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Proof of Theorem 1: Suppose that for mutually exclusive E, E’ ∈ E ,
p∗(E′|C) = p∗(E′|C′). Then, we infer with the help of Generalized Difference-
Making

η(C, E) = f (p∗(E|C), p∗(E|C′))
η(C, E∨ E′) = f (p∗(E∨ E′|C), p∗(E∨ E′|C′))

= f (p∗(E|C) + p∗(E′|C), p∗(E|C′) + p∗(E′|C′))
= f (p∗(E|C) + p∗(E′|C), p∗(E|C′) + p∗(E′|C))

Applying Separability of Effects implies η(C, E∨ E′) = η(C, E) and leads to the
equality

f (p∗(E|C), p∗(E|C′)) = f (p∗(E|C) + p∗(E′|C), p∗(E′|C′) + p∗(E′|C))

Since we have made no assumptions about the values of these conditional
probabilities, f satisfies the formula f (x, x′) = f (x+ y, x′+ y) in full generality.
It is then easy to see (e.g., by looking at the indifference curves of f ) that there
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must be a function g such that f (x, x′) = g(x− x′). Hence,

η(C, E) = f (p∗(E|C), p∗(E|C′)) = g(p∗(E|C)− p∗(E|C′))

showing the desired ordinal equivalence claim. q.e.d.

Proof of Theorem 2: By Generalized Difference-Making with C′ = ¬C we can
focus on the function f : [0, 1]2 → R such that η(C, E) = f (p∗(E|C), p∗(E|¬C)).
We would like to derive the equality

f (α, ᾱ) · f (β, β̄) = f (αβ + (1− α)β̄, ᾱβ + (1− ᾱ)β̄) (1)

for a causal strength measure that satisfies Multiplicativity. To this end, recall
the single-path Bayesian network reproduced in Figure 1.

C X E

Figure 1: The Bayesian Network for causation along a single path.

We know by Multiplicativity that for C ∈ C, E ∈ E , and X ∈ X ,

η(C, E) = η(C, X) · η(X, E)

= f (p∗(X|C), p∗(X|¬C)) · f (p∗(E|X), p∗(E|¬X))

= f (p∗(X|C), p∗(X|¬C) · f (p∗(E|X), p∗(E|¬X))

and at the same time,

η(C, E) = f (p∗(E|C), p∗(E|¬C))

= f

(
∑
±X

p∗(X|C)p∗(E|C, X), ∑
±X

p∗(X|¬C)p∗(E|¬C, X)

)

= f

(
∑
±X

p∗(X|C)p∗(E|X), ∑
±X

p∗(X|¬C)p∗(E|X)
)
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Combining both equations yields

f (p∗(X|C), p∗(X|¬C) · f (p∗(E|X), p∗(E|¬X))

= f

(
∑
±X

p∗(X|C)p∗(E|C, X), ∑
±X

p∗(X|¬C)p∗(E|¬C, X)

)

With the variable settings

α = p∗(X|C) β = p∗(E|X)
ᾱ = p∗(X|¬C) β̄ = p∗(E|¬X)

equation (1) follows immediately.
Second, we are going to show that for any extension of f to R2,

f (x, y) = − f (y− x, 0) (2)

To this end, we first note a couple of facts about f .

Fact 1 f (α, 0) f (β, 0) = f (αβ, 0). Follows immediately from Equation (1) with
ᾱ = β̄ = 0.

Fact 2 f (0, 1) · f (β, β̄) = f (β̄, β). Follows immediately from Equation (1) with
α = 0, ᾱ = 1.

Fact 3 f (1, 0) = 1. With β = 1, Fact 1 entails that f (α, 0) f (1, 0) = f (α, 0).
Hence, either f (1, 0) = 1 or f (α, 0) ≡ 0 for all values of α. However, the
latter would also imply f ≡ 0 and trivialize f .

Fact 4 f (0, 1) = −1. Equation (1) (with α = β = 0, ᾱ = β̄ = 1) and Fact 3
entail that f (0, 1) · f (0, 1) = f (1, 0) = 1. Hence, either f (0, 1) = −1 or
f (0, 1) = 1. If the latter were the case, then the monotonicity requirement
in Generalized Difference-Making would be violated. Thus, f (0, 1) = −1.

These facts will allow us to derive Equation (2). Note that (2) is trivial if y = 0.
So we can restrict ourselves to the case that y > 0. We choose the variable
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settings

α =
y− x

y
β = 0

ᾱ = 0 β̄ = y

Then we obtain by means of Equation (1) and the previously proven facts

f (x, y) = f ((y− x)/y, 0) · f (0, y)

= f (y− x, 0) · f (1/y, 0) · f (0, y) (Fact 1)

= f (y− x, 0) · f (1/y, 0) · f (y, 0) · f (0, 1) (Fact 2)

= f (y− x, 0) · f (1, 0) · f (0, 1) (Fact 1)

= − f (y− x, 0) (Fact 3+4)

This implies

η(C, E) = f (p∗(E|C), p∗(E|¬C)) = − f ((−1) · (p∗(E|C)− p∗(E|¬C)), 0)

Hence, η(C, E) can be represented as a function of p∗(E|C)− p∗(E|¬C) only.
From Generalized Difference-Making we infer that f must be non-decreasing
in p∗(E|C)− p∗(E|¬C). This concludes the proof of Theorem 2. q.e.d.

Proof of Theorem 3: The proof relies on a move from the proof of Theorem 1
in Schupbach and Sprenger (2011). Consider three variables C, E1 and E2 with
E2 ⊥⊥ C and (E2 ⊥⊥ E1)|C. Let C ∈ C, E1 ∈ E1, and E2 ∈ E2 be propositions about
the values of these variables. Then, No Dilution for Irrelevant Effects implies
that

p∗(E1 ∧ E2|C) = p∗(E1|C) p∗(E2|C)

p∗(E1 ∧ E2|¬C) = p∗(E1|¬C) p∗(E2|¬C)

p∗(E2) = p∗(E2|¬C) = p∗(E2|C)
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In particular, it follows that

p∗(E1 ∧ E2|C) = p∗(E2) p∗(E1|C)

p∗(E1 ∧ E2|¬C) = p∗(E2) p∗(E1|¬C)

According to Generalized Difference-Making with C′ = ¬C, the causal
strength measure η can be written as η(C, E1) = f (p∗(E1|C), p∗(E1|¬C)) for
a continuous function f . From No Dilution and the above calculations we can
infer that

f (p∗(E1|C), p∗(E1|¬C)) = η(C, E1)

= η(C, E1 ∧ E2)

= f (p∗(E1 ∧ E2|C), p∗(E1 ∧ E2|¬C))

= f (p∗(E2) p∗(E1|C), p∗(E2) p∗(E1|¬C))

Since we have made no assumptions on the values of these probabilities, we
can infer the general relationship

f (x, y) = f (cx, cy). (3)

for all 0 < c ≤ min(1/x, 1/y). Without loss of generality, let x > y. Then,
choose c := 1/x. In this case, equation (3) becomes

f (x, y) = f (cx, cy) = f (1, y/x).

This implies that f must be a function of y/x only, that is, of the ratio
p∗(E|¬C)/p∗(E|C). Generalized Difference-Making then implies that all such
functions must be non-increasing, concluding the proof of Theorem 3. q.e.d.

Proof of Theorem 4: We write the causal strength measure ηcg as

ηcg(C, E) =

η+(C, E) for positive causation

η−(C, E) for causal preemption
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We know from the previous theorem that η−(C, E) must be ordinally equiva-
lent to ηr(C, E). Now we show that all η+(C, E)-measures are ordinally equiv-
alent to ηg(C, E) = p∗(¬E|¬C)/p∗(¬E|C). Since we have already shown that
ηg and ηc are ordinally equivalent, this is sufficient for proving the theorem.

Because of Generalized Difference-Making, we can represent η+ by a func-
tion f (x, y) with x = p∗(E|C) and y = p∗(E|¬C). Suppose that there are
x > y and x′ > y′ ∈ [0, 1] such that (1− y)/(1− x) = (1− y′)/(1− x′), but
f (x, y) 6= f (x′, y′). (Otherwise η+ would just be a function of ηg, and we would
be done.) In that case we can find a probability space such that p∗(E1|C) = x,
p∗(E1|¬C) = y, p∗(E2|C) = x′, p∗(E2|¬C) = y′ and C screens off E1 and E2

(proof omitted, but straightforward). Hence η+(C, E1) 6= η+(C, E2). By Weak
Causation-Prevention Symmetry, we can then infer η−(C,¬E1) 6= η−(C,¬E2).

However, since η− is ordinally equivalent to ηr, there is a function f such
that

η−(C,¬E1) = f
(

p∗(¬E1|C)

p∗(¬E1|¬C)

)
= f

(
1− x
1− y

)
η−(C,¬E2) = f

(
p∗(¬E2|C)

p∗(¬E2|¬C)

)
= f

(
1− x′

1− y′

)
By assumption,

1− x
1− y

=

(
1− y
1− x

)−1

=

(
1− y′

1− x′

)−1

=
1− x′

1− y′

and so we can infer η−(C,¬E1) = η−(C,¬E2), leading to a contradic-
tion. Hence η+(C, E) can be represented by a non-decreasing function of
p∗(¬E|¬C)/p∗(¬E|C), completing the proof of Theorem 4. q.e.d.

Proof of Theorem 5: By Generalized Difference-Making, we have that
η(C, E) = f (p∗(E|C), p∗(E|¬C)) for some continuous function f : [0, 1]2 → R.
Assume that η(C, E1) = η(C, E2) = t, that C screens off E1 and E2 and that
p∗(E1|C) = p∗(E2|C) = x, p∗(E1|¬C) = p∗(E2|¬C) = y, for some x, y ∈ R. By
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the Conjunctive Closure Principle, we can infer

η(C, E1 ∧ E2) = η(C, E1) = f (x, y)

Moreover, we can infer

η(C, E1 ∧ E2) = f (p∗(E1 ∧ E2|C), p∗(E1 ∧ E2|¬C))

= f (p∗(E1|C) · p∗(E2|C), p∗(E1|¬C) · p∗(E2|¬C))

= f (x2, y2)

Taking both calculations together, we obtain

f (x2, y2) = f (x, y) (4)

as a structural requirement on f , since we have not made any assumptions on
x and y.

Following Atkinson (2012), we now define u =
log x
log y and define a function g :

R2 → R such that g(x, u) := f (x, y). Equation (4) then implies the requirement

g(x2, u) = f (x2, y2) = f (x, y) = g(x, u)

and by iterating the same procedure, we obtain

g(x2n, u) = g(x, u)

for some n ∈ N. Due to the continuity of f and g, we can infer that g can-
not depend on its first argument. Moreover, taking the limit n → ∞ yields
g(x, u) = g(0, u). Hence, also

f (x, y) = g(0, u) = g(0, log x/ log y)

and we see that
η(C, E) = h

(
log p∗(E|C)

log p∗(E|¬C)

)
for some continuous function h : R → R. It remains to show that h is
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non-decreasing. Generalized Difference-Making implies that η(C, E) is a non-
decreasing function of p∗(E|C) and a non-increasing function of p∗(E|¬C). So
it must be a non-decreasing function of log p∗(E|C)/ log p∗(E|¬C), too. This
implies that h is a non-decreasing function. Hence, all measures of causal
strength that satisfy Generalized Difference-Making and the Conjunctive Clo-
sure Principle are ordinally equivalent to

ηcc(C, E) =
log p∗(E|C)

log p∗(E|¬C)
. q.e.d.

Proof of Theorem 6: We know by assumption that any measure that satisfies
Generalized Difference-Making with C′ = ΩC is of the form

η(C, E) = f (p∗(E|C), p∗(E)).

Suppose now that there are x, y, y′ ∈ [0, 1] such that f (x, y) 6= f (x, y′). In
that case, we can choose propositions C, E1, and E2 and choose a probability
distribution p∗ such that x = p∗(E1|C), y = p∗(E1) and y′ = p∗(E2) and
C∧ E1 |= E2, and C∧ E1 |= E2. Then, p∗(E1,2|C) = p∗(E1 ∧ E2|C) and

η(C, E1) = f (p∗(E1|C), p∗(E1)) = f (p∗(E1 ∧ E2|C), p∗(E1))

= f (p∗(E2|C), p∗(E1))

and by Conditional Equivalence, also

η(C, E1) = η(C, E2) = f (p∗(E2|C), p∗(E2))

Taking both equations together leads to a contradiction with our assumption
f (p∗(E2|C), p∗(E1)) 6= f (p∗(E2|C), p∗(E2)). So f cannot depend on its sec-
ond argument. Hence, all causal strength measures that satisfy Generalized
Difference-Making with C′ = ΩC and Conditional Equivalence must be ordi-
nally equivalent to ηph(C, E) = p∗(E|C). q.e.d.
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