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Abstract

Bayes logics based on Bayes conditionalization as a probability updating mechanism have

recently been introduced in [2]. It has been shown that the modal logic of Bayesian belief

revision determined by probabilities on a finite set of elementary propositions or on a standard

Borel space is not finitely axiomatizable [2, 5]. Apart from Bayes conditionalization there are

other methods, extensions of the standard one, of updating a probability measure. One

such important method is Jeffrey’s conditionalization. In this paper we consider the modal

logic JL<ω of probability updating based on Jeffrey’s conditionalization where the underlying

measurable space is finite. By relating this logic to the logic of absolute continuity and to

Medvedev’s logic of finite problems, we show that JL<ω is not finitely axiomatizable. The

result is significant because it indicates that axiomatic approaches to belief revision might be

severely limited.

Keywords: Bayesian inference, Bayes learning, Bayes logic, Medvedev frames, Jeffrey con-

ditionalization, Jeffrey logic, Non finite axiomatizability.

1 Introduction and overview

In this paper we continue the investigations initiated in the recent paper [2] concerning logics

of probabilistic updating. [2] introduced Bayes logics to study the modal logical properties of

statistical inference based on Bayes conditionalization. The core idea was to look at Bayes condi-

tionalization as a relation between probability measures: the probability measure q can be Bayes-

accessed from the probability measure p if for some evidence (event) A we have q(·) = p(· | A).

Equivalently, we say in this situation that “q can be Bayes-learned from p”. That “it is possible to

obtain/learn q from p” is clearly a modal talk and calls for a logical modeling in terms of concepts

of modal logic. This logical modeling has been done in [2] and that paper also hints that a similar

analysis could be carried out when Bayes accessibility is replaced by the more general accessibility

based on Jeffrey conditionalization. Indeed, Bayesian belief revision is just a particular type of

belief revision: Various rules replacing the Bayes’s rule have been considered in the context of

belief change, one particular type is Jeffrey conditionalization (see [7] and [4]). Suppose {Ei}i<n
is a finite partition of X with p(Ei) 6= 0 and we are given a probability measure r : A → [0, 1],
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called the uncertain evidence, on the subalgebra A of B generated by this partition. Given a prior

probability p using the evidence r we infer to the measure q below by the “Jeffrey rule”:

q(H) =
∑
i<n

p(H | Ei)r(Ei) (1)

Let 〈X,B〉 be a measurable space and denote by M(X,B) the set of all probability measures

over 〈X,B〉. Bayes accessibility relation has been defined in [2] as follows: For v, w ∈M(X,B) we

say that w is Bayes accessible from v if there is an A ∈ B such that w(·) = v( · | A). We denote

the Bayes accessibility relation on M(X,B) by R(X,B). The notion of Bayes frames and Bayes

logics have been introduced in [2] as follows.

Definition 1.1 (Bayes frames). A Bayes frame is a Kripke frame 〈W,R〉 that is isomorphic, as a

directed graph, to F(X,B) = 〈M(X,B), R(X,B)〉 for a measurable space 〈X,B〉. �

Definition 1.2 (Bayes logics). A family of normal modal logics have been defined in [2] based on

finite or countable or countably infinite or all Bayes frames as follows.

BL<ω = {φ : (∀n ∈ N)F(n, ℘(n))  φ} (2)

BLω = {φ : F(ω, ℘(ω))  φ} (3)

BL≤ω = BL<ω ∩BLω (4)

BLst = {φ : (∀Standard Borel 〈X,B〉) F(X,B)  φ} (5)

BL = {φ : (∀ Bayes frames F) F  φ} (6)

We call BL<ω (resp. BL≤ω) the logic of finite (resp. countable) Bayes frames; however, observe

that the set of possible worlds M(X,B) of a Bayes frame F(X,B) is finite if and only if X is a

one-element set, otherwise it is at least of cardinality continuum. BLst is called the Standard

Bayes logic. �

Bayes logics in Definition 1.2 capture the laws of Bayesian learning: BL<ω is the set of general

laws of Bayesian learning based on all finite Bayes frames, while the general laws of Bayesian

learning independent of the particular representation 〈X,B〉 of the events is then the modal logic

BL. The following theorem has been proved in [2, 5]1.

Theorem 1.3. S4 ⊆ BL ⊆ BLst ⊆ S4.1 ( BLω = BL≤ω ( S4.1 + Grz ( BL<ω.

The finite Bayes frame case has been completely described in [2] and, in particular, it has been

shown that BL<ω has the finite frame property and is not finitely axiomatizable (see Propositions

5.8, 5.9 in [2]). The standard case had been discussed in [5] it has been shown that BLst is not

finitely axiomatizable.

Given two measures p, q ∈M(X,B) one can define Jeffrey accessibility: q is Jeffrey accessible

from p if there is a partition {Ei}i<n and uncertain evidence r such that eq. (1) holds. Denote

the corresponding accessibility relation by J(X,B).

1Basic terminology of modal logic, such as what S4 is, is recalled at the end of the introduction.
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Definition 1.4 (Jeffrey frames). A Jeffrey frame is a Kripke frame 〈W,R〉 that is isomorphic, as

a directed graph, to J (X,B) = 〈M(X,B), J(X,B)〉 for a measurable space 〈X,B〉. �

To capture the laws of Jeffrey learning we define the following normal modal logics.

Definition 1.5 (Jeffrey logics). We define a family of normal modal logics based on finite or

countable or countably infinite or all Jeffrey frames as follows.

JLn = {φ : J (n, ℘(n))  φ} (7)

JL<ω = {φ : (∀n ∈ N)J (n, ℘(n))  φ} (8)

JLω = {φ : J (ω, ℘(ω))  φ} (9)

JL≤ω = JL<ω ∩ JLω (10)

JLst = {φ : (∀Standard Borel 〈X,B〉) J (X,B)  φ} (11)

JL = {φ : (∀ Jeffrey frames J ) J  φ} (12)

We call JL<ω (resp. JL≤ω) the logic of finite (resp. countable) Jeffrey frames; however, observe

that the set of possible worlds M(X,B) of a Jeffrey frame J (X,B) is finite if and only if X is

a one-element set, otherwise it is at least of cardinality continuum. JLst is called the Standard

Jeffrey logic. �

Our aim in this paper is to take the first steps in studying finite Jeffrey logic. In particular, we

will prove that finite Jeffrey logic JL<ω is not finitely axiomatizable (Theorem 3.7). To gain such

a result we follow the method presented in Shehtman [6] and we relate Jeffrey logic to Medvedev’s

logic of finite problems. (The necessary definitions and results will be recalled later on; for an

overview about Medvedev’s logic we refer to the book [3] and to Shehtman [6]).

Structure of the paper. In the remaining part of the introduction we recall useful facts from

modal logic that we will make use of many times. In Section 2 it is shown that Jeffrey-accessibility

and the accessibility based on absolute continuity coincide, provided the underlying measurable

space is finite. Theorem 2.8 clarifies the containment relation between the logics of absolute

continuity: the different logics are all comparable, and the larger the cardinality of X, the smaller

the logic. The standard modal logical features of the Jeffrey logics are also determined in section

2. Section 3 is devoted to prove that the finite Jeffrey logic JL<ω is not finitely axiomatizable.

Finally, in section 4 we close with some open problems.

Useful preliminaries. By a frame we always understand a Kripke frame, that is, a structure of

the form F = 〈W,R〉, where W is a non-empty set (of possible worlds) and R ⊆W ×W a binary

relation (accessibility). Kripke models are tuples M = 〈W,R, [| · |]〉 based on frames F = 〈W,R〉,
and [| · |] : Φ→ ℘(W ) is an evaluation of propositional letters. Truth of a formula ϕ at world w is

defined in the usual way by induction:

• M, w  p ⇐⇒ w ∈ [| p |] for propositional letters p ∈ Φ.

• M, w  ϕ ∧ ψ ⇐⇒ M, w  ϕ AND M, w  ψ.
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• M, w  ¬ϕ ⇐⇒ M, w 6 ϕ.

• M, w  ♦ϕ ⇐⇒ there is v such that wRv and M, v  ϕ.

Formula ϕ is valid over a frame F (F  ϕ in symbols) if and only if it is true at every point in

every model based on the frame. For a class C of frames the modal logic of C is the set of all

modal formulas that are valid on every frame in C:

Λ(C) =
{
φ : (∀F ∈ C) F  φ

}
(13)

Λ(C) is always a normal modal logic. Let us recall the most standard list of modal axioms (frame

properties) that are often considered in the literature (cf. [1] and [3]).

Basic frame properties

Name Formula Corresponding frame property

T �φ→ φ accessibility relation R is reflexive

4 �φ→ ��φ accessibility relation R is transitive

M �♦φ→ ♦�φ 2nd order property not to be covered here

Grz �(�(φ→ �φ)→ φ)→ φ T + 4 + ¬∃P (∀w ∈ P )(∃v wRv)(v 6= w ∧ P (v))

S4 T + 4 preorder

S4.1 T + 4 + M preorder having endpoints

For two frames F = 〈W,R〉 and G = 〈W ′, R′〉 we write FEG if F is (isomorphic as a frame to) a

generated subframe of G. We recall that if FEG, then G  φ implies F  φ, whence Λ(G) ⊆ Λ(F)

(see Theorem 3.14 in [1]). If w ∈W , then we write Fw to denote the subframe of F generated by

w, and we call such subframes point-generated subframes. Further, let F � G denote a surjective,

bounded morphism (sometimes called p-morphisms). Such morphisms preserve the accessibility

relation and have the zig-zag property (see [1]). Recall that if F � G, then F  φ implies G  φ,

hence Λ(F) ⊆ Λ(G) (see Theorem 3.14 in [1]).

2 The modal logic of absolute continuity

Recall that for p, q ∈M(X,B) we say that q is absolutely continuous with respect to p (q � p in

symbols) if p(A) = 0 implies q(A) = 0 for all A ∈ B. Let now assume that X = {x0, . . . , xn−1} is

finite (and hence B = ℘(X)) and take any p ∈ M(X,℘(X)). If q ∈ M(X,℘(X)) is a probability

measure such that q � p, then by taking the partition Ei = {xi} for i < n and the probability

r(Ei) = q(Ei), we get

q(H) =
∑
i<n

p(H | Ei)r(Ei) (14)

This means that given any prior probability p and an other probability q that is absolutely con-

tinuous with respect to p, if the probability space is finite, then q can be obtained from p by the

Jeffrey rule. In other words, absolute continuity and Jeffrey accessibility coincide in the finite

case. This motivates us to introduce Kripke frames where the accessibility relation is defined by

absolute continuity, as follows.
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Definition 2.1. For a probability space 〈X,B〉 we define the Kripke frame

A(X,B) =
〈
M(X,B), �

〉
(15)

where � stands for absolute continuity: For probability measures p, q ∈M(X,B) we write p� q

(or q � p) if p(A) = 0 implies q(A) = 0 for all A ∈ B. �

For a finite, or countably infinite set X we write A(X) in place of A(X,℘(X)).

Definition 2.2 (Logics of Absolute Continuity). In a similar manner to Definitions 1.2 and 1.5

we define a family of normal modal logics based on absolute continuity. Let κ be a cardinal and

n ∈ {=, <,≤}.

ACLnκ = {φ : (for all 〈X,B〉 with |X|n κ) A(X,B)  φ} (16)

ACLst = {φ : (∀ standard Borel 〈X,B〉) A(X,B)  φ} (17)

ACL = {φ : (∀〈X,B〉) A(X,B)  φ} (18)

�

Observe that the set of possible worlds M(X,B) of a frame A(X,B) is finite if and only if X

is a one-element set. What does the frame A(X) look like? Suppose X is a countable set. Then

for p, q ∈M(X,℘(X)) we have

p� q ⇐⇒ supp(p) ⊇ supp(q) (19)

where supp(p) = {x ∈ X : p({x}) 6= 0}. Therefore, probability measures having the same support

are all accessible from each other.

Proposition 2.3. JLn = ACLn and JL<ω = ACL<ω for any n ∈ N.

Proof. We remarked at the beginning of this section that for a finite X, a probability q ∈
M(X,℘(X)) can be obtained from p ∈ M(X,℘(X)) by means of Jeffrey conditionalizing if and

only if p � q. This implies that the frames A(X) and J (X) are identical. Consequently

ACLn = Λ(A(n)) = Λ(J (n)) = JLn, and ACL<ω =
⋂
n ACLn =

⋂
n JLn = JL<ω.

Next we recall the notion of Medvedev frames and Medvedev logic from [6].

Definition 2.4. For a non-empty set X we let P0 = 〈℘(X)r{∅},⊇〉. P0(X) is called a Medvedev

frame. For a cardinality κ and n ∈ {=, <,≤} we define

MLnκ =
{
φ : (for all |X|n κ) P0(X)  φ

}
(20)

MLnκ is called the Medvedev logic based on sets |X|n κ. �

P0(X) can be visualized as a Boolean algebra with the least element ∅ cut out. Figure 2 shows

P0({1, 2, 3}). For a finite X, the frame A(X) can be obtained by blowing up each possible world

A ∈ ℘(X)− {∅} of P0(X) into the continuum sized complete graph having probability measures

p with supp(p) = A as vertices; except for the singleton sets {x} ∈ ℘(X) − {∅}: there is a single

probability with support {x}, the Dirac measure δ{x}. The frame A({1, 2, 3}) is sketched in Figure

2.
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {1} {3} {2} {3}

Figure 1: Medvedev frame P0({1, 2, 3}). Arrows indicating transitivity are not drawn. We stress

that the copies of the nodes {1}, {2} and {3} are identical, thus P0(X) is not a tree but rather a

Boolean algebra without the least element.

•
δ{1}

•
δ{2}

•
δ{1}

•
δ{3}

•
δ{2}

•
δ{3}

supp = {1, 2} supp = {1, 3} supp = {2, 3}

supp = {1, 2, 3}

Figure 2: The frame A({1, 2, 3}). Arrows inside the bubbles and arrows indicating transitivity are

not noted. We stress again that the copies of the nodes δ{1}, δ{2} and δ{3} are identical.

Lemma 2.5. For a countable X the mapping f : A(X)� P0(X) defined by

f(p) = supp(p) (21)

is a surjective bounded morphism.

Proof. Surjectivity of f is straightforward. f is a homomorphism (preserves accessibility) because

for p, q ∈M(X,℘(X)) we have p� q if and only if supp(p) ⊇ supp(q) (see (19)). To verify the zig-

zag property, suppose supp(p) ⊇ A. We need q ∈M(X,℘(X)) such that p� q and supp(q) = A.

Finding such a q is easy, take for example the conditional probability q(·) = p(· | A).

Corollary 2.6. ACLnκ ⊆ MLnκ holds for n ∈ {=, <,≤} and κ countable.

Proof. Immediate from Lemma 2.5.

Corollary 2.7. JLn ⊆ MLn and JL<ω ⊆ ML<ω for all n ∈ N.
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Proof. Combine Corollary 2.6 and Proposition 2.3.

Theorem 2.8. The following containments hold.

S4 ⊆ ACL ( S4.1 ⊆ ACLω = ACL≤ω ⊆ ACL<ω ⊆ ACLn+k ⊆ ACLn.

Proof. From the very definition the following containments are straightforward:

ACL ⊆ ACL≤ω ⊆ ACL<ω ⊆ ACLn and ACL ⊆ ACL≤ω ⊆ ACLω (22)

Next we show ACLm ⊆ ACLn for m > n and ACLω ⊆ ACL<ω. The proof relies on the next

lemma. If 〈X,B〉 and 〈Y,S〉 are measurable spaces, then we say that 〈X,B〉 can be embedded into

〈Y,S〉 (〈X,B〉 ↪→ 〈Y,S〉 in symbols) if there is a surjective measurable function f : Y → X such

that f−1 : B → S is a σ-algebra homomorphism.

Lemma 2.9. If 〈X,B〉 ↪→ 〈Y,S〉, then A(Y,S)� A(X,B)

Proof. Let f : Y → X be a surjective measurable function (f−1 : B → S is a σ-algebra

homomorphism). For a probability measure p ∈ M(Y,S) let us assign the probability measure

F (p) ∈M(X,B) defined by the equation

F (p)(A) = p
(
f−1(A)

)
(A ∈ B)

Then F : A(Y,S)� A(X,B) is a surjective bounded morphism.

Now, for m > n we have A(m) � A(n) and A(N) � A(n). Hence, the containments

ACLm ⊆ ACLn for m > n and ACLω ⊆ ACL<ω follow. We also obtain ACLω = ACL≤ω as

ACL≤ω = ACLω ∩ACL<ω.

To see S4 ⊆ ACL note that absolute continuity is reflexive and transitive (but not antisym-

metric), so every frame A(X,B) = 〈M(X,B),�〉 validates S4 = T + 4. If a frame validates S4,

then it validates M (and thus S4.1) if and only if the accessibility relation has endpoints in the

following sense:

∀w∃u(w � u ∧ ∀v(u� v → u = v)) (23)

If X is countable, then the Dirac measures δ{x} for x ∈ X are endpoints, therefore S4.1 ⊆ ACL≤ω.

To see that M 6⊆ ACL it is enough to give an example for an A(X,B) in which there are paths

without endpoints. Consider the frame A = 〈M([0, 1],B),�〉 where [0, 1] is the unit interval and

B is the Borel σ-algebra. Then, for the Lebesgue measure w we have

A 6|= ∃u(w � u ∧ ∀v(u� v → u = v)) (24)

We note that none of the logics ACLn (for n > 1) validate the Grzegorczyk axiom Grz as

A(X) always contain a complete subgraph of cardinality continuum.
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3 The logic of finite Jeffrey frames is not finitely axiomati-

zable

The logic of finite Jeffrey frames JL<ω is proved to be equal to ACL<ω (see Proposition 2.3).

We aim at proving ACL<ω is not finitely axiomatizable. We show first that ACL<ω is a logic of

finite frames (thus it has the finite frame property).

For each k, n ∈ N we define the finite frame Ak(n) as follows. Take the frame A(n). For each

non-singleton set A ⊆ n the frame A(n) contains a complete subgraph of cardinality continuum

(measures p with support supp(p) = A). Replace this infinite complete graph with the complete

graph on k vertices and keep everything else fixed. A more precise definition is the following.

Definition 3.1. Let n, k > 0 be natural numbers. For each non-singleton set a ∈ ℘(n)−{∅} take

new distinct points [a]1, . . . , [a]k, and for each singleton a ∈ ℘(n) take [a]1 = · · · = [a]k to be a

single new point. The set of possible worlds of the frame Ak(n) is the set

Ak(n) =
{

[a]1, . . . , [a]k : a ∈ ℘(n)− {∅}
}

(25)

For two points [a]i, [b]j ∈ Ak(n) we define the accessibility relation → as

[a]i → [b]j if and only if a ⊇ b (26)

�

Figure 3 illustrates the frame A3(3) (arrows indicating transitivity are omitted).

[{1}] [{2}] [{1}] [{3}] [{2}] [{3}]

Figure 3: The frame A3(3). Arrows indicating transitivity are not drawn. We stress that vertices

[{1}], [{2}] and [{3}] at the bottom has been drawn twice though the copies are identical.

Lemma 3.2. For all n and k we have A(n)� Ak(n).

Proof. For a measure p ∈ M(n) the support supp(p) is a non-empty subset of n, therefore

[supp(p)]1, . . ., [supp(p)]k are elements of Ak(n). Take any mapping f : M(n)→ Ak(n) such that

f(p) = [supp(p)]i for some i ∈ {1, . . . , k} (27)
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and f is a surjection. Such a mapping clearly exists as for each a ∈ ℘(n)− {∅} we have

|{p : supp(p) = a}| = 2ℵ0 > k (28)

We claim that f is a surjective bounded morphism:

Homomorphism. Take p, q ∈ M(n) and suppose f(p) = [supp(p)]i, f(q) = [supp(q)]j . Then

p� q if and only if supp(p) ⊇ supp(q) if and only if [supp(p)]i → [supp(q)]j .

Zag property. Assume f(p) → [a]i for some a ∈ ℘(n) − {∅}. This can be the case if and only

if supp(p) ⊇ a. By surjectivity of f there is q such that f(q) = [a]i, whence supp(p) ⊇ supp(q)

which means p� q.

Lemma 3.3. For each modal formula ϕ there is k ∈ N such that A(n) 1 ϕ implies Ak(n) 1 ϕ.

Proof. We prove that if ϕ uses the propositional letters p1, . . . , pk only, then A(n) 1 ϕ implies

A2k(n) 1 ϕ. If A(n) 1 ϕ, then there is an evaluation V such that the model 〈A(n), V 〉 1 ϕ.

The truth of a formula in a model depends only on the evaluation of the propositional letters the

formula uses, therefore we may assume that V is restricted to p1, . . ., pk.

For x ∈ A(n) we define a 0–1 sequence of length k according to whether x ∈ V (pi) holds for

1 ≤ i ≤ k:

Px(i) =

{
1 if x ∈ V (pi)

0 otherwise.
(1 ≤ i ≤ k) (29)

As there are 2k different 0–1 sequences of length k, the number of possible Px’s is at most 2k.

Take any surjective mapping f : A(n)→ A2k(n) such that

f(x) = [supp(x)]i for some i ∈ {1, . . . , k} (30)

and for x, y ∈ A(n) with supp(x) = supp(y) we have

Px = Py implies f(x) = f(y) (31)

Such a mapping f must exist as for each non-singleton a ∈ ℘(n)− {∅} we have 2k elements [a]1,

. . ., [a]2k in A2k(n), and this is the number of the possible Px’s. Let us now define the evaluation

V ′ over A2k(n) by

V ′(pi) = {f(x) : x ∈ V (pi)} (32)

for 1 ≤ i ≤ k. Condition (31) ensures that if x and y agree on p1, . . . , pk, then so do the images

f(x) and f(y). Thus, V ′ is well-defined. Following the proof of 3.2 one obtains that

f : 〈A(n), V 〉 � 〈A2k(n), V ′〉 (33)

is a surjective bounded morphism. As 〈A(n), V 〉  ¬ϕ we arrive at 〈A2k(n), V ′〉  ¬ϕ. This

means A2k(n) 1 ϕ.

Proposition 3.4. ACL<ω =
⋂∞
n=1

⋂∞
k=1 Λ (Ak(n)).
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Proof. By combining Lemmas 3.2 and 3.3 the equality

∞⋂
n=1

Λ (A(n)) =

∞⋂
n=1

∞⋂
k=1

Λ (Ak(n)) (34)

follows immediately. The right-hand side of the equation is the definition of ACL<ω.

Let us recall a theorem of Jankov and de Jongh

Lemma 3.5 (cf. Proposition 4 in [6]). Let F be a point-generated finite S4-frame. Then there

is a modal formula χ(F) with the following properties:

(A) For any S4-frame G we have G 1 χ(F) if and only if ∃u Gu � F .

(B) For any logic L ⊇ S4 we have L ⊆ Λ(F) if and only if χ(F) /∈ L.

Corollary 3.6. Let K be a class of finite, transitive frames, closed under point-generated sub-

frames. For every finite, transitive, point-generated frame F we have

F  Λ(K) if and only if ∃(G ∈ K) G � F .

Proof. (⇐) If there is G ∈ K such that G � F , then Λ(K) ⊆ Λ(G) ⊆ Λ(F).

(⇒) By way of contradiction suppose G 6� F for all G ∈ K. Then by Lemma 3.5 we have

G  χ(F) for all G ∈ K, in particular, χ(F) ∈ Λ(K). It is straightforward to see that F 1 χ(F),

thus F 1 Λ(K).

Theorem 3.7. ACL<ω is not finitely axiomatizable.

Proof. A logic L is not finitely axiomatizable if and only if for any formula φ ∈ L there is a frame

Fφ such that Fφ 1 L but Fφ  φ.

We will use the proof that Medvedev’s modal logic of finite problems, ML<ω, is not finitely

axiomatizable. We refer to [6] where it has been proved that for each modal formula φ ∈ML<ω

there is a finite, transitive, point-generated frame Gφ such that Gφ  φ while Gφ 1 ML<ω. The

construction therein is such that Gφ, as a graph, has no directed cycles apart from the loops.

We intend to show that Gφ 1 ACL<ω. This is enough because ACL<ω ⊂ML<ω. By Proposi-

tion 3.4 ACL<ω is the logic of the class K = {Ak(n) : n, k ∈ N} of finite, transitive frames, closed

under point-generated subframes. Therefore, to show Gφ 1 ACL<ω, by Corollary 3.6 it is enough

to prove that Gφ is not a bounded morphic image of any Ak(n). Suppose, seeking a contradiction,

that there exists a bounded morphism f : Ak(n)� Gφ. Then for each a ∈ ℘(n)−{∅} the elements

[a]1, . . ., [a]k should be mapped into the same point xa in Gφ. This is because the points [a]i

are all accessible from each other, while in Gφ there are no non-singleton sets in which points are

mutually accessible. It follows that f induces a bounded morphism f∗ : P0(n) → Gφ from the

Medvedev frame P0(n) into Gφ by letting f∗(a) = xa for a ∈ ℘(n) − {∅}. But this is impossible

as Gφ 1 ML<ω.
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4 Closing words and open problems

The recent paper [2] introduced Bayes logics based on Bayes conditionalization as a probability

updating mechanism. Apart from Bayes conditionalization there are other methods, extensions of

the standard one, of updating a probability measure. Jeffrey’s conditionalization might be among

the most important and well studied ones. In this paper we considered the modal logic of updating

based on Jeffrey’s conditionalization where the underlying measurable space is finite. We have seen

that in such a case Jeffrey’s conditionalization and the accessibility based on absolute continuity

give the same class of Kripke frames and logics: JL<ω = ACL<ω (Proposition 2.3). This logic can

be related to the well-known Medvedev logic of finite problems ML<ω, in fact JL<ω ⊆ ML<ω

(Corollary 2.7).

It has been shown in [2] that BL<ω has the finite frame property and is not finitely axiom-

atizable (see Propositions 5.8, 5.9 in [2]), and not finite axiomatizability of the standard Bayes

logic BLst has been proved in [5]. These results are clearly significant because they indicate that

axiomatic approaches to belief revision might be severely limited. In this paper we proved that

non finite axiomatizability is not a feature of just Bayes-learning: by Theorem 3.7 finite Jeffrey

logic JL<ω is not finitely axiomatizable (and has the finite frame property). This result puts a

further limit to axiomatic approaches to belief revision.

We do not yet have results about the infinite case. Proposition 2.3 cannot directly be extended

to infinite measurable spaces, thus there is no straightforward proof of JLω = ACLω, for example.

Note that in equation (1) we relied on a finite partition. One might define Jeffrey conditionalization

allowing countable partitions in a similar manner: Given a prior probability p and a countable

partition {Ei}i∈N of X with p(Ei) 6= 0 we can infer to the probability measure q if the following

equation hold:

q(H) =
∑
i∈N

p(H | Ei)q(Ei) (35)

Let us call this updating infinite Jeffrey’s conditionalization. It is easy to see that absolute conti-

nuity and accessibility based on infinite Jeffrey’s conditionalization coincide even in the countably

infinite case. (However, not in general). We close the paper with some open problems.

Problem 4.1. What the exact relations between Bayes and Jeffrey logics are?

Problem 4.2. Is JLω, JLst or JL finitely axiomatizable? What about ACLω, ACLst or ACL?

Does it make a difference if we allow infinite Jeffrey conditionalization?
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