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It is generally argued that if the wave-function in the de Broglie–Bohm theory is a
physical field, it must be a field in configuration space. Nevertheless, it is possible
to interpret the wave-function as a multi-field in three-dimensional space. This
approach hasn’t received the attention yet it really deserves. The aim of this paper
is threefold: first, we show that the wave-function is naturally and straightforwardly
construed as a multi-field; second, we show why this interpretation is superior to
other field interpretations; third, we clarify common misconceptions.
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1 What Is the Wave-Function?
The wave-function is a very peculiar object. It is mathematically defined on a very high-
dimensional space, and yet it is supposed to determine the motion of particles in three
dimensions. We need to translate this mathematical picture into a coherent ontological
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story. Two very broad strategies have been pursued to elucidate what the wave-function
may be: either it is a beable (that is, as something existing), or it is an abstract entity.
Some Humeans, for example, have taken the latter strategy and relegated the wave-
function to the best-system (Callender, 2015; Esfeld et al., 2014; Miller, 2014). In this
role, the wave-function is the most efficient summary of the behavior of particles. For
dispositionalist, on the other hand, the wave-function exists as something real (Esfeld
et al., 2014; Suárez, 2015). Other interpretations can be assigned to either mode of
existence.
Having clarified what the wave-function is, one may find out where the wave-function

exists. It can exist here in three-dimensional space, somewhere in a different physical
space, or nowhere in any physical space at all. Again in a Humean best system the
wave-function would be nowhere because it is an abstract object. If one were to reify
configuration space, the wave-function would live somewhere in this space. The following
passage by John Bell is usually interpreted to suggest such that:

No one can understand [the de Broglie–Bohm] theory until he is willing to think of
ψ as a real objective field rather than just a ‘probability amplitude’. Even though
it propagates not in 3-space but in 3N -space. (1987, p. 128)

On this point, we disagree with Bell. We aim at showing that the wave-function can
be indeed construed as a beable here in three-dimensional space, namely, as a multi-field.
It will turn out that the multi-field is a non-local beable. We will contrast this view with
two other field interpretations of the wave-function: the marvelous point interpretation
by David Albert and the local fields approach by Travis Norsen. Our aim is to show that
the multi-field incorporates the best of both worlds: an ontology in three-dimensional
space without changing the mathematical formalism.

2 The Multi-Field
The multi-field view amounts to considering the wave-function as a generalization of an
ordinary classical field. A classical field specifies a definite field value for each location of
three-dimensional space. A charged particle that is posited at a given location will feel
the force generated by the value of the field for that location. The multi-field generalizes
this concept to N -tuples. Given an N -particle system, the wave-function as a multi-
field specifies a precise value for the entire N -tuple of points in three-dimensional space.
The multi-field thus determines, given the actual positions of N particles, the motion of
particles.
In the first-order formulation of the de Broglie–Bohm theory, the multi-field specifies

the velocity of particles, whereas in the second-order formulation the acceleration for
each particle is specified. In other words, the multi-field assigns a “multi-velocity” (first
order) and a “multi-acceleration” (second order)—induced by a multi-quantum force—to
the configuration of N particles. The multi-velocity and multi-acceleration then generate
the velocities and accelerations for each single particle of the configuration.
There is an important difference between the classical field and the multi-field. In

the classical case, the field produced by N particles can always be decomposed as a
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sum of the fields produced by single particles. As the wave-function is not produced
by “quantum sources”, the multi-field of an N -particle system is not decomposable
into a sum of single-particle quantum fields—if the wave-function is factorizable, it can
be decomposed into single-particle wave-functions, but they are not produced by the
particles. Thus, the multi-field rather is a holistic or relational field assigned to sets of
N particles.
The idea of the multi-field is not novel. It dates back to Forrest (1988, Ch. 5), where

he introduces the concept of polywaves as a generalization of classical mono-waves:

I posit polywaves, which are disturbances to polyadic fields. The familiar monowaves
(monadic waves) are assignments to each location of some member of the set of pos-
sible field-values for that location. Likewise an [N ]-adic polywave is an assignment
to each ordered n-tuple of locations of a member of the set of possible field-values
for that [N ]-tuple of locations. The integer [N ] is just the “number of particles”.
And the possible field-values are [N ]-adic relations. (1988, p. 155)

In the original proposal by Forrest, the concept of polywaves is defined in the frame-
work of standard quantum mechanics. The problem with this approach is that the
integer N in the definition above cannot be straightforwardly understood as the number
of particles, since in standard quantum mechanics a system is described only by the
wave-function. This is the reason why Forrest’s metaphysics seems to be constituted
by pure relations between (empty) points of space, which seems to be a rather peculiar
ontology. This problem is solved in the de Broglie–Bohm theory, where the integer N
refers to the number of real particles, and the relations between particles are easily ex-
plained by the dynamical correlations induced by the multi-field as we have described
above.
Belot (2012) was then the first to apply Forrest’s polywaves to the de Broglie–Bohm

theory and to dub this approach the multi-field interpretation. After a brief sketch of
what a multi-field is Belot dismisses it for the following four reasons:

1. The multi-field doesn’t have sources.

2. The multi-field violates the action-reaction principle.

3. The multi-field doesn’t restore energy-momentum conservation.

4. The multi-field transforms under boosts differently from the electromagnetic field.
(pp. 72-3)

These objections arise from the requirement that the multi-field must have the same
features as classical fields. If a field has sources, then it is natural that it fulfills the action-
reaction principle. Since the multi-field has no sources, an action-reaction principle is
not expected.
That the multi-field doesn’t to energy-momentum conservation is not correct. But

for formulating the conservation of these quantities one needs to introduce the quantum
potential Q, which is in essence the second derivative of the multi-field. So if the classical
potential V and the quantum potential are time-independent (that is, the system is
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closed) the total energy of particles along their trajectories is conserved (Holland, 1993,
p. 285):

N∑
i=1

1
2mv

2
i + V +Q = const.

A similar relation holds for the sum of the momenta. If
∑N

i=1∇i(V +Q) = 0 then

N∑
i=1

pi = const.

In particular, a particle guided by a plane wave has constant momentum because it
moves on a straight line.
For the ontology of the multi-field, we don’t see why its transformation properties

pose any dangers. It’s indeed important to debate whether the de Broglie–Bohm theory
is a Galilean or Aristotelian theory (Dürr et al., 1992; Valentini, 1997).
The multi-field account naturally explains the non-local behavior of Bohmian particles:

since the value of the multi-field depends on N -tuples of points and not on single points,
the behavior of a given configuration of particles is intrinsically non-local, as it were a
single structure moving in three-dimensional space. The multi-field is thus a new type
of field mathematically represented by the wave-function. It fills the physical space with
precise values for every N -tuple of points. Particles will feel a certain velocity and a
certain acceleration depending on the actual configuration (x1, . . . ,xN ) and depending
on the precise value of the quantum field Ψ(x1, . . . ,xN ).
Although the multi-field is a physical field in three-dimensional space, its mathematical

representation is given by the usual wave-function in configuration space. Therefore, the
multi-field interpretation does not have to be confused with Norsen’s view, which aims
at defining the wave-function itself in three dimensions. We show how these views differ
in the next section.

3 A Multitude of Fields Is Not a Multi-Field
Travis Norsen (2010) proposed a Bohmian quantum theory, in which there is no longer
a wave-function in configuration space (see also Norsen et al., 2015). Instead, the main
dynamical entity is the conditional wave-function associated to every particle in three-
dimensional space.1 The one-particle conditional wave-functions, however, don’t suffice
to recover all the predictions of the de Broglie–Bohm theory, since they cannot describe
entangled states between particles. Norsen presents a nice example.
Imagine two particles that are about to collide. We can prepare the system in two

different ways. In the first case, we start with a non-entangled wave-function (see Fig.
1), and in the second case, we prepare the system to be entangled (see Fig. 2). The
initial particle positions are the same. And, more importantly, the initial conditional

1The conditional wave-function ψt(x) of a particle is defined by the universal wave-function Ψ, once
the positions of all the other particles in the universe Y (t) are fixed: ψt(x) := Ψ(x, Y (t)).
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wave-functions of both particles are the same, too. Yet, we can prepare each system in
such a way that the particles move differently after collision.

Figure 1: Scattering of two non-entangled particles represented in the two–particle con-
figuration space. A particle moves parallel to the x1-axis approaching a particle
that sits at x2 = 0. The potential of the resting particle is marked as a light
grey diagonal line. Their initial wave-function is marked in dark grey. After
scattering, the first moving particle stops, and the other particle moves up-
wards. The wave-function is then in a superposition indicated by two light
grey wave-functions. (Picture from Norsen, 2010, p. 1867)

This shows that conditional wave-functions cannot do the job alone in retrieving all
Bohmian trajectories. While conditional wave-functions can render the correct trajec-
tories in the first example, they cannot do so for the entangled state. The information
about entanglement gets lost in the definition of conditional wave-functions—that’s the
same for the reduced density matrix in an EPR experiment, where it merely gives us
the statistics for one particle irrespective of what happens to the other particle.
Norsen’s idea is therefore to add additional local fields to the conditional wave-

functions to recover quantum entanglement. The task of these new fields is to change
the conditional wave-functions of each particle in such a way that they render the correct
trajectories even if the system is entangled; in fact, these fields are non-zero only if there
is entanglement.
Norsen’s theory of exclusively local beables makes the very same empirical predictions

as the de Broglie–Bohm theory—it even predicts the very same trajectories—, but the
price to be paid is a more contrived law for the evolution of all those local fields. First,
it turns out that there are infinitely many such interacting fields since the evolution of
the interaction fields requires further interaction fields. . . a never ending recursion. And
it’s not clear yet that one can get satisfactory results with only a finite set of these fields.
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Figure 2: Scattering of two entangled particles represented in the two–particle configu-
ration space. As in Fig. 1, a particle approaches a resting particle from the
left and collides at x2 = 0. Their entangled initial wave-function is depicted
in dark grey. After scattering, the resting particle starts moving to the right
parallel to the x1-axis, while the other particle stops at x2 = 0. The post–
scattering wave-function is drawn in light grey. (Picture from Norsen, 2010, p.
1868)

Second, each conditional wave-function follows a modified Schrödinger equation, in which
the other interaction fields are included. And these interaction fields themselves have
their own evolution equation. This makes the theory mathematically very complicated
and almost impractical for calculating empirical predictions.
We now realize that Norsen does not present a theory of a multi-field. There are

infinitely many ordinary local fields in physical space, which interact. In fact, this is
instead a theory of a multitude of ordinary fields!
Still, Norsen’s theory of local beables is sometimes confused with the multi-field:

We may consider the multi-field option—this postulates a multitude of fields in 3d
space, corresponding to each physical particle. Each of these fields is determined by
the wavefunction in configuration space, [. . . ] Yet, at each instant in time, a field is
defined in 3-D space corresponding to each particle. (Suárez, 2015, p. 3211)

It is apparent that this is not the multi-field account that we have presented in the
previous section. Indeed, in the multi-field account, there is no “multitude of fields” on
physical space; rather, there is just one field that assigns a value to a set of N particles.
You cannot decompose these values corresponding to each fields assigned to each particle
because for entangled systems one can’t attribute a wave-function to a single particle.
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4 Against a Field in Configuration Space
David Albert (1996) argued that if the wave-function is a field it has to be a field in
configuration space:

The sorts of physical objects that wave-functions are, on this way of thinking, are
(plainly) fields - which is to say that they are the sorts of objects whose states
one specifies by specifying the values of some set of numbers at every point in the
space where they live, the sorts of objects whose states one specifies (in this case)
by specifying the values of two numbers (one of which is usually referred to as
an amplitude, and the other as a phase) at every point in the universe’s so-called
configuration space. The values of the amplitude and the phase are thought of (as
with all fields) as intrinsic properties of the points in the configuration space with
which they are associated. (Albert, 1996, p. 278)

Since, in Albert’s view, the wave-function is a physical field in configuration space, he
takes this space as the fundamental space of physics, and so three-dimensional space with
all the objects therein have to emerge from this high-dimensional space. Consequently,
what fundamentally exist are not particles in three-dimensional space, but only one
single universal particle in configuration space:

On Bohm’s theory, for example, the world will consist of exactly two physical objects.
One of those is the universal wave-function and the other is the universal particle.

And the story of the world consists, in its entirety, of a continuous succession of
changes of the shape of the former and a continuous succession of changes in the
position of the latter.

And the dynamical laws that govern all those changes – that is: the Schrödinger
equation and the Bohmian guidance condition – are completely deterministic, and
(in the high-dimensional space in which these objects live) completely local. (Albert,
1996, p. 278)

The major reason for Albert to develop an ontology in configuration space is to have
the wave-function as a local beable: the wave-function is determined by the local values
it assigns to every point of configuration space. Hence, the motion of the universal
particle is completely determined by the field value at its location, exactly as in classical
electrodynamics, where the motion of a charged particle is determined by the value of
the electromagnetic field at its location. We doubt, however, that this kind of locality
is a universal principle for physical theories, especially in the quantum domain.
In our opinion, the major drawback of this interpretation is that it doesn’t distinguish

between the mathematical space and physical space. The fact that a physical object
is mathematically defined in configuration space, does not necessarily imply that the
object itself has to exist in configuration space. Nor does it imply that the world is
3N dimensional. We encounter a similar issue in the meaning of dimensions in classical
mechanics. The number of dimensions to mathematically describe a physical object
is given by the number of degrees of freedom that we need to describe the state and
the motion of that object. For example, a rigid body that translates and rotates is
represented in a six-dimensional space. But, of course, this does not mean that the
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rigid body is really a six-dimensional object: in fact, it exists in a three-dimensional
space, but we need six degrees of freedom to fully describe its state of motion. Here the
distinction between the mathematical representation and the actual physics is obvious,
since everybody agrees on what a rigid body is.
Albert takes a different approach in quantum mechanics, as well as in classical me-

chanics. He starts with the mathematical formalism and searches for criteria in how
to distill an ontology. His primary principle is locality: find the mathematical space in
which the physical entities are locally defined. You may also call this principle separa-
bility, since it’s about the ontology of objects and not about their dynamical behavior.
For the de Broglie–Bohm theory this principle distinguishes configuration space as the
space in which the wave-function is locally defined. So take this space as fundamental!
In classical mechanics, three-dimensional space and phase are separable. So here the

locality principle does not single out one space over the other. Therefore, Albert invokes
another principle here: take the local space that has the lowest dimension. Applying
this principle, we get that the fundamental classical space is three dimensional.
We think that Albert’s approach to extract an ontology of the mathematical formalism

of physics relies on a idiosyncratic understanding of what physical theories are. They
are not bare mathematics! Only one part consists of formulas; the other part consists
of a commentary to the formulas in order to tell us what these symbols refer to in the
world. In particular, a good physical theory, like the de Broglie–Bohm theory, tells us
by itself what the ontology is. No principle of locality is needed. And why should we be
committed to this principle in the first place?
The primary task of physics is to explain what we observe, to explain our manifest

image (to use a phrase of Sellars, 1963). A theory does so by proposing a scientific image,
namely an ontology with corresponding laws of nature. Albert’s scientific image consists
of a point in configuration space that is locally guided by the wave-function. He gets
the manifest image by an analysis of the Hamiltonian in the Schrödinger equation. The
Hamiltonian has the structure of giving rise to a three-dimensional world, with tables
and chairs, on a coarse-grained level.
In the multi-field view, the scientific image consists of many particles in three-dimensional

space, guided by a non-local field on this very space. The advantage of this view is that
the scientific image takes place in the same physical space as the manifest image: tables
and chairs are really composed of particles. It’s not sufficient to explain the manifest
image just by the dynamical laws but also by how these laws give rise to the manifest
image. That particles are situated in three-dimensional space composing tables and
chairs is much more plausible and straightforward than a marvelous point in a very
very high dimensional space explaining the behavior of tables and chairs by a functional
analysis of the Hamiltonian (see also Emery, 2017, for an argument along these lines).
The dynamics is not enough; it is also important how this dynamics is implemented in
the ontology.
Besides, Albert’s ontology is based on the assumption that our perception of the world

is massively flawed. We may concede that perception can misguide us, but that there is
this conspiracy of actually living in a 3 ·1080 dimensional space (this is a number with 80
zeros!) without every noticing the other 1080 dimensions is hard to grasp. If there is a
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coherent conservative alternative, why should we adhere to this idiosyncratic ontology?

5 Advantages
In the following, we list the advantages of the multi-field interpretation in more sys-
tematic order. Some of the points have been mentioned above, but here we make them
explicit.

General Physical Interpretation
The multi-field interpretation is largely independent of the concrete formulation of the de
Broglie–Bohm theory in terms of a first-order formulation (Dürr et al., 2013; Valentini,
2010), second-order formulation (Bohm and Hiley, 1993), or quantum Hamilton-Jacobi
formulation (Holland, 1993). In the first-order formulation the multi-field directly spec-
ifies the velocities of each particle. In the second-order formulation, the acceleration is
specified by means of the quantum potential. We think, however, that the the multi-
field interpretation is particularly useful for the second-order theory, because it allows
to retrieve the entire classical scheme of how motion is generated: field → potential →
force → acceleration.
The multi-field interpretation is also independent of the status of laws of nature.

Recent interpretations, like the nomolgical interpretation, the Humean interpretation
(Bhogal and Perry, 2017; Callender, 2015; Esfeld et al., 2014; Miller, 2014), or the dispo-
sitional interpretation (Esfeld et al., 2014; Suárez, 2015) require a commitment to what
laws of nature are. For physicists may regard it as an advantage that they don’t need
to dig too deep into metaphysics in order to understand what the wave-function is.

The Entire Ontology in Three Dimensions
That Bohmian particles are guided by the wave-function is often taken merely as a
heuristic intuitive metaphor. As the wave is defined in configuration space, it cannot
directly influence the motion of particles. Having the wave-function as a multi-field,
however, gives this intuition an ontological underpinning. The de Broglie–Bohm theory
is hence a pilot-multi-wave theory, where the wave directly guides particles in three-
dimensional space. This has also the advantage that there is an ontological continuity
between one-particle and many-particle scenarios. A one-particle wave-function cannot
be only visualized in three-dimensional space because this space mathematically coin-
cides with configuration space, but there is indeed a wave in three-dimensional space.
When this one-particle wave-function gets entangled with an external N -particle sys-
tem, the new (N + 1)-particle system is still guided by a wave in three dimensions. The
double-slit experiment provides a vivid example of the explanatory advantage of this
view. While the particle goes through one of the slit, the wave literally enters both slits,
thereby determining the motion of the particle and accounting for the characteristic
interference pattern on the screen.
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Simplicity
The multi-field view is different from Norsen’s approach, which reduces the universal
wave-function to a set of one-particle wave-functions. There, each particle has an associ-
ated local “pilot-wave” in three-dimensional space, so that an N -particle wave-function
reduces to a set of local beables. But in order to make the theory empirically ade-
quate and to account for entanglement, Norsen has to introduce an infinite number of
interacting fields for the guiding fields. Thus, the formalism of the theory becomes ex-
traordinarily complicated. This is due to the recursive structure of the local Schrödinger
equation, leading to a kind of Taylor series for every local guiding field comprising a
particle. This would be a totally new structure for a fundamental law of nature. Since
the total infinite series of fields cannot be calculated, it is an open question at one order
one can truncated this series to have approximately good empirical results.
We think that Norsen’s attempt to write down a theory of exclusively local be-

ables shows how unnatural it is to mathematically embed the wave-function in three-
dimensional space. One of the great novelties of quantum mechanics is non-locality, and
this is implemented in de Broglie–Bohm theory in a natural way by having the wave-
function defined in configuration space. Norsen’s approach is an attempt to reduce the
(global) wave-function of an N -particle system to a set of one-particle wave-functions,
one for each particle of the configuration. It is exactly the need to recover quantum
non-locality that makes the theory extremely complicated.
The multi-field view, on the other hand, is much simpler: it is an interpretation of the

wave-function as a new type of field in three-dimensional space. In particular, it does
not require us to modify the definition of the wave-function, and so it does not require to
modify the mathematical formalism of the theory. Quantum non-locality is encoded by
having the mathematics in an abstract high-dimensional space. This explains quantum
non-locality in the simplest way.

Instantiating a Non-Local Beable
For Maudlin (2013), the wave-function in the de Broglie–Bohm theory refers to a real
physical entity that determines the behavior of particles. The wave-function is according
to him best regarded as the mathematical representation of a new physical object: the
quantum state. Yet, contrary to Albert, Maudlin suggests that we should not extract
the ontology of the quantum state directly from its mathematical representation for the
following reasons:

1. The wave-function contains some degrees of freedom that are merely gauge, since
they do not lead to different quantum states. One example is the overall phase:
wave-functions with different overall phases represent the same quantum state,
since their empirical predictions are exactly the same.

2. The wave-function (for an N -particle system) is naturally expressed in configura-
tion space because it refers to the positions of a real configuration of N particles
in three-dimensional physical space.
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Nevertheless, Maudlin does not specify which sort of physical entity the quantum state
is. He merely describes it as a non-local beable:

From the magisterial perspective of fundamental metaphysics, then, our precise
quantum theories have a tripartite ontology: a space-time structure that assumes a
familiar approximate form at mesoscopic scale; some sort of local beables (particles,
fields, matter densities, strings, flashes) in that space-time; and a single universal
non-local beable represented by the universal wave-function Ψ. (Maudlin, 2015, p.
356)

The multi-field idea, on the other hand, goes beyond Maudlin’s characterization of the
wave-function: it is a genuine physical field. Because of it’s properties, the multi-field is
a non-local beable. It is a beable since it is a physical object in three-dimensional space.
And it is non-local since the value of the multi-field is specified not for one point but
only for N -tuples of points. The multi-field thus explains what the quantum state is,
and it instantiates a non-local beable.

6 Objections and Replies
In the course of writing the paper, we have received some critical remarks about the
multi-field approach. We now mention the most important ones followed by our reply.

1. The multi-field doesn’t give us a new ontological understanding of the wave-function.
We regard the multi-field interpretation as a new ontological interpretation of
the wave-function that has been so far ignored. This approach is incompatible
with the nomological interpretation of the wave-function, and its metaphysical
characterizations in terms of dispositionalism and Humeanism, although one may
still ground the multi-field on an extended Humean mosaic that also comprises
contingent non-reducible relations (Darby, 2012). But a detailed analysis goes
beyond the scope of this paper.

2. You don’t change the formalism. How can the wave-function be something in three-
dimensional space, if it is defined on configuration space?
There is a difference between the mathematical structure that we use to define a
physical object and the ontology of that object. The multi-field interpretation is
based on this distinction. The configuration space is the mathematical space that
we need to describe a function which generally depends on 3N degrees of freedom
(where N is the number of particles of the system); three-dimensional space is the
physical space in which the object represented by that function is defined.
A simple example can be of some help here. Historically, the first formulation
of classical mechanics was due to Newton. Newton’s theory of mechanics was an
ontological theory, that is, a theory with clear ontological commitments: particles
moving in three-dimensional space accelerated by force acting on them. The same
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theory can be casted in the Hamiltonian formulation. Here, the system is rep-
resented by a particle moving in phase space with a trajectory described by the
Hamiltonian function. Nevertheless, it is understood that the Hamiltonian formu-
lation is just a mathematical representation of the ontological picture of classical
mechanics given by Newton’s theory. What we usually do in practice is to use both
formulations simultaneously: the physical ontology of Newton’s theory (that’s what
the world is built of) and the mathematics of the Hamiltonian formulation (which
is often more convenient in doing calculations).
Quantum mechanics has followed an inverse path: the formalism of the theory
is an extension of the Hamiltonian formulation of classical mechanics. And the
historical mistake here was the attempt to extract from this formulation the phys-
ical interpretation of the theory. We regard the de Broglie–Bohm theory as the
ontological theory of quantum mechanics (the analogue of Newton’s theory for the
classical case), which is a theory of particles moving in three-dimensional physical
space acted upon by a multi-field. In a nutshell, the multi-field interpretation bears
the advantages of Norsen’s ontology (that is, having the wave-function physically
as a field on three-dimensional space) and the simplicity of the standard formalism
(that is, the wave-function as a mathematical object in configuration space).

3. The multi-field runs into the problem of communication.
Suárez claims the following:

According to this view, the multi-fields are defined at each instant by the wave-
function in configuration space, and the question is how the wave-function
“communicates” to physical three-dimensional space in order to fix each of the
fields and the positions of the particles for any system of N particles. [. . . ] Also,
note that the communication is curiously one way: while the wave-function fixes
the physical properties, including positions, of particles in three-dimensional
space, these have no effect back onto the wave-function, which essentially ig-
nores which are the actual particle trajectories amongst all the possible trajec-
tories compatible with the dynamics. (2015, p. 3212)

It is difficult to see how the problem of communication arises in the multi-field
approach. Indeed, there is a problem of communication when different physical
entities live in different physical spaces and yet influence each other. But, in the
case of the multi-field approach, both the guiding wave and the particles live in
the very same space, namely, three-dimensional space. So, there is no problem of
communication in the multi-field account.
Moreover, the fact that the communication is “one way” is independent of the
problem of communication; it’s ought to be an objection to regarding the wave-
function as a field in the first place. This can become a problem if we want the
wave-function to behave like a classical field, where particles and field mutually
affect each other. But there are good reasons to think that, if the wave-function is
a field, it must certainly be a new type of field, possessing completely new physical
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features. The action-reaction principle may thus be thought of as a characteristics
of classical fields, and it is better to abandon this principle in the ontology of
quantum theory. After all, there is no logical inconsistency in thinking of particles
not acting back on the field. This could just confirm that the type of physical
interaction between the (Bohmian) particle and the multi-field is after all not a
classical interaction.

4. Fields have to be local and propagate with finite speed.
We disagree that these features are essential to fields, although they are crucial to
classical fields. Fields are first and foremost continuous distributions of certain val-
ues. All other features about locality and dynamics are derived from the equations
that implement these fields in the theory.

5. One has always understood the wave-function as a relation between N particles.
As soon as one takes three-dimensional space as the fundamental space, the wave-
function relates the motion one particle with the motion of all the other particles.
In the same vein, the electromagnetic or gravitational field relates the motion of
one particle to the motion of the other particles. So “relation” is a placeholder
that needs to be specified. We think that understanding the wave-function as a
mere set of relations between particles begs the question of what these relations
are supposed to be. The multi-field is a concrete entity that specifies the physical
meaning of these relations.

7 Conclusion
We have shown that the multi-field interpretation is a serious candidate for the ontology
of the de Broglie–Bohm theory. It is the most conservative physical interpretation com-
pared to the marvelous point interpretation and the local fields theory. Tim Maudlin
regards the wave-function to be a non-local beable building on a thorough analysis of
the work of John Bell. The multi-field interpretation starts from a completely different
route, namely, by an analysis and extension of the classical field concept. In the end,
the wave-function is a non-local beable because it is a multi-field.
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