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Proof of Theorem 1: Suppose that for mutually exclusive E, E" € &,
p*(E'|C) = p*(E/|C’). Then, we infer with the help of Generalized Difference-
Making

n(CE) = f(p*(E[C),p"(EIC))
n(CEVE) = f(p*(EVEIC),p"(EVE|C))
= f(p"(E|C) + p*(E'|C), p*(E|C") + p* (E'|C"))
= f(p"(E[C) + p*(E'|C), p*(E|C") + p*(E'|C))

Applying Separability of Effects implies 77(C,E V E’) = 5(C,E) and leads to the
equality

f(p*(EIC), p™(E|C")) = f(p"(E|C) + p"(E'|C), p" (E'|C) + p* (E'|C))

Since we have made no assumptions about the values of these conditional
probabilities, f satisfies the formula f(x,x’) = f(x+y, 1" +y) in full generality.
It is then easy to see (e.g., by looking at the indifference curves of f) that there
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must be a function g such that f(x,x") = g(x — x"). Hence,

n(C,E) = f(p* (E|C), p*(E|C)) = g(p*(EIC) — p*(E|C'))

showing the desired ordinal equivalence claim. g.e.d.

Proof of Theorem 2: By Generalized Difference-Making with C' = =C we can
focus on the function f : [0,1]> — R such that #(C,E) = f(p*(E|C), p* (E|-C)).
We would like to derive the equality

fla, &) f(B,B) = flap+ (1 —a)B,ap+(1—a)p) (1)

for a causal strength measure that satisfies Multiplicativity. To this end, recall

the single-path Bayesian network reproduced in Figure 1.
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Figure 1: The Bayesian Network for causation along a single path.
We know by Multiplicativity that for C € C,E € £, and X € X,

n(CE) = n(CX) - n(XE)
X|=C)) - f(p*(E[X), p™ (E[-X))
X|=C) - f(p*(E[X), p*(E|-X))

and at the same time,
n(CE) = f(p*(E[C), p"(E[-C))

p* (X|C)p* (E|C,X), Zp (X|-C)p *(E|ﬁc,><)>
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P* (X|C)p* (EIX), }_ p" (X|=C)p *(E|X)>
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Combining both equations yields

f(p*(X|C), p*(X|=C) - f(p* (E[X), p*(E[-X))
(Zp (X|C)p*(E|C, X), Zp (X|=C)p *(E\{,X))

With the variable settings

= p"(X|C) p=p"(EX)
= p (X[=C) B=p

equation (1) follows immediately.

Second, we are going to show that for any extension of f to R?,

floy) =—fly—x0) 2)
To this end, we first note a couple of facts about f.

Fact1 f(a, f (B,0) = f(apB,0). Follows immediately from Equation (1) with

&= 5 =
Fact2 £(0,1)- f(B,B) = f(B,B). Follows immediately from Equation (1) with
a=0a=1.

Fact3 f(1,0) = 1. With B = 1, Fact 1 entails that f(«,0)f(1,0) = f(«,0).
Hence, either f(1,0) = 1 or f(a,0) = 0 for all values of a. However, the
latter would also imply f = 0 and trivialize f.

Fact4 f(0,1) = —1. Equation (1) (witha = B = 0, & = B = 1) and Fact 3
entail that f(0,1)- f(0,1) = f(1,0) = 1. Hence, either f(0,1) = —1 or
£(0,1) = 1. If the latter were the case, then the monotonicity requirement
in Generalized Difference-Making would be violated. Thus, f(0,1) = —1.

These facts will allow us to derive Equation (2). Note that (2) is trivial if y = 0.

So we can restrict ourselves to the case that y > 0. We choose the variable
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This implies

1(C,E) = f(p"(B|C), p*(E[-C)) = —f((=1) - (p*(E|C) — p*(E[-C)),0)

Hence, #(C,E) can be represented as a function of p*(E|C) — p*(E|=C) only.
From Generalized Difference-Making we infer that f must be non-decreasing
in p*(E|C) — p*(E|=C). This concludes the proof of Theorem 2. g.e.d.

Proof of Theorem 3: The proof relies on a move from the proof of Theorem 1
in Schupbach and Sprenger (2011). Consider three variables C, E; and E, with
E; I Cand (E; ILEp)|C. Let C € C,E; € &, and E; € &, be propositions about
the values of these variables. Then, No Dilution for Irrelevant Effects implies
that

P (E1AE|C) = p(Ei|C) p"(E2|C)
pr(E1 AEp[=C) = p*(Eq|=C) p* (B2 ~C)
p'(B2) = p*(E2[=C) = p*(E2[C)



In particular, it follows that

p* (Bt ANE2|C) = p*(Ez) p*(E:1|C)
p* (Bt ANE2|=C) = p*(Ez) p*(E1|-C)

According to Generalized Difference-Making with C’' = —C, the causal
strength measure # can be written as #(C,E1) = f(p*(E1]|C), p*(E1|-C)) for
a continuous function f. From No Dilution and the above calculations we can
infer that

f(p*(E4|C), p*(E4|-C)) = 5(C Eq)

= 1(C E; AEp)
= f(p"(E1 AE2|C), p*(E1 A E2|=C))
= f(p"(E2) p*(E4|C), p" (E2) p* (E1|-C))

Since we have made no assumptions on the values of these probabilities, we

can infer the general relationship

fxy) = flex,cy). 3

for all 0 < ¢ < min(1/x,1/y). Without loss of generality, let x > y. Then,
choose ¢ := 1/x. In this case, equation (3) becomes

f(x,y) = flex,cy) = f(Ly/x).

This implies that f must be a function of y/x only, that is, of the ratio
p*(E|=C)/p*(E|C). Generalized Difference-Making then implies that all such

functions must be non-increasing, concluding the proof of Theorem 3. g.e.d.

Proof of Theorem 4: We write the causal strength measure 7.4 as

nT(C,E) for positive causation
1eg(C,E) = B .
71~ (C,E) for causal preemption



We know from the previous theorem that #~(C, E) must be ordinally equiva-
lent to #,(C,E). Now we show that all 7 (C, E)-measures are ordinally equiv-
alent to #7,(C,E) = p*(—E|-C)/p*(—E|C). Since we have already shown that
11¢ and 71, are ordinally equivalent, this is sufficient for proving the theorem.
Because of Generalized Difference-Making, we can represent 1" by a func-
tion f(x,y) with x = p*(E|C) and y = p*(E|—-C). Suppose that there are
x >yand x’ >y €[0,1] such that (1—y)/(1—x) = (1—y')/(1—x'), but
f(x,y) # f(x',y'). (Otherwise " would just be a function of 77, and we would
be done.) In that case we can find a probability space such that p*(E;|C) = x,
p*(E1]-C) = y, p*(E2|C) = &/, p*(E2|~C) = y’ and C screens off E; and E,
(proof omitted, but straightforward). Hence 17 (C,E;) # 17 (C, E;). By Weak
Causation-Prevention Symmetry, we can then infer #~(C, —E;) # 1~ (C, =Ey).
However, since 7~ is ordinally equivalent to #,, there is a function f such

| =)
=)

1—x  (1—y\ ' [1-y _1_1—x’
1-y \1-x)  \1-x S 1—y

and so we can infer 1 (C,—E;) = 5 (C,—E;), leading to a contradic-

=

- _ p*(—Eq1|C)
17 (C, —|E1) - f (p* (_|E11|_|C) )
- _ pr(-E2[C) \ _
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By assumption,

tion. Hence 17 (C,E) can be represented by a non-decreasing function of
p*(—E|-C)/p*(—E|C), completing the proof of Theorem 4. g.e.d.

Proof of Theorem 5: By Generalized Difference-Making, we have that
7(C,E) = f(p*(E|C), p*(E|=C)) for some continuous function f : [0,1]*> — R.
Assume that #(C,E;) = 5(C,E;) = t, that C screens off E; and E; and that
p*(E1|C) = p*(E2|C) = x, p*(E1|-C) = p*(E2|-C) =y, for some x,y € R. By



the Conjunctive Closure Principle, we can infer

1(C,E1 AEy) = 1(C,Eqp) = f(x,y)
Moreover, we can infer

N(CEIANEy) = f(p*(E1 ANE2|C), p*(E1 AEp|=C))
= f(p"(E1|C) - p*(E2|C), p* (E1|=C) - p*(E2|-C))
= f(%y%)

Taking both calculations together, we obtain

f& %) = f(xy) (4)
as a structural requirement on f, since we have not made any assumptions on
x and y.

Following Atkinson (2012), we now define u = }gg; and define a function g :

R? — R such that ¢(x, u) := f(x,y). Equation (4) then implies the requirement

g(x*u) = f(y*) = f(x,y) = g(x,u)
and by iterating the same procedure, we obtain

2n

g™ u) = g(x,u)

for some n € IN. Due to the continuity of f and g, we can infer that g can-
not depend on its first argument. Moreover, taking the limit n — oo yields
g(x,u) = g(0,u). Hence, also

f(x,y) = g(0,u) = g(0,log x/ logy)

and we see that

_ ., ( logp*(E|C)
TG E) =k (logp*m\ﬂo)

for some continuous function # : R — IR. It remains to show that h is



non-decreasing. Generalized Difference-Making implies that 77(C,E) is a non-
decreasing function of p*(E|C) and a non-increasing function of p*(E|-C). So
it must be a non-decreasing function of log p*(E|C)/ log p*(E|-C), too. This
implies that /1 is a non-decreasing function. Hence, all measures of causal
strength that satisfy Generalized Difference-Making and the Conjunctive Clo-

sure Principle are ordinally equivalent to

_ logp*(E[C)

«(CE) = )
1ee (G E) = G e (B[ -C)

g.ed.

Proof of Theorem 6: We know by assumption that any measure that satisfies
Generalized Difference-Making with C' = Q¢ is of the form

1(C,E) = f(p*(E|C), p*(E)).

Suppose now that there are x,y,y' € [0,1] such that f(x,y) # f(x,¥/). In
that case, we can choose propositions C, E;, and E; and choose a probability
distribution p* such that x = p*(E;|C), y = p*(E;) and v/ = p*(E) and
CAE; = Ey, and CAE; = Ep. Then, p*(E1,|C) = p*(E1 A E3|C) and

n(C,E1) = f(p*(E1|C),p"(E1)) = f(p*(E1 AE2|C), p*(E1))
= f(p"(E2|C),p*(E1))

and by Conditional Equivalence, also

1(C E1) = 5(C Ez) = f(p"(E2|C), p*(E2))

Taking both equations together leads to a contradiction with our assumption
f(p*(E2|C), p*(E1)) # f(p*(E2|C),p*(E2)). So f cannot depend on its sec-
ond argument. Hence, all causal strength measures that satisfy Generalized
Difference-Making with C' = Q¢ and Conditional Equivalence must be ordi-

nally equivalent to 7,;(C,E) = p*(E|C). q.e.d.
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