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Abstract

In a quantum universe with a strong arrow of time, we postulate a low-
entropy boundary condition (the Past Hypothesis) to account for the temporal
asymmetry. In this paper, I show that the Past Hypothesis also contains enough
information to significantly simplify the quantum ontology and clearly define
a unique initial condition in such a world.

First, I introduce Density Matrix Realism, the thesis that the quantum universe
is described by a fundamental density matrix (a mixed state) that corresponds
to some physical degrees of freedom in the world. This stands in sharp contrast
to Wave Function Realism, the thesis that the quantum universe is described by
a wave function (a pure state) that represents something physical.

Second, I suggest that the Past Hypothesis is sufficient to determine a unique
and simple density matrix. This is achieved by what I call the Initial Projection
Hypothesis: the initial density matrix of the universe is the projection onto the
special low-dimensional Hilbert space.

Third, because the initial quantum state is unique and simple, we have a
strong case for the Nomological Thesis: the initial quantum state of the universe
is completely specified by a law of nature.

This new package of ideas has several interesting implications, including on
the dynamic unity of the universe and the subsystems, the theoretical unity of
statistical mechanics and quantum mechanics, and the alleged conflict between
Humean supervenience and quantum entanglement.
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1 Introduction

In recent debates about the metaphysics of the wave function, it is standard to
assume that the universal wave function represents something physical. It may be
interpreted as a field on the configuration space, a multi-field on physical space,
something like a physical law, or an entity of a completely novel kind. Let us call
this view Wave Function Realism.1

1See Albert (1996), Loewer (1996), Wallace and Timpson (2010), Ney (2012), North (2013), Maudlin
(2013), Goldstein and Zanghì (2013), Miller (2014), Esfeld (2014), Bhogal and Perry (2015), Esfeld and
Deckert (2017), Chen (2017a,b, ms). Notice that this is not how Albert, Loewer, and Ney use the term.
For them, to be a wave function realist is to be a realist about the wave function and a fundamental
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However, we may reject the assumption that there is a universal wave function
that represents something physical. Indeed, it has been rejected by many people,
notably by quantum Bayesians, and various anti-realists and instrumentalists. As a
scientific realist, I do not find their arguments convincing. In previous papers, I have
assumed and defended Wave Function Realism. However, in this paper I want to
argue for a different perspective, for reasons related to the origin of time-asymmetry
in a quantum universe.

To be sure, realism about the universal wave function is quite natural given stan-
dard quantum mechanics and various realist quantum theories such as Bohmian
mechanics, GRW spontaneous collapse theories, and Everettian quantum mechan-
ics. In those theories, the universal wave function is indispensable to the kinematics
and the dynamics of the quantum system. However, as I would like to emphasize in
this paper, our world is not just quantum-mechanical. We also live in a world with a
strong arrow of time (entropy gradient). There are thermodynamic phenomena that
we hope to explain with quantum mechanics and quantum statistical mechanics.
A central theme of this paper is to suggest that quantum statistical mechanics is
highly relevant for assessing the fundamentality and reality of the universal wave
function.

We will take a close look at the connections between the foundations of quantum
statistical mechanics and various solutions to the quantum measurement problem.
When we do, we realize that we do not need to postulate a universal wave function.
We only need certain “coarse-grained” information about the quantum macrostate,
which can be represented by either a class of universal wave functions or a density
matrix. A natural question is: can we describe the universe with a fundamental
density matrix instead of a wave function?

The first step of of this paper is to argue that we can. I call this view Density
Matrix Realism, the thesis that the universal quantum state is given by a fundamental
density matrix that represents something physical. This idea may be unfamiliar to
some people, as we are used to take mixed states to represent epistemic uncertainty
of the actual pure state (a wave function). The proposal here is that the quantum state
should be represented by a density matrix and not a wave function. This idea is
not new in foundations of physics. We will then reformulate Bohmian mechanics,
GRW theories, and Everettian quantum mechanics in terms of fundamental density
matrices.

The second step is to point out that Density Matrix Realism allows us to unify
quantum ontology with time-asymmetry in a new way. In classical and quantum
statistical mechanics, thermodynamic time-asymmetry arises from a special bound-
ary condition that is now called the Past Hypothesis.2 I suggest that the information
in the Past Hypothesis (with an implicit uniformity condition) is sufficient to de-
termine a unique and simple fundamental density matrix. This can be done by

high-dimensional space—the “configuration space.” For the purpose of this paper, let us use Wave
Function Realism to designate just the commitment that the wave function represents something
physical.

2See Albert (2000).
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postulating what I call the Initial Projection Hypothesis: the quantum state of the uni-
verse at t0 is given by the unique projection on the special low-dimensional Hilbert
space.

The third step is to show that, because of the simplicity and the uniqueness of
the initial quantum state (now given by a fundamental density matrix), we have
a strong case for the Nomological Thesis: the initial quantum state of the world is
exactly specified by a law of nature.

As we shall see, this package of views has interesting implications for the dy-
namic unity of the universe and the subsystems, reduction of statistical mechanical
probabilities to quantum mechanics, and Humean supervenience in a quantum
world.

Here is the roadmap of the paper. First, in §2, I review the foundations of
quantum mechanics and quantum statistical mechanics. In §3, I introduce the
framework of Density Matrix Realism and illustrate it with a concrete example. In
§4, I formulate the Initial Projection Hypothesis in the framework of Density Matrix
Realism. In §5, I discuss their implications for dynamical and theoretical unification.
In §6, I suggest that they provide a strong case for the Nomological Thesis and a new
solution to the conflict between quantum entanglement and Humean supervenience.

2 Foundations of Quantum Mechanics and Statistical Mechanics

In this section, we first review the foundations of quantum mechanics and statistical
mechanics. As we shall see in the next section, they suggest an alternative to Wave
Function Realism.

2.1 Quantum Mechanics

Standard quantum mechanics is often presented with a set of axioms and rules
about measurement. Firstly, there is a quantum state of the system, represented by
a wave function ψ. For a N-particle quantum system in R3, the wave function is
a (square-integrable) function from the configuration space R3N to the spin space
Ck. Secondly, the wave function evolves in time according to the the Schrödinger
equation:

ih̵
∂ψ

∂t
= Hψ (1)

Thirdly, the Schrödinger evolution of the wave function is supplemented with col-
lapse rules. The wave function typically evolves into superpositions of macrostates,
such as the cat being alive and the cat being dead. This can be represented by wave
functions on the configuration space with disjoint macroscopic supports X and Y.
During measurements, which are not precisely defined processes in the standard
theory, the wave function undergoes collapses. Moreover, the probability that it
collapses into any particular macrostate X is given by the Born rule:
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P(X) = ∫
X
∣ψ(x)∣2dx (2)

As such, quantum mechanics is not a candidate for a fundamental physical
theory. It has two dynamical laws: the deterministic Schrödinger equation and
the stochastic collapse rule. What are the conditions for applying the former, and
what are the conditions for applying the latter? Measurements and observations
are extremely vague concepts. Take a concrete experimental apparatus for example.
When should we treat it as part of the quantum system that evolves linearly and
when should we treat it as an “observer,” i.e. something that stands outside the
quantum system and collapses the wave function? That is, in short, the quantum
measurement problem.3

Various solutions have been proposed regarding the measurement problem.
Bohmian mechanics (BM) solves it by adding particles to the ontology and an addi-
tional guidance equation for the particles’ motion. Ghirardi-Rimini-Weber (GRW)
theories postulate a spontaneous collapse mechanism. Everettian quantum mechan-
ics (EQM) simply removes the collapse rules from standard quantum mechanics and
suggest that there are many emergent worlds, corresponding to emergent branches
of the wave function, which are all real. My aim here is not to adjudicate among
these theories. Suffice it to say that they are all quantum theories that remove the
centrality of observations and observers.

To simplify the discussions, I will use BM as a key example.4 In BM, in addition
to the wave function that evolves linearly according to the Schrödinger equation,
there are particles with precise locations, Q1,Q2, ...,QN, which follow the guidance
equation:

dQi

dt
=

h̵
mi

Im
ψ∗∇iψ

ψ∗ψ
(3)

Moreover, the initial particle distribution is given by the Quantum Equilibrium
Hypothesis:

ρt0(x) = ∣ψ(x, t0)∣
2 (4)

By the equivariance theorem, if this condition holds at the initial time, then it holds at
all time. Consequently, BM agrees with standard quantum mechanics with respect
to the Born rule predictions (which are all there is to the observable predictions of
quantum mechanics).

In BM, the wave function ψ is central to the quantum system. It not only has
its own dynamics described by (1) but also guides particle motion via (3). Its
connection to the empirical predictions of quantum mechanics is manifested in (2)
and (4). For a universe with N elementary particles, let us call the wave function of
the universe the universal wave function and denote it as Ψ(q1,q2, ...qN). Therefore,
at least prima facie, the universal wave function Ψ seems central to the description
of the kinematics and the dynamics of the universe as a whole.

3See Bell (1990), Myrvold (2017) for introductions to the quantum measurement problem.
4See Dürr et al. (1992) for a rigorous presentation of BM and its statistical analysis.
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2.2 Statistical Mechanics

Let us now consider macroscopic systems such as gas in a box. This can be described
by a system of N particles, with N > 1020. If the system is governed by classical
mechanics, although it is difficult to solve the system of equations exactly, we can still
use classical statistical mechanics (CSM) to describe its statistical behaviors, such as
approach to thermal equilibrium suggested by the Second Law of Thermodynamics.
Similarly, if the system is governed by quantum mechanics, we can use quantum
statistical mechanics (QSM) to describe its statistical behaviors. Generally speaking,
there are two different views on CSM: the individualistic view and the ensemblist
view. We will first illustrate the two views with CSM, which is more familiar and
will be helpful for understanding the two views in QSM.

2.2.1 Elements of Classical Statistical Mechanics

Let us review the basic elements of CSM on the individualistic view.5 For con-
creteness, let us consider a classical-mechanical system with N particles in a box
Λ = [0,L]3 ⊂ R3 and a Hamiltonian H.

1. Microstate: at any time t, the microstate of the system is given by a point on a
6N-dimensional phase space,

X = (q1, ...,qN ; p1, ...,pn) ∈ Γtotal ⊆ R6N, (5)

where Γtotal is the total phase space of the system.

2. Dynamics: the time dependence of Xt = (q1, ...,qN ; p1, ...,pn; t) is given by the
Hamiltonian equations of motion:

∂qi

∂t
=
∂H
∂pi

,
∂pi

∂t
= −

∂H
∂qi

. (6)

3. Energy shell: the physically relevant part of the total phase space is the energy
shell Γ ⊆ Γtotal defined as:

Γ = {X ∈ Γtotal ∶ E ≤ H(x) ≤ E + δE}. (7)

We only consider microstates in Γ.

4. Measure: the measure µ is the standard Lebesgue measure of volume ∣ ⋅ ∣ on
R6N.

5. Macrostate: with a choice of macro-variables, the energy shell Γ can be parti-
tioned into macrostates Γν:

Γ = ⋃
ν

Γν. (8)

5Here I follow the discussion in Goldstein and Tumulka (2011).
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6. Unique correspondence: every phase point X belongs to one and only one Γν.

7. Thermal equilibrium: typically, there is a dominant macrostate Γeq that has the
most volume with respect to µ:

µ(Γeq)

µ(Γ)
≈ 1. (9)

A system is in thermal equilibrium if its phase point X ∈ Γeq.

8. Boltzmann Entropy: the Boltzmann entropy of a classical-mechanical system
in microstate X is given by:

SB(X) = kBlog(µ(Γ(X))), (10)

where Γ(X) denotes the macrostate containing X. The thermal equilibrium
state thus has the maximum entropy.

9. Low-Entropy Initial Condition: when we consider the universe as a classical-
mechanical system, we postulate a special low-entropy boundary condition,
which David Albert calls the Past Hypothesis:

Xt0 ∈ ΓPH , µ(ΓPH) ≪ µ(Γeq) ≈ µ(Γ), (11)

where ΓPH is the Past Hypothesis macrostate with volume much smaller than
that of the equilibrium macrostate. Hence, SB(Xt0), the Boltzmann entropy
of the microstate at the boundary, is very small compared to that of thermal
equilibrium.

10. A central task of CSM is to establish mathematical results that demonstrate (or
suggest) that for µ−most microstates satisfying the Past Hypothesis, they will
approach thermal equilibrium (in reasonable time).

Above is the individualistic view of CSM in a nutshell. In contrast, the ensemblist
view differs in several ways. First, on the ensemblist view, instead of focusing on
the microstate of an individual system, the focus is on the ensemble of systems that
have the same statistical state ρ.6 ρ is a distribution on the energy shell, and it also
evolves according to the Hamiltonian dynamics. The crucial difference lies in the
definition of thermal equilibrium. On the ensemblist view, a system is in thermal
equilibrium if:

ρ = ρmc or ρ = ρcan, (12)

where ρmc is the microcanonical ensemble and ρcan is the canonical ensemble.7

6Some ensemblists would further insist that it makes no sense to talk about the thermodynamic
state X of an individual system.

7Instead of using the Boltzmann entropy, some ensemblists use the Gibbs entropy:

SG(ρ) = −kB ∫
Γ
ρlog(ρ)dx.
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2.2.2 Elements of Quantum Statistical Mechanics

The foundations of QSM have important similarities to and differences with the
foundations of CSM. For concreteness, let us consider a quantum-mechanical system
with N fermions in a box Λ = [0,L]3 ⊂ R3 and a Hamiltonian Ĥ.8

1. Microstate: at any time t, the microstate of the system is given by a normalized
(and anti-symmetrized) wave function:

ψ(q1, ...,qN) ∈ Htotal = L2(R3N,Ck) , ∥ ψ ∥L2= 1, (13)

where Htotal = L2(R3N,Ck) is the total Hilbert space of the system.

2. Dynamics: the time dependence of ψ(q1, ...,qN ; t) is given by the Schrödinger
equation:

ih̵
∂ψ

∂t
= Hψ. (14)

3. Energy shell: the physically relevant part of the total Hilbert space is the
subspace (“the energy shell”):

H ⊆ Htotal , H = span{φα ∶ Eα ∈ [E,E + δE]}, (15)

This is the subspace (of the total Hilbert space) spanned by energy eigenstates
φα whose eigenvalues Eα’s belong to the [E,E + δE] range. Let D = dimH , the
number of energy levels between E and E + δE.

We only consider wave functions ψ’s in H .

4. Measure: the measure µ is given by the standard Lebesgue measure on the
unit sphere in the energy subspace S (H ).9

5. Macrostate: with a choice of macro-variables (suitably “rounded” à la Von Neu-
mann (1955)), the energy shell H can be orthogonally decomposed into macro-
spaces:

H = ⊕νHν , ∑
ν

dimHν = D (16)

Each Hν corresponds more or less to small ranges of values of macro-variables
that we have chosen in advance.

6. Non-unique correspondence: typically, a wave function is in a superposition
of macrostates and is not entirely in any one of the macrospaces. However, we

Since SG(ρt) is stationary under the Hamiltonian dynamics, it is not the right kind of object for
understanding the approach to thermal equilibrium in the sense of the Second Law, as we would
like to have an object that can change, and, in particular, increase with time.

8Here I follow the discussions in Goldstein et al. (2010a) and Goldstein and Tumulka (2011).
9In cases where the Hilbert space is infinite-dimensional, we should use a Gaussian measure,

which is not translation-invariant.
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can make sense of situations where ψ is (in the Hilbert space norm) very close
to a macrostate Hν:

⟨ψ∣Pν ∣ψ⟩ ≈ 1, (17)

where Pν is the projection operator into Hν. This means that almost all of ∣ψ⟩

lies in Hν.

7. Thermal equilibrium: typically, there is a dominant macro-space Heq that has
a dimension that almost equal to D:

dimHeq

dimH
≈ 1. (18)

A system with wave functionψ is in equilibrium if the wave functionψ is very
close to Heq in the sense of (17): ⟨ψ∣Peq ∣ψ⟩ ≈ 1.

Simple Example. Consider a gas consisting of n = 1023 atoms in a box Λ ⊆ R3.
The system is governed by quantum mechanics. We orthogonally decompose
the Hilbert space H into 51 macro-spaces: H0 ⊕H2 ⊕H4 ⊕ ... ⊕H100, where
Hν is the subspace corresponding to the macrostate that the number of atoms
in the left half of the box is between (ν − 1)% and (ν + 1)% of n. In this
example, H50 has the overwhelming majority of dimensions and is thus the
equilibrium macro-space. A system whose wave function is very close to H50

is in equilibrium.

8. Boltzmann Entropy: the Boltzmann entropy of a quantum-mechanical system
with wave function ψ that is very close to a macrostate ν is given by:

SB(ψ) = kBlog(dimHν), (19)

where Hν denotes the subspace containing almost all of ψ in the sense of (17).
The thermal equilibrium state thus has the maximum entropy:

SB(eq) = kBlog(dimHeq) ≈ kBlog(D) = SB(mc), (20)

where eq denotes the equilibrium macrostate and mc the micro-canonical en-
semble.

9. Low-Entropy Initial Condition: when we consider the universe as a quantum-
mechanical system, we postulate a special low-entropy boundary condition
on the universal wave function—the quantum-mechanical version of the Past
Hypothesis:

Ψ(t0) ∈ HPH , dimHPH ≪ dimHeq ≈ dimH (21)

where HPH is the Past Hypothesis macro-space with dimension much smaller
than that of the equilibrium macro-space.10 Hence, the initial state has very
low entropy in the sense of (19).

10The Past Hypothesis macro-space is thus finite-dimensional. So we can use the Lebesgue measure
on the unit sphere as the typicality measure for # 10.

9



10. A central task of QSM is to establish mathematical results that demonstrate (or
suggest) that for µ−most (maybe even all) wave functions satisfying the Past
Hypothesis, they will approach thermal equilibrium (in reasonable time).

Above is the individualistic view of QSM in a nutshell. In contrast, the ensemblist
view of QSM differs in several ways. First, on the ensemblist view, instead of
focusing on the wave function of an individual system, the focus is on an ensemble
of systems that have the same statistical state Ŵ, a density matrix.11 As a statistical
density matrix, Ŵ can be defined from a uniform distribution on the unit sphere in
the Hilbert space:

Ŵ = ∫
S (H )

µ(dψ) ∣ψ⟩ ⟨ψ∣ . (22)

It evolves according to the von Neumann equation:

ih̵
dŴ(t)

dt
= [Ĥ, Ŵ]. (23)

The crucial difference between the individualistic and the ensemblist views of
QSM lies, again, in the definition of thermal equilibrium. On the ensemblist view, a
system is in thermal equilibrium if:

W = ρmc or W = ρcan, (24)

where ρmc is the microcanonical ensemble and ρcan is the canonical ensemble.
For the QSM individualist, if the microstateψ of a system is close to some macro-

space Hν in the sense of (17), we can say that the macrostate of the system is Hν.
However, we can also represent the macrostate by a density matrix Ŵν generated
from the unit sphere in Hν with a uniform distribution µ(dψ).

Ŵν = ∫
S (Hν)

µ(dψ) ∣ψ⟩ ⟨ψ∣ . (25)

In (25), there is a clear sense that Ŵν is defined with a choice of measure and from the
wave functions on the unit sphere of the Hilbert space Hν. But different measures
can give rise to the same density matrix. What is essential and intrinsic to a density
matrix is its geometrical meaning in the Hilbert space—a projection operator. When
Hν is finite-dimensional, we can simply think of Ŵν as the normalized identity
operator on Hν and define it without using a measure:

Ŵν =
Iν

dimHν
, (26)

where Iν is the identity operator on Hν.

11Similarly to the situation in CSM, some ensemblists would further insist that it makes no sense
to talk about the thermodynamic state of an individual system.
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2.2.3 CSM, QSM, and Microstate Dispensability

As mentioned above, there are several differences between CSM and QSM. First,
the classical phase point X lies entirely in a macrostate Γ, while a wave function ψ
typically does not belong entirely to any macro-space Hν (#6). Second, Boltzmann
entropy in CSM counts the volume of regions in phase space, while Boltzmann
entropy in QSM counts dimensionality of subspaces in the Hilbert space (#8). Third,
an important class of typicality results in CSM holds for µ-most initial phase points,
while some typicality results in QSM holds for every initial wave function (but only
for most Hamiltonians) (#10).

I would like to highlight another difference that becomes obvious in the context
of additional-ontology quantum theories. In these theories, the physical state of the
world is given by two things: (A) a quantum state, represented by a universal wave
function Ψ, and (B) the state of the additional ontology: particles (in BM), flashes
(GRWf), or mass densities (GRWm and Sm).12 If we were to take away the microstate
Ψ from the physical state, we would still be left with the additional ontology, and
we can still specify a quantum macrostate H or W as in (22). For example, in BM,
the state of the world at a time t is given by the pair (Q(t), Ψ(t)), where Q(t) is
the complete list of N particle locations in R3. If we were to (figuratively speaking)
take away Ψ(t), we would still be left with Q(t). That is, we would still be left
with (in addition to the quantum macrostate) microscopic ontology that constitutes
experimental devices and observers.

Thus, QSM in these quantum theories have the following curious property: we
can dispense with its statistical-mechanical microstate (ψ in QSM) and still be left
with a microscopic ontology. Let us call this property Microstate Dispensability.

The situation is quite different on CSM. If we were to take away the microstate
X = (q1, ...,qN ; p1, ...,pn) from the state description, nothing would be left over to
describe the microscopic ontology, which consists in point particles. Thus, CSM
for Newtonian particle systems does not possess Microstate Dispensability. That is
a crucial difference between CSM and QSM. This becomes important in §6 in the
context of Humean supervenience.

3 Density Matrix Realism

According to Wave Function Realism, the quantum state of the world at any time
is described by a universal wave function Ψ and it corresponds to some physical
degrees of freedom. On this view, Ψ is both the microstate of QSM and the dynamical
object of QM. It evolves by the Schrödinger equation (1), and in the case of BM it
also determines particle motions via the guidance equation (3).

On the other hand, we usually use W, a density matrix, to represent our ig-

12These are sometimes called primitive ontology or primary ontology. But these labels are usually
used for ontologies in the three-dimensional physical space. Here I do not want to prejudge the
issue. In the case of BM, I allow that the configuration point can be interpreted as either a single
particle in a high-dimensional space or N particles in the three-dimensional physical space.
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norances over Ψ, the actual wave function of the system. W is understood to
correspond to a macrostate in QSM. In some cases, W is also easier for calculation
than Ψ, such as in the case of GRW collapse theories where there are multiple sources
of randomness.

However, can we describe the universe with W instead of Ψ? In this section,
I show that this indeed can be done.13 I call this new framework Density Matrix
Realism. To show that it is possible, I will use W-Bohmian Mechanics as a concrete
example and explain how a fundamental density matrix can be empirically adequate
for describing a quantum world. We can similarly construct W-GRW theories and W-
Everett theories. I will also provide a physical interpretation of W as a fundamental
object.

3.1 Example: W-Bohmian Mechanics

We will illustrate the differences between Wave Function Realism and Density Ma-
trix Realism by thinking about two different Bohmian theories.

In standard Bohmian mechanics (BM), an N-particle universe at a time t is de-
scribed by (Q(t), Ψ(t)). The universal wave function Ψ(t) is governed by the
Schrödinger equation (1), and the particle configuration Q(t) evolves according to
the guidance equation (3). Moreover, BM postulates a Quantum Equilibrium Hy-
pothesis (4) at a temporal boundary of the universe. Given the centrality of Ψ in BM,
Wave Function Realism is a natural interpretation of the ontology of the quantum
state.

Alternatively, we can formulate a Bohmian theory with only W and Q. This was
rigorously introduced as W-Bohmian Mechanics (W-BM) in Dürr et al. (2005).14 On
W-BM, an N-particle universe at time t is described by by (W(t), Ψ(t)). The funda-
mental density matrix W(t) is governed by the von Neumann equation (23). Next,
the particle configuration Q(t) evolves according to an analogue of the guidance
equation (W-guidance equation):

dQi

dt
=

h̵
mi

Im
∇qitrCkW(q, q′, t)

trCkW(q, q′, t)
(q = q′ = Q), (27)

where trCk denotes the partial trace over the spin components. Finally, we can impose
a boundary condition similar to that of the Quantum Equilibrium Hypothesis:

P(Q(t0) ∈ dq) = trCkW(q, q, t0)dq. (28)

13The possibility that the universe is described by a density matrix is not new. It has been suggested
by multiple authors and explored to various extents. For some recent examples, see Dürr et al. (2005)
Wallace and Timpson (2010) and Wallace (2011, 2012).

14Even though we are only discussing the universal quantum state, W-BM also has implications
for their study on the conditional density matrices of subsystems. This becomes relevant in §4 when
we discuss the dynamical unity in W-BM. See Dürr and Lienert (2014) for an extension of conditional
density matrices to the Bohm-Dirac model, a relativistic version of BM with spin. See Maroney (2005)
for another discussion about fundamental density matrices in BM.
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Since the system is also equivariant, if the probability distribution holds at t0, it
holds at all times.15

With the defining equations—the von Neumann equation (23) and the W-guidance
equation (27)—and the Bohmian boundary condition (28), we have a theory that
directly uses a density matrix W(t) to characterize the trajectories Q(t) of the uni-
verse’s N particles.

W-BM is empirically equivalent to BM with respect to the macroscopic quantum
phenomena, that is, pointer readings in quantum-mechanical experiments. This
follows from (28), which is analogous to the Quantum Equilibrium Hypothesis.
With the respective dynamical equations, both BM and W-BM generate equivariant
Born-rule probability distribution over macroscopic measurement outcomes.

3.2 Other Examples: Everettian and GRW Theories

W-BM is a simple quantum theory that is compatible with Density Matrix Realism.
In this theory, we can be a realist about the universal density matrix W(t)—it
represents some physical degrees of freedom. What about other quantum theories,
such as Everettian and GRW theories? Is it possible to “replace” their universal
wave functions with universal density matrices? We will show that this is also
possible.

For the Everettian theory with no additional ontology (S0), we can postulate that
the fundamental state is given by a density matrix W(t) that evolves by the unitary
von Neumann equation (23).

For the Everettian theory with an additional mass-density ontology m(x, t),
which was introduced as Sm by Allori et al. (2010), we can still use the von Neumann
equation for W(t). Next, we can define the mass-density function directly in terms
of W(t):

m(x, t) = tr(M(x)W(t)), (29)

where M(x) = ∑i miδ(Qi − x) is the mass-density operator, which is defined via the
position operator Qiψ(q1, q2, ...qn) = qiψ(q1, q2, ...qn). This allows us to determine the
mass-density ontology at time t via W(t).16

For the GRW theory with just the quantum state W(t), we can follow Goldstein
et al. (2012) and write down its stochastic evolution as follows:

ih̵
∂W(t)
∂t

= −
i
h̵
[H,W(t)] + λ

N

∑
k=1
∫ d3xΛk(x)1/2W(t)Λk(x)1/2 −NλW(t), (30)

where the commutator bracket represents the unitary evolution and the further

15Equivariance holds because of the following continuity equation:

∂trCk W(q, q, t)
∂t

= −div(trCk W(q, q, t)v),

where v denotes the velocity field generated via (27.)
16Thanks to Roderich Tumulka and Matthias Lienert for discussions here.

13



terms represent deviations from the unitary evolution. Λk(x)’s are the collapse rate
operators.17

For the GRW theory (GRWm) that include both the quantum state W(t) and a
mass-density ontology m(x, t), we can combine the above steps: W(t) evolves by
(30) and m(x, t) is defined by (29). We can define GRW with a flash-ontology (GRWf)
in a similar way, by using W(t) to characterize the distribution of flashes in physical
space-time.

3.3 Some Intepretations of W

For the sake of simplicity and without loss of generality, let us return to the example
of W-BM. Since W(t) plays an essential role in the dynamics of guiding particle
motions, it ought to be possible to understand W(t) as a concrete physical object.
In debates about the metaphysics of the wave function, realists have offered several
interpretations of Ψ. Wave function realists, such as Albert and Loewer, have
offered a concrete physical interpretation: they suggest we understand the quantum
state primarily not as an object in the Hilbert space but as Ψ(q), a function on
the configuration space. They then offer arguments for thinking that it is to be
interpreted as a physical field on the configuration space, and that the configuration
space is more fundamental than the low-dimensional physical space.18

Can we give a similar concrete physical interpretation of W(t)? Let us start
with a mathematical representation of the density matrix W(t). It is defined as a
positive, bounded, self-adjoint operator Ŵ ∶ H →H with trŴ = 1. For W-BM, the
configuration space R3N, and a density operator Ŵ, the relevant Hilbert space is H ,
which is a subspace of the total Hilbert space, i.e. H ⊆ Htotal = L2(R3N,Ck). Now,
the density matrix Ŵ can also be represented as a function

W ∶ R3N ×R3N → End(Ck) (31)

The range denotes the space of linear maps from Ck to itself. (Notice that we
have already used this representation in (27) and (28).) This representation enables
us to provide a similar concrete interpretation of the density matrix: it can be
interpreted as a field on R6N or a“multi-field” on R3N that assigns quantities (linear
maps from spin space to itself) to every ordered pair of points (q, q′) on R3N. For
3D-Fundamentalists, they can interpret it as assigning quantities to every ordered

17A collapse rate operator is defined as follows:

Λk(x) =
1

(2πσ2)3/2 e−
(Qk−x)2

2σ2 ,

where Qk is the position operator of “particle” k, and σ is a new constant of nature of order 10−7 m
postulated in current GRW theories.

18In Chen (2017b), I argue against this view and suggest that there are many good reasons—
internal and external to quantum mechanics—for taking the low-dimensional physical space-time
to be fundamental.
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pair of N-regions on R3, the physical space.19

In §6, we introduce a new interpretation of W as a law of nature, in the context
of the new Initial Projection Hypothesis.

4 The Initial Projection Hypothesis

We have established that Density Matrix Realism is an alternative to Wave Function
Realism when it comes to the interpretations of quantum mechanics. In the previous
section, we have given some concrete examples of how to reformulate quantum
theories in terms of fundamental density matrices.

In §2, we have mentioned the identification of quantum macrostates with density
matrices. In the individualistic framework of QSM, density matrices can be used to
represent our epistemic uncertainties over the actual microstate—the wave function.
A density matrix is compatible with many possible wave functions that the system
could have.

In CSM and QSM, a fundamental postulate is added to the time-symmetric
dynamics: the Past Hypothesis, which is a low-entropy boundary condition on
the initial microstate of the universe. In this section, we will first discuss the
microstate versions of the Past Hypothesis. Then we will formulate it directly on
the “macrostate”—the density matrix. Finally, we point out some parallels between
the “macrostate” version of the Past Hypothesis and Penrose’s Weyl Curvature
Hypothesis.

4.1 Standard Versions of the Past Hypothesis

The history of the Past Hypothesis goes back to Ludwig Boltzmann. His research
was on the statistical-mechanical origin of thermodynamic time-asymmetry. In his
time, physicists were confronted with the question of reconciling macroscopic time-
asymmetry (of thermodynamics) with microscopic time-symmetry (of Hamiltonian
mechanics). The Hamiltonian dynamics is time-reversal invariant but the macro-
scopic equations are not. Two bricks of different temperatures upon contact (but
otherwise isolated from the environment) tend to approach thermal equilibrium. En-
tropy never decreases. How does temporal asymmetry arise from time-symmetric
fundamental laws? Boltzmann ingeniously pointed out that there is an asymmetry
in the phase space: there is a dramatic disproportion of volume of macrostates.
As we stated in §2.2.1 # 7, the thermal equilibrium state takes up the overwhelm-
ing majority of the phase space volume on the energy hypersurface,20 while other
macrostates take up much smaller volume. If a non-equilibrium system undertakes
a random walk (on some level of coarse-graining) in the phase space, it will most
likely get into microstates that sit in larger and larger macrostates and eventually

19For discussions about the multi-field interpretation, see Forrest (1988), Belot (2012), Chen (2017),
Chen (ms.) section 3, and Hubert and Romano (2017).

20This was only rigorously proved in the last century.
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reach thermal equilibrium. This seems to explain the entropy gradient of the Second
Law of Thermodynamics.

However, Boltzmann was criticized (notably by Zermelo) that his explanation
must have smuggled in assumptions about time-asymmetry, for it worked just in
the other way. Just as in the future there will be more higher-entropy points to
go to, in the past there would be more higher-entropy points to come from. So
Boltzmann’s argument from the asymmetry of macrostate volume did not explain
the Second Law. Instead, his argument predicted a time-symmetric history, where
the system would sit in a local minimum of entropy and was in higher entropy both
in the past and in the future. This is called the reversibility objection.

In reply, Botlzmann once suggested that we add a boundary condition: the
universe started in a special state of very low-entropy. Richard Feynman agrees,
“For some reason, the universe at one time had a very low entropy for its energy
content, and since then the entropy has increased.”21 Such a low-entropy initial
condition will block the reversibility objection, as there would be nothing before
the initial moment to retrodict to. David Albert has called this condition the Past
Hypothesis (PH).

In CSM, PH takes the form of §2.2.1 #9. In QSM, PH takes the form of §2.2.2 #9.22

That is, PH severely constrains the initial microstates to be within a ridiculously
small region in phase space or a particular low-dimensional subspace in Hilbert
space. However, it does not pin down a unique microstate, either in CSM or QSM.
There is still a continuous infinity of possible microstates compatible with the initial
low-entropy macrostate.

I should mention that for PH to work as a successful explanation for the Second
Law, it has to be on a par with other fundamental laws of nature. Moreover,
since there are anti-thermodynamic exceptions even for trajectories starting from
the PH macrostate, it is crucial to impose another law about a uniform probability
distribution over the initial macrostate. David Albert calls it the Statistical Postulate
(SP). It corresponds to the measures that we specified in §2.2.1 #4 and §2.2.2 #4. We
used those measures to state the typicality statements in #10. Barry Loewer calls
the joint system—the package of laws that includes PH and SP in addition to the
dynamical laws of physics—the Mentaculus Vision.23

4.2 Introducing the Initial Projection Hypothesis

Standard versions of the Past Hypothesis make use of the low-entropy macrostate to
constrain the microstate description of the system (a phase point in CSM or a state
vector in QSM). This is natural from the perspective of Wave Function Realism,
for which the state vector (the wave function) represents the physical degrees of

21Feynman et al. (2015), 46-8.
22See Wallace (2011, 2012) for detailed discussions about how to formulate PH as constraints for

the classical and quantum microstates.
23For developments and defenses of the nomological account of the Past Hypothesis and the

Statistical Postulate, see Albert (2000), Loewer (2007), Wallace (2011, 2012) and Loewer (2016)
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freedom of the system. The initial state of the system is described by a normalized
wave function Ψ(t0). It has to lie in the special low-dimensional Hilbert space HPH

with dimHPH ≪ dimHeq. (It is important to point out that, in the position space
representation, the wave function is a complicated function on the configuration
space.) Moreover, there are many different choices of initial wave functions in HPH.
Furthermore, for stating the typicality statements, we also need to specify a measure
µ on the unit sphere of HPH. For the finite-dimensional case, it is just the uniform
Lebesgue measure.

Let us now formulate a boundary condition in the framework of Density Matrix
Realism. A fundamental density matrix W(t) should encode the same amount of
information as the statistical density matrix that we use to represents epistemic
ignorance over the actual wave function. We know that standard versions of PH
more or less pin down a unique macrostate—the special low-entropy macrostate. In
QSM, this corresponds to HPH, the special subspace of the total Hilbert space. This
naturally gives rise to a normalized projection operator onto that space. Just as in
(26), we can specify the projection onto HPH as:

ŴPH(t0) =
IPH

dimHPH
, (32)

where t0 represents a temporal boundary of the universe, IPH is the identity operator
on HPH, dim counts the dimension of the Hilbert space, and dimHPH ≪ dimHeq.
Given Boltzmannian arguments, we will also call t0 the initial time.

I propose that we add the following postulate to any quantum theory in the
framework of Density Matrix Realism:

Initial Projection Hypothesis: The initial quantum state of the universe is ŴPH(t0).

I would like to make three observations about the content of the Initial Projection
Hypothesis (IPH).

First, IPH defines a unique initial quantum state. The quantum state ŴPH(t0)

is informationally equivalent to the constraint that PH imposes on the initial mi-
crostates. Assuming that PH selects a unique low-entropy macrostate, ŴPH(t0) is
singled out by the data in PH.24 As such, IPH breaks time-symmetry; ŴPH(t0) will
gives rise to time-asymmetric thermodynamic behaviors.

Second, we do not need to impose an additional probability / typicality measure
on the Hilbert space, as ŴPH(t0) is mathematically equivalent to an integral over
projection onto each normalized state vectors (wave functions) compatible with PH
with respect to a Lebesgue measure. Of course, we are not defining ŴPH(t0) in terms of
state vectors. Rather, we are thinking of ŴPH(t0) as a geometric object in the Hilbert
space: the (normalized) identity operator on HPH. (It can be further interpreted as
having the same status as a physical field (§3.3) or a physical law (§6).)

24Standard versions of PH may be vague about the exact initial low-entropy macrostate. In
that case, we can let empirical observations and theoretical cosmology to pin down a unique initial
macrostate. In that case, IPH would make the boundary condition more exact than standard versions
of PH.
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Third, ŴPH(t0) is simple. We can give three reasons. First, the identity operator
on a low-dimensional Hilbert space is probably the simplest mathematical object
we can associate with that Hilbert space. Second, since a density matrix is compat-
ible with many different wave functions and different choices of measures on the
Hilbert space, it has to contain very little information. Third, we can argue from
the informational equivalence between the Past Hypothesis and the initial density
matrix ŴPH(t0) (32). Some Humeans25 have given good arguments that the Past
Hypothesis is an additional (Humean) law of nature. As a law in the Humean best
system, the Past Hypothesis has to be a very simple postulate. Hence, the initial
density matrix ŴPH(t0), which is informationally equivalent to the Past Hypothesis,
is also simple.26 As we shall see in §6, the simplicity of ŴPH(t0) will be a crucial
ingredient for a new version of Quantum Humeanism (§6.2).

To simplify the discussions in later sections, let us write down the modified
theory of W-BM after adding IPH as a fundamental postulate:

(A) ŴPH(t0) =
IPH

dimHPH

(B) P(Q(t0) ∈ dq) = trCkWPH(q, q, t0)dq,

(C) ih̵∂Ŵ
∂t = [Ĥ, Ŵ],

(D) dQi
dt =

̵h
mi

Im∇qi trCk WPH(q,q′,t)
trCk WPH(q,q′,t)

(q = q′ = Q).

Let us call this theory WPH-BM. It is worth pointing out that given the initial quantum
state ŴPH(t0), there is a live possibility that for every particle at t0, the velocity is
zero. However, even in this possibility, as long as the initial quantum state “spreads
out” later, as we assume it would, the particle configuration will typically start
moving at a later time. This is true because of equivariance (see footnote #15).27

4.3 Connections to the Weyl Curvature Hypothesis

It is worth pointing out some connections between our Initial Projection Hypothesis
(IPH) and the Weyl Curvature Hypothesis (WCH) proposed by Penrose (1979).
Thinking about the origin of the Second Law of Thermodynamics in the early
universe with high homogeneity and isotropy, and the relationship between space-
time geometry and entropy, Penrose proposes a hypothesis:

I propose, then, that there should be complete lack of chaos in the initial
geometry. We need, in any case, some kind of low-entropy constraint
on the initial state. But thermal equilibrium apparently held (at least
very closely so) for the matter (including radiation) in the early stages.

25For example, Albert (2000), Loewer (2007) and Loewer (2016).
26This is of course compatible with the fact that ŴPH(t) will become complicated at later times.

But because von Neumann equation is deterministic, we have a simple way of deriving the quantum
state at any later time from that at the initial time.

27Thanks to Shelly Goldstein and Tim Maudlin for discussions here.
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So the ‘lowness’ of the initial entropy was not a result of some special
matter distribution, but, instead, of some very special initial spacetime
geometry. The indications of [previous sections], in particular, are that
this restriction on the early geometry should be something like: the Weyl
curvature Cabcd vanishes at any initial singularity. (Penrose (1979), p.630,
emphasis original)

The Wyel curvature tensor Cabcd is the traceless part of the Riemann curvature tensor
Rabcd. It is not fixed completely by the stress-energy tensor and thus has independent
degrees of freedom in Einstein’s general theory of relativity. Since the entropy of
matter distribution is quite high, the origin of thermodynamic asymmetry should
be due to the low entropy in geometry, which corresponds very roughly to the
vanishing of the Weyl curvature tensor.

WCH is an elegant way of encoding the initial low-entropy boundary condition
in the classical spacetime geometry. It is a version of PH that also dispenses with
SP. From this perspective, we can think of IPH as another way of encoding the
initial low-entropy boundary condition in part of ontology—in our case, in the
fundamental quantum state ŴPH(t0). It not only dispenses with SP, but it also
uses the PH data to pin down a unique initial quantum state (although additional
ontology such as Bohmian configuration can still be randomly distributed). In
contrast, Cabcd → 0 at the initial singularity only partially fixes the initial geometric
data. In any case, the most interesting connection is that WCH and IPH are both ways
of unifying (in some suitable sense) statistical mechanics (SM) with another branch
of physics: WCH unifies SM with GR; IPH unifies SM with QM. This establishes
an indirect connection between GR and QM (via SM), which could be fruitful to
explore in quantum gravity research.

5 Unification

The Initial Projection Hypothesis is formulated in the framework of Density Matrix
Realism: the initial density matrix is given by (32). Density Matrix Realism, plus the
postulate of IPH, leads to two important kinds of unification, which we will explore
in this section.

5.1 Dynamic Unity of the Universe and the Subsystems

First, Density Matrix Realism, independently of IPH, can harmonize the dynamics
of the universe and the subsystems.

Let us start with a quantum-mechanical universe U. Suppose that it occupies a
(finite or infinite) spatial region RU ⊆ R3. U consists in subsystems Si’s that occupy
spatial regions RSi ⊆ R3. As an idealization, they partition RU:

RU = ⋃
i

RSi (33)
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For a universe that can be partitioned into quasi-isolated subsystems (interac-
tions with the environment effectively vanish), the following is a desirable property:

Dynamic Unity The dynamical laws of the universe are the same as the effective
laws of most quasi-isolated subsystems.

This property is desirable, but not indispensable. It is desirable because law systems
that apply both at the universal level and at the subsystem level are unifying and
explanatory. This would be accepted, I believe, by Humeans and anti-Humeans
alike.28 However, it can be traded off with other properties that law systems can
have.29

Thus, it is desirable, other things being equal, if quantum theories also display
Dynamic Unity. However, BM formulated with a universal wave function violates
this property. To be sure, Dynamic Unity is valid in the simplest kind of Bohmian
theory—for N spin 0 particles and scalar-valued wave functions. Suppose that the
universe is partitioned into two subsystems S1 and S2. We have a universal wave
function Ψ(q1, q2), where q1, q2 are the configuration variables for the subsystems.
Because there are particles with precise positions, we can define conditional wave
functions. For example, for S1, we can define its conditional wave function:

ψcond(q1) = CΨ(q1,Q2), (34)

where C is a normalization factor and Q2 is the actual configuration of S2. In general,
ψcond(q1) does not evolve linearly by the Schrödinger equation. During quantum
measurements, it undergoes collapses, just as von Neumann’s measurement axioms
tell us. However, when S1 and S2 are suitably decoupled, and between measure-
ments, ψcond(q1, t) evolves, effectively, according to its own Schrödinger equation.

Just like Ψ(q1, q2), ψcond(q1, t) can always give rise to the probability density
according to the Born rule and the velocity field for the particles (in S1) according to
the guidance equation:

P(Q1 ∈ dq1∣Q2) = ∣ψcond(q1)∣
2dq1, (35)

dQ1i

dt
=

h̵
m1i

Im
∇iψcond

ψcond
(Q1) (36)

(35) corresponds to the probability formula (4). (36) corresponds to the guidance
equation for the (universal) wave function defined in (3).

However, since BM is described by (Ψ(t),Q(t)), it does not contain actual val-
ues of spin. It follows that when there are spin or other degrees of freedom, we

28See Hicks (2016) for an interesting discussion about quasi-isolated subsystems in the context of
Humean supervenience. However, our accounts differ in some important aspects. Unlike Hicks, I
do not want to define quasi-isolated subsystems as those that satisfy Dynamic Unity. They can fail
to have it. Moreover, I want Dynamic Unity to be a property that comes in degrees, rather than an
on/off thing.

29In personal communications, Matthias Lienert suggests that a failure of Dynamic Unity might
be expected from the perspective of relational mechanics. So someone who is sympathetic to that
project would be less inclined to regard Dynamic Unity as a desirable feature.
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cannot define conditional wave functions in an analogous way. This means that
for a Bohmian universe governed by a spinor-valued universal wave function, the
subsystems are not governed by conditional wave functions. Thus, the subsystem
particles do not always follow velocity fields defined from the subsystem guidance
equation (36).30

Dürr et al. (2005) point out that, instead of defining conditional wave functions,
we can still define conditional density matrices for these situations:

Ŵcond =
tr2(∣Ψ⟩ ⟨Ψ∣ 1̂⊕ P̂q2(dq2))

tr(∣Ψ⟩ ⟨Ψ∣ 1̂⊕ P̂q2(dq2))
(q2 = Q2), (37)

where P̂q2 is a PVM on R3N. Moreover, when the system is suitably decoupled from
the environment, the conditional density matrix follows the von Neumann equation
(23), which also dictates the time evolution of the universal density matrix of W-BM.
Furthermore, the conditional density matrix always gives rise to the velocity field
for particles in the subsystem in a way similar to (27):

dQ1i

dt
=

h̵
m1i

Im
∇q1itrCkWcond(q1, q,1)

trCkWcond(q1, q,1)
(q1 = q,1 = Q1). (38)

This is in contrast to the situation in BM. In BM, subsystems do not always have
conditional wave functions or effective wave functions, and thus the conditional
guidance equation (36) is not always valid. Therefore, W-BM has more Dynamic
Unity than BM. Other things being equal, that is a (defeasible) reason for preferring
W-BM to BM, and a reason for preferring Density Matrix Realism to Wave Function
Realism.

5.2 Unification of Statistical Mechanics and Quantum Mechanics

When we add IPH to Density Matrix Realism, such as in the case of WPH-BM, we
achieve another kind of unification: between statistical mechanic and quantum
mechanics. As we pointed out in §4, standard versions of CSM and QSM require
the addition of both the Past Hypothesis (PH) and the Statistical Postulate (SP) to
the dynamical laws. The situation is quite different in our framework.

For example, in WPH-BM, we incorporate PH into the simple and unique initial
quantum state WPH(t0). The low-entropy boundary condition is now built into the
dynamics of the theory. In §4.2 (A)—(D), we rewrote every dynamical equation and
probability formula in terms of WPH(t0).

Notice that the equations of WPH-BM are no longer time-translationally invariant,
which reflects the fact that time-asymmetry is built into the architecture of the theory.
This might seem to be an undesirable feature to some people, as we would often like
to separate the time-symmetric part from the time-asymmetric part of the theory.

30This is compatible with the fact that for subsystems that are suitably decoupled from the envioron-
ment, they still have effective wave functions. See Dürr and Lienert (2014), Lemma.
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But notice that the actual world we live in is time-asymmetric. So our fundamental
theory has to account for that phenomena. If the simplest and the most unifying
way to write down a theory can still be cleanly separated into parts that are time-
symmetric from parts that are not, then it is a nice thing. But if it cannot be done,
it is not a big strike against the theory. As I think of it, symmetries and invariances
are only defeasible indicators for simplicity and parsimony. We ought to judge the
theory on a case-by-case basis; we should compare theories to each other and not
merely against abstract principles of symmetries.31

WPH-BM also eliminates the need for SP and thus the need for a separate
statistical-mechanical probability / typicality in addition to the quantum equilib-
rium measure (B). This is a great achievement of the new framework, as it has been
a conceptual puzzle how to unify statistical-mechanical probabilities with quantum-
mechanical probabilities. I used WPH-BM as an illustration. But obviously similar
unification carries over to GRW-type theories and Everet-type theories formulated
with a fundamental density matrix satisfying the Initial Projection Hypothesis. A
similar possibility has been explored in the context of GRW jumps by Albert (2000)
and in the context of microstate versions of PH by Wallace (2011, 2012).

6 The Nomological Thesis

In previous sections, we have developed the framework of Density Matrix Realism
and added the Initial Projection Hypothesis to that framework. We have argued
that the initial quantum state in such theories would be simple and unique. This
lends support of the following thesis about the status of the initial quantum state:

The Nomological Thesis: The initial quantum state of the world is nomological,
i.e. it is completely specified by a law of nature.

Is it plausible to think of WPH(t0) as nomological? That depends on whether IPH
should be thought of as a law of nature. However, as we have argued, IPH is
informationally equivalent to PH. Many people (Humeans and non-Humeans) have
given good arguments that PH is on a par with the fundamental dynamical laws of
physics. (If PH is not a law, then what is it, and how can it explain the Second Law
of Thermodynamics?) There is a strong case for the nomological status of PH. Thus,
we also have a strong case for the nomological status of IPH.

These considerations provide good reasons for accepting the Nomological The-
sis. As a parallel to Albert and Loewer’s Mentaculus Vision, let us call the following
package of laws the Quantaculus Theory:

1. The fundamental dynamical laws of quantum mechanics, formulated in terms
of fundamental density matrices.

31Thanks to David Albert for discussions about this point. Regarding the connection between
symmetries and structures, I have learnt much from personal communications with Jill North and
Ted Sider.
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2. The Initial Projection Hypothesis.

The Quantaculus Theory has only two ingredients, as the Initial Projection Hypoth-
esis eliminates the need for a statistical-mechanical probability measure (§5.2). This
is a significantly improvement.

The Quantaculus Theory can be interpreted in non-Humean ways or Humean
ways. On the non-Humean proposal, we can think of the initial density matrix
as an additional law of nature that explains the distribution of particles, fields,
or flashes. Since IPH is already very simple, the plausibility of the Nomological
Thesis no longer depends on the time-independence of the quantum state.32 On the
Humean proposal, we can think of the initial density matrix as being completely
specified by a law of nature that supervenes on a separable mosaic. This leads
to a straightforward reconciliation between Humean supervenience and quantum
entanglement. In this section, we will first review this alleged conflict. Then we will
propose a new version of Quantum Humeanism that resolves the conflict.

6.1 The Humean Conflict with Quantum Entanglement

According to HS, the fundamental ontology of the world consists in:

”a vast mosaic of local matters of particular fact, just one little thing
and then another...We have geometry: a system of external relations of
spatio-temporal distances between points...And at those points we have
local qualities: perfectly natural intrinsic properties which need nothing
bigger than a point at which to be instantiated. For short, we have an
arrangement of qualities. And that is all. There is no difference without
difference in the arrangement of qualities. All else supervenes on that.”
(Lewis, 1986 p. ix)

According to HS, then, the ”vast mosaic of local matters of particular fact” is a
supervenience base for everything else in the world, the metaphysical ground floor on
which everything else depends.33 On this view, laws of physics are nothing over and
above the “mosaic.” They are just the simplest and most informative summaries of
the local matters of particular fact. For example, in classical mechanics, we can think
of the Newtonian laws of motion as mere summaries of the particle trajectories. The
Newtonian laws are not additional facts in the world, for they supervene on the
complete history of the N-particle universe.

Perhaps the most often-cited counterexample to HS comes from the entangle-
ment phenomena in QM. A consequence of Humean Supervenience is that the

32See Goldstein and Zanghì (2013) for a discussion about the Nomological Thesis that is motivated
by the Wheeler-DeWitt equation in quantum gravity.

33Humeans probably wants to formulate this thesis with some stronger relation, such as reduction
or grounding, than the traditional supervenience relation, for the latter would more accurately
capture the notion of asymmetric dependence relation of tfhe modal and nomological facts on the
non-modal and non-nomological facts. But in any case, reduction and grounding arguably imply
supervenience.
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complete physical state of the universe is determined by the properties and spa-
tiotemporal arrangement of the local matters (suitably extended to account for
vector-valued magnititudes) of particular facts. It follows that there should not be
any state of the universe that fails to be determined by the properties of individual
space-time points.34 However, the quantum state of our world–represented by the
wave function–contains, as a matter of empirical fact, entanglement relations, which
are not determined by the properties of space-time points.

The consideration above suggests a strong prima facie conflict between HS and
quantum physics. On the basis of quantum non-separability, Tim Maudlin has
proposed an influential argument against HS.35

6.2 A New Version of Quantum Humeanism

Among many things, the Quantaculus Theory offers a way out of the conflict be-
tween quantum entanglement and Humean supervenience. Suppose that a Humean
accepts the Quantaculus Theory, then she can easily Humeanize it by treating the
laws (including the IPH) as the axioms in the best system that summarize a separable
mosaic. Let us use WPH-BM as an example:

The WPH-BM mosaic: particle trajectories Q(t) on physical space-time.

The WPH-BM best system: four equations—the simplest and strongest axioms sum-
marizing the mosaic:

(A) ŴPH(t0) =
I

dimHPH

(B) P(Q(t0) ∈ dq) = trCkWPH(q, q, t0)dq,

(C) ih̵∂Ŵ
∂t = [Ĥ, Ŵ],

(D) dQi
dt =

̵h
mi

Im∇qi trCk WPH(q,q′,t)
trCk WPH(q,q′,t)

(q = q′ = Q).

Notice that (A)—(D) are very simple and informative statements about Q(t). They
are expressed in terms of ŴPH(t), which can be derived via a simple law (C) from
ŴPH(t0). Moreover, as we have argued in §4.2, ŴPH(t0) is very simple.

Here we have exploited the fact that WPH-BM satisfies Microstate Dispensability
(§2.2.3): even after removing the quantum state (W) from the mosaic, there are still
particles (Q’s) in the mosaic that provide an adequate ontological basis. It is obvious
that we can do similar “Humeanization” maneuvers on the fundamenteal density
matrix in other quantum theories with additional ontologies—GRWm, GRWf, and
Sm—since they also satisfy Microstate Dispensability.

This version of Quantum Humeanism stands in contrast to the current ap-
proaches in the literature: Albert (1996), Loewer (1996), Miller (2014), Esfeld (2014),
Bhogal and Perry (2015), Esfeld and Deckert (2017) and Chen (ms). In a future paper,
I will discuss their similarities and differences as well as the different demands they
place on the Humean view.

34This is one reading of David Lewis. Tim Maudlin (2007) calls this thesis “Separability.”
35See Maudlin (2007), Chapter 2.
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7 Conclusion

I have argued for a new package of views: Density Matrix Realism, the Initial
Projection Hypothesis, and the Nomological Thesis. Each is interesting in its own
right, and they do not need to be taken together. However, together they seem to fit
in rather nicely in the Quantaculus Theory. They provide alternatives to standard
versions of realism about quantum mechanics and a new way of resolving the
conflict between quantum entanglement and Humean Supervenience.

The most interesting feature of the new framework, I think, is that it unifies the
foundations of quantum mechanics and quantum statistical mechanics. With the
unification of the Past Hypothesis and quantum ontology, it suggests that the arrow
of time is intimately related to the quantum-mechanical phenomena in nature, and
vice versa. This could be fruitful for future research.
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