +. The
intended model of the language L is N = ⟨N,′ ,+, ·, 0 ⟩, that is, the structure of
natural numbers. Correspondingly, for L +, we will only consider those models of
the form ⟨N, X⟩, where X ⊆ N is the extension of T . We can routinely define

4 The digraph we define is actually the digraph without parallel directed edges. This restric-
tion does not lose any generality for our purpose.
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VN,X(A), i.e., the truth value of A in the model ⟨N, X⟩. Since the ground model
N is always fixed, we use VX(A) instead of VN,X(A). When VX(A) = T(F), we
will say A is true (false) for X. Sometimes, we also use X |=A for VX(A) = T. For
brevity, we use A ≡ B to denote that A ↔ B is true for all X ⊆ N.

For a sentence A, we use ⌜A⌝ for the Gödel’s number of A, and ⌜A⌝ for the
corresponding numeral to the number ⌜A⌝. But, to avoid too many complications,
we will often identify ⌜A⌝ with ⌜A⌝, and identify a set Σ of sentences with the
set of the Gödel’s number of all sentences in Σ. For example, we will use T ⌜A⌝
instead of T

(
⌜A⌝

)
, and use VΣ(A) instead of V{⌜B⌝ | B∈Σ}(A). For any n ≥ 0,

define inductively Tn⌜A⌝ as follows: T 0⌜A⌝ = A and Tn+1⌜A⌝ = T ⌜Tn⌜A⌝⌝ for
n ≥ 0.

Our method of constructing the paradoxes is the standard one via Gödel’s
diagonal lemma. For instance, by use of Gödel diagonalization, we can construct
the Liar sentence λ, which satisfies the equivalence λ ≡ ¬T ⌜λ⌝. More generally,
for any positive number n, we can construct a sentence λn

1 in L + such that
λn
1 ≡ ¬Tn⌜λn

1 ⌝.
Leitgeb’s dependence relation is defined as follows.

Definition 1 (Leitgeb (2005), p. 161) Let A be a sentence and Σ be a set of
sentence. We define A depends on Σ, if for any Γ1, Γ2 ⊆ L +,

Σ ∩ Γ1 = Σ ∩ Γ2 ⇒ VΓ1
(A) = VΓ2

(A).

Informally, A depends on Σ, if and only if the truth value of A is determined by
whether the sentences of Σ are present in the extension of the truth predicate. An
equivalent definition is as follows: A depends on Σ: if for any Γ ⊆ L +, VΓ (A) =
VΣ∩Γ (A) (Leitgeb (2005), 161).

Lemma 1 (Leitgeb (2005), p. 161) For every sentence A of L +, we have:

(a) A depends on the set of all sentences of L +.
(b) If A depends on Σ and Σ ⊆ Γ , then A also depends on Γ .
(c) If A depends on both Σ and Γ , then A depends on Σ ∩ Γ .

When A depends on Σ, we will say Σ is a dependence set of A. We will use
D(A) to denote the family of all dependence sets of A. By Lemma 1, D(A) is a filter
and will be called the dependence filter of A. If D(A) is a principal filter, then it
contains a least set (about the set inclusion relation). In such a case, we will say A
essentially depends on this least set. As Leitgeb has pointed out, not every sentence
can essentially depends on a set. For instance, the sentence ∀x∃y(y > x∧T ⌜y = y⌝)
depends on all cofinite subsets of the set {n = n | n ∈ N}, but it does not depends
on the empty set. Thus, this sentence does not essentially depends on any set.

Definition 2 (Beringer & Schindler (2015)) f is a choice function, if it is
a function from L + to the powerset of L +, such that f(A) ∈ D(A) for every
sentence A. For a choice function f , we define a binary relation ≺f on L + as
follows: for all sentences A and B, A≺f B, iff B ∈ f(A). Let Σ be a set of sentence
and let f be a choice function. We will say ⟨Σ,≺f ⟩ is a dependence digraph of Σ.5

5 In the digraph
⟨
Σ,≺f

⟩
, ≺f is actually the restriction relation ≺f ⌉Σ×Σ . This is always

clear, and so the subscript is omitted.
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The present study is also closely related to the revision theory of truth which
has been mainly developed by Gupta & Belnap (1993). A basic notion of the
revision theory is the revision sequence, which was originally defined for arbitrarily
large length by Gupta (1982, p. 10) and Herzberger (1982, p. 68). But for the
present purpose, we only need to consider the revision sequences of length ω.

Definition 3 (Gupta (1982); Herzberger (1982)) For a set Σ of sentences,
define Σr = {A ∈ L + | Σ |=A}. Define a sequence Σ0, . . . , Σk, . . . as follows:
Σ0 = Σ, and Σk+1 = Σr

k for all k ≥ 0. This sequence is called the revision
sequence starting from Σ.

We will generalize the notion of the revision sequence. To motivate the gen-
eralization, we recall that to say a set of sentences is paradoxical is to say there
is no interpretation of T such that Tarski’s scheme T ⌜A⌝ ↔ A holds for all A in
this set. A precise definition is as follows.

Definition 4 A set Σ of sentences is paradoxical, if there is no Γ satisfying the
condition: Γ ∩ Σ = Γ r ∩ Σ. That is, there is no Γ such that for any A ∈ Σ,
VΓ (T ⌜A⌝) = VΓ (A).

From now on, we always use G to denote the digraph ⟨W,R⟩ unless otherwise
claimed. See the end of section 1 for the definitions of the digraphs and related
notions.

Definition 5 (Hsiung (2009a), pp. 243-244) Let Σ be a set of sentences. t:
W → P(L +) is a revision mapping for Σ in G, if for all u, v ∈ W satisfying uR v,

t(v) ∩Σ = t(u)r ∩Σ (2)

Σ is paradoxical in G, if there is no revision mapping for Σ in G.

When Σ is the set of all sentences, W is the set of natural numbers and R is
the successor relation between natural numbers, a revision mapping t for Σ in G
is a revision sequence starting from the set t(0). And so the revision sequence is a
special instance of the revision mapping. And the notion of being paradoxical in
a digraph is also a generalization of being paradoxical. Actually, in the minimal
reflexive frame, the equation (2) is collapsed to the equation of Definition 4, and
so Σ is paradoxical, iff it is paradoxical in the minimal reflexive digraph. Note also
that (2) is equivalent to

for all A ∈ Σ, Vt(v)(T ⌜A⌝) = Vt(u)(A).

And so the biconditional (2) is a formal representation of biconditional (1) in L +.
Hence, when a set of sentences is paradoxical in a digraph, we can think that it is
impossible to evaluate these sentences (without contradiction) in the digraph such
that scheme (1) holds for all of these sentences.

Definition 6 (Hsiung (2009a), pp. 248, 254) Let Σ,Γ be two sets of sen-
tences. Define Σ≤P Γ , if for any digraph G, whenever Σ is paradoxical in G, Γ is
also paradoxical in G. Define Σ≡P Γ , if Σ≤P Γ and Γ ≤P Σ. Define Σ<P Γ , if
Σ≤P Γ but Σ ̸≡P Γ .

Note that ≡P is an equivalence relation. When Σ≡P Γ , we will say Σ and Γ
have the same degree of paradoxicality . When Σ<P Γ , we say Σ has a (strictly)
lower degree of paradoxicality than Γ .
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3 Locally finite Paradoxes and Self-reference

Leitgeb gave a definition of self-reference in terms of his dependence relation.
He defined that a sentence A is self-referential, if A belongs to any dependence set
of it, i.e., for any set Σ of sentences, whenever A depends on Σ, A is an element
of Σ (Leitgeb (2005), p. 168). On the basis of Leitget’s definition, we now provide
a more general notion of self-reference.

Definition 7 A sentence A is self-referential , if for all choice function f , there
are finitely many sentences A1, . . . , Ak such that A≺f A1 ≺f . . .≺f Ak ≺f A. In
case k = 0 (that is, A≺f A) for all f , A is directly self-referential ; otherwise, A is
indirectly self-referential.

Leitget’s self-reference is actually equivalent to the present definition of direct
self-reference. To see this, only note that to say that for any set Σ, Σ ∈ D(A)
implies A ∈ Σ, is to say that for any choice function f , A ∈ f(A), i.e., A≺f A.

Take the sentence λn
1 as an example again. For 1 ≤ i < n, let λn

i+1 = T ⌜λn
i ⌝.

Then λn
i+1 essentially depends on {λn

i }. We also have λn
1 essentially depends on

{λn
n} since λn

1 ≡ ¬T ⌜λn
n⌝. And so for any choice function f ,

λn
1 ≺f λn

n ≺f . . . ≺f λn
3 ≺f λn

2 ≺f λn
1 .

When n = 1, we have λn
1 ≺f λn

1 . It means that λ1
1, i.e., the Liar sentence, is directly

self-referential. Now suppose n > 1, we consider a choice function, say f0, such
that f0 (λ

n
1 ) = {λn

n}. Clearly, λn
1 does not belong to the set {λn

n}. That means
λn
1 ≺f0

λn
1 fails. It follows that when n > 1, λn

1 is self-referential but not directly
self-referential. In this case, λn

1 is indirectly self-referential. See Figure 1, where the
arrow stands for the relation ≺f , and the points corresponding to the sentences
λn
2 , λ

n
3 and so on are hollow since these sentences are merely auxiliary.

λ1
1

n = 1

. . .
λn
1 λn

2 λn
3

λn
n

n > 1

Fig. 1: Self-reference of λn
1

In the above example, we find it is more convenient to consider the set {λn
i | 1 ≤

i ≤ n} rather than the single sentence λn
1 . The set {λn

i | 1 ≤ i ≤ n} will be called
‘n-cycle liar’, denoted by λn.6 We now introduce the notion of self-reference for a
set of sentences.

6 The n-cycle liar is called the ‘Liar cycle’ in Leitgeb (2005, p. 164). It is also known as
‘n-liar’. Generally, we can define α-liar for all ordinals α. Herzberger (1982, pp. 74-75) and
Yablo (1985, p. 340). The case for α = ω will be given in section 5. But we will use the term
‘ω-cycle liar’ rather than ‘ω-liar’, because the latter may cause confusing: for instance, the
term ‘ω-liar’ sometimes is also used for Yablo’s paradox. See Yablo (2004, p. 140).
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Definition 8 A set of sentences is self-referential , iff each dependence digraph of
it contains at least a closed directed walk. In particular, it is directly self-referential ,
iff each dependence digraph of it contains at least a loop.

The following notions are useful to study the self-reference of sets of sentences.

Definition 9 Let Σ be a set of sentences.

(a) Σ is normal , if every sentence of Σ essentially depends on some set.
(b) Σ is locally finite, if every sentence of Σ has a finite dependence set.

Lemma 2 (a) If A depends on a finite set, then A essentially depends on a subset
of this set.

(b) Any locally finite set of sentences is normal.

Proof. (a) Suppose A depends on a finite set Σ. Let D be the set of all the
subsets Γ of Σ such that A depends on Γ . By the hypothesis, Σ ∈ D, and so D
is non-empty. Let Γ0 be the intersection of all the sets of D. Since Σ is finite, D
is also finite. By (c) of Lemma 1, A depends on Γ0. Now for every set Γ , if A
depends on Γ , then by (c) of Lemma 1 again, Γ ∩Σ belongs to D. It follows that
Γ0 ⊆ Γ ∩Σ, and Γ0 ⊆ Γ . Consequently, A essentially depends on Γ0.

(b) is immediate from (a). ⊓⊔
The following two graph-theoretical results are useful in studying the self-

reference of a locally finite set of sentences.

Lemma 3 A digraph contains a closed directed walk, iff it contains a directed
cycle.

The proof of this lemma is omitted, since we will late prove a similar but
stronger result (see (b) of Lemma 5). By this lemma, we can see a set of sentences
is self-referential, iff none of its dependence digraphs is a DAG. A basic property
of a finite DAG is that its points can be linearly ordered such that whenever there
is an edge from a point u to another v, then u comes after v in the ordering. The
relevant notions are as follows.

Definition 10 Let G = ⟨W,R⟩ be a digraph. A point u in W is a sink of G, if for
any v in W , uR v always fails. A function g : W → N is a topological sorting of G,
if for any u and v in W , whenever uR v, g(v) < g(u).7

Lemma 4 (a) Any finite DAG contains at least a sink.
(b) Any finite DAG has a topological sorting.

Proof. (a) Let G = ⟨W,R⟩ be a finite DAG. Assume no point of G is a sink,
then we can find an infinite sequence of points in W , u0 u1 u2 . . ., such that
u0 Ru1 Ru2 R . . .. But W contains only finitely many points, there must be two
repeated points in the above sequence. And so there is at least a closed directed
walk in G, but this is contradictory with the hypothesis that G is a DAG.

(b) Let G0 = G, and by (a), we can find a sink in G0, and let it be u0. Let G1 be
the digraph obtained by deleting u0 from G0. Then G1 is still a finite DAG. And

7 The ordering we give here by the function g is the converse of the usual topological sorting
of a digraph (see for instance, Cormen et al. (2009), p. 612). Such a ordering streamlines our
induction in the proof of Theorem 1.
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so, we can find a sink in G1, namely u1. This process can be iterated indefinitely.
In general, for any k ≥ 0, let uk be a sink of Gk, and let Gk+1 be the digraph
obtained by deleting uk from Gk. Since W is finite, we can find a least number m
such that Gm+1 is empty. In that case, W = {ui | 0 ≤ i ≤ m}. Note that for any
0 ≤ i, j ≤ m, if i ≤ j, then ui Ruj fails (otherwise ui is not a sink of Gi). Thus,
if ui Ruj , then j < i. Now define g such that g(ui) = i for 0 ≤ i ≤ m. Then g is
clearly a topological sorting of G. ⊓⊔

Theorem 1 If a finite set of sentences is paradoxical, then it is self-referential.

Proof. Assume Σ is not self-referential, then there exists a dependence digraph of
Σ, namely G = ⟨Σ, ≺f ⟩, which is a DAG. We will show that Σ is not paradoxical.

By (b) of Lemma 4, G has a topological sorting, namely g. Letm be the greatest
value of g. Define Σ′

k inductively as follows: Σ′
0 = Σ, and for any k ≥ 0,

Σ′
k+1 =

{
A ∈ Σ | VΣ′

k
(A) = T

}
.

For brevity, Σ′
k(A) is a shorthand for VΣ′

k
(A). We claim that for all 0 ≤ l ≤ m

and for all A ∈ Σ, if g(A) ≤ l, then for all k ≥ l, Σ′
k+1(A) = Σ′

k(A). If this
claim is true, then in particular, we fix l = m, and then get for all A ∈ Σ,
Σ′

k+1(A) = Σ′
k(A) whenver k ≥ m. That is to say, the sequence

⟨
Σ′

k | k ∈ N
⟩

actually gets to a fixed point after stage m. It follows immediately that for every
A ∈ Σ, Σ′

m+1(T ⌜A⌝) = Σ′
m+1(A). Hence, Σ is not paradoxical.

We prove the above claim by induction on l. When g(A) ≤ 0, A must be a sink
in G. Then by definition of the choice function, Σ ∩ f(A) = ∅, otherwise A≺f B
for some B ∈ Σ, but this is impossible since A is a sink in G. And so for all k ≥ 0,
Σ′

k+1 ∩ f(A) = Σ′
k ∩ f(A) = ∅, and then by definition 1, Σ′

k+1(A) = Σ′
k(A).

Next, suppose g(A) ≤ l + 1, then for any B ∈ Σ, provided A≺f B, g(B) ≤ l.
Then by inductive hypothesis, for all k ≥ l, Σ′

k+1(B) = Σ′
k(B). We notice f(A) =

{B | A≺f B}, and so for all B ∈ Σ ∩ f(A) and for all k ≥ l, B ∈ Σ′
k+2, iff

B ∈ Σ′
k+1. That means for all k ≥ l, Σ′

k+2 ∩ f(A) = Σ′
k+1 ∩ f(A). Hence, by

definition of dependence relation again, Σ′
k+2(A) = Σ′

k+1(A) holds for all k ≥ l.
Therefore, for all k ≥ l+1, Σ′

k+1(A) = Σ′
k(A). As a result, for all A ∈ Σ, whenever

g(A) ≤ l, we can get for all k ≥ l, Σ′
k+1(A) = Σ′

k(A). The claim is proved. ⊓⊔
Recall that a tree is a partial order ⟨T , <⟩ satisfying the following conditions:

(i) T contains a unique minimal element (the root of T ); (ii) For any σ ∈ T , the
set {σ′ ∈ T | σ′ < σ} is a finite subset of T that is totally ordered by <. For
brevity, {σ′ ∈ T | σ′ < σ} is denoted by pdT (σ). The height of σ is defined to be
the size of pdT (σ). For n ∈ N, the n-th level of T is the set of all σ ∈ T such that
the height of σ is equal to n. σ′ is an immediate successor of σ, if σ < σ′ and the
height of σ′ is the height of σ plus 1. A tree is finitely branching, if every point in
the tree has only finitely many (possibly zero) immediate successors. A branch of
a tree is a maximal totally ordered subset of T . König’s infinity lemma says that if
a tree is infinite and finitely branching, then it has an infinite branch. For a proof
of this lemma, see for instance Just & Weese (1997, p. 31).

Theorem 2 If a locally finite set of sentences is paradoxical, it is self-referential.

Proof. Let Σ be an infinite but locally finite set of sentences. Suppose it is not
self-referential. We will use König’s infinity lemma to prove Σ is not paradoxical.
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By the supposition, there is a choice function f such that the dependence digraph
G = ⟨Σ,≺f ⟩ is a DAG. Since Σ is locally finite, there is a choice function f ′

such that for all A ∈ Σ, f ′(A) is a finite set. Define a function f ′′ as follows:
f ′′(A) = f(A) ∩ f ′(A). By (c) of Lemma 1, f ′′ is also a choice function. And for
all A ∈ Σ, f ′′(A) is a finite set. Furthermore, ⟨Σ,≺f ′′⟩ is a DAG, since it is a
sub-digraph of G. Now by replacing f with f ′′, we can make a further supposition
about the original f : for all A ∈ Σ, f(A) is a finite set.

Let Σ = {Ak | k ∈ N}. For brevity, we use Σk for the set {Ai | i < k}, and
Nk for {i ∈ N | i < k}. We now create a tree as follows. For k ∈ N, let us say
σ : Nk → {T,F} is a k-sequence, if there exists a subset of Σk, namely Γk, such
that for all i < k, (i) VΓk

(T ⌜Ai⌝) = VΓk
(Ai) and (ii) σ(i) = T, iff Ai ∈ Γk. k will

be called the length of σ, denoted by |σ|. Let T be the set of all the k-sequences
for k ∈ N. Define a binary relation < on T as follows: σ < σ′, iff |σ| < |σ′|, and
for all i < |σ|, σ(i) = σ′(i). It can be easily seen that ⟨T , <⟩ is a tree with the
0-sequence (the empty sequence) as its root.

For any k ≥ 0, by Theorem 1, there exists a set Γk ⊆ Σk, such that for all
i < k, VΓk

(T ⌜Ai⌝) = VΓk
(Ai). Define σk : Nk → {T,F} such that σk(i) = T,

iff Ai ∈ Γk. Then σk is an element in the kth level of ⟨T , <⟩. Thus, ⟨T , <⟩ is
an infinite tree. Furthermore, ⟨T , <⟩ is finitely branching (it is actually a binary
tree). Now by König’s infinity lemma, the tree ⟨T , <⟩ has an infinite branch. We
put σ∗

k to be the restriction of this infinite branch up to the k-th level of the tree.
Specifically, we can choose an infinite branch τ of ⟨T , <⟩, and let σ∗

k = τ ↾Nk
.

Let g =
∪

k≥0 σ
∗
k, and let Γ = {Ak | g(k) = T}. We prove that for all k ≥ 0,

VΓ (T ⌜Ak⌝) = VΓ (Ak).

For any k ≥ 0, by the supposition that f(Ak) is a finite set, we can choose a
number nk such that k < nk and f(Ak) ⊆ Σnk . In order to prove VΓ (T ⌜Ak⌝) =
VΓ (Ak), we notice that by definition of VΓ , VΓ (T ⌜Ak⌝) = T, iff Ak ∈ Γ ; by
definition of Γ , Ak ∈ Γ , iff g (k) = T; by definition of g and the fact that k < nk,
g (k) = T, iff σ∗

nk
(k) = T; by definition of σ∗

k, σ
∗
nk

(k) = T, iff Ak ∈ Γnk ; by
definition of VΓnk

, Ak ∈ Γnk , iff VΓnk
(T ⌜Ak⌝) = T; and by condition for Γnk ,

VΓnk
(T ⌜Ak⌝) = T, iff VΓnk

(Ak) = T. Thus it suffices to prove that VΓnk
(Ak) =

T, iff VΓ (Ak) = T.

Note that Γnk (⊆ Σnk) is the set corresponding to the nk-sequence σ∗
nk

. Since
Ak depends on f(Ak), in order to show the last equivalence in the preceding
paragraph, it is sufficient to prove Γnk ∩ f(Ak) = Γ ∩ f(Ak). First, suppose Ai ∈
Γnk , then σ∗

nk
(i) = T. Hence, g(i) = T, and so Ai ∈ Γ . We thus obtain Γnk ⊆ Γ .

It follows Γnk ∩ f(Ak) ⊆ Γ ∩ f(Ak). And the converse is also true because f(Ak)
is already included in the set Σnk by our choice of nk: provided Ai ∈ Γ ∩ f(Ak),
then i < nk and g(i) = T, and so σ∗

nk
(i) = T, and finally we have Ai ∈ Γnk . ⊓⊔

4 Locally finite Paradoxes and Circularity-dependence

In this section, we will prove that the locally finite sets of sentences are para-
doxical only in those frames containing a proper cycle. Thus, these locally finite
paradoxes do depend on circularity in the following sense: they can generate some
contradiction only if the digraphs by which we evaluate them satisfy some circu-
larity condition.
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Definition 11 (Hsiung (2014), p. 26) Let G = ⟨G,R⟩ be a digraph. Define a
mapping dG from the set of all walks in G to the set of natural numbers as follows:
for any world u ∈ W , dG(u) = 0; and for any walk ξ = u0 u1 . . . ul ul+1 (l ≥ 0),

dG(ξ) =

{
dG (u0 u1 . . . ul) + 1, if ul+1 Rul;
dG (u0 u1 . . . ul)− 1, otherwise.

dG(ξ) will be called the depth of ξ in G. We suppress the parameter G from dG
when no confusion arises. A cycle in a digraph is improper , if its depth is zero;
otherwise it is proper .

Lemma 5 Let G = ⟨W,R⟩ be a digraph. Let ξ, ξ0, and ξ1 be walks in G.

(a) If ξ = ξ⌢0 ξ1, then d(ξ) = d(ξ0) + d(ξ1).
(b) G contains a proper cycle, iff it contains a closed walk of non-zero depth.

Proof. Both (a) and the necessity of (b) are obvious, and we only prove the
sufficiency of (b). It suffices to prove that for any closed walk ξ of non-zero depth
in G, ξ has a sub-walk which is a proper cycle. The proof is by mathematical
induction on the length l of ξ. The case of l = 1 is apparently true, since a closed
walk of length 1 is also a cycle.

For l > 1, suppose ξ = u0 u1 . . . ul. If all points in ξ are distinct except that
u0 = ul, ξ is a cycle in itself. Otherwise, we can choose two points ui0 and uj0

in ξ such that 0 ≤ i0 < j0 ≤ l, ui0 = uj0 , but either i0 ̸= 0 or j0 ̸= l. Consider
the sub-walk from ui0 to uj0 of ξ. Let it be ξ1. At the same time, consider the
concatenation of the sub-walk from u0 to ui0 and the sub-walk from uj0 to ul at
the point ui0 (or uj0). Let it be ξ2. Both ξ1 and ξ2 are closed and their lengths
are less than l. At the same time, since d(ξ1) + d(ξ2) = d(ξ) and d(ξ) ̸= 0, either
d(ξ1) ̸= 0 or d(ξ2) ̸= 0. So by inductive hypothesis, either ξ1 or ξ2 has a sub-walk
which is a proper cycle. Such a cycle is also a sub-walk of ξ. ⊓⊔

Lemma 6 Let G = ⟨W,R⟩ be a digraph without any proper cycle.

(a) If ξ is a walk in G, then d(ξ−) = −d(ξ).
(b) In G, all walks with the same endpoints have the same depth.

Proof. For (a), let ξ = u0 u1 . . . ul, then for any 0 ≤ k < l, either uk Ruk+1

or uk+1 Ruk, but not both. From this, d(ξ−) = −d(ξ) can be easily proved by
mathematical induction on the length of ξ. To prove (b), we fix arbitrarily two
points u and v in W . Let ξ0 and ξ1 be two walks from u to v. Assume d(ξ0) ̸= d(ξ1),
and consider the walk ξ⌢0 ξ−1 . By (a), d

(
ξ⌢0 ξ−1

)
= d (ξ0)− d (ξ1) ̸= 0. Thus, ξ⌢0 ξ−1

is a closed walk of non-zero depth in G. By (b) of Lemma 5, G contains a proper
cycle, a contradiction. ⊓⊔

Theorem 3 If a finite set of sentences is paradoxical in a digraph, then there is
some proper cycle in this digraph.

Proof. Let Σ be a finite set, and let G = ⟨W,R⟩ is a digraph without any proper
cycle. We show Σ is not paradoxical in G. Note that Σ is paradoxical in G, iff
it is so in some connected component of G. We can suppose that G is connected
without loss of generality.
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Define Σ′
k as in the proof of Theorem 1. Since Σ is a finite set, there exist

numbers m and l such that m < l and Σ′
m = Σ′

l. Put p = l −m. Now fix a point
in G, namely u0. For any point u in G, by (b) of Lemma 6, all walks from u0

to u has the same depth. Let d(u) be the depth of some (any) walk from u0 to
u. Now define a mapping t : W → P

(
L +

)
as follows: if d(u) ≡ k (mod p) and

0 ≤ k < p, t(u) = Σ′
m+k. We show t is a revision mapping for Σ in G, and so Σ

is not paradoxical in G.
Suppose u and v are two points in W satisfying uR v and suppose d(u) ≡

k (mod p). Then d(v) ≡ k + 1 (mod p). We consider two cases. In case k + 1 < p,
then t(u) = Σ′

m+k and t(v) = Σ′
m+k+1. From this, we can easily obtain t(v)∩Σ =

t(u)r ∩ Σ. Hence, t is a revision mapping for Σ in G. In case k + 1 = p, then
t(u) = Σ′

m+k = Σ′
l−1 and t(v) = Σ′

m = Σ′
l. We see this case can be similarly

proved as the above case. ⊓⊔

Theorem 4 If a set of sentences is paradoxical in a finite digraph, then there is
some proper cycle in this digraph.

Proof. Suppose Σ is an infinite set of sentences, and G = ⟨W,R⟩ is a finite
digraph without any proper cycle. We show Σ is not paradoxical in G. The proof,
like the one of Theorem 2, is an application of König’s infinity lemma.

Let Σ = {Ak | k ∈ N}. We still use Σk for the set {Ai | i < k}, and Nk

for {i ∈ N | i < k}. We now create a tree as follows. For k ∈ N, let us say
σ : Nk → P(W ) is a k-sequence of worlds, if there exists a revision mapping t for
Σk in G such that u ∈ σ(i), iff Ai ∈ t(u). Let T be the set of all the k-sequences of
worlds for k ∈ N. Define a binary relation < on T as follows: σ < σ′, iff |σ| < |σ′|,
and for all i < |σ|, σ(i) = σ′(i). It can be easily verified that ⟨T , <⟩ is a tree.

For any k ≥ 0, by Theorem 3, there exists a revision mapping tk for Σk in G.
Define σk : Nk → P(W ) such that σk(i) = {u ∈ W | Ai ∈ tk(u)}. Then σk is an
element in the kth level of ⟨T , <⟩. Thus, ⟨T , <⟩ is an infinite tree. What is more,
since W is a finite set, ⟨T , <⟩ is finitely branching. This is the place where we use
the finiteness of the digraph G. Now by König’s infinity lemma, the tree ⟨T , <⟩
has an infinite branch. We put σ∗

k to be the restriction of this infinite branch up
to the k-th level of the tree. Let g =

∪
k≥0 σ

∗
k, and define a mapping t∗ on W as

follows: t∗(u) = {Ak | u ∈ g(k)}. We prove that t∗ is a revision mapping for Σk in
G.

Just as we do in the proof of Theorem 2, for any k ≥ 0, we can choose a
number nk such that k < nk and f(Ak) ⊆ Σnk . To prove t∗ is a revision mapping
for Σk in G, we only need to prove that for any Ak ∈ Σ and for any u, v ∈ W
with uR v, Ak ∈ t∗(v), iff t∗(u) |=Ak. For this, first note that by definition of t∗,
Ak ∈ t∗(v), iff v ∈ g(k); by definition of g and the fact that k < nk, v ∈ g(k), iff
v ∈ σ∗

nk
(k); by definition of σ∗

nk
, v ∈ σ∗

nk
(k), iff Ak ∈ t∗nk

(v); and by definition
of t∗nk

, Ak ∈ t∗nk
(v), iff t∗nk

(u) |=Ak. Now it suffices to prove that t∗nk
(u) |=Ak, iff

t∗(u) |=Ak.
Note that t∗nk

is a revision mapping for Σnk in G, which witnesses that σ∗
nk

is a nk-sequence of worlds. The last equivalence in the preceding paragraph holds
because Ak depends on f(Ak) and t∗nk

(u) ∩ f(Ak) = t∗(u) ∩ f(Ak). First, we
can get t∗nk

(u) ∩ f(Ak) ⊆ t∗(u) ∩ f(Ak) from the easy fact that t∗nk
(u) ⊆ t∗(u).

Conversely, suppose Ai ∈ t∗(u) ∩ f(Ak), then on one hand, by our choice of nk,
i < nk, and on the other hand, by the definition of t∗, u ∈ g(i). Thus, u ∈ σ∗

nk
(i).

It follows Ai ∈ t∗nk
(u). We obtain t∗nk

(u) ∩ f(Ak) ⊇ t∗(u) ∩ f(Ak). ⊓⊔
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Theorem 5 If a locally finite set of sentences is paradoxical in a digraph, then
there is some proper cycle in this digraph.

Proof. Suppose Σ is an infinite but locally finite set of sentences, and G = ⟨W,R⟩
is a digraph without any proper cycle. We show Σ is not paradoxical in G. Again,
the proof is an application of König’s infinity lemma.

We need to consider simultaneously two infinite parameters: one is the set Σ
and the other is the digraph G. Correspondingly, the tree we must create to apply
König’s infinity lemma is more complicated than the one in the proof of Theorem
4. First note that if the desired result holds for some (or any) countably infinite
sub-digraph of G, it must also hold for the whole G. So we can suppose without
loss of generality that G is countably infinite. Let Σ = {Ak | k ∈ N}, and let
W = {wk | k ∈ N}. For brevity, we use Σk for the set {Ai | i < k}, and Wk for
the set {wi | i < k}. Let Gk be the restriction of G to Wk. Now we construct a
tree as follows. For k ∈ N, let us say σ : Nk → P(Wk) is a k-sequence of worlds, if
there exists a revision mapping t for Σk in Gk such that u ∈ σ(i), iff Ai ∈ t(u). Let
T be the set of all the k-sequences of worlds for k ∈ N. Define a binary relation <
on T as follows: σ < σ′, iff |σ| < |σ′|, and for all i < |σ|, σ(i) = σ′(i) ∩W|σ|.

We verify that ⟨T , <⟩ is a tree. First, it can be easily verified that T is (strictly)
partially ordered by <, and the 0-sequence of worlds (i.e., empty sequence) is its
the root. The details are omitted. Next, we must verify that for each σ′ ∈ T ,
pdT (σ′) is a finite set which is totally ordered by <. To see this point, we first
notice that whenever σ < σ′, |σ| < |σ′|. We also can easily see that there are at

most 2k
2

function from Nk to P(Wk). Therefore, if |σ′| = k, then there are at most∑m
k=0 2

k2

elements in the set pdT (σ′). Thus, pdT (σ′) is finite. Next, we suppose
σ1, σ2 < σ′, we show either σ1 ≤ σ2 or σ2 ≤ σ1. Without loss of generality, we
suppose |σ1| ≤ |σ2|. For any i < |σ1|, we have the following equations:

σ1(i) = σ′(i) ∩W|σ1| (σ1 < σ′)

= σ′(i) ∩W|σ2| ∩W|σ1| (W|σ1| ⊆ W|σ2|)

= σ2(i) ∩W|σ1| (σ2 < σ′)

By the above result, if |σ1| = |σ2|, we have σ1 = σ2; if |σ1| < |σ2|, we have σ1 < σ2.
As a result, we can conclude that ⟨T , <⟩ is a tree.

For any k ≥ 0, by Theorem 3, there exists a revision mapping tk for Σk

in Gk. Define σk : Nk → P(Wk) such that σk(i) = {u ∈ Wk | Ai ∈ tk(u)}.
Then σk is an element in the kth level of ⟨T , <⟩. Thus, ⟨T , <⟩ is an infinite tree.

What is more, since there are at most 2k
2

elements in the kth level of ⟨T , <⟩,
⟨T , <⟩ is finitely branching. Now by König’s infinity lemma, the tree ⟨T , <⟩ has
an infinite branch. We put σ∗

k to be the restriction of this infinite branch to the
k-th level of the tree. Let g =

∪
k≥0 σ

∗
k, and define a mapping t∗ on W as follows:

t∗(u) = {Ak | u ∈ g(k)}. We prove that for all t∗ is a revision mapping for Σ in G.
To prove t∗ is a revision mapping for Σ in G, we only need to prove that for

any Ak ∈ Σ and for any wl, wm ∈ W with wl Rwm, Ak ∈ t∗(wm), iff t∗(wl) |=Ak.
For this, first, just as we do in the proof of Theorem 2, we can choose a number n
such that l,m, k < n and f(Ak) ⊆ Σn. Note that n depends on not only k but also
l and m, and so we write n (or more informative but cumbersome nl,m,k) instead
of nk.
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Now by definition of t∗, Ak ∈ t∗(wm), iff wm ∈ g(k); and by definition of g and
the fact that k,m < n, the latter is equivalent to wm ∈ σ∗

n (k), which is equivalent
to Ak ∈ t∗n (wm) by definition of σ∗

n. And by definition of t∗n and the fact that
l < n, Ak ∈ t∗n (wm), iff t∗n(wl) |=Ak. Finally, it suffices to prove that t∗n(wl) |=Ak,
iff t∗(wl) |=Ak.

Note that t∗n is a revision mapping for Σn in Gn, which witnesses that σ∗
n is

a n-sequence of worlds. The last equivalence in the preceding paragraph holds
because Ak depends on f(Ak) and t∗n(wl) ∩ f(Ak) = t∗(wl) ∩ f(Ak). First, we
can get t∗n(wl) ∩ f(Ak) ⊆ t∗(wl) ∩ f(Ak) from the easy fact that t∗n(wl) ⊆ t∗(wl).
Conversely, suppose Ai ∈ t∗(wl) ∩ f(Ak), then on one hand, by our choice of n,
i < n, and on the other hand, by the definition of t∗, wl ∈ g(i). We now claim
wl ∈ σ∗

n (i) (we must say this is not immediate). If we obtain this claim, then we
know Ai ∈ t∗n(wl), and so we can conclude t∗n(wl) ∩ f(Ak) ⊇ t∗(wl) ∩ f(Ak).

To verify the above claim, we first choose a number n′ such that i, n < n′ and
wl ∈ σ∗

n′(i). The existence of n′ is guaranteed by the fact that wl ∈ g(i). By the
definition of σ∗

k and the fact n < n′, we have σ∗
n < σ∗

n′ . But |σ∗
n| = n, and then by

the definition of the tree relation <, we know σ∗
n(i) = σ∗

n′(i) ∩Wn. But l < n, we
know wl ∈ Wn. Then wl ∈ σ∗

n′(i) ∩Wn, that is, wl ∈ σ∗
n(i). ⊓⊔

Definition 12 (Hsiung (2014), p. 35) A set of sentences is said to have cir-
cularity dependence, if it is not paradoxical in any digraph unless this digraph
contains some proper cycle. A set of sentences is said to have digraph compact-
ness, if whenever it is paradoxical in a digraph, it must be paradoxical in some
finite sub-digraph of this digraph.

Like the definition of self-reference, the above one of circularity-dependence is
also used to formulate the informal notion of circularity about sentences. But, the
two kinds of circularity have different meanings. As we all know, self-reference is
essentially a semantical characteristic of sentences. And when we say a paradox is
self-referential, it is the sentences of the paradox that are so. By contrast, when
we say a paradox has circularity dependence, the object that has the feature of
circularity is the digraphs in which this paradox is paradoxical. In other words,
circularity-dependence is about digraphs rather than about sentences. It is a purely
graph-theoretical notion. Circularity-dependence should not be confused with self-
reference.

The following are immediate from Theorem 3 and 5.

Corollary 1 Both the finite sets of sentences and the locally finite sets of sen-
tences have the circularity dependence and the digraph compactness.

5 Some Non Locally Finite Paradoxes

In this section, we first give some paradoxical examples which are not self-
referential and then some ones which are paradoxical in a digraph without any
proper cycle. Of course, all of them are non-locally-finite paradoxes.

First, we consider Yablo’s paradox, which consists of countably infinite sen-
tences ν(0), ν(1), . . . , such that for all n ∈ N,

ν(n) ≡ ∀x (x > n → ¬T ⌜ν(ẋ)⌝) ,
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where n is the term SS . . . S0 (n occurrences of S), x > n is an abbreviation
for the formula ∃z (x = n+Sz), and ẋ is Feferman’s dot notion which allows the
scope of the quantifiers ∀x covers the formula ν(x), even though ν(x) hides behind
a closed term.8 A variant of Yablo’s paradox is as follows: ν′(0), ν′(1), . . . , such
that for all n ∈ N,

ν′(n) ≡ ∀x
(
x > n → ∃y

(
y > x ∧ ¬T ⌜ν′(ẏ)⌝

))
.

We will use νn for ν(n) and ν′
n for ν′(n).

Example 1 Neither Yablo’s paradox {νn | n ∈ N} nor its variant
{
ν′
n | n ∈ N

}
is

self-referential.

Proof. It can be easily verified that for any n ∈ N, νn essentially depends on
the set {νk | k > n} (See Figure 2). Note that this fact also shows that Yablo’s
paradox is not locally finite. Now assume {νn | n ∈ N} is self-referential, then
consider the choice function f , which satisfies that f(νn) = {νk | k > n} for all
n ∈ N. By definition 8, there is a closed directed walk in the dependence digraph
⟨{νn | n ∈ N},≺f ⟩. That is, for some numbers n0, n1, . . . , nk, we have n0 = nk

and νni ≺f νni+1 for 0 ≤ i < k. By the condition of f , νni+1 must belong to the set
{νk | k > ni}. Thus, for 0 ≤ i < k, we have ni+1 > ni. Consequently, nk > n0, a
contradiction!

. . .
ν0 ν1 ν2 ν3

Fig. 2: Non-self-reference of Yablo’s paradox

For the variant
{
ν′
n | n ∈ N

}
, first note that for any n ∈ N, ν′

n depends on the
set {ν′

k | k > n + 1}. Then we can consider the choice function f which assigns
ν′
n to {ν′

k | k > n+ 1}. The corresponding relation ≺f satisfies: if ν′
m ≺f ν′

n, then
m < n. As above, we can similarly prove

{
ν′
n | n ∈ N

}
is non-self-referential. ⊓⊔

There are other variants of Yablo’s paradox. For this, we notice that the defi-
nitional equivalences of

{
ν′
n | n ∈ N

}
can be uniformly represented as follows:

ν′(x) ≡ ∀y > x ∃z > y ¬T⌜ν′ (ż)⌝.

In this sense, The paradox
{
ν′
n | n ∈ N

}
can be seen as a ‘∀∃-unwinding’ variant

of Yablo’s paradox. Now for the quantifiers Q1, . . . , Qn, we can similarly give
a Q1 . . . Qn-unwinding variant of Yablo’s paradox.9 A basic fact about all the
Q1 . . . Qn-unwinding variants of Yablo’s paradox is that only four kinds are not

8 For more details about Feferman’s dot notion, see for instance Halbach (2011, p. 32ff).
9 The dual of Yablo’s paradox, that is, the ∃-unwinding variant, was first given by Cook

(2004, p. 771). And the dual of the ∀∃-unwinding variant, i.e., the ∃∀-unwinding variant,
was put forward by Yablo (2004, p. 144). Yablo’s paradox and the above two variants were
generalized in Schlenker (2007a). The notion of unwinding was first formulated by Cook (2004,
p. 770) and the present nomenclature ‘Q1 . . . Qn-unwinding’ comes from Cook (2014, p. 155).



What Paradoxes Depend on 17

logically equivalent to each other: the ∀n-unwinding, ∃n-unwinding, ∀∃-unwinding,
and ∃∀-unwinding variants.10 As above, it can be similarly proved that all these
variants of Yablo’s paradox are non-self-referential.11

Next, we turn to find the examples that can be paradoxical in a digraph without
proper cycles. First note that Yablo’s paradox (or its ∀∃-unwinding variant) is not
such an example, even though it is not locally finite. Actually, we can prove that
Yablo’s paradox even has the same degree of paradoxicality as the Liar paradox:
Yablo’s paradox is paradoxical in a digraph, iff the Liar is so in this digraph. But
the Liar is paradoxical in a digraph, iff this digraph contains some odd cycles.12

Thus, Yablo’s paradox cannot be paradoxical in a digraph without proper cycles.

Another known non-locally-finite paradox is the ω-cycle liar. By Gödel’s diago-
nal lemma, for 0 ≤ α ≤ ω, we can construct sentences λω

α such that λω
0 ≡ ¬T ⌜λω

ω⌝,
λω
k+1 ≡ T ⌜λω

k ⌝ (k ∈ N), and λω
ω ≡ ∀xT⌜λω

ẋ⌝. The set {λω
α | 0 ≤ α ≤ ω} is a para-

dox. It can be called the ω-cycle liar.13 For any k ∈ N, λω
k+1 essentially depends

on the set {λω
k }. For this, only note that λω

k+1 does not depend on the empty set
and for any Γ ⊆ L +,

VΓ (T ⌜λω
k ⌝) = VΓ∩{λω

k }(T ⌜λω
k ⌝).

Similarly, λω
0 essentially depends on the set {λω

ω}. It follows that for any choice
function f , λω

0≺fλ
ω
ω≺fλ

ω
0 . That means any dependence digraph of the ω-cycle liar

contains a closed directed walk. Consequently, the ω-cycle liar is a self-referential
paradox. However, the ω-cycle liar is not locally finite. For this, we show the
sentence λω

ω essentially depends on the infinite set Σ = {λω
k | k ∈ N}. Actually,

since λω
k ∈ Γ for all k ∈ N iff λω

k ∈ Γ ∩Σ for all k ∈ N, we can get VΓ (T ⌜λω
k ⌝) = T

for all k ∈ N iff VΓ∩Σ (T ⌜λω
k ⌝) = T for all k ∈ N, that is,

VΓ (∀xT⌜λω
ẋ⌝) = VΓ∩Σ (∀xT⌜λω

ẋ⌝) ,

and we get λω
ω depends on Σ. It can be easily verified that λω

ω does not depends
on any proper subset of Σ. See Figure 3.

Definition 13 (Hsiung (2014), p. 27) A digraph ⟨G,R⟩ is grounded , iff for
any point in the domain G, the depths of the walks starting from that point are
bounded from above (or more formally, there is a number N , such that d(ξ) ≤
N holds for all walks ξ starting from that point). Otherwise, ⟨G,R⟩ is called
ungrounded .

10 See Theorem 3.3.2 in Cook (2014).
11 There are other variants of Yablo’s paradox. For instance, Butler (2017) gave a recipe
for constructing what he called ‘infinitely non*-variants’ of Yablo’s paradox. There are even
continuum-many such variants, whose formalized counterparts in L + (if any) can be proved
to be non-self-referential by the similar method we use in Example 1. By the way, Butler also
asserted that some of these paradoxes are non-self-referential. But his criterion, proposed by
Priest (1997), is whether a circular predicate is involved in the construction of a paradox.
12 For details of the two results, see Hsiung (2013) and Hsiung (2009a) respectively.
13 For any transfinite limit ordinal γ, we can similar set up the γ-cycle liar. See Herzberger
(1982, pp. 74-75) and Yablo (1985, p. 340). Of course, only those γ-cycle liars consisting of
countably sentences can be formalized in L +. Surprisingly, all of those transfinite γ-cycle liars
have the same degree of paradoxicality. See Hsiung (2014, p. 36). Thus, all of these paradoxes
are examples that can be paradoxical in a digraph without proper cycles.
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. . .λω
0

λω
1 λω

2 λω
3

λω
ω

Fig. 3: Self-reference of the ω-cycle liar

Recall that a digraph ⟨G,R⟩ is well-founded, if there is no infinite sequence
w0, w1, w2, ... of elements of G such that wk+1Rxk for every natural number k.
The following lemma is obvious, and its proof is omitted.

Lemma 7 (a) Any grounded digraph is well-founded.
(b) Any grounded digraph contains no proper cycle.

Not all well-founded digraphs are grounded. For instance, let G be a frame
whose domain contains three points u0, u1 and u2, such that R satisfies only
u0Ru1, u0Ru2 and u2Ru1. G is clearly well-founded but the lengths of the walks
starting from u0 have no upper bound. The converse of (b) of Lemma 7 is also not
true. The set of natural numbers with the predecessor relation as its ordering is a
ungrounded digraph which contains no proper cycle.

Theorem 6 (Hsiung (2014), p. 26) The ω-cycle liar is paradoxical in a di-
graph, iff this digraph is ungrounded.

By Theorem 6, the ω-cycle liar is paradoxical in the digraph whose domain is
the set of natural numbers and whose ordering is the predecessor relation. As we
just mentioned, this digraph contains no proper cycles, and so we find a paradox
which can be paradoxical in a digraph without proper cycles. By the way, seeing
Theorem 5, we may conjecture that if a set of sentences is paradoxical in a locally
finite digraph, then there is some proper cycle in this digraph. But this is definitely
wrong, because the digraph we just mentioned is a locally finite digraph in which
ω-cycle liar is paradoxical, but this digraph, as we have known, contains no proper
cycle at all.

Note that the indexes of the sentences in the ω-cycle liar are involved in the
transfinite ordinal ω. But as we will see below, the use of the transfinite ordinal
is not essential: labeling only by the natural numbers, we can construct a similar
paradox with the same degree of paradoxicality. For this purpose, we now introduce
two paradoxes. By Gödel’s diagonal lemma, we can find a sentence µ0 such that
µ0 ≡ ∃x¬TSẋ⌜µ0⌝.14 For any k ∈ N, let µk+1 = T ⌜µk⌝. It can be easily seen that
the set {µk | k ∈ N} is paradoxical. Let us call it ‘McGee’s paradox’. McGee’s
paradox is not locally finite, as µ0 essentially depends on the set {µk | k > 0}.
And since µ1 essentially depends on {µ0}, McGee’s paradox is self-referential (see
Figure 4). Similarly, let µ′

0 be the sentence satisfying µ′
0 ≡ ∀x¬TSẋ⌜µ′

0⌝ and call
the set

{
µ′
k | k ∈ N

}
‘the dual of McGee’s paradox’.

14 The sentence µ0 was first introduced by McGee (1985, p. 400).
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. . .µ0
µ1 µ2 µ3

Fig. 4: Self-reference of McGee’s paradox

Lemma 8 The ω-cycle liar, McGee’s paradox and its dual all have the same degree
of paradoxicality.

Proof. We first prove McGee’s paradox is paradoxical in G, iff its dual is so in G.
Suppose t is a revision mapping for McGee’s paradox in G, we define a mapping
t′ : W → P(L +) as follows: t′(u) =

{
µ′
k | µk /∈ t(u)

}
. We verify t′ is a revision

mapping for the dual of McGee’s paradox in G. Fix arbitrarily two points u and
v with uR v. First notice t′(v) |=T ⌜µ′

k⌝, iff µ′
k ∈ t′(v). Then by definition of t′,

µ′
k ∈ t′(v), iff µk /∈ t(v) which is clearly equivalent to t(v) ̸|=T ⌜µk⌝. We get

t′(v) |=T ⌜µ′
k⌝ ⇐⇒ t(v) ̸|=T ⌜µk⌝. (3)

Next we prove

t′(u) |=µ′
k ⇐⇒ t(u) ̸|=µk. (4)

Case 1: k = i+ 1 (i ≥ 0). Then as we prove (3), we can show t′(u) |=T ⌜µ′
i⌝,

iff t(i) ̸|=T ⌜µi⌝. Then, (4) follows immediately.
Case 2: k = 0. We notice µ0 ≡ ∃x¬T ⌜µẋ⌝ and µ′

0 ≡ ∀x¬T ⌜µ′
ẋ⌝. Then, we

have t′(u) |=µ′
0, iff for all k ∈ N, t′(u) |=¬T ⌜µ′

k⌝. But note that t′(u) |=¬T ⌜µ′
k⌝, iff

µ′
k /∈ t′(u). Again, by definition of t′, µ′

k /∈ t′(u), iff µk ∈ t(u) which is equivalent
to t(u) |=T ⌜µk⌝. Thus, t′(u) |=µ′

0, iff for all k ∈ N, t(u) |=T ⌜µk⌝, and we can
obtain t′(u) |=µ′

0, iff t(u) ̸|=µ0. Now, (4) follows.
Since t is a revision mapping for McGee’s paradox in G, t(v) |=T ⌜µk⌝, iff

t(u) |=µk. By (3) and (4), t′(v) |=T ⌜µ′
k⌝, iff t′(u) |=µ′

k. t
′ is a revision mapping

for the dual of McGee’s paradox in G. In conclusion, we have shown that if McGee’s
paradox is non-paradoxical in G, its dual is so in G. By symmetry, the converse
also holds.

Next we prove the ω-cycle liar is paradoxical in G, iff {µk | k ∈ N} is so in G.
Suppose t is a revision mapping for the ω-cycle liar in G, define t′ as follows:

t′(u) = {µ0 | λω
ω /∈ t(u)} ∪ {µk+1 | λω

k ∈ t(u), k ≥ 0} .

We show t′ is a revision mapping for {µk | k ∈ N} in G. For any u, v ∈ W with
uR v, we need to verify that t′(v) |=T ⌜µk⌝, iff t′(u) |=µk. We consider two cases.

Case 1: k = 0. We notice t′(v) |=T ⌜µ0⌝, iff µ0 ∈ t′(v). And by definition of
t′, µ0 ∈ t′(v), iff λω

ω /∈ t(v) which is equivalent to t(v) ̸|=T ⌜λω
ω⌝. At the same time,

since µ0 ≡ ∃x¬T ⌜µẋ⌝, we have t′(u) |=µ0, iff for some n ≥ 0, t′(u) |=¬T ⌜µn+1⌝
(i.e., µn+1 /∈ t′(u)). Now, by definition of t′ again, µn+1 /∈ t′(u), iff λω

n /∈ t(u)
which is equivalent to t(u) ̸|=T ⌜λω

n⌝. Thus, we get t′(u) |=µ0, iff for some n ≥ 0,
t(u) ̸|=T ⌜λω

n⌝. That is to say, t′(u) |=µ0, iff t(u) ̸|=∀xT ⌜λω
ẋ⌝. But λω

ω ≡ ∀xT ⌜λω
ẋ⌝,

and hence t′(u) |=µ0, iff t(u) ̸|=λω
ω. We also know t(v) |=T ⌜λω

ω⌝, iff t(u) |=λω
ω. To

sum up, we obtain t′(v) |=T ⌜µ0⌝, iff t′(u) |=µ0.
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Case 2: k = i+ 1 (i ≥ 0). On one hand, t′(v) |=T ⌜µi+1⌝, iff µi+1 ∈ t′(v). By
definition of t′, µi+1 ∈ t′(v), iff λω

i ∈ t(v) which is equivalent to t(v) |=T ⌜λω
i ⌝. On

the other hand, t′(u) |=µi+1, iff t′(u) |=T ⌜µi⌝ which is equivalent to µi ∈ t′(u).
When i = 0, by definition of t′, µi ∈ t′(u), iff λω

ω /∈ t(u), which is equivalent
to t(u) ̸|=¬T ⌜λω

ω⌝. Since λω
i ≡ T ⌜λω

ω⌝, we can deduce µi ∈ t′(u), iff t(u) |=λω
i .

When i = j + 1 (j ≥ 0), by definition of t′ again, µi ∈ t′(u), iff λω
j ∈ t(u)

which is equivalent to t(u) |=T ⌜λω
j ⌝. Now that λω

i ≡ T ⌜λω
j ⌝, we get µi ∈ t′(u),

iff t(u) |=λω
i . In either case, t′(u) |=µi+1, iff t(u) |=λω

i . It follows immediately
t′(v) |=T ⌜µi+1⌝, iff t′(u) |=µi+1.

In the above, we have proved that if the ω-cycle liar is non-paradoxical in G,
then {µk | k ∈ N} is so in G. Conversely, from a revision mapping t for {µk | k ∈ N}
in G, we will find a revision mapping t′ for the ω-cycle liar in G. Define a mapping
t′ : W → P(L +) as follows:

t′(u) = {λω
ω | µ0 /∈ t(u)} ∪ {λω

k | µk+1 ∈ t(u), k ≥ 0} .

For any u, v ∈ W with uR v, it suffices to prove that for all 0 ≤ α ≤ ω,
t′(v) |=T ⌜λω

α⌝, iff t′(u) |=λω
α. We consider three cases.

Case 1: α = 0. On one hand, t′(v) |=T ⌜λω
0 ⌝, iff λω

0 ∈ t′(v). By definition
of t′, the right side of the above biconditional is equivalent to µ1 ∈ t(v). And
so we can get t′(v) |=T ⌜λω

0 ⌝, iff t(v) |=T ⌜µ1⌝. On the other hand, t′(u) |=λω
0 , iff

t′(u) |=¬T ⌜λω
ω⌝, that is, λω

ω /∈ t′(u). By definition of t′ again, λω
ω /∈ t′(u), iff µ0 ∈

t(u) which is equivalent to t(u) |=T ⌜µ0⌝, i.e., t(u) |=µ1. We know t(v) |=T ⌜µ1⌝,
iff t(u) |=µ1. It follows immediately t′(v) |=T ⌜λω

0 ⌝, iff t′(u) |=λω
0 .

Case 2: α = i+1 (i ≥ 0). First, as above, we can easily see that t′(v) |=T ⌜λω
i+1⌝,

iff t(v) |=T ⌜µi+2⌝. Second, t′(u) |=λω
i+1, iff t′(u) |=T ⌜λω

i ⌝, i.e., λω
i ∈ t′(u), And

by definition of t′, λω
i ∈ t′(u), iff µi+1 ∈ t(u), that is, t(u) |=µi+2. Now that

t(v) |=T ⌜µi+2⌝, iff t(u) |=µi+2, it follows that t
′(v) |=T ⌜λω

i+1⌝, iff t′(u) |=λω
i+1.

Case 3: α = ω. On one hand, t′(v) |=T ⌜λω
ω⌝, iff λω

ω ∈ t′(v), which, by defi-
nition of t′, is equivalent to µ0 /∈ t(v), that is, t(v) ̸|=T ⌜µ0⌝. On the other hand,
since λω

ω ≡ ∀xT ⌜λω
ẋ⌝, we can see t′(u) |=λω

ω, iff for all n ≥ 0, t′(u) |=T ⌜λω
n⌝

(i.e., λω
n ∈ t′(u)). By definition of t′ again, λω

n ∈ t′(u), iff µn+1 ∈ t(u), that is,
t(u) |=T ⌜µn+1⌝. Thus, we can get t′(u) |=λω

ω, iff t(u) |=∀xT ⌜µSẋ⌝, i.e., t(u) ̸|=µ0.
At last, note that t(v) |=T ⌜µ0⌝, iff t(u) |=µ0. We obtain that t′(v) |=T ⌜λω

ω⌝, iff
t′(u) |=λω

ω. ⊓⊔

Theorem 7 The language L + (i.e., the set of sentences) is paradoxical in a di-
graph, iff this digraph is ungrounded.

Proof. Suppose G = ⟨W,R⟩ is a connected and grounded digraph. It suffices
to prove that L + is non-paradoxical in G. By (a) of Lemma 7, we can find an
R-minimal point in W . Let it be u0. Then by (b) of Lemma 7 and (b) of Lemma
6, for any u ∈ W , we can define d(u) as in the proof of Theorem 3. Since G is
grounded, the set {d(u) | u ∈ W} is bounded from above. Let N be the greatest
number of this set.

Let ⟨Σk | k ∈ N⟩ be the revision sequence starting from the empty set (or any
other set of sentences). We define a mapping t from W to P(L +) as follows:
t(u) = ΣN−d(u). t is well-defined, since for any u ∈ W , d(u) ≤ N . We prove t is a

revision mapping for L + in G. To verify this, we fix arbitrarily two points u and
v such that uR v. Let d(v) = k, then d(u) = k + 1. And so, t(u) = ΣN−k−1 and



What Paradoxes Depend on 21

t(v) = ΣN−k. Clearly, by the definition of the revision sequence, for any A ∈ L +,
we have t(v) |=T ⌜A⌝, iff t(u) |=A. ⊓⊔

Corollary 2 The ω-cycle liar, McGee’s paradox and its dual all have the highest
degree of paradoxicality.

6 Discussion

What we have done up to now is to investigate the self-reference and circularity-
dependence of paradoxes in the first-order language L +. As is mentioned in the
first section, there is a more immediate approach to the notion of self-reference,
if we work in a sentential language. The main task of this section is to give an
outline of such an approach and make a comparison between this approach and
the present one.

Let L ′ be the sentential language, the symbols of which include countably
infinite sentence names δ, λ, µ, ν (with and without subscripts), the connectives
¬, →, ∨, ∧,

∨
,
∧

and so on. The sentences of L ′ are formed as usual. For instance,
we can use

∨
can combine infinitely many well-formed formulas to obtain a new

formula. As usual, any truth-value assignment, that is, a function from the set of
sentence names to the set {T,F}, can be extended uniquely to the set of sentences
under the classical two-valued schema. For convenience, for a sentence A and an
assignment σ, we still use σ(A) to denote the truth-value of A under σ.

Now we can define a sentence net as a function from a set of sentence names
to a set of sentences.15 The sentence net provides a way to represent the patho-
logical sentences without the use of diagonalization. For instance, the sentence net
corresponding to the Liar paradox is the function d on {λ} such that d(λ) = ¬λ.
This sentence net stipulates that λ refers to ¬λ. To Yablo’s paradox, the cor-
responding sentence net is the function d on {νn | n ∈ N} such that for any
n ∈ N, d(νn) =

∧
k>n ¬νk. And we can represent the ∀∃-unwinding variant of

Yablo’s paradox as the sentence net d on {νn | n ∈ N} such that for any n ∈ N,
d(νn) =

∧
k>n

∨
i>k ¬νi.

The sentence net is also an immediate way of showing to what a sentence refers.
Let d be a sentence net. For any δ in the domain of d, we can take d(δ) to be
the sentence to which δ refer. This determines how the sentences denoted by the
sentence names depend on each other. Specifically, we can define a binary relation
Rd on the domain of d as follows: for any δ, δ′ in the domain of d, δRdδ

′, iff δ′

occurs as a syntactic constituent of d(δ). Now the domain of d together with the
relation Rd is defined to be ‘the dependence digraph’ of d. What is more, we will
say that d is self-referential, if its dependence digraph contains a directed walk. d

15 The notion of sentence net was first put forward independently by Bolander (2002) and
Cook (2002). My presentation is based upon Bolander (2003, p. 89), Cook (2004, p. 767) and
Rabern et al. (2013, p. 734). As Bolander himself pointed out (Bolander (2003), pp. 108-109),
the notion of sentence net has some precursors such as Visser’s ‘stipulation list’ in Visser
(1989). It should be mentioned that Gupta & Belnap (1993, pp. 72ff.) also developed some of
Visser’s ideas about the stipulation lists.
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is paradoxical, if there is a truth assignment σ such that for all δ in the domain
of d, σ(δ) = σ(d(δ)).16

Most of the results we have obtained in the language L + can be reformulated
in L ′. For instance, it can be easily seen that the sentence net corresponding to
the Liar is self-referential, but the ones to Yablo’s paradox and its ∀∃-unwinding
variant are non-self-referential. They are all paradoxical. Let us say a sentence net
is locally finite, if every point in its dependence digraph has a finite out-degree.
Then we can show that if a sentence net with a finite domain is paradoxical,
then it is self-referential; if a locally finite sentence net is paradoxical, then it is
self-referential.17 Finally, it is not hard to establish the corresponding results to
Theorem 3, 4 and 5 in the context of the language L ′.

As far as the self-reference of pathological sentences, there are also important
differences between the sentence-net approach and the present one. For this, we
first consider the following sentence:

sentence (5) is either true or untrue (5)

On one hand, the sentence net corresponding to sentence (5) is the function which
maps δ to δ ∨ ¬δ. This sentence net is clearly self-referential. On the other hand,
In L +, sentence (5) can be represented as a formula A satisfying the condition
A ≡ T ⌜A⌝ ∨ ¬T ⌜A⌝. Then what A refers to, being an instance of the excluded-
middle principle, is always true under any extension of T . Hence, A depends on
the empty set and so A is not self-referential.

The above example shows that if a sentence is self-referential by the definition
of self-reference given in L ′, it is unnecessarily so according to the criterion of
self-reference we set in L +. This difference comes from two different dependence
digraphs which we use to determine the self-reference of a sentence. Given a sen-
tence net, we can obtain the binary relation of the dependence digraph by checking
whether a sentence name occurs as a syntactic constituent of the image of another
sentence name. In this sense, the dependence digraph in L ′ can be determined
‘syntactically’. For sentence (5), the dependence digraph of its sentence net has a
reflexive binary relation just because δ is indeed a syntactic constituent of its image
δ ∨ ¬δ. However, the dependence relation in L +, as Leitgeib himself pointed out
(Leitgeb (2005), p. 159), is a ‘semantic’ dependence relation. The corresponding
dependence digraph cannot be determined merely by the syntactical facts. This is
exactly what we have seen in sentence (5).

Another important point we should point out is that some pathological sen-
tences may not even have the corresponding sentence net in L ′ at all. Consider
the following sentence:

sentence ‘sentence (6) is true’ is not true (6)

16 The presentation of the three notions is based upon Bolander (2003, pp. 90-93). The notion
of ’reference graph’ given by Rabern et al. (2013, p. 737) is essentially the same as Bolander’s
‘dependency graph’.
17 Unlike Bolander, Rabern et al. (2013) did not give a definition of self-reference, but studied
what a dependence digraph is like if it supports a paradox. For instance, they proved that if
a locally finite dependence digraph is acyclic, then it can not supports any paradox. This is
actually equivalent to the statement I just mentioned in the text. A sentence-net version of
Theorem 1 was also proved independently by Hsiung (2009b).
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In L +, it can be represented as the sentence λ such that λ ≡ ¬T 2⌜λ⌝. And by
Definition 7, the sentence λ is indirectly self-referential. This captures the informal
self-reference of sentence (6). However, any sentence net with a singleton domain
is apparently either directly self-referential or not self-referential at all. In other
words, there is no indirectly self-referential sentence net whose domain can be a
singleton. Thus, it is impossible to use a sentence net with a singleton domain to
formulate sentence (6) in L ′. In this sense, we can say that there is no way to
formulate directly sentence (6) by use of the sentence net in L ′.

The reason why we cannot directly formulate a sentence by the sentence net is
that the sentence involves in more than one iteration times of the truth predicate.
In L ′, there is no occurrence of the truth predicate at all. This is its simplicity
but this is also its shortage. The image of any sentence name under a sentence
net is actually corresponding to a sentence of L + in which there can be only one
iteration of the truth predicate. For instance, the sentence net for sentence (5) is
the function which maps δ to δ∨¬δ. Here δ∨¬δ has a counterpart in L +, namely,
T ⌜A⌝∨¬T ⌜A⌝. This feature determines that the sentence net has severely limited
power in expressing the sentence involving in the iteration of the truth predicate.
By the way, provided that sentence (5) were a sentence stating ‘it is true that
either sentence (5) or its negation holds’, the corresponding sentence net would
not be changed while the corresponding sentence in L + would be a sentence A
satisfying T ⌜A ∨ ¬A⌝. From this point, we can also see that the expression power
of L ′ is not so delicate as that of L +.

Reconsidering sentence (6), we find that we can introduce a new label for the
sentence ‘sentence (6) is true’:

sentence (6) is true (7)

In this way, we transform sentence (6) into ‘sentence (7) is not true’ and so reduce
the iteration time of truth predicate in (6) to one. Correspondingly, for sentence
(6) and (7), we can introduce a sentence net on {λ1, λ2}, namely d, such that
d(λ1) = ¬λ2 and d(λ2) = λ1. And of course, in the language L + if we use
λ′ to denote T ⌜λ⌝, we obtain two sentences λ and λ′ such that λ ≡ ¬T ⌜λ′⌝ and
λ′ ≡ T ⌜λ⌝. But we must emphasize that the sentence (6) alone is not equivalent to
the set consisting of sentence (6) and (7). A substantial difference lies in, as is well
known, that the sentence (6) by itself is not paradoxical, but the set consisting of it
and its companion (7) is paradoxical. We can easily see this difference if working in
the language L +. Actually, by Definition 4, the sentence λ such that λ ≡ ¬T 2⌜λ⌝
is not paradoxical, but the set of λ and λ′ is so. By contrast, as is just pointed out,
sentence (6) by itself cannot be represented by a sentence net, much less to say
that it is paradoxical in terms of L ′. Seeing this, we may say that the sentence
net d that we just mention is not a faithful representation of sentence (6) alone. It
is only corresponding to the set of sentence (6) and (7). The sentence net d does
not yet capture the informal fact that sentence (6) alone is not paradoxical.

The iteration of the truth predicate is widespread in the construction of the
pathological sentences. In some pathological sentences, the iteration of the truth
predicate can be even infinite times. McGee’s sentence is such an example. Infor-
mally, McGee’s sentence is a sentence stating that not every result of prefixing the
truth predicate to this sentence is true (McGee (1985), p. 400). In section 5, we have
represented McGee’s sentence as the sentence µ0 such that µ0 ≡ ∃x¬TSẋ⌜µ0⌝.
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Note that McGee’s sentence by itself is not paradoxical. What is paradoxical is
the set consisting of the sentence µ0, µ1 (equvalent to T ⌜µ0⌝), µ2 (equvalent to
T ⌜µ1⌝), . . . . This is what we called ‘McGee’s paradox’. In L ′, we can represent
McGee’s paradox as the function d on {µn | n ∈ N} such that d(µ0) =

∨
k>0 ¬µk,

and for any k ∈ N, d(µk+1) = µk. However, there is still no sentence net corre-
sponding to McGee’s sentence alone.

To sum up, we have compared two definitions for the self-reference of sen-
tences: one is set up by use of Leitgeib’s dependence relation in L +, and the other
is by use of the sentence net in L ′. We have found some differences when deter-
mining the self-reference of some non-paradoxical sentences according to the two
definitions. The differences show that the method of investigating self-reference
in the sentential language L ′ is on on hand more immediate than the one in the
first-order language L +, on the other hand less delicate than the latter. But as
far as the paradoxical sentences are concerned, we find that the self-reference is
necessary to the locally finite paradoxes, no matter we consider the self-reference
in L ′ or in L +. We also find that their paradoxicality are based upon some certain
circularity conditions, and we can even compare the degrees of their paradoxicality
according to the circularity conditions. From these observations, we can conclude
that the locally finite paradoxes are a kind of simple but significant paradoxes, and
it is their presence that reflects our naive thought that paradoxes are necessarily
related to some kind of circularity.

In the end, we close our discussion by leaving two questions. Among the non-
locally-finite paradoxes, we have found examples (such as Yablo’s paradox and
its ∀∃-unwinding variant) that have circularity dependence but are free of self-
reference, and we also have examples (such as the ω-cycle liar and McGee’s para-
dox) that are self-referential but have no circularity dependence (see Table 1). This
raises the following question: is there any paradox which neither is self-referential
nor have circularity dependence? We think that the answer should be Yes. For
this, consider again Yablo’s paradox, which, as Cook (2004) had pointed out, can
be obtained by ‘unwinding’ the Liar paradox. And the operation of unwinding may
been taken as a procedure of eliminating self-reference of the Liar (see Sorensen
(1998), Schlenker (2007a) and Schlenker (2007b)). Besides, as has been mentioned
in Section 5, Yablo’s paradox has the same degree of paradoxicality as the latter.
That is, the operation of unwinding preserves the degree of paradoxicality of the
Liar. And so, we conjecture that for any paradox, we can eliminate its self-reference
while preserving its degree of paradoxicality.18 If this conjecture were right, then
by unwinding the ω-cycle liar and McGee’s paradox, we would get examples to
answer positively the above question.

As has been proved in Corollary 2, the ω-cycle liar and McGee’s paradox
have the highest degree of paradoxicality. The second question I would like to
propose is whether there is a paradox with the lowest degree of paradoxicality.
The significance of the existence of such a paradox is that the digraphs in which
this paradox is paradoxical are exactly the ones with the weakest condition, such
that any of paradoxes is paradoxical in these digraphs. That is, the condition is

18 It seems that the method of proving the equiparadoxicality of Yablos paradox and the Liar
in Hsiung (2013) can be somewhat generalized to the paradoxes with digraph compactness.
And so it might not hard to prove that the unwinding preserves the degree of paradoxicality
for the locally finite paradoxes. But the situation is different and difficult for the ω-cycle liar
and McGee’s paradox.



What Paradoxes Depend on 25

the one that is weakest for a sentence or a set of sentences to be paradoxical in a
digraph. A candidate for the paradoxes with the lowest degree of paradoxicality, as
is pointed out by Hsiung (2017), is the paradox whose primary periods are exactly
the prime numbers.
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