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A salient feature of de Broglie-Bohm quantum theory is that particles have de-
terminate positions at all times and in all physical contexts. Hence, the trajec-
tory of a particle is a well-defined concept. One then may expect that the closely 
related notion of inertial trajectory is also unproblematically defined. I show 
that this expectation is not met. I provide a framework that deploys six different 
ways in which de Broglie-Bohm theory can be interpreted, and I state that only 
in the canonical interpretation the concept of inertial trajectory is the customary 
one. However, in this interpretation the description of the dynamical interac-
tion between the pilot-wave and the particles, which is crucial to distinguish 
inertial from non-inertial trajectories, is affected by serious difficulties, so other 
readings of the theory intend to avoid them. I show that in the alternative in-
terpretations the concept at issue gets either drastically altered, or plainly un-
defined. I also spell out further conceptual difficulties that are associated to the 
redefinitions of inertial trajectories, or to the absence of the concept. 

 
 
1. INTRODUCTION 

The quantum theory of motion firstly introduced by Louis de Broglie, and later and independently 
by David Bohm, has several attractive features. Most notably: it is not affected by the measurement 
problem, it provides an intuitive and visualisable explanation of quantum phenomena, it offers a clear 
account of the classical limit, particles are always distinguishable, and they have definite positions at all 
times and in all contexts. This last feature entails that the notion of trajectory is well-defined in the theory. 
In all other interpretations of quantum mechanics, the state of a system can be such that its representa-
tion in the position operator basis corresponds to a superposition. In general, the state of a particle for 
which we know its initial position evolves in such a way that its later states are not position eigenstates1, 
so even if we measure its location at a later time, we cannot talk about the trajectory of that particle 
between its initial and final position. In de Broglie-Bohm (dB-B) theory, the state of a quantum system 
is described by the wavefunction Ψ and the configuration 𝑄𝑄 of the particles, where the coordinates of 𝑄𝑄 
are given by the position of each particle. Besides, the particle positions deterministically evolve accord-
ing to an equation of motion. Thus, in dB-B theory particles have a definite position at all times, so that 
the notion of trajectory is well-defined. 

Ever since Newton, an exhaustive twofold classification of trajectories—inertial and accelerated—
has played a central role in modern physics. An inertial trajectory is traversed by a free-body, i.e., by a 
body that is not affected by forces, or by a body on which the exerted forces mutually cancel. According 
to Newton’s first law, inertial trajectories are uniform and rectilinear, and after relativistic physics we 
say that they correspond to (timelike) geodesics in the corresponding spacetime structure. On the other 
hand, bodies which are affected by impressed forces follow non-inertial trajectories that do not corre-
spond to geodesics. Thus, in order to trace the distinction between inertial and non-inertial trajectories 

1 This work is published in International Studies in the Philosophy of Science, 30:201-230 (2017). For quoting purposes, 
please refer to the published version. 
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we obviously need the concept of trajectory, and we also need a concept of force and an underlying 
spacetime structure.  

Thus, it is obviously pointless to expect that interpretations of quantum mechanics in which the no-
tion of trajectory is absent can trace the inertial/non-inertial distinction. The situation is very different 
in dB-B theory, in this case we can certainly expect that the distinction can be consistently drawn. As 
we said above, the notion of trajectory is fully grounded. Besides, the dynamical laws in dB-B theory 
are Galilean invariant, so that the spacetime structure that naturally corresponds to the theory is the 
same as in classical mechanics. Furthermore, Bohm’s (1952) original presentation postulates an equation 
of motion that is structurally identical to Newton’s second law—but which includes a distinctive quan-
tum force. That is, in Bohm’s formulation of the theory we have all the ingredients required to trace the 
distinction between inertial and non-inertial trajectories. 

Bohm’s is not the only way to understand the theory, though. Alternative ways to interpret the 
meaning of the wavefunction have been proposed. In the nomological interpretation, the wavefunction 
does not refer to an element in the ontology of the theory, rather, it represents a physical law. In the 
dispositionalist interpretation, Ψ does not represent a physical entity either, but a dispositional property 
possessed by the quantum system. Now, the excision of the Ψ-field from the theory’s ontology implies 
that there is no quantum force, but this does not mean that very notion of force is overthrown. Thus, we 
may expect that the nomological and dispositionalist interpretations are also able to cogently trace the 
distinction between inertial and non-inertial trajectories. 

Apart from the meaning of the wavefunction, there is another aspect in the theory that makes room 
for interpretation. The equation of motion governing the particles can be either the second-order one 
introduced by Bohm, or a first-order equation in which the trajectories of the particles are determined 
directly by their velocities. Now, the choice of a first-order equation of motion immediately suggests 
that the concept of force will be affected. The customary notion of force is associated to accelerations, 
yet, in a first-order context there remains the possibility of conceiving forces as resulting in velocities—
and these first-order forces can be in turn used to reformulate the concept of inertial motion. 

Thus, in spite of the differences between them, it seems, at least at face value, that the interpretive 
alternatives for dB-B theory can retain the conceptual machinery required to cogently define and char-
acterize inertial trajectories. In this article I explicitly unfold the resulting definitions and characteriza-
tions in the different interpretations of dB-B theory, and I critically assess them. This analysis is clarify-
ing and heuristically relevant for two main reasons. First, because in most of the available interpretive 
alternatives the issue of inertial trajectories has not been directly tackled. Second, because the analysis 
shows that in the alternative readings of the theory the redefined notions of inertial trajectory (or the 
plain absence of the concept) are connected to important difficulties. The goal of this article is thus two-
fold: I intend to reveal the precise characterization of inertial motion (or the lack of it) in each interpre-
tive alternative, and to spell out the problems that are connected to those characterizations (or to the 
absence of the concept). 

In section 2, I introduce a general interpretive framework for dB-B theory. As I mentioned, there are 
three ways to interpret the meaning of the wavefunction: as a physical field, as a law, or as a disposi-
tional property. The chosen interpretation of Ψ can be further specified by selecting either the first-order 
or the second-order formulation of the theory, so that six different basic interpretations result. After 
outlining this schema, I proceed to address the subject of inertial trajectories in each of the interpretive 
setups. 

In the first part of section 3, I deal with the physical-field/second-order interpretation. Bohm’s orig-
inal proposal falls under this category, and its characterization of inertial trajectories is customary and 
straightforward. The difficulties that affect this formulation are well known, but it is useful to reconsider 
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them here. On the one hand, I claim that they undermine the characterization of inertial motion in 
Bohm’s proposal. On the other hand, there are two recent (not so well-known) variations on the physi-
cal-field/second-order view that intend to avoid such problems, so it is worth to examine whether they 
succeed—I claim that they do not. In the second part of section 3, I address the physical-field/first-order 
interpretation. This stance requires a redefinition of the concept of force: forces are now associated to 
velocities rather than to accelerations. Consequently, the notion of inertial motion must also be rede-
fined, and it turns out to be a state of absolute rest. I show that this is intrinsically problematic, for it 
requires a privileged frame of reference that dB-B theory cannot afford. 

In the first half of section 4, I deal with the nomological/second-order interpretation. I show that 
since in this approach Ψ does not represent an entity, inertial trajectories that are not rectilinear and 
uniform are allowed. I claim that this result is problematic, for it constitutes a violation of a basic prin-
ciple in spacetime theories. In the second part of section 4, I address the nomological/first-order inter-
pretation. In this reading of the theory, the concept of force is altogether absent, so the distinction be-
tween inertial and non-inertial motion cannot even be traced. I argue that the lack of a concept of inertial 
motion illustrates a problem of incommensurability: this interpretation builds a conceptual wall be-
tween the quantum and the classical realms. 

In section 5, I deal with the dispositionalist interpretation. I show that the situation is analogous to 
the nomological view. In this reading the wavefunction does not represent a physical object either, so 
in the second-order formulation there are inertial trajectories that are not rectilinear and uniform, and 
then the aforementioned friction with a central principle in spacetime theories comes up. If we move to 
the first-order formulation, the concept of inertial trajectory cannot be defined, so we face the threat of 
incommensurable descriptions of the quantum and the classical realm. 

In section 6, I state a general conclusion. I claim that only the canonical (physical-field/second order) 
interpretation of dB-B theory meets the expectation of a clear conceptual definition of inertial motion. 
However, this virtue is undermined by several problems. The rest of the interpretations of the theory 
intend to avoid those problems, but then the concept of inertial motion becomes either problematically 
redefined, or problematically absent. 

 
 

2. INTERPRETING DE BROGLIE-BOHM THEORY 
 

De Broglie-Bohm theory was originally presented by Louis de Broglie in 1926-7, and then inde-
pendently reintroduced by David Bohm in (1952).2 There is, however, an important difference between 
de Broglie’s and Bohm’s formulation. Whereas de Broglie postulated a first-order law of motion deter-
mining the trajectories of quantum particles, so that forces and accelerations play no fundamental role 
in the dynamics of the theory, Bohm introduced a second-order law of motion, similar in form to New-
ton’s second law, but including an extra-term that he took as representing a quantum potential. 

More precisely, the first-order version of the theory is given by the following postulates: 
 

(P1) The state of an 𝑛𝑛-particle system is represented by (Ψ,𝑄𝑄), where Ψ(𝑞𝑞, 𝑡𝑡) is the wavefunction 
of the system, 𝑞𝑞 ∈ ℝ3𝑛𝑛 is the generic configuration of the wavefunction, 𝑄𝑄 ≡ (𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑛𝑛) ∈
ℝ3𝑛𝑛 is the actual configuration of the particles, and 𝑄𝑄𝑖𝑖 ∈ ℝ3 is the position of the 𝑖𝑖th particle. 

 
(P2) The temporal evolution of the wavefunction is governed by the Schrödinger equation 

𝑖𝑖ℏ 𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= �−∑ ℏ2

2𝑚𝑚𝑖𝑖
∇𝑖𝑖2 + 𝑉𝑉(𝑞𝑞, 𝑡𝑡)𝑛𝑛

𝑖𝑖=1 �Ψ, where 𝑉𝑉(𝑞𝑞, 𝑡𝑡) is the classical potential, 𝑚𝑚𝑖𝑖 is the mass of the 

𝑖𝑖th particle, ∇𝑖𝑖2= ∇𝑖𝑖 ∙ ∇𝑖𝑖, and ∇𝑖𝑖 is the gradient with respect to the coordinates of the 𝑖𝑖th particle. 
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(P3) With the wavefunction in polar form Ψ = 𝑅𝑅(𝑞𝑞, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑞𝑞,𝑡𝑡) ℏ⁄ , the trajectory of the particles is 
determined by 
 

𝑚𝑚𝑖𝑖
𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑑𝑑

= ℏIm
∇𝑖𝑖Ψ
Ψ

= ∇𝑖𝑖𝑆𝑆                                                                         (1) 

 
(P4) The distribution of the particles in the system associated to Ψ is given by 𝑃𝑃 = 𝑅𝑅2 = |Ψ|2.3 

 
On the other hand, Bohm’s second-order approach was the following. Plugging the wavefunction in 

polar form into the Schrödinger equation, and separating the imaginary and the real parts, he obtained 
the formulas 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �
(∇𝑖𝑖𝑆𝑆)2

2𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑉𝑉 −��
ℏ2

2𝑚𝑚𝑖𝑖
�
∇𝑖𝑖2𝑅𝑅
𝑅𝑅

𝑛𝑛

𝑖𝑖=1

= 0                                                        (2) 

 

𝜕𝜕𝑅𝑅2

𝜕𝜕𝜕𝜕
+ �∇𝑖𝑖 ∙ �𝑅𝑅2

∇𝑖𝑖𝑆𝑆
𝑚𝑚𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

= 0                                                                      (3) 

 
Equation (2) is identical in form to the Hamilton-Jacobi equation in classical mechanics except for 

the term 𝑈𝑈(𝑞𝑞, 𝑡𝑡) = −∑ � ℏ2

2𝑚𝑚𝑖𝑖
� ∇𝑖𝑖

2𝑅𝑅
𝑅𝑅

𝑛𝑛
𝑖𝑖=1 , that Bohm interpreted as a quantum potential. He concluded, also 

in analogy with Hamilton-Jacobi formulation of classical mechanics, that Eq. (3) says that the (assumed) 
statistical distribution 𝑃𝑃 = 𝑅𝑅2 = |Ψ|2 of the particles is conserved over time. Now, since Hamilton-Jacobi 

mechanics is fully compatible with Newton’s second law of motion 𝑑𝑑𝐩𝐩
𝑑𝑑𝑑𝑑

= −∇𝑉𝑉, the analogy can be further 

exploited in order to introduce a second-order law of motion4 
 

𝑑𝑑𝐩𝐩𝑖𝑖
𝑑𝑑𝑑𝑑

= −∇𝑖𝑖(𝑉𝑉 + 𝑈𝑈)                                                                               (4) 

 
Bohm pointed out that empirical consistency with standard quantum theory requires to restrict the 

initial value of the momenta of the particles according to Eq. (1)—a restriction that also guarantees the 
empirical consistency between the first-order and the second-order approaches. Thus, Bohm’s theory 
can be formulated by replacing (P3) with the postulate 

 
(P3’) In an 𝑛𝑛-particle system, the trajectories of the particles are governed by Eq. (4), where 

𝑈𝑈(𝑞𝑞, 𝑡𝑡) = −∑ � ℏ2

2𝑚𝑚𝑖𝑖
� ∇𝑖𝑖

2𝑅𝑅
𝑅𝑅

𝑛𝑛
𝑖𝑖=1  is a quantum potential, with the initial momenta of the particles given 

by Eq. (1) 
 
A quick inspection of (P3’) shows that the first-order formulation of the theory is more economical 

than the second-order one. Eq. (1) can directly determine the trajectories of the particles, so the intro-
duction of Eq. (4) as the law of motion seems superfluous. The usual justification of (P3’) is explanatory. 
Though the second-order law is unnecessary for the empirical predictions of the theory, it allows that 
the explanatory framework of Newtonian mechanics can be imported into the quantum realm. That is, 
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the motion of quantum particles can be understood as determined by forces proportional to accelera-
tions, forces which are in turn determined by the classical potential 𝑉𝑉 and the quantum potential 𝑈𝑈. That 
is, the second-order approach results in a quasi-Newtonian quantum theory.5 

However, the introduction of a physical field Ψ—the so-called pilot-wave—associated to the quan-
tum potential, comes at a cost. First, unlike ordinary physical fields, Ψ does not have a source. Second, 
although Ψ affects the particles through the quantum force determining their trajectories, the particle 
trajectories do not affect the Ψ-field back. Third, Ψ is defined and evolves in 3𝑛𝑛-dimensional configura-
tion space, not in physical 3-space. These properties of the wavefunction cast doubts on its interpreta-
tion as a physical field. Consequently, two alternative ways to understand the meaning of Ψ have been 
proposed. 

The nomological approach (Dürr, Goldstein, and Zanghì 1997, Goldstein and Zanghì 2013) rejects the 
view that Ψ represents a physical entity. Instead, this term is understood as denoting a component of 
physical law: 

 
The wavefunction of the universe is not an element of physical reality. We propose that the wavefunction 
belongs to an altogether different category of existence than that of substantive physical entities, and that 
its existence is nomological rather than material. We propose, in other words, that the wavefunction is a 
component of physical law rather than of the reality described by the law. (Dürr, Goldstein, and Zanghì 
1997, 35) 
 

 
As a way to clarify, proponents of this approach introduce an analogy with the Hamiltonian in clas-

sical mechanics. The Hamiltonian function 𝐻𝐻 determines the trajectories of classical systems, but it is 
not affected back by the motion of those systems. Furthermore, it is defined in phase space, which is 
even more abstract and greater in dimensions than configuration space. However, these properties of 
𝐻𝐻 are not problematic, for 𝐻𝐻 does not refer to a physical entity, rather, it is a mathematical representation 
of nomological structure. The main idea in the nomological interpretation is to understand the wave-
function Ψ just as we understand the Hamiltonian function 𝐻𝐻. 

A second way to avoid the physical field consists in taking the wavefunction as representing a dis-
positional property of the quantum system.6 Following Belot (2012), let us consider the phase space of a 
classical system. Each trajectory in phase space represents a possible history of dynamic states of the 
system, and the possible trajectories are in turn determined by Hamilton’s equations. Now, each point 
of the system’s phase space can be taken as specifying a value of a position-momentum property that 
the system can adopt. Thus, we can understand phase space as a whole as determining a family of 
possible position-momentum property-values. The basic idea in the dispositional interpretation of the 
wavefunction is analogue to this understanding of phase space. We can consider the space of quantum 
states as determining a family of property-values, so that by specifying the wavefunction of a system 
we single out the value of the property that is effectively possessed by the system at a certain time. A 
possible history of the property-values of the system is a trajectory through the space of quantum states, 
where the possible trajectories are determined by the Schrödinger equation. Now, the Φ-property at 
issue, determined by Ψ via Eq. (1), is a disposition that determines the velocity that each particle in the 
system can adopt: 

 
The Bohmian law of motion [Eq. (1)] is in effect a recipe that takes as input a system’s wavefunction [Ψ] 
and gives as output a function that assigns to each possible particle configuration [𝑄𝑄 = (𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑛𝑛) ∈
ℝ3𝑛𝑛] the velocities that the particles would have were the system in that configuration and were the quan-
tum state of the system given by [Ψ]. So we can think of the Bohmian law of motion as a rule via which 
the wavefunction [Ψ] of a system determines a complicated dispositional property Φ of the system—the 
dispositional property that determines how fast (and in what direction) each of the particles would move 
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for each possible configuration of the system of particles. Correspondingly we can think of the Bohmian 
law of motion as giving us a rule via which the solution [Ψ(𝑡𝑡)] of the system’s Schrödinger equation de-
termines a one-parameter family Φ𝑡𝑡 of such properties, one for each instant of time. (Belot 2012, 78) 
 

The ontology of dB-B theory under the dispositional interpretation is given by systems of particles 
that possess a dispositional property Φ. Each particle has a definite position at each time, and the system 
of particles as a whole has a dispositional property that determines the velocity that each particle would 
take, were the system in a certain state and configuration. 

In sum, we get a six-fold framework for interpreting dB-B theory that results from crossing the three 
available readings of the wavefunction with the two possible choices for the equation of motion. Let us 
now consider the issue of inertial motion in each of these six interpretations. 

 
 

3. PHYSICAL FIELD(S) 
 

3.1. SECOND-ORDER 

We begin with interpretations that postulate a quantum field in the theory’s ontology, in second-
order formulation. In Bohm’s original proposal, which is also advocated by Holland (1993) and Cushing 
(1994), we have a physical field (the pilot-wave) Ψ with potential 𝑈𝑈, that exerts a quantum force −∇𝑈𝑈 
that contributes to determine the particle trajectories. Accordingly, the condition for inertial quantum 
trajectories in this interpretation is customary and straightforward: classical and quantum forces in Eq. 
(4) must both vanish or cancel each other.7 However, this reading of the theory lacks a convincing de-
scription of how the pilot-wave exerts the quantum force on the particles. Since the quantum force—a 
concept that is crucial to trace the distinction between inertial and non-inertial motion—is affected by 
two important problems, the foundations of the distinction in Bohm’s formulation are rather shaky.  

The see the first problem, recall that the wavefunction is defined and evolves in configuration 3𝑛𝑛-
dimensional space. If, accordingly, the quantum field is assumed to exist in 3𝑛𝑛-space, a form of config-
uration space realism must be assumed, which is already a radical step to take (cf. Holland 1993, 277-
278). Anyhow, even if we grant configuration space realism, it is difficult to make up an intelligible view 
of how the quantum force affects the motion of particles. The picture is that the pilot-wave Ψ exerts a 
force −∇𝑈𝑈 on the particles affecting their trajectories. But, considering that Ψ inhabits and evolves in 
configuration space, whereas the particle lives and evolves in physical space, one wonders how this 
causal-mechanical interaction can occur. We encounter here a sort of Cartesian dualism involving phys-
ical and configuration space. Solé refers to this issue as ‘the problem of communication’: “as the wave-
function lives in a different space from that of the particles, it becomes rather complicated to tell a co-
herent causal story about how the former influences the movement of the latter” (Solé 2013, 367).8 

The second problem consists in that, in this interpretation, the theory violates Anandan and Brown’s 
action-reaction principle: “we shall say that two physical entities satisfy the action-reaction (AR) prin-
ciple, if they interact in such a manner that each entity both acts on and is acted on by the other entity. 
[...] A physical theory is dynamically complete if all the entities postulated in the theory pairwise satisfy 
the AR principle” (Anandan and Brown 1995, 351). In the case of the pilot-wave and the particles, the 
AR principle is not pairwise satisfied. The evolution of the quantum field is fully specified by the Schrö-
dinger equation, so that Ψ is dynamically indifferent to the particle trajectories (cf. Holland 1993, 79). 
Thus, although the pilot-wave acts on the particles by guiding them through the physical exertion of a 
force, it is not affected back by the particle trajectories in any way—the theory is dynamically incom-
plete. This is problematic because, as a general principle, one may expect and require that mechanical 
interactions, such as the one between the pilot-wave and the particle, respect the AR principle. 
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A recent proposal (Norsen, 2010; Norsen, Marian, and Oriols 2015) provides an outline to formulate 
dB-B theory in such a way that its ontology is composed only by quantum particles and fields in 3-
space. In this way, the root of the aformentioned problems may be removed, so that the quantum force—
which is crucial to define inertial motion—may stand on more solid ground. Norsen explains his 
proposal by means of a toy-model. He invites us to consider a two-particle system such that the 
corpuscles move in a single spatial dimension. The time evolution of the system’s wavefunction Ψ(𝑥𝑥, 𝑡𝑡) 
is given by the Schrödinger equation 

 

𝑖𝑖ℏ
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= −
ℏ2

2𝑚𝑚1

𝜕𝜕2Ψ
𝜕𝜕𝑥𝑥12

−
ℏ2

2𝑚𝑚2

𝜕𝜕2Ψ
𝜕𝜕𝑥𝑥22

+ 𝑉𝑉(𝑥𝑥, 𝑡𝑡)Ψ�
𝑥𝑥𝑖𝑖=𝑋𝑋𝑖𝑖

                                                 (5) 

  
Along with the quantum particle, a field in physical space—represented by the conditional wavefunc-

tion—is included in the ontology. The conditional wavefunction of a particle (in the context of our two-
particle system) is “simply the full, configuration-space wavefunction evaluated at the actual location 
of the other particle” (Norsen 2010, 1866). Thus, “each conditional wavefunction, because it depends 
only on the spatial coordinate associated with the single-particle in question, can be regarded as a wave 
that propagates in physical space” (Norsen, Marian, and Oriols 2015, 9). In our two-particle system, the 
conditional wavefunctions for particles 1 and 2 are, respectively 

 
𝜓𝜓1(𝑥𝑥, 𝑡𝑡) = Ψ(𝑥𝑥,𝑋𝑋2, 𝑡𝑡)                                                                            (6) 

 
𝜓𝜓2(𝑥𝑥, 𝑡𝑡) = Ψ(𝑋𝑋1, 𝑥𝑥, 𝑡𝑡)                                                                            (7) 

 
Now, an ontology constituted only by particles and their pilot-waves in physical space (the 

conditional fields) is not enough in order to obtain predictive adequacy and empirical equivalence with 
standard quantum mechanics, for conditional wavefunctions do not contain the information about 
correlations when the subsytems are entangled. Norsen then derives a law for the time evolution of the 
conditional wavefunction contaning terms that carry the missing entanglement information. By taking 
the time-derivative of Eq. (6) and using Eq. (5), he gets the following equation for the evolution of 𝜓𝜓1 
(Norsen 2010, 1869-1870): 

 

𝑖𝑖ℏ
𝜕𝜕𝜓𝜓1
𝜕𝜕𝜕𝜕

= −
ℏ2

2𝑚𝑚1

𝜕𝜕2𝜓𝜓1
𝜕𝜕𝜕𝜕2

+ 𝑉𝑉(𝑥𝑥,𝑋𝑋2, 𝑡𝑡)𝜓𝜓1 + 𝐴𝐴 + 𝐵𝐵                                                    (8) 

 
where  

𝐴𝐴 = 𝑖𝑖ℏ
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑

𝜕𝜕Ψ(𝑥𝑥, 𝑥𝑥2, 𝑡𝑡)
𝜕𝜕𝜕𝜕2

�
𝑥𝑥2=𝑋𝑋2

       𝐵𝐵 = −
ℏ2

2𝑚𝑚2

𝜕𝜕2Ψ(𝑥𝑥, 𝑥𝑥2, 𝑡𝑡)
𝜕𝜕𝜕𝜕22

�
𝑥𝑥2=𝑋𝑋2

, 

 
and an analogous procedure can be applied on Eq. (7) to obtain the equation for the evolution of 𝜓𝜓2. 
The terms 𝐴𝐴 and 𝐵𝐵, that carry the entanglement information, cannot be represented in terms of the en-
tities in physical space introduced so far (the particles and the conditional fields). Norsen thus intro-
duces new elements in the ontology, namely, the ‘entanglement fields’ 
 

𝜓𝜓1′ =
𝜕𝜕Ψ(𝑥𝑥, 𝑥𝑥2, 𝑡𝑡)

𝜕𝜕𝜕𝜕2
�
𝑥𝑥2=𝑋𝑋2

                                                                          (9) 

 

7 
 



𝜓𝜓1′′ =
𝜕𝜕2Ψ(𝑥𝑥, 𝑥𝑥2, 𝑡𝑡)

𝜕𝜕𝜕𝜕22
�
𝑥𝑥2=𝑋𝑋2

,                                                                    (10) 

 
so that Eq. (8) for the time evolution of 𝜓𝜓1 becomes 
 

𝑖𝑖ℏ
𝜕𝜕𝜓𝜓1
𝜕𝜕𝜕𝜕

= −
ℏ2

2𝑚𝑚1

𝜕𝜕2𝜓𝜓1
𝜕𝜕𝜕𝜕2

+ 𝑉𝑉(𝑥𝑥,𝑋𝑋2, 𝑡𝑡)𝜓𝜓1 + 𝑖𝑖ℏ
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑑𝑑

𝜓𝜓1′ −
ℏ2

2𝑚𝑚2
𝜓𝜓1′′                                   (11) 

 
The role that the fields 𝜓𝜓1′  and 𝜓𝜓1′′ play is, in simple words, to tell particle 1 how to entangle with particle 
2. According to Eq. (11), 𝜓𝜓1′  and 𝜓𝜓1′′ contribute to determine the time evolution of 𝜓𝜓1, which in turn 
determines the trajectory of particle 1; and according to Eqs. (9) and (10), the position of particle 2 de-
termines both 𝜓𝜓1′  and 𝜓𝜓1′′—so the theory is non-local (as expected). 

The last ingredient is a law for the time evolution of the entanglement fields 𝜓𝜓1′  and 𝜓𝜓1′′. To obtain it, 
a procedure similar to the reasoning leading to Eq. (8) can be applied. It turns out that the resulting 
Schrödinger-like equation for the evolution of 𝜓𝜓1′  includes a term 

  
𝜕𝜕3Ψ(𝑥𝑥, 𝑥𝑥2, 𝑡𝑡)

𝜕𝜕𝑥𝑥23
�
𝑥𝑥2=𝑋𝑋2

 

 
that Norsen defines as a further entanglement field  

 

𝜓𝜓1′′′ =
𝜕𝜕3Ψ(𝑥𝑥, 𝑥𝑥2, 𝑡𝑡)

𝜕𝜕𝑥𝑥23
 �
𝑥𝑥2=𝑋𝑋2

                                                                     (12) 

 
But now an expression for the evolution of 𝜓𝜓1′′′ is needed. Such an expression includes a fourth-order 

entanglement field 𝜓𝜓1′′′′, a field that also requires a time evolution equation including a fifth-order en-
tanglement field, and so on, ad infinitum. Thus, in order to accomplish the goal of formulating dB-B 
theory solely in terms of particles and fields defined in physical space, an infinite amount of entangle-
ment fields must be introduced in the ontology.  

After this overview of Norsen’s proposal we can make explicit and discuss the underlying charac-
terization of how quantum forces determine particle trajectories, from the second-order dynamics 
standpoint.9 In Norsen’s formulation, the ontology of the theory is given exclusively by entities in phys-
ical space, so the problem of communication should not even come up. More precisely, in Norsen’s 
proposal Eq. (1) for the velocity of the 𝑖𝑖th particle in a many-particle system becomes 

 

𝑚𝑚𝑖𝑖
𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑑𝑑

= ℏIm
∇𝜓𝜓𝑖𝑖

𝜓𝜓𝑖𝑖
                                                                            (13) 

 
Eq. (13) contains only terms defined in physical space—𝜓𝜓𝑖𝑖 is here the conditional wavefunction.  We 

can now apply Bohm’s strategy to obtain the corresponding quasi-Newtonian second-order law of mo-
tion in Norsen’s draft-theory. That is, we introduce the conditional wavefunction 𝜓𝜓𝑖𝑖 in polar form into 
the equation governing its evolution. In our two-particle system example, if we plug 𝜓𝜓1 = 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ℏ⁄  into 

Eq. (11) and separate imaginary and real parts, a quantum potential 𝑈𝑈𝜓𝜓1 = ℏ2

2𝑚𝑚1

∇2𝑅𝑅
𝑅𝑅

+ ℏ2

2𝑚𝑚2

𝜓𝜓1′′

𝑅𝑅
 can be read 

off (which differs from Bohm’s potential by the second term in the right hand side). In the general case 
of systems of 𝑛𝑛-particles moving in three dimensions, a second-order law of motion of the form  
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𝑑𝑑𝐩𝐩𝑖𝑖
𝑑𝑑𝑑𝑑

= −∇𝑖𝑖�𝑉𝑉 + 𝑈𝑈𝜓𝜓𝑖𝑖�                                                                          (14) 

 
can be derived (see footnote 4). Eq. (14) is analogous to Eq. (4), but now the quantum force −∇𝑈𝑈𝜓𝜓𝑖𝑖, that 
contributes to determine the trajectory of the 𝑖𝑖th particle, is exerted by the conditional field 𝜓𝜓𝑖𝑖, a field 
that is defined and evolves in physical space. Hence, no problem of communication.  

Norsen also argues that the problem of the violation of the AR principle does not hold in his pro-
posal, for the particle trajectories do affect the evolution of the pilot-wave. As we saw in our two-particle 
system example, the evolution of the pilot-wave 𝜓𝜓1 is indeed influenced by the trajectory of particle 2, 
so Norsen states that 

 
Each particle’s motion is dictated just by its own associated pilot-wave field, but the evolution of each 
pilot-wave field is influenced by all the other particles. Not only, then, do the particles influence the pilot-
wave fields, but the particles can quite reasonably be understood as (indirectly) affecting each other 
(through the various fields). Perhaps those who dislike the causality posited by the usual pilot-wave the-
ory, then, will find the theory sketched here more tolerable. (Norsen 2010, 1879) 
 

 
Thus, Norsen’s draft-version of dB-B theory seems to be an amenable environment for an under-

standing of quantum forces and (inertial) particle trajectories in quasi-Newtonian terms, and it seems 
to avoid both the problem of communication and the dynamical incompleteness that affect Bohm’s in-
terpretation.  

However, and despite Norsen’s statements to the contrary, the problem of the violation of the AR 
principle does come up in his proposal. It is true that the evolution of the pilot-wave 𝜓𝜓𝑖𝑖 is not dynami-
cally indifferent to the trajectories of particles, for Eq. (11) says that the evolution of 𝜓𝜓𝑖𝑖 determines the 
trajectory of the 𝑖𝑖th particle, and that 𝜓𝜓𝑖𝑖 is affected by the trajectories of all the other-than-the-𝑖𝑖th parti-
cles in the system. However, inspecting Eq. (11) more carefully we see that the evolution of 𝜓𝜓𝑖𝑖 is not 
affected back by the trajectory of the 𝑖𝑖th particle. As Norsen himself states in the quotation above, “each 
particle’s motion is dictated just by its own associated pilot-wave field, but the evolution of each pilot-
wave field is influenced by all the other particles”. Furthermore, although the trajectories of the other-
than-the-𝑖𝑖th particles non-locally affect the trajectory of the 𝑖𝑖th-one by determining the evolution of 𝜓𝜓𝑖𝑖, 
the pilot-wave 𝜓𝜓𝑖𝑖 does not affect the trajectory of any of those particles. Thus, in Norsen’s proposal the 
AR principle is actually violated in a twofold way: 𝜓𝜓𝑖𝑖 acts on the 𝑖𝑖th particle determining its trajectory, 
but 𝜓𝜓𝑖𝑖 is not affected back by the 𝑖𝑖th particle; and the positions of the rest of the particles in the system 
affect the evolution of 𝜓𝜓𝑖𝑖, but 𝜓𝜓𝑖𝑖 does not affect back the trajectories of those particles. 

The problem of the violation of the AR principle, in the context of Bohm’s theory, results from the 
fact that the evolution of the wavefunction is fully determined by the Schrodinger equation, and accord-
ing to this law the position of the particle has no effect on the temporal development of Ψ. In Norsen’s 
proposal something similar is the case. If we inspect Eq. (11), it is clear that the position of the 𝑖𝑖th particle 
in the system is not relevant for the time evolution of the conditional field 𝜓𝜓𝑖𝑖—so that the AR principle 
cannot be obeyed. In sum, Norsen’s proposal does avoid the problem of communication, but it is dy-
namically incomplete.  

Another recent variation on the physical-field/second-order approach, that intends to avoid dynam-
ical incompleteness and the problem of communication, was introduced by Belousek (2003). This pro-
posal does not take Ψ = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖 ℏ⁄  as representing a pilot-wave. However, I classify it among the interpre-
tations that include physical fields because Belousek states that 𝑆𝑆, 𝑅𝑅 and 𝑈𝑈 do have an ontological mean-
ing. In his proposal, the function 𝑆𝑆 describes a ‘velocity field’ via Eq. (1): “Because all actual velocities, 
and hence trajectories, obtained by evaluating [Eq. (1)] at any given configuration point at any time will 
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be three-dimensional quantities, 𝑆𝑆 would have its primary physical significance in reference to actual 
single-particle trajectories in 3-dimensional space” (Belousek 2003, 161). Something similar holds for the 
function 𝑅𝑅: it describes a ‘potential field’ in configuration space by means of the quantum potential 

equation 𝑈𝑈(𝑞𝑞, 𝑡𝑡) = −∑ ℏ2

2𝑚𝑚𝑖𝑖

∇𝑖𝑖
2𝑅𝑅
𝑅𝑅

𝑛𝑛
𝑖𝑖=1 . Now, the potential field has its physical significance in 3-space, for it 

determines, via Eq. (4), actual forces acting on particles that follow trajectories in 3-space. That is, in 
Belousek’s interpretation, the fields 𝑆𝑆 and 𝑅𝑅 acquire a physical meaning inasmuch as they determine 
the trajectories of the particles by means of the velocity field, the potential field 𝑈𝑈, and the quantum 
forces −∇𝑈𝑈. 

In Belousek’s proposal there is no problem of communication, for the ontology is completely defined 
in 3-space. The problem of violation of the AR principle does not come up either, for there is no pilot-
wave to be affected back by the particles. However, the resulting description of the way in which tra-
jectories are determined by the quantum forces is very difficult to accept. The denial of entities in con-
figuration space has a very awkward consequence: the quantum forces are ontologically primitive, in 
the sense that they are not exerted by any physical entity—they simply exist ‘out there on their own’.10 
Although this proposal attempts to retain the explanatory power of the quantum force included in Eq. 
(4), the maneuver of excising the quantum field, while retaining the quantum potential and its corre-
sponding forces, conveys a dubious ontological element. 

Summing up, since the assessed interpretations postulate a second-order law of motion, in which 
−∇𝑈𝑈 (or −∇𝑈𝑈𝜓𝜓) represents a quantum force, the condition for inertial motion is natural and the same in 
all three cases: quantum and classical forces must be zero or cancel each other. However, we have that, 
despite the initial promise, the physical-field(s)/second-order formulations of dB-B theory fail to pro-
vide a fully intelligible quasi-Newtonian picture of the way in which the field(s) determine the trajecto-
ries of the particles. Taking Ψ as a pilot-wave in configuration space leads to the problem of communi-
cation and to dynamical incompleteness. Replacing Ψ with the conditional and the entanglement fields 
avoids the former problem, but deepens the latter. By excising the quantum field while retaining the 
quantum potential both problems are avoided, but on the price of introducing mysterious quantum 
primary forces. Thus, although in these three interpretations we find a simple characterization of inertial 
motion, it gets undermined by the problems associated with the quantum force. 

We can now move on to assess a reading of the theory in which Ψ also represents a physical field, 
but this time choosing the first-order equation of motion. 

 
 
3.2. FIRST-ORDER 

As we saw in section 2, Eq. (1) directly determines the empirical content and predictions of the the-
ory. Thus, the introduction of Eq. (4) as the law of motion, with Eq. (1) as a condition for the initial 
momenta of the particles, seems to be redundant and unnecessary. Taking the more economical choice 
precludes that we can make use of the quasi-Newtonian explanatory framework, but that does not con-
stitute, per se, a drawback. Besides, if first-order dB-B theory is empirically adequate and explains satis-
factorily, this may be the right approach: 

 
David Bohm [...] and many others [...] present the theory as being Newtonian in appearance. [...] But this 
takes us off target. Differentiation of [Eq. (1)] is redundant. Bohmian mechanics is a first order theory. [...] 
Casting Bohmian mechanics into a Newtonian mould is not helpful for understanding the behavior of the 
trajectories in quantum mechanical situations, because understanding means first explaining things on the 
basis of the equations that define the theory. Redundancies are more disturbing than helpful. Analogies 
may of course help, but they are secondary. (Dürr and Teufel 2009, 150) 
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Now, in order to spell out the precise way in which the equations that define the theory explain 

physical phenomena, we must specify the meaning attributed to the wavefunction. Valentini (1992, 
1996, 1997) assumes the first-order approach and interprets the term Ψ as denoting a pilot-wave. In this 
proposal, since Eq. (1) constitutes the law of motion, the agency of the pilot-wave Ψ on the particles is 
given by an “Aristotelian force” ∇𝑆𝑆 that induces a velocity, not an acceleration: 

The pilot-wave Ψ should be interpreted as a new causal agent, more abstract than forces or ordinary fields. 
This causal agent is grounded in configuration space—which is not surprising in a fundamental “holistic”, 
nonlocal theory. Heuristically, however, its action in three-space may be visualized in terms of “Aristote-
lian forces”. The “Aristotelian force” 𝑓𝑓𝑖𝑖 = ∇𝑖𝑖𝑆𝑆 on the right-hand side of [Eq. (1)] is analogous to the New-
tonian force 𝐹𝐹𝑖𝑖 = −∇𝑖𝑖𝑉𝑉. [...] The ratio of Newtonian force to mass gives the acceleration. While according 
to [Eq. (1)], the ratio of “Aristotelian force” to mass gives the velocity. (Valentini 1997, 216) 
 

 
Valentini’s interpretation gets affected by the problem of communication, and it is also dynamically 

incomplete. The pilot-wave Ψ is defined and evolves in configuration space, whereas the particle mo-
tions it determines, via the Aristotelian force, occur in physical space. The modification in the definition 
of the concept of force leaves this problem untouched: how does the pilot-wave in configuration space 
exerts an Aristotelian force on particles in physical space? As to dynamical incompleteness, the situation 
is here the same as in Bohm’s second-order approach: Ψ is governed by the Schrödinger equation, so 
the trajectory of the guided particle is irrelevant for the evolution of the wavefunction. The pilot-wave 
determines the trajectory of the particle, but the particle’s trajectory does not affect back the pilot-wave. 

 Adopting the Aristotelian first-order formulation in the context of Norsen’s approach would solve 
the problem of communication—we can simply take Eq. (13) as the first-order equation of motion of the 
theory. By doing so, Valentini’s Aristotelian forces are not exerted by a field Ψ, but by the conditional 
fields 𝜓𝜓𝑖𝑖, which are defined and evolve in physical space. However, Norsen’s proposal in first-order 
formulation is as dynamically incomplete as in its second-order version. This problem remains the same 
after replacing the quantum force −∇𝑈𝑈 with Valentini’s Aristotelian force ∇𝑆𝑆.  

We could also refer to Belousek’s interpretation and bring it to a first-order context. That is, we jetti-
son 𝑈𝑈 and −∇𝑈𝑈, and we replace them with the Aristotelian forces (in physical space) ∇𝑖𝑖𝑆𝑆 (see Solé 2013, 
377). Belousek’s interpretation avoids the problem of communication because the constituents of its 
ontology are all entities in physical space. It also respects the AR principle, for the forces determining 
the particle trajectories are not exerted by a pilot-wave. However, just as in the second-order version, 
we get the problem of the primitive—this time Aristotelian—forces existing out there on their own.  

Furthermore, when we consider force-free motion, a distinctive problem rises up in the Aristotelian 
forces approach. We saw that the definition of inertial motion in second-order versions of the theory 
that include a quantum force is analogous to its definition in classical mechanics: a free particle does not 
accelerate. In first-order formulations of the theory that include a quantum Aristotelian force, the de-
scription of inertial motion is very different. An inertial particle is now a particle that is not affected by 
Aristotelian forces. This implies that force-free state of motion is rest, for according to Eq. (1), if the 
Aristotelian force ∇𝑆𝑆 is zero, the velocity is zero. 

Now, if the force-free state of motion is rest, the natural question that comes up is rest in what frame? 
Since the Schrödinger equation and Eq. (1) are Galilean invariant, it seems impossible to single out a 
privileged reference frame in which we can define true, absolute rest (cf. Brown, Elby, and Weingard 
1996, section 6). But since in this interpretation rest corresponds to the inertial state of motion, it cannot 
be frame-relative. Valentini (1997) faces this difficulty by arguing that Galilean invariance is a fictitious 
symmetry of the theory. To see why, he asks us to consider, in the context of classical mechanics, a frame 
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of reference Γ and a frame Γ′ with acceleration 𝐚𝐚 with respect to Γ. The coordinate transformations be-
tween these frames are 

 

𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 −
1
2
𝐚𝐚𝑡𝑡2                𝑡𝑡 = 𝑡𝑡′                                                                    (15) 

 
The corresponding transformations for the classical potential 𝑉𝑉 and the classical force −∇𝑖𝑖𝑉𝑉 are 

𝑉𝑉′ = 𝑉𝑉 −
1
2
� 𝑚𝑚𝑖𝑖𝐚𝐚2𝑡𝑡2 + �𝑚𝑚𝑖𝑖𝐚𝐚 ∙ 𝑥𝑥𝑖𝑖                                                          (16)

𝑖𝑖𝑖𝑖
 

 
−∇𝑖𝑖′𝑉𝑉′ = −∇𝑖𝑖𝑉𝑉 + 𝑚𝑚𝑖𝑖𝐚𝐚                                                                           (17) 

 

Under transformations (16) and (17), Newton’s law of motion 𝑚𝑚𝑖𝑖
𝑑𝑑2𝑋𝑋𝑖𝑖
𝑑𝑑𝑑𝑑2

= −∇𝑖𝑖𝑉𝑉 is invariant. Now, the 

usual view is that these transformations include fictitious inertial forces 𝑚𝑚𝑖𝑖𝐚𝐚 that equally affect all bodies 
in the non-inertial frame, and that are thus proportional to the mass of each body. Given the fictitious 
character of these ‘forces’, transformations (15)-(17) represent non-fundamental, fictitious symmetries 
that do not reflect the spatiotemporal structure that corresponds to the theory. 

Let us now consider, in the context of dB-B theory, a frame Λ and a frame Λ′ that moves with velocity 
𝐯𝐯 with respect to Λ. The corresponding coordinate transformations are the Galilean transformations 

 
𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 − 𝐯𝐯𝑡𝑡                𝑡𝑡′ = 𝑡𝑡                                                                     (18) 

 
The Schrödinger equation and Eq. (1) are invariant under these transformations. The corresponding 

transformation for the wavefunction is Ψ′ = Ψ exp �𝑖𝑖 �1
2
∑ 𝑚𝑚𝑖𝑖𝐯𝐯2𝑡𝑡𝑖𝑖 − ∑ 𝑚𝑚𝑖𝑖𝐯𝐯 ∙ 𝑥𝑥𝑖𝑖𝑖𝑖 ��, so that 

 

𝑆𝑆′ = 𝑆𝑆 +
1
2
�𝑚𝑚𝑖𝑖𝐯𝐯2𝑡𝑡

𝑖𝑖
−� 𝑚𝑚𝑖𝑖𝐯𝐯 ∙ 𝑥𝑥𝑖𝑖

𝑖𝑖
                                                           (19) 

 
∇𝑖𝑖′𝑆𝑆′ = ∇𝑖𝑖𝑆𝑆 −𝑚𝑚𝑖𝑖𝐯𝐯                                                                               (20) 

 
Valentini’s argument relies on the similarity between Eqs. (16) and (19), and between Eqs. (17) and 

(20). He states that just as the fictitious forces 𝑚𝑚𝑖𝑖𝐚𝐚 in Eqs. (16) and (17) are proportional to the masses of 
the bodies in the accelerated frame, the Aristotelian forces 𝑚𝑚𝑖𝑖𝐯𝐯 in Eqs. (19) and (20) are proportional to 
the masses of the bodies in the uniformly moving frame. Therefore, the Aristotelian forces 𝑚𝑚𝑖𝑖𝐯𝐯 in Eqs. 
(19) and (20) should also be regarded as fictitious. Now, we saw that since the 𝑚𝑚𝑖𝑖𝐚𝐚 are fictitious forces, 
transformations (15)-(17) are non-fundamental, fictitious symmetries of Newtonian dynamics. One of 
the frames Γ and Γ′ is dynamically privileged: the frame in which fictitious forces vanish is inertial. 
Accordingly, Valentini states, if the 𝑚𝑚𝑖𝑖𝐯𝐯 are fictitious Aristotelian forces, transformations (18)-(20) are 
non-fundamental, fictitious symmetries of dB-B dynamics. One of the frames Λ and Λ′ is dynamically 
privileged: the one in which the fictitious Aristotelian forces vanish is truly at rest—so an inertial parti-
cle is at rest in that frame. Thus, Valentini concludes, despite the apparent Galilean invariance of the 
Schrödinger equation and of Eq. (1), true rest in dB-B theory can be well defined: 

 
The supposed “Galilean invariance” of the pilot-wave theory is, in our view, a first-order analogue of the 
above fictitious invariance (of second-order) classical mechanics. Just as the true, physical invariance group 
of classical mechanics leaves acceleration and (Newtonian) force invariant, so the true, physical invariance 
group of pilot-wave dynamics leaves velocity and (Aristotelian) force invariant. (Valentini 1997, 219) 
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Valentini readily notes that the preferred frame and the state of true motion are empirically unde-

tectable. He responds by stating that the situation is similar in classical mechanics. Consider again the 
frames Γ and Γ′. The effects of absolute acceleration in the non-inertial frame can be cancelled by trans-
forming the corresponding forces according to Eq. (17). However, Valentini claims that, after all, the 
fictitious forces may be real. They are regarded unreal because they appear to have no source, but they 
may be generated, in a Machian-like way, by accelerations with respect to distant matter. Thus, the 
privileged status of one of the frames Γ and Γ′ (the one in which fictitious forces vanish) relies on the 
assumption that real forces have their origin in nearby bodies. 

I think that Valentini’s approach carries important problems connected to the notion of force-free 
motion that it postulates.11 First, the undetectability of the truly force-free state of motion and of the 
associated preferred frame is a very troublesome result. Even if Valentini were convincing in that clas-
sical mechanics is problematic in a similar way, a tu quoque argument does not solve the difficulty—if 
the situation is analogous in classical mechanics, then shame on it as well.  

Besides, Valentini’s reasoning is unconvincing. If the difference between real and fictitious forces 
were just an assumption or a matter of conventional consensus, then there would be no grounds to trace 
a fundamental dynamical distinction between inertial and accelerated frames in classical physics. With-
out the distinction, the symmetries of transformations (15)-(17) would not be fictitious, but fundamental. 
But then Valentini’s argument could not even get off the ground, for how could he argue, based on the 
analogy, that the symmetries of transformations (18)-(20) are fictitious in dB-B theory? Valentini’s pro-
posal thus relies on the fundamental dynamical difference between real and fictitious forces in Newto-
nian mechanics—otherwise the analogical judgment that the transformations (15)-(17) and (18)-(20) are 
fictitious symmetries in Newtonian mechanics and in dB-B theory, respectively, would make no sense. 
Now, the difference between fictitious and real forces certainly allows to discern, in empirical terms, 
between inertial and accelerated frames in classical physics, but the alleged difference between real and 
fictitious Aristotelian forces cannot play an analogous role in Valentini’s interpretation of dB-B theory—
his tu quoque argument certainly fails.12 

Since Valentini’s reasoning relies on a fundamental distinction between real and fictitious second-
order forces, the analogy supporting his main claim—namely, that transformations (18)-(20) are ficti-
tious symmetries in dB-B theory—is rather weak. In classical mechanics, the distinction between real 
and fictitious forces is not only conceptual, it is empirically grounded. However, the distinction between 
the real and fictitious Aristotelian forces is merely formal. Valentini’s analogy rests on the mathematical 
similarity between (16)-(17) and (19)-(20), but the dynamical difference between second-order real and 
fictitious forces is absent in the case of real and fictitious Aristotelian forces. His suggestion that the 
distinction between the classical forces relies on an assumption intends to ease this difficulty, but if the 
suggestion holds, the main argument falls—for Valentini’s main claim essentially relies on a fundamen-
tal distinction between real and fictitious Newtonian forces. 

Another related difficulty is that the preferred frame in Valentini’s proposal is not only empirically 
undetectable, but also explanatorily superfluous. Although the motivation to introduce a preferred 
frame is the conceptual economy that is gained by formulating the theory in first-order terms, there are 
no dynamical-explanatory motivations for postulating such a frame. This point gets clearer when we com-
pare Valentini’s interpretation with other theories that postulate a preferred frame. Newton’s original 
formulation of classical mechanics included a privileged frame at rest in absolute space. Although this 
frame and absolute velocities are undetectable, inertial effects of absolute accelerations are empirically 
detectable—just recall the rotating bucket—and Newton interpreted those effects as manifestations of 
absolute motion. In Lorentz’s ether theory, the preferred ether-rest frame is also undetectable, but it 
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certainly plays a dynamical-explanatory role. The physical underpinning of the Lorentz-contraction, for 
example, was given by the motion of bodies through the ether (see Janssen 1995, Acuña 2014). In Aris-
totle’s physics, the privileged frame has its origin in the center of a spherical universe because that point 
determines the natural motions of terrestrial and celestial bodies: depending on what element they are 
made of, sub-lunar objects move towards or away from it, whereas ethereal bodies move in circles cen-
tered in it. Unlike these theories, in Valentini’s proposal the postulated privileged frame plays no dy-
namical-explanatory role. In Newton’s, Lorentz’s, and Aristotle’s theories, the preferred frame (alt-
hough empirically undetectable in the first two cases) is relevant in the dynamical explanation of ob-
servable effects. In Valentini’s rendition of the dB-B theory, though, the only motivation for its intro-
duction is a formal-conceptual demand: the first-order law of motion and the Aristotelian forces pre-
suppose a preferred frame to make sense of the force-free state of motion.13 

In sum, physical-field/second-order interpretations mirror their second-order counterparts with re-
spect to the problem of communication, dynamical incompleteness, and primitive forces. On the other 
hand, whereas the physical-field/second-order view describes inertial motion in traditional terms, the 
Aristotelian forces approach entails a radical change in the notion of force-free motion: since Aristotelian 
forces are proportional to velocities, the force-free state of motion is absolute rest. Now, this concept 
requires an undetectable and explanatorily superfluous privileged frame that is hardly acceptable. 

 
 

4. NOMOLOGICAL WAVEFUNCTION 
 
4.1. SECOND-ORDER 

We can now turn to interpretations of dB-B theory that assign a nomological meaning to the wave-
function. Before we directly explore the notion on inertial motion in the second-order and first-order 
formulations of the nomological approach, some preliminary considerations are necessary. A subtlety 
in this reading, that is very relevant here, consists in that the term that is assigned a nomological mean-
ing is the wavefunction of the universe Ψ, which we may distinguish from the effective wavefunction 𝜓𝜓 of 
a subsystem of the universe (Dürr et al. 1992, section 5). The primary domain of applicability of dB-B 
theory, the system that (Ψ,𝑄𝑄) describes, is the universe as a whole. The physical description of a specific 
subsystem of the universe arises from the description of the whole, and the theoretical term that allows 
such a description is the effective wavefunction 𝜓𝜓.  

For any such subsystem, given the generic configuration 𝑞𝑞 of the universal system, a splitting 𝑞𝑞 =
(𝑥𝑥,𝑦𝑦) obtains, where 𝑥𝑥 is the generic configuration of the subsystem, and 𝑦𝑦 is the generic configuration 
of the complemenent-subsystem (formed by all the particles not in the subsystem), so that Ψ = Ψ(𝑥𝑥,𝑦𝑦). 
Accordingly, given the actual configuration 𝑄𝑄 of the particles in the universe, there is a splitting 𝑄𝑄 =
𝑄𝑄(𝑋𝑋,𝑌𝑌), where 𝑋𝑋 is the actual configuration of the particles in the subsystem, and 𝑌𝑌 is the actual config-
uration of the rest of the particles in the universe. The wavefunction describing the 𝑥𝑥-subsystem at a 
time 𝑡𝑡 is the conditional wavefunction 𝜓𝜓𝑡𝑡(𝑥𝑥) = Ψ𝑡𝑡(𝑥𝑥,𝑌𝑌𝑡𝑡)—which we already met in Norsen’s proposal. In 
general, the conditional wavefunction does not evolve according to the Schrödinger equation, due to 
entanglement correlations between subsystems. However, let us assume that 

 
Ψ𝑡𝑡(𝑥𝑥,𝑦𝑦) = 𝜓𝜓𝑡𝑡(𝑥𝑥)Φ𝑡𝑡(𝑦𝑦) + Ψ𝑡𝑡

⊥(𝑥𝑥,𝑦𝑦)                                                           (21) 
 
where Φ𝑡𝑡 and Ψ𝑡𝑡

⊥ have (macroscopically) disjoint supports in configuration space. If 𝑌𝑌𝑡𝑡 ∈ supp Φ𝑡𝑡, then 
𝜓𝜓𝑡𝑡(𝑥𝑥) is the effective wavefunction of the 𝑥𝑥-subsystem at time 𝑡𝑡. 14F
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In the nomological interpretation, the wavefunction of the universe expresses a physical law. But 
since the subject matter of this article is inertial motion of quantum corpuscles, we are interested in how 
the effective wavefunction determines the motion of its corresponding particles. Thus, the natural ques-
tion now concerns the meaning that the nomological interpretation assigns to 𝜓𝜓. The answer provided 
by Goldstein and Zanghì (2013, 275-276) is rather vague. They state that this is a secondary issue open 
to philosophical prejudices. What really matters, they claim, is that the nomological meaning of Ψ is 
clear. Anyhow, the authors openly state that the meaning attributed to 𝜓𝜓 must be quasi-nomological: 

We would like to regard 𝜓𝜓 as quasi-nomological. We mean by this that while there are serious obstacles 
to regarding the wavefunction of a subsystem as fully nomological, 𝜓𝜓 does have a nomological aspect in 
that it seems more like an entity that is relevant to the behavior of concrete physical reality (the primitive ontology) 
and not so much like a concrete physical reality itself. (Goldstein and Zanghì 2013, 276, my emphasis) 
 

 
The remark that I emphasize in the quotation is most relevant in our context. What Goldstein and 

Zanghì seem to have in mind is that, whatever its ultimate ontological status may be, 𝜓𝜓, just like Ψ, does 
not refer to a physical entity. This stance is quite consistent with the basic motivation of the nomological 
interpretation. Since the conditional wavefunction is defined in configuration space, if it were assigned 
an entity-meaning, the problems we identified in section 3 would come up once again. Now, although 
𝜓𝜓 cannot be understood in fully nomological terms, it is quasi-nomological because it determines the 
dynamical behavior of physical reality, without being itself an element of physical reality.15 

If 𝜓𝜓 does not represent an element of physical reality, then the problem of communication and the 
problem of dynamical incompleteness immediately vanish. Only the particle is a physical entity, so the 
fact that 𝜓𝜓 is defined in configuration space is completely harmless. For the same reason, that 𝜓𝜓 is dy-
namically indifferent to the particle trajectories does not result in dynamical incompleteness. Thus, the 
nomological approach seems a better way to describe the way in which the wavefunction determines 
quantum particles trajectories. However, as we will now see, the resulting characterizations of inertial 
motion carry important complications.  

We can now address the second-order formulation of the nomological interpretation. If Ψ and 𝜓𝜓 are 
(quasi-)nomological terms that do not refer to a physical entity, the same holds for 𝑈𝑈. In turn, if the term 
𝑈𝑈 is nomological, it does not represent a potential in a field. Consequently, the term −∇𝑈𝑈 in Eq. (4) is a 
(quasi-)nomological term as well, so it cannot refer to a quantum force, for there is no physical entity to 
exert it on the particles. On the other hand, the excision of the pilot-wave from the ontology of the theory 
does not imply that the very notion of force is jettisoned. The absence of a pilot-wave means that there 
is no quantum force, but its removal does not affect the dynamical role of the classical potential 𝑉𝑉 and 
the classical forces −∇𝑉𝑉. The nomological/second-order approach can be understood as an attempt to 
avoid the problems associated to the nature of the pilot-wave, while retaining the essence of the New-
tonian explanatory framework. 

Now, since inertial motion is force-free, its condition under this interpretation is simply that −∇𝑉𝑉 
vanishes, regardless of the value of −∇𝑈𝑈. But then we get a striking result: adopting the nomological, 
second-order reading of the theory, inertial motion is not always uniform and rectilinear. More con-
cretely, whenever −∇𝑉𝑉 = 0 and −∇𝑈𝑈 ≠ 0, free particles do not follow uniform and rectilinear trajecto-
ries. The supporter of this approach could bluntly reply by saying ‘so what?!, at the quantum level 
inertial motion is not uniform and rectilinear’. Fair enough, but I want to point out that assuming this 
view generates important friction with a fundamental aspect of the spatiotemporal structure that corre-
sponds to a Galilean-invariant theory, such as dB-B.  

In Newtonian spacetime (also known as Galilean spacetime or neo-Newtonian spacetime), the affine 
structure is essentially associated to (or even identified with) the inertial structure. That is, motion that 
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is free of forces corresponds to straight world-lines, whereas accelerated trajectories correspond to 
curved world-lines. Furthermore, the principle that inertial motion corresponds to (timelike) spacetime 
geodesics is a postulate not only in the four-dimensional reconstruction of Newtonian space plus time, 
but also in relativistic theory. Actually, the principle can be proven as a theorem both in general relativ-
ity and in geometrized Newtonian gravitation (see Weatherall 2011a, 2011b, and the references therein). 
That is, under the interpretation of dB-B theory that we are considering, the background spacetime 
structure assumed is (neo-)Newtonian, but a very important aspect in the dynamics associated to that 
structure—and a general dynamical principle in spacetime theories—is violated. 

These remarks about the connection between dynamics and spacetime structure foreclose a possible 
way out for the nomological approach. To illustrate, let us assume for a moment a Humean conception 
of laws. Since according to this view laws belong to the best deductive system that accounts for the 
phenomena, both 𝑈𝑈 and 𝑉𝑉 are simply variables in such a system. The supporter of the nomological 
approach could then argue that 𝑈𝑈 and 𝑉𝑉 are considered on a par, so that it could be stipulated that the 
condition for inertial motion is that both −∇𝑉𝑉 and −∇𝑈𝑈 vanish (or mutually cancel)16. This would re-
cover the definition of inertial motion as uniform and rectilinear, but the dynamical foundation and 
relevance of inertial motion as corresponding to force-free trajectories would be lost. That is, inertial 
motion would have a merely kinematical meaning.  

Let us elaborate. Assuming the nomological approach, the fact that −∇𝑉𝑉 and −∇𝑈𝑈 are on a par in the 
epistemological sense that they are variables in the best Humean system does not mean that they are also 
on a par in terms of their dynamical significance. −∇𝑉𝑉 is a variable in the best system that codifies certain 
kinds of interactions resulting in changes in states of motion, and that is why we interpret it as denoting 
a force.17 On the other hand, in the nomological interpretation, −∇𝑈𝑈 is a variable in the best system that 
cannot denote an interaction: since there is no pilot-wave, it cannot be interpreted as a force in the usual 
sense of the term. In the nomological view, the change of state of motion associated to −∇𝑈𝑈 is naturally 
understood as a brute fact that is not caused by an interaction between physical objects. In this interpre-
tive framework, the only way to understand the term −∇𝑈𝑈 as a force is by directly reifying it, that is, by 
including the force itself as a beable. But by doing so we would be committed to something quite similar 
to Belousek’s primitive sourceless forces. As we saw, the motivation of the nomological approach is to 
get rid of an uncomfortable physical entity, but if we include primitive forces as a part of the ontology 
of the theory, we would be accepting a physical entity that is at least as problematic as the pilot-wave 
in configuration space. 

A more promising maneuver to avoid the friction with the geodesic principle would be to interpret 
dB-B theory in such a way that the term 𝑈𝑈 is an expression of spacetime curvature. That is, in cases 
where −∇𝑉𝑉 = 0 and −∇𝑈𝑈 ≠ 0, we may consider that the corresponding trajectories are indeed geodesics. 
Michael Dickson has suggested this possibility: 

 
This idea suggests that we consider a space-time in which non-classical yet free motions are geodesics, so 
that, in much the same way that we no longer invoke the ‘force of gravity’ to explain deviations from 
Euclidean geodesics, so also we would not invoke the ‘quantum potential’ to explain deviations from the 
Newtonian trajectories, […] the central idea being to ‘geometrize away’ the so-called quantum potential. 
The sole role for the wavefunction, then, is to determine the structure of space-time. It does not describe 
any other ‘real features’ of the world, and there are no ‘forces’, ‘potentials’, or anything of the sort account-
ing for the non-classicality of the motions of particles. (Dickson 2000, 707) 
 

 
This is of course rather speculative. Itamar Pitowski (1991) formulated a sketch of a theory based on 

dB-B second-order formalism along these lines.18 However, this draft-theory involves some features that 
go against the initial appeal of Bohm’s, and that are troubling regarding the issue of inertial motion of 
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quantum particles. For example, the dynamical equations in the theory have solutions in which the 
Bohmian particle is not localized, but ‘spread-out’ in a region of the spacetime manifold (see Pitowski 
1991, section 4). This result seems to entail that the notion of trajectory is not (always) well defined, so 
the question of inertial motion becomes a non-starter. Notwithstanding these worries, Dickson’s sug-
gestion and Pitowski’s approach constitute a very interesting avenue for development of dB-B theory. 
Unfortunately, it has not been explored in depth—at least I do not know of any other works elaborating 
on this basic idea. 

 
 
4.2. FIRST-ORDER 

Let us now consider what happens with the notion of inertial motion in a first-order formulation of 
the theory, under the nomological interpretation of the wavefunction. The law of motion is this time 
given by Eq. (1). Since Ψ and 𝜓𝜓 are (quasi-)nomological terms that do not denote physical entities, so 

are 𝑆𝑆 and 𝑅𝑅. Therefore, the equation of motion 𝑚𝑚𝑖𝑖
𝑑𝑑𝑄𝑄𝑖𝑖
𝑑𝑑𝑑𝑑

= ∇𝑖𝑖𝑆𝑆 does not involve reference to a physical 

quantum field that determines the trajectories of particles. Thus, since there is no pilot-wave, Eq. (1) is 
not a law about (Aristotelian) force interactions. On the other hand, given that the law of motion is a 
first-order equation, accelerations and Newtonian forces play no role in the theory. Therefore, we can 
conclude that in this approach the notion of force is plainly absent. All the dynamics of the theory is 
contained in postulates (P1)-(P4), where, again, Eq. (1) is not a law about force-interactions. Thus, the 
theory is highly non-classical not only because of the peculiarities of the quantum world, but also be-
cause concepts that are central in Newtonian physics (namely, force, acceleration, energy, work) play 
no role: 

 
The mechanics here is Bohmian, not Newtonian, and one has to see what this new mechanics is like. Force 
and acceleration are not elements of the new theory, so any arguments based on that line of thought are 
off target […] 
The following analogy may be helpful. The wavefunction generates a velocity field (on configuration 
space) which defines the Bohmian trajectories. This is the analogue of the idea that the Hamiltonian gen-
erates a vector field (on phase space) which defines classical trajectories. (Dürr and Teufel 2009, 151) 
 

 
The analogy with the Hamiltonian is clear in that the alluded velocity field is not a physical entity, 

and it underscores that the (effective) wavefunction plays a (quasi-)nomological role. Now, if the notion 
of force plays no role in the theory, it follows that the very concept of inertial motion makes no sense in 
this interpretive framework. Inertial and non-inertial trajectories are discerned in terms of the concept 
of force, so if we assume a nomological/first-order presentation of dB-B theory, there is just no distinc-
tion to be traced between trajectories of quantum particles. In a nomological first-order view, we have 
trajectories, but we have neither inertial nor non-inertial trajectories. 

Considering the identified problems that affect the other interpretive frameworks, this is actually a 
good result. As we already saw, in the nomological reading of the wavefunction we do not have to 
worry about the problems of communication and of dynamical incompleteness. On the other hand, the 
friction with the principle that inertial motion corresponds to spacetime geodesics is rooted in the fact 
that the law of motion is a second-order equation. The geodesic principle makes essential reference to 
the concepts of force, acceleration and inertial motion. Hence, the absence of these concepts in the no-
mological/first-order interpretation implies that the principle does not apply—in this formulation of the 
theory, the principle is neither violated nor obeyed. Furthermore, that in dB-B theory the classical limit 
is formally clear makes the nomological first-order approach even more auspicious. Since the condition 
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for classical behavior is well-defined, namely, 𝑈𝑈 → 0 (see Holland 1993, 218-224; Allori et al. 2002), the 
theory specifies under what circumstances the geodesic principle becomes meaningful and obeyed. 

This sounds rather attractive, but given the paramount relevance of the concept of inertial motion at 
the classical level, its absence at the quantum level illustrates a problem of incommensurability. Alt-
hough the conditions for classicality are formally clear in all the interpretive frameworks of dB-B theory, 
in the case of the nomological-first-order interpretation there seems to be an important conceptual dif-
ficulty. As we saw, in this view the concepts of force and acceleration play no dynamical role, and nei-
ther does the term 𝑈𝑈:  

 
We wish to stress that since the dynamics for Bohmian mechanics is completely defined by Schrödinger’s 
equation together with the guiding equation, there is neither need nor room for any further axioms involv-
ing the quantum potential [𝑈𝑈]! Thus the quantum potential should not be regarded as fundamental, and 
we should not allow it to obscure, as it all too easily tends to do, the most basic structure defining Bohmian 
mechanics. […] 
Bohmian mechanics should be regarded as a first-order theory, in which it is the velocity, the rate of change 
of position, that is fundamental in that it is this quantity that is specified by the theory, directly and simply 
with the second-order (Newtonian) concepts of acceleration and force, work and energy playing no fun-
damental role. From our perspective the artificiality suggested by the quantum potential is the price one 
pays if one insists on casting a highly nonclassical theory into a classical mold. (Dürr, Goldstein, and 
Zanghì 1996, 25-26)19 
 

 
From this passage one may infer that 𝑈𝑈 plays neither a dynamical nor a formal role in the theory. 

However, when it comes to the issue of the classical limit, as we just commented, 𝑈𝑈 does play a role, for 
it defines the conditions for classical behavior: 

 
This is not to say that these second-order concepts play no role in Bohmian mechanics; they are emergent 
notions, fundamental to the theory to which Bohmian mechanics converges in the “classical limit”, namely, 
Newtonian mechanics. Moreover, in order most simply to see that Newtonian mechanics should be ex-
pected to emerge in this limit, it is convenient to transform the defining equations [Schrödinger equation 
and Eq. (1)] of Bohmian mechanics into Bohm’s Hamilton-Jacobi form. One then sees that (the size of the) 
quantum potential provides a rough measure of the deviation of Bohmian mechanics from its classical 
approximation. (Dürr et al. 1996, 26, my emphasis) 
 

 
The worry I would like to address is that, in the nomological/first-order setup, the proposed account 

of the connection and continuity between the quantum level and the classical level is rather vague, if 
present at all. I think that much more needs to be said about the way and sense in which Newtonian 
concepts, such as force, allegedly emerge in the limit 𝑈𝑈 → 0 (taking for granted that there is a well-defined 
notion of emergence, which is already a controversial issue). Does it mean that the dynamical relevance 
of forces vanishes when 𝑈𝑈 does not vanish, in analogy with the relativistic effects that become negligible 
when 𝑣𝑣 ≪ 𝑐𝑐? Does it mean that in the quantum world there are just no force-interactions at all and that 
they somehow appear in the limit 𝑈𝑈 → 0? Anyhow, it seems that we are facing a conceptual (even on-
tological) wall between the quantum and the classical level. A celebrated feature of dB-B theory is that 
the clear formal account of the classical limit it offers establishes a strong conceptual and ontological 
continuity between the quantum and the classical realms. This is clearly so in the case of Bohm’s own 
understanding of the theory, for example, but such a continuity becomes fuzzy, if recognizable at all, in 
the case of the nomological/first-order approach.  

In simple words, I think that this version of the theory involves an instance of Kuhnian incommen-
surability (both in a semantical and an ontological sense) between dB-B theory and Newtonian mechan-
ics, involving the concepts of force and acceleration (and probably other Newtonian concepts). In short, 
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nomological first-order dB-B theory reduces to Newtonian mechanics in the limit 𝑈𝑈 → 0, but the latter 
theory describes the world employing concepts that make no sense from the point of view of the former. 
One of the manifestations of this incommensurability is that at the quantum level there is no distinction 
between inertial and accelerated motion, but at the classical level the distinction becomes dynamically 
paramount (Cf. Belousek 2003, 152-154). 
5. DISPOSITIONAL PROPERTY 

 
5.1. SECOND-ORDER 

As we saw in section 2, the basic idea in the interpretation of the wavefunction as the expression of 
a dispositional property is that Eq. (1) is a recipe in which we plug 𝜓𝜓 as input and we obtain as output 
a function that assigns to each possible configuration 𝑄𝑄 the specific velocities that the particles would 
take, were the particles in that configuration and were the system in the state 𝜓𝜓. That is, the (effective) 
wavefunction determines a dispositional property Φ that determines in what direction and how fast the 
particles in the system would move for each possible configuration. Belot (2012) proposes that a precise 
mathematical expression of Φ is given by a vector field 𝑋𝑋 on 𝑄𝑄, determined by 𝜓𝜓𝑡𝑡 as the input in Eq. (1): 

 
The natural way to encode the history Φ𝑡𝑡 of such dispositional properties is via a time-dependent vector 
field 𝑋𝑋 on 𝑄𝑄 (i.e., a function that assigns a vector field on 𝑄𝑄 to each time 𝑡𝑡). We can think of [Eq. (1)] above 
as defining a map ℬ ∶  𝜓𝜓𝑡𝑡 ↦  𝑋𝑋𝑡𝑡 that associates with each (suitably smooth) solution of the system’s Schrö-
dinger equation a time-dependent vector field 𝑋𝑋𝑡𝑡 that encodes the history Φ𝑡𝑡. (Belot 2012, 78-79) 
 

 
Since the property Φ is a disposition to adopt a certain velocity, one may think that running this 

interpretation in a second-order formulation of the theory would be pointless. However, Suárez (2015) 
states that we can do so by defining a second-order dispositional property, let us dub it Ξ, that 
determines how Φ evolves in time, so that the defined second-order property dynamically grounds and 
explains the first-order one: 

 
The critical difference, from a dispositional point of view, between a first order equation such as [Eq. (1)] 
and a second-order one such as [Eq. (4)] is that if [Eq. (1)] describes first-order dispositions then [Eq. (4)] 
necessarily describes second-order ones. […] [Eq. (4)] establishes the evolution of this dispositional 
velocity field [𝑋𝑋] as a result of what it refers to as the ‘quantum potential’. In a dispositional interpretation 
the quantum potential is nothing but a second-order disposition, and [Eq. (4)] then effectively describes 
the disposition of (first-order) velocity dispositions to evolve. (Suárez 2015, section 8)20 
 

 
Let us then investigate what comes of inertial motion in a dispositionalist, second-order interpreta-

tion of dB-B theory. The first point we must underscore is that, following the basic motivation of the 
dispositional approach, the wavefunction does not refer to an element of physical reality. Just as in the 
nomological interpretation, the main goal is to avoid the inclusion of a physical field that is defined and 
evolves in configuration space rather than in 3-space. In the dispositional interpretive framework, 

 
the wavefunction is not a law, and has no nomological force. It has merely a descriptive, or representa-
tional, function concerning the state of the physical particles in 3-d space. Yet, it does not represent any 
distinct object per se in 3-d space—neither a field nor a wave nor even the particle itself. […] Its function 
is rather to represent […] the properties of the 3-d particles, including crucially a series of dispositional 
properties over and above the particles’ positions. (Suárez 2015, section 6) 
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Accordingly, in the second-order version of the dispositional approach, the terms 𝑈𝑈 and −∇𝑈𝑈 do not 
refer to physical interactions of the particles with another physical object. −∇𝑈𝑈 does not express a force, 
rather, it is the expression for the second-order dispositional property Ξ of the particles. On the other 
hand, the term 𝑉𝑉 still represents a classical potential, so that its gradient −∇𝑉𝑉 is naturally understood as 
the expression of a force. That is, just as in the nomological/second-order approach, the excision of the 
pilot-wave means that there is no quantum force, but it does not follow that the concept of (classical) 
force is also excised.  

The upshot is that −∇𝑉𝑉 represents a force in Eq. (4), but −∇𝑈𝑈 does not. Consequently, just as in the 
second-order version of the nomological approach, the condition for inertial motion is that −∇𝑉𝑉 van-
ishes, regardless of the value of −∇𝑈𝑈. In turn, we have that, in general, inertial motion is not rectilinear 
and uniform, and, a fortiori, the friction with the principle connecting inertial trajectories and geodesics 
in spacetime theories comes up once again.21 

In sum, the situation concerning the dispositional interpretation of the wavefunction within a sec-
ond-order formulation of the theory resembles the case of the nomological/second-order view. There is 
a way to define inertial motion for quantum particles, but the resulting definition states that, in general, 
free particles do not follow geodesic trajectories in the spacetime structure that corresponds to the sym-
metries of the theory.  

 
 
5.2. FIRST-ORDER 

Let us finally consider what comes of inertial motion in the nomological, first-order interpretation. 
As mentioned above, if we understand Eq. (1) as a recipe that given the input 𝜓𝜓 conveys the output Φ—
a dispositional property expressed in a vector field 𝑋𝑋 defined on 𝑄𝑄—we obtain a natural interpretation 
of the wavefunction as the determination of a dispositional property for the particles in the quantum 
state to adopt a certain velocity for a specific configuration. This is already enough to extract the empir-
ical predictions of the theory, so it is possible to drop Eq. (4) and formulate the theory in more economic 
terms. In this setup, we avoid the problem of communication, of dynamical incompleteness, and the 
primitive forces. 

Now—just as in the case of the first-order nomological view—since the wavefunction does not rep-
resent an entity, and since the law of motion is given by Eq. (1), the concepts of force and acceleration 
are plainly absent, and without them, the notion of inertial motion cannot be defined. In this reading of 
the theory we have particle trajectories, but we have neither inertial nor non-inertial trajectories. This 
result may look attractive in this interpretive setup as well, for the problem of absolute rest does not 
come up, and there is no friction with the geodesic principle in spacetime theories—the principle just 
does not apply in this approach.  

However, the difficulty connected to the classical limit of the theory that we found in the nomological 
first-order approach comes up here too. We still need the term 𝑈𝑈 in order to define the conditions under 
which quantum effects vanish and classical behavior emerges. We may take 𝑈𝑈 as a term with a mere 
formal meaning in the quantum theory, but the problem is that forces get indeed well-defined in the 
classical limit 𝑈𝑈 → 0, and, a fortiori, the notion of inertial motion gets also well-defined in that limit. 
Thus, we level the same worry as in the previous subsection: the dispositionalist/first-order interpreta-
tion involves a case of semantic and ontological incommensurability between the quantum and the clas-
sical realms. 

However, I would like to suggest that the metaphysical baggage of the dispositionalist account may 
be of some help with respect to this difficulty. Let us recall that 𝜓𝜓 is taken as a term that determines a 
dispositional property to adopt a certain velocity. Now, the ontological framework of this interpretation 
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may allow us to conceive that when the conditions for classicality are met, the fundamental property Φ 
determines an acceleration rather than a velocity. That is, if 𝑈𝑈 → 0, the mathematical expression of Φ 
becomes a map 𝒞𝒞 ∶  𝜓𝜓𝑡𝑡  →  𝑌𝑌𝑡𝑡 determined by the Newtonian equation 𝐹𝐹 = −∇𝑉𝑉, where 𝑌𝑌𝑡𝑡 is a vector-field 
on 𝑄𝑄 representing acceleration (and Eq. (1) becomes a restrictive initial condition for the particles mo-
menta). In a word, if we define the dispositional property Φ in broader terms, that is, as a disposition of 
the particles in the state 𝜓𝜓 to move in a certain way given a configuration 𝑄𝑄—sometimes adopting veloc-
ity values, sometimes adopting acceleration values—this framework may be able to make room for a 
picture of how forces and accelerations emerge from a first-order quantum dynamics. That is, the role 
of the term 𝑈𝑈 would be to define when the property Φ determines the adoption of a certain velocity 
under a certain configuration, and when it determines the adoption of a certain acceleration under a 
certain configuration. 

 
 

6. CONCLUDING SUMMARY 
 

In spite of the natural expectation that inertial trajectory is a well-defined concept in a quantum 
theory in which particles have determinate positions at all times, we have found that this expectation is 
met only in the case of a physical field reading of the wavefunction, in second-order formulation. How-
ever, in all three versions of this interpretation, the conceptual distinction between inertial and non-
inertial trajectories is undermined by the problems associated to the foundations of the quantum force, 
for the latter concept is crucial to trace the distinction. None of the proposals addressed in section 3.1 
can provide a fully satisfactory description of how the quantum force is exerted on the particles. Since 
in Bohm’s proposal the wavefunction in configuration space represents the pilot-wave, the problems of 
communication and dynamical incompleteness come up. Norsen’s formulation of the theory avoids the 
first problem by defining the ontology of the theory exclusively in terms of entities in physical 3-space. 
However, this proposal is not able to elude the problem of dynamical incompleteness, for the evolution 
of the conditional wavefunction is dynamically indifferent to the trajectory of the corresponding parti-
cle. Belousek’s approach avoids both problems by denying Ψ the status of a physical field. Yet, since in 
this interpretation there is no pilot-wave, while 𝑈𝑈 still represents a potential field that determines quan-
tum forces in 3-space, the ontological status of such forces is very mysterious. 

Valentini’s approach is an attempt to retain the explanatory power of the pilot-wave, while formu-
lating the dynamics of the theory in more economic, first-order terms. However, the very idea of the 
quantum Aristotelian force is problematic, for the notion of a force inducing a velocity rather than an 
acceleration implies a drastic change in the customary notion of force-free state of motion: in Valentini’s 
proposal, inertia is associated to absolute rest. Now, since the symmetries of the theory are given by the 
Galilean transformations, the privileged frame that a state of absolute rest requires cannot be cogently 
introduced. Valentini’s attempt to define a suitable kinematics is rather unconvincing, and it conveys a 
preferred frame of reference that is empirically undetectable and explanatorily superfluous.  

By excising the pilot-wave from the theory’s ontology, the nomological interpretation of the wave-
function certainly avoids both the problem of communication and the problem of dynamical incom-
pleteness. In the second-order formulation of the dynamics, however, the criterion for inertial motion is 
simply that the classical force −∇𝑉𝑉 vanishes. Now, when this requirement is observed and −∇𝑈𝑈 ≠ 0, we 
have instances of inertial motion that are not rectilinear and uniform. This result is problematic insofar 
as it implies a violation of the principle (theorem) that inertial trajectories are essentially associated to 
geodesics, which holds both in classical and relativistic spacetime theories.  
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The first-order version of the nomological view is not affected by this problem. Since the Newtonian 
concepts of force and acceleration play no dynamical role in this interpretation, the distinction between 
inertial and non-inertial trajectories cannot be traced. Although the concept of trajectory is well defined, 
it does not make sense to discern inertial and non-inertial trajectories. Therefore, the aforementioned 
principle of spacetime theories simply does not apply. Furthermore, since in dB-B theory the classical 
limit is formally clear, this interpretation has the resources to determine the condition under which the 
geodesic principle becomes meaningful and respected—namely, when 𝑈𝑈 → 0. However, the absence of 
a concept of inertial motion illustrates that in this interpretation there is an important loose end. That 
is, we end up with incommensurable descriptions of the quantum and the classical levels. In the former, 
forces and accelerations do not play any role, whereas in the latter they become dynamically essential, 
and so does the distinction between inertial and non-inertial motion. 

We obtained a similar result in the case of the dispositional reading of the wavefunction. Since there 
is no pilot-wave in the ontology, the problems of communication and dynamical incompleteness are 
avoided from the outset. However, given that the wavefunction does not represent a physical entity, 
the criterion for inertial motion in the second-order formulation is that −∇𝑉𝑉 is 0, regardless of the value 
of −∇𝑈𝑈. This criterion, as we just said, permits non-geodesic inertial trajectories, so the friction with the 
geodesic principle in spacetime theories comes up. 

Finally, since in the first-order version of the dispositional interpretation forces and accelerations 
play no dynamical role, the distinction between inertial and non-inertial trajectories cannot be traced, 
so the tension with the geodesic principle does not arise. Now, although the threat of incommensurable 
descriptions of the quantum and the classical realms comes up, the metaphysical baggage of the dispo-
sitionalist outlook can be of some help. Defining the property as a disposition of the quantum particles 
to move in a certain way, opens the possibility of understanding 𝑈𝑈 as a term that distinguishes in what 
cases that property manifests as a disposition to adopt a certain velocity, and in what cases the property 
manifests as a disposition to adopt a certain acceleration. 

The main results hereby obtained can be schematically summarized in the following table: 
 
dB-B Theory and  

Inertial Trajectories 
Ψ Physical Field Ψ Nomological Ψ Dispositional 

Second-order 

 

Inertial Motion: 
−∇(𝑉𝑉 + 𝑈𝑈) = 0 

 

Inertial Motion: 
−∇𝑉𝑉 = 0 

Inertial Motion: 
−∇𝑉𝑉 = 0 

 

Problem of communication     
(Bohm) 

 

Dynamical incompleteness     
(Bohm, Norsen) 

 

Sourceless quantum forces 
(Belousek) 

 

Non-geodesic inertial 
motion 

Non-geodesic inertial 
motion 

First-order 

 

Inertial motion:  
∇𝑆𝑆 = 0 

 

 

Inertial motion: 
undefined 

 

Inertial motion: 
undefined 

 

Absolute rest  
and privileged frame 

 

Incommensurability Incommensurability 

 
Table 1. Conditions for inertial motion, and related problems, in dB-B theory 

 
 
Given this diagnosis of the situation in dB-B theory with respect to the concept of inertial trajectories, 

I think that the interpretive proposals that score higher are the nomological and the dispositional, with 
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a first-order equation of motion. The problem of communication, dynamical incompleteness, mysteri-
ous quantum primitive forces, absolute rest in a Galilean invariant theory, and friction with the geodesic 
principle in spacetime theories, are all deep difficulties that do not look easy to solve—if solvable at all. 
On the other hand, the threat of incommensurability, although important, seems to be a problem that, 
at least in principle, can be faced—and the reply that the dispositionalist can offer is a suggestion for a 
starting point. That is, more than an unsurmountable problem, the incommensurability menace seems 
to identify a blank that needs to be filled: we certainly need a more detailed story about how the second-
order dynamics of classical mechanics emerges from a quantum world governed by a first-order dy-
namics. 

This evaluative conclusion is somewhat unexpected, for, at first sight at least, dB-B theory seemed 
to be a theory able to draw a cogent distinction between inertial and non-inertial motion. However, the 
ontological and dynamical problems associated to the pilot-wave and the quantum force, the problem 
of absolute rest, and the friction with the geodesic principle can be jointly avoided only by readings of 
the theory in which the conceptual tools to trace the distinction are no longer available. In short, by 
critically addressing interpretations of dB-B theory from the point of view of the concept of inertial 
motion, we find important difficulties in all of them, and it turns out that interpretations in which the 
concept is absent are the least problematic. 
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1 For simplicity, I gloss over the issue that position eigenstates are not normalizable, so that, strictly speaking, a quantum 
state is never an eigenstate of the position operator. 
Modal interpretations do not accept the eigenstate ↔ eigenvalue link, so that a quantum system can possess a definite 
value for a certain observable even if its state is a superposition in the basis of the corresponding operator. However, in 
none of the different versions of the modal interpretation the value-state necessarily corresponds to a definite value for 
the position observable. 
2 For a historical treatment of de Broglie’s work, see Bacciagaluppi and Valentini (2009). De Broglie’s original papers are 
collected in de Broglie and Brillouin (1928). For a conceptual analysis of Bohm’s work and the historical and sociological 
conditions surrounding its reception, see Cushing (1994). 
3 Skow (2010) identifies an interesting worry with respect to (P3). That the theory is not affected by the measurement 
problem strongly relies on the distribution postulate (P4), whose conservation over time is guaranteed by Eq. (3). Now, 
Eq. (1) is not the only equation of motion that complies with distribution conservation, any formula of the form 𝐯𝐯�(𝑞𝑞, 𝑡𝑡) =
𝐯𝐯(𝑞𝑞, 𝑡𝑡) + 𝑤𝑤(𝑞𝑞,𝑡𝑡)

|Ψ|2
, where 𝐯𝐯(𝑞𝑞, 𝑡𝑡) is a solution of Eq. (1) and 𝑤𝑤(𝑞𝑞, 𝑡𝑡) is divergence free, satisfies the conservation condition Eq.(3). 

Dürr, Goldstein, and Zanghì (1992, 1996) offer an argument to justify the choice of Eq. (1) in that, assuming certain sym-
metry conditions that implement a Galilean invariance constraint, Eq. (1) is the simplest law of motion that can be derived. 
Skow claims that the derivation is flawed because the symmetry assumptions it relies on cannot be justified. Thus, he 
claims, the symmetry argument cannot count as a reason to pick Eq. (1), among all possible choices, as the first-order 
equation of motion of the theory. 
4 Eq. (4) can be derived in the following way (see Holland 1993, 74). We take Eq. (2) (for simplicity, in the single-particle 
system case), with 𝑈𝑈 = − ℏ2

2𝑚𝑚
∇2𝑅𝑅
𝑅𝑅

. Rearranging terms and applying the gradient operator ∇ we get 
 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

+ �
1
𝑚𝑚
�∇𝑆𝑆 ∙ ∇� ∇𝑆𝑆 = −∇(𝑈𝑈 + 𝑉𝑉) 

 
Now, since ∇𝑆𝑆 = 𝑚𝑚𝐯𝐯 = 𝐩𝐩 (Eq. (1)), and given the operator 𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝐯𝐯 ∙ ∇⁄⁄ , we get 𝑑𝑑𝐩𝐩

𝑑𝑑𝑑𝑑
= −∇(𝑈𝑈 + 𝑉𝑉). 

5 I use ‘quasi-Newtonian’ instead of ‘Newtonian’ given the peculiar quantum features of dB-B theory that are not present 
in classical physics (entanglement, non-locality, contextuality, etc.). 
6 This tripartite classification of the interpretations of the wavefunction in dB-B theory is advocated by (Belot 2012). Esfeld 
et al. (2014) qualify the dispositionalist account of Ψ as a type of nomological interpretation, in which the nomological 
wavefunction is traced back to the expression of a dispositional property: “According to this view, it is essential for a 
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property to induce a certain behavior in the objects that instantiate the property in question; the law then expresses that 
behavior” (Esfeld et al. 2014, 784). I think that the divergence between Belot and Esfeld and co-authors is mainly a matter 
of terminology: Belot assumes a conception of scientific laws that does not make room for dispositionalism, whereas Esfeld 
and co-authors understand scientific laws in broader terms, with Humeanism and dispositionalism as the two main pos-
sibilities. For the purpose of this work, Belot’s classification is more schematic, and it allows to trace an important differ-
ence between the nomological view and the dispositionalist interpretation that is relevant for our subject. 
7 One must be careful here, though. Due to entanglement and the associated non-local correlations, in dB-B theory a par-
ticle is never strictly free. Anyhow, even if there were no free quantum particles in the universe, the notion of a particle 
following an inertial trajectory is conceptually well defined. Furthermore, there are (rather idealized) physical contexts in 
dB-B in which particle motion is indeed inertial, see (Allori et al. 2002). The situation is actually not substantially different 
than in classical mechanics. Even if there were no free Newtonian particles in the universe, the concept of a particle fol-
lowing an inertial trajectory is conceptually well defined, and it plays an important role in the foundations of the theory. 
8 The problem may be alleviated by arguing that 3-space somehow supervenes on 3𝑛𝑛-space, but Monton (2002) argues 
that this strategy does not work. The reason is that, in general, there are different ways in which the 𝑛𝑛 objects in a system 
can evolve in 3-space that are compatible with a particular evolution of the corresponding objects in 3𝑛𝑛-space: there is no 
way to specify which dimensions in configuration space correspond to which particle. In the case of the dB-B theory, the 
evolution of the particles in 3-space is underdetermined by the evolution of the universal particle in 3𝑛𝑛-space. 
9 Norsen presents his toy-theory with a first-order equation of motion, but he does not comment on the possibility of a 
second-order dynamics. We explore this possibility here. 
10 To be fair, Belousek is aware of this problem, and because of it, he evaluates his interpretation as a provisional approach: 
“On this view quantum forces would not even have their origin in the quantum state itself, for it is just the interpretation 
of the quantum state as representing an entity subsisting in its own right that is being denied here. Instead, forces would 
simply exist on their own in addition to particles, and actual entities of both sorts would exist only in 3-dimensional space. 
One would have, then, a genuine dualistic ontology—equiprimordial particles and forces. Of course, one is left here with-
out an account of the origin of such forces [...]. So, because it is not completely satisfactorily ‘intuitive’, one might well 
regard the causal view proposed here as provisional [...], awaiting a better physical interpretation of the quantum poten-
tial” (Belousek 2003, 163). 
11 I refer to ‘Valentini’s approach’ to respect the authorship of the Aristotelian forces proposal. However, the following 
criticisms hold also for the first-order versions of Norsen’s and Belousek’s interpretations. That is, the problems I point 
out hold regardless of whether the Aristotelian forces are exerted by a quantum field in configuration space (Valentini), 
by a conditional field in 3-space (Norsen), or by nothing at all (Belousek). 
12 Moreover, the difference between real and inertial forces is not a mere assumption or a consensual convention. The 
reason why fictitious forces are taken as unreal is dynamical: real forces are essentially connected to interactions resulting 
in motion, whereas in the case of fictitious forces there is no such interaction. The Machian strategy that Valentini mentions 
to conceive fictitious forces as real is not convincing.  Just like in Mach’s principle, we would demand for a complete 
description of how the fictitious forces are generated by acceleration with respect to distant matter. 
13 To be fair, in the relativistic version of dB-B theory this problem gets softened. In a Minkowskian setup, the non-locality 
of the theory introduces causal correlations between spacelike separated events in the case of entangled subsystems. Fur-
thermore, the guidance equations of the field-version of the theory are not Lorentz invariant. Thus, it seems that a privi-
leged hyperplane of simultaneity is dynamically suggested, a hyperplane that in turn picks a privileged frame. Anyhow, 
the dynamic grounds to introduce a preferred frame in dB-B theory are connected to non-locality and to the failure of 
Lorentz invariance, not to Aristotelian forces and a state of absolute rest. 
14 Dürr, Goldstein, and Zanghì (1992) explain the meaning of Ψ⊥ in the following way. In standard quantum mechanics, 
given a system that has been measured by an apparatus, the composite wavefunction is of the form ∑ 𝜓𝜓𝛼𝛼⨂Φ𝛼𝛼𝛼𝛼 , where the 
different Φ𝛼𝛼 are the possible experiment outcomes, as given by apparatus pointer positions, for example. In dB-B theory, 
only one of those 𝛼𝛼, say, 𝛼𝛼0, is selected—depending deterministically on the initial configuration of the particle(s). To 
emphasize this feature of the theory, we can write the post-measurement composite state as 𝜓𝜓⨂Φ + Ψ⊥, where 𝜓𝜓 = 𝜓𝜓𝛼𝛼0, 
Φ = Φ𝛼𝛼0, and Ψ⊥ = ∑ 𝜓𝜓𝛼𝛼⨂Φ𝛼𝛼𝛼𝛼≠𝛼𝛼0 . In simple words, Ψ⊥ represents the ‘empty’ zones of the wavefunction of the composite 
system. 
The effective wavefunction is equivalent to Holland’s notion of effective factorization (Holland 1993, 287-289). Let us say 
that a wavefunction Ψ = Ψ(𝑥𝑥,𝑦𝑦) is strictly factorizable if and only if Ψ = 𝜓𝜓(𝑥𝑥)Φ(𝑦𝑦)—so that the subsystem 𝜓𝜓(𝑥𝑥) strictly 
factorizes (it gets dynamically isolated) from the rest of the universe. Strict factorizability is a highly unrealistic assump-
tion, for interaction between particles in the subsystems typically result in entanglement correlations. However, if 𝜓𝜓(𝑥𝑥) 
observes the condition expressed in Eq. (21) and if 𝑌𝑌𝑡𝑡 ∈ supp Φ𝑡𝑡, the 𝑥𝑥-subsystem effectively factorizes from the rest of the 
universe. Now, decoherence processes determining the interactions between a subsystem and its environment typically 
result in effective factorization. That is, for all practical purposes at least, the entanglement correlations between the 𝑥𝑥-
subsystem and its environment are dynamically idle—and thus, whenever it exists, the effective wavefunction of a sub-
system evolves according to the Schrödinger equation. 
15 The difficulties with a fully nomological reading that Goldstein & Zanghì refer to are that 𝜓𝜓 evolves over time, and that 
it is experimentally controllable. The first issue is troubling because laws are not supposed to change over time according 
to another dynamical law—in this case, according to the Schrödinger equation. This problem affects the universal wave-
function as well, and Goldstein and Zanghì (2013, 268-270) propose a tentative argument to face it—see also Solé (2013, 
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372). That 𝜓𝜓 is experimentally controllable is worrisome because the form of a physical law is not supposed to be under 
our control, but we can prepare a quantum system with a specific 𝜓𝜓. For the sake of the argument, we can dodge these 
problems and accept the view that the effective wavefunction is a quasi-nomological term.  
The nomological interpretation of the wavefunction in dB-B theory can adopt different forms depending on the particular 
conception of the laws of nature that is assumed (Humeanism, universalism, primitivism, etc.). However, those differences 
are not relevant for our subject. The important point here is that none of the different accounts of laws of nature states that 
a law is an entity in the physical world that dynamically interacts with other physical systems. This view that laws them-
selves are not elements of concrete physical reality holds also for the effective wavefunction, regardless of the metaphysics 
and epistemology of laws of nature one may assume. 
16 I thank Michael Esfeld (private communication) for this remark. 
17 Notice that this view does not consider the force itself as a beable, the beables are the object that exerts the force and the 
body on which it is exerted. A force is the measure of the interaction between these beables resulting in a change of state 
of motion. 
18 Pitowski did not present his proposal as a reformulation of the theory, but as a new generally covariant theory written 
in the spirit of Bohm’s approach: “The idea is as following: for each quantum state 𝜓𝜓, we absorb the effects of the “quantum 
potential” associated with 𝜓𝜓 into the metric 𝑔𝑔, while, at the same time, we demand that 𝜓𝜓 satisfies a covariant equation 
with respect to that same metric. In that way 𝜓𝜓 and 𝑔𝑔 are coupled in (essentially) 11 partial differential equations in 11 
unknowns” (Pitowski 1991, 343-344). Pitowski does not address the question of whether the proposed theory is predic-
tively equivalent or not to standard quantum mechanics and to dB-B theory, neither its formal and conceptual connection 
with general relativity. 
19 Notice that in the nomological first-order interpretation of dB-B theory the concept of energy plays no role either. But 
then one wonders about the meaning of the term 𝑉𝑉(𝑞𝑞, 𝑡𝑡) in the Schrödinger equation—it can hardly represent a potential 
in this interpretation. Perhaps it has to be understood in quasi-nomological terms as well, but Dürr, Goldstein and Zanghì 
do not address this worry. 
20 A worry concerning Suárez’s maneuver is that we could define a third-order dispositional property by differentiating 
Eq. (4) with respect to time, a property that would come to dynamically explain Ξ and its evolution—and we could then 
define a fourth-order property, and so on, (perhaps until the derivative is 0). True that such a maneuver would be against 
formal economy, but so is to include Eq. (4) as a part of the formalism. Besides, Suárez states that the justification of 
including a second-order dispositional property is explanatory, for the property expressed by 𝑈𝑈 in Eq. (4) explains Φ, but 
the putative higher-order properties would in turn explain the lower-order ones. 
21 And just as in the case of the second-order nomological interpretation, the maneuver of stipulating that both terms must 
vanish would not do the trick. Even in a dispositional reading of the wavefunction and of the classical potential, that 𝑉𝑉 
and 𝑈𝑈 are epistemically on a par (dispositional terms) does not mean that they have the same dynamical significance (−∇𝑉𝑉 
involves an interaction, −∇𝑈𝑈 does not). Furthermore, in the nomological approach we saw that it was possible to directly 
reify −∇𝑈𝑈, interpreting it as the expression of a primitive quantum force à la Belousek (on the pain of sacrificing the basic 
motivation of the approach); but such a maneuver does not make sense in the dispositional framework. If the dispositional 
property already determines the motion (no interaction present), why would we add a primitive quantum force? 

 
 
 
REFERENCES 
 

Acuña, P. (2014). On the Empirical Equivalence between Special Relativity and Lorentz's Ether 
Theory. Studies in History and Philosophy of Modern Physics, 46, 283-302. 

Allori, V., Dürr, D., Goldstein, S, & Zanghì, N. (2002). Seven Steps towards the Classical World. Journal 
of Optics B, 4, S482-S488. 

Anandan, J., & Brown, H. (1995). On the Reality of Space-Time Geometry and the Wavefunction. 
Foundations of Physics, 25, 349-360. 

Bacciagaluppi, G., & Valentini, A. (2009). Quantum Theory at the Crossroads: reconsidering the 1927 Solvay 
Conference. Cambridge University Press. 

Belot, G. (2012). Quantum States for Primitive Ontologists. European Journal for Philosophy of Science, 2, 
67-83. 

Belousek, D. (2003). Formalism, Ontology and Methodology in Bohmian Mechanics. Foundations of 
Science, 8, 109-172. 

25 
 

                                                                                                                                                                                          



Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “hidden” variables I-II. 
Physical Review, 85, 166-193. 

Brown, H., Elby, A., & Weingard, R. (1996). Cause and Effect in the Pilot-Wave Interpretation of 
Quantum Mechanics. In J. Cushing, A. Fine, & S. Goldstein, Bohmian Mechanics and Quantum 
Theory: an appraisal (pp. 309-320). Springer. 

Cushing, J. (1994). Quantum Mechanics: historical contingency and the Copehagen hegemony. Chicago: 
University of Chicago Press. 

de Broglie, L., & Brillouin, L. (1928). Selected Papers on Wave Mechanics. Blackie & Sons. 

Dickson, M. (2000). Are There Material Objects in Bohm's Theory? Philosophy of Science, 67, 704-710. 

Dürr, D., & Teufel, S. (2009). Bohmian Mechanics: the physics and mathematics of quantum theory. Springer. 

Dürr, D., Goldstein, S., & Zanghì, N. (1992). Quantum Equilibrium and the Origin of Absolute 
Uncertainty. Journal of Statistical Physics, 62, 843-907. 

Dürr, D., Goldstein, S., & Zanghi, N. (1996). Bohmnian Mechanics as the Foundations of Quantum 
Mechanics. In J. Cushing, A. Fine, & S. Goldstein, Bohmian Mechanics and Quantum Theory: an 
appraisal (pp. 21-44). Springer. 

Dürr, D., Goldstein, S., & Zanghi, N. (1997). Bohmian Mechanics and the Meaning of the Wave 
Function. In R. Cohen, M. Horne, & J. Stachel, Experimental Metaphysics: quantum mechanical 
studies for Abner Shimony (pp. 25-38). Kluwer Academic Publisher. 

Esfeld, M., Hubert, M., Lazarovici, M., & Dürr, D. (2014). The Ontology of Bohmian Mechanics. The 
British Journal for the Philosophy of Science, 65, 773-796. 

Goldstein, S., & Zanghì, N. (2013). Reality and the Role of the Wave Function in Quantum Theory. In 
D. Dürr, S. Goldstein, & N. Zanghi, Quantum Physics without Quantum Philosophy (pp. 263-278). 
Heidelberg: Springer. 

Holland, P. (1993). The Quantum Theory of Motion. Cambridge University Press. 

Janssen, M. (1995). A Comparison between Lorentz's Ether Theory and Special relativity in the Light of the 
Experiments of Trouton and Noble. Dissertation. 

Monton, B. (2002). Wave Function Ontology. Synthese, 130, 265-277. 

Norsen, T. (2010). The Theory of (Exclusively) Local Beables. Foundations of Physics, 40, 1858-1884. 

Norsen, T., Marian, D., & Oriols, X. (2015). Can the Wave Function in Configuration Space Be 
Replaced by Single-Particle Wave Functions in Physical Space? Synthese, 192, 
doi:10.1007/s11229-014-0577-0. 

Pitowski, I. (1991). Bohm's Quantum Potential and Quantum Gravity. Foundations of Physics, 21, 343-
352. 

Skow, B. (2010). On a Symmetry Argument for the Guidance Equation in Bohmian Mechanics. 
International Studies in the Philosophy of Science, 24, 393-410. 

Solé, A. (2013). Bohmian Mechanics without Wave Function Ontology. Studies in History and Philosophy 
of Modern Physics, 44, 365-378. 

Suárez, M. (2015). Bohmian Dispositions. Synthese, 192, doi:10.1007/s11229-015-0741-1. 

26 
 



Valentini, A. (1992). On the Pilot-Wave Theory of Classical, Quantum, and Subquantum Physics. 
Dissertation. 

Valentini, A. (1996). Pilot-Wave Theory of Fields, Gravitation and Cosmology. En J. Cushing, A. Fine, 
& S. Goldstein, Bohmian Mechanics and Quantum Theory: an appraisal (págs. 45-66). Springer. 

Valentini, A. (1997). On Galilean and Lorentz Invariance in Pilot-Wave Dynamics. Physics Letters A, 
228, 215-222. 

Weatherall, J. O. (2011). On the Status of the Geodesic Principle in Newtonian and Relativistic Physics. 
Studies in History and Philosophy of Modern Physics, 42, 276-281. 

Weatherall, J. O. (2011). The Motion of a Body in Newtonian Theories. Journal of Mathematical Physics, 
52, 032502. 

 

27 
 


	2. Interpreting de Broglie-Bohm Theory
	3. Physical field(s)

