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Abstract 

 
Neuroscientists commonly assume that the brain generates representations of a scene in various 
non-retinotopic 3D coordinate frames, for example in ‘egocentric’ and ‘allocentric’ frames. 
Although neurons in early visual cortex might be described as representing a scene in an 
eye-centred frame, using 2 dimensions of visual direction and one of binocular disparity, there 
is no convincing evidence of similarly organized cortical areas using non-retinotopic 3D 
coordinate frames nor of any systematic transfer of information from one frame to another. We 
propose that perception and action in a 3D world could be achieved without generating ego- or 
allocentric 3D coordinate frames. Instead, we suggest that the fundamental operation the brain 
carries out is to compare a long state vector with a matrix of weights (essentially, a long look-up 
table) to choose an output (often, but not necessarily, a motor output). The processes involved 
in perception of a 3D scene and action within it depend, we suggest, on successive iterations of 
this basic operation. Advantages of this proposal include the fact that it relies on 
computationally well-defined operations corresponding to well-established neural processes. 
Also, we argue that from a philosophical perspective it is at least as plausible as theories 
postulating 3D coordinate frames. Finally, we suggest a variety of experiments that would 
falsify our claim. 
  
Key words: 3D representation; coordinate frames; moving observer; stereopsis; motion 
parallax. 
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1. Introduction 

For an observer to perceive and operate successfully in a 3D world it is often assumed that the 

brain must generate 3D models or reconstructions of the scene in a range of coordinate frames 

(retinotopic, head-centred, hand-centred, body-centred, world-centred) and that there must be a 

series of complex 3D coordinate transformations to convert information from one frame to 

another, even before the sensory information is passed to the motor system (Andersen et al, 1997; 

Colby, 1998; Byrne et al, 2007). The hypothesis explored in this article is that these coordinate 

transformations may be avoided in the brain, and that an alternative account could explain 3D 

perception of surface shape, object location and scene layout.  

 

We focus particularly on the problem of specifying the layout of a ‘vista space’ (Meilinger, 2008), 

i.e. the scene that is visible from one place as an observer moves their head and eyes around freely. 
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We argue that the brain solves this problem without exploiting either an egocentric or a 

world-based 3D coordinate frame representation of the space. Instead, we propose, 

neurophysiological mechanisms of the type that are already recognised as underpinning the control 

of movement are critical in explaining perception of the 3D environment. These mechanisms were 

originally proposed in the 1960s to explain the operation of the cerebellum (Marr 1969; Albus 

1971, Schmahmann, 2004). They describe how a sensory state can be ‘recognized’ (i.e. identified 

as most similar to a stored sensory context) and hence give rise to a motor output associated with 

that stored context. 

 

Similar mechanisms to the one we propose have been suggested for the representation of space 

over a larger range of movements (Gillner and Mallot 1998; Franz et al. 1998; Cummins and 

Newman 2008; Milford and Wyeth 2008) and our broader aim is to provide a common framework 

to understand spatial perception over a wide range of scales without resorting to 3D coordinate 

frames at any stage. However, in this article we focus on the perception of vista space which 

requires (i) saccadic eye movements or other rotational movements to allow the observer to see the 

entire scene around them (optic array) and (ii) relatively small translations of the optic centre 

while fixating an object, which includes lateral head movements and static binocular viewing of an 

object. In a static world, these movements, along with hand movements and larger translations that 

change the optic array completely, cover a large proportion of image changes that an observer can 

generate. All of these movements can be described in terms of a graph of views, where the nodes 

are views and the edges of the graph are actions, an idea that is well established in models of 

navigation (Franz et al 1998). We do not restrict the discussion to vision. Instead, all sensory 

modalities contribute to a ‘sensory context’ which is quite different from bringing all modalities 

into a common 3D coordinate frame or reference frame as others have suggested (Jay and Sparks 

1987; Andersen et al 1997; Cohen and Andersen 2002).  
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A second novel aspect of the proposal is that we suggest ‘motivational’ input is included as part of 

a description of the current state (hence we talk of a ‘sensory+motivational’ state) and the same is 

true of the stored contexts. The term ‘motivational’ is intended to distinguish this part of the input 

from input with an immediately sensory source. Motivational input includes information about the 

observer’s task, but it need not be limited to the observer’s drives or desires. 

 

We will set out three reasons for accepting our proposal. First and foremost, the mechanism we 

propose can provide an account for performance in tasks in vista space that are standardly 

explained by appeal to representation in 3D coordinate frames. This includes representation of the 

slant, depth relief and relative distance of surfaces by a moving observer (see A 2½D sketch 

below). Second, while it is an unresolved question as to how the brain could implement the 

transformations required by a 3D coordinate frame theory, it is well established that neurons can 

implement the type of process that is invoked in our proposal (see Section 5). Third, participants’ 

performance in spatial judgement tasks suggests that their representations of vista space cannot be 

captured in terms of a single, consistent 3D coordinate frame representation of that space (Section 

2). We will contrast our approach with other proposals in neuroscience, giving examples of 

physiological and psychophysical findings that could discriminate between the rival hypotheses. 

We will also relate our proposal to philosophical theories of perceptual experience, and consider 

some philosophical and neuroscientific challenges (Section 6). 

 

In the next section, we introduce a distinction from the philosophical literature that enables us to 

specify the difference between our proposal and one based on coordinate frames. We also explain 

our proposal’s implications for philosophical theories of perceptual experience. Then, in Section 3, 

we provide a notation to define our proposal more formally. 
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2.  3D representation: 3D coordinate frame or not? 

Our proposal is that 3D perception and action in a vista space are achieved through a process of 

matching the current sensory+motivational context with stored sensory+motivational contexts, 

and that in order for perception and action to be achieved in this way, no 3D coordinate frame 

representation of the vista space is required. It is worth emphasizing that both conjuncts of this 

proposal are essential to it. By itself, the claim that perception and action are achieved through a 

process of matching current and stored sensory+motivational contexts is extremely general. As 

a result, by itself this claim is consistent with representation in 3D coordinate frames; the 

contexts in question could be 3D coordinate frame representations. Our proposal is substantive 

and falsifiable, in that it involves both the positive claim that 3D perception and action in a vista 

space are achieved through the matching process, and the negative claim that this does not 

require representation in 3D coordinate frames. 

 

So what is representation in a 3D coordinate frame? To make this precise, we need to 

distinguish between the content and the format of a representation. Roughly, a representation’s 

content is the information that the representation makes available to a system. The content of a 

representation may be modeled as the possible state of the world that obtains wherever the 

representation is correct, for example the presence of a surface with a certain shape and size at a 

certain distance and direction from the observer.  By contrast, the format of a representation is 
1

the means by which the vehicle of representation carries its content. For example, a map and a 

sentence might each have the same content – they might tell you the same facts about how 

1 Some philosophers would also include a mode of presentation of a possible state of the world, a further 
aspect of the representation’s content which contributes to its functional role. We try to keep things 
simple by working in terms of extensional contents (i.e., contents which may be modeled simply as 
possible states of the world). 
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objects are arranged, say – though they represent that content through different representational 

formats (Camp, 2007). 

 

Our negative claim is that the contents of perceptual representations do not, in general, include a 

3D coordinate frame representation of the whole of vista space. That is, the states of the world that 

perceptual processes represent do not, in general, include certain spatial relations: relations 

between objects (or their parts) on the one hand, and an origin and three axes on the other, 

extending throughout the vista space around the observer.  Individual objects and subregions of 2

the vista space are perceived as having height, breadth and depth, dimensions which may be 

plotted against an origin and three axes. But we deny that, in general, perceptual processes 

represent the entire vista space in this way, with spatial relations among all locations in the space 

represented in a way that may be plotted against a single origin and three axes. We accept that, for 

some very specific tasks, representations of these relations throughout a vista space might be 

constructed. But we deny that perception and action in a 3D world in general rely on that 

construction. Our alternative can also be contrasted with 3D coordinate frame representation in 

that the latter, but not the former, is an essentially metric form of representation (see Section 4). 

 

Though our negative claim concerns the contents of perceptual representation, it might be falsified 

by findings about the format of perceptual representation: if perceptual representations had a 

format like that of a 3D model of a vista space, this would be strong evidence that these 

representations exploit that format to carry contents that are expressible in terms of 3D coordinate 

frames (see Section 5). For example, one way to describe the receptive fields of disparity tuned 

neurons in V1 is that each cell can be mapped to a voxel in a coordinate frame defined by three 

axes, where the origin lies at the fixation point and variation along the horizontal and vertical axes 

2 If a coordinate frame system did represent the entire vista space in this way, it might be unspecific or 
silent about what is present at some coordinates in the vista space. So our negative claim is not supported 
merely by the fact that some regions of a vista space are occluded. 
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is determined by a cell’s spatial location in the cortex while variation along the depth axis is 

determined by a cell’s disparity sensitivity (Prince et al. 2002). This format in V1 does not 

undermine our hypothesis, since the V1 coordinate frame only applies to a subregion of vista 

space and the frame moves with the eye.  But if a parallel format were found in brain areas that 

encode head-centred or world-centred frames, especially if it could be shown that these formats 

are inherited or computed on the basis of the V1 coordinate frame, that would be strong evidence 

against our hypothesis (see Section 6.3). 

 

Philosophical work on spatial perception often assumes that the contents of perceptual 

representations include 3D coordinate frames (see e.g. the essays in Eilan, McCarthy and Brewer, 

1993). Here is an influential example: 

 

I suggest that one basic form of representational content should be individuated by 

specifying which ways of filling out the space around the perceiver are consistent with the 

representation’s content being correct. The idea is that the content involves a certain 

spatial type. … There are two steps we have to take if we are to specify fully one of these 

spatial types. The first step is to fix an origin and axes. … [F]or instance, one kind of 

origin is given by the property of being the center of the chest of the human body, with the 

three axes given by the directions back/front, left/right, and up/down with respect to that 

center. … Having fixed origin and axes, we need to take the second step in determining 

one of the spatial types, namely, that of specifying a way of filling out the space around 

the origin.  

Peacocke, 1992: 62-3 

 

Peacocke suggests that the spatial contents of perception take the form of a 3D coordinate frame 

representation of the vista space around an observer. This is the kind of representation which we 
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deny is required to explain perception and action in a vista space. 

 

Like much of the philosophical literature, Peacocke appeals to perceptual representations in order 

to capture the phenomenology of perceptual experience; his core claim about 3D coordinate frame 

representation is that ‘the appropriate set of labeled axes captures distinctions in the 

phenomenology of experience’ (63). In what follows we do not focus on describing 

phenomenology. Instead we explain the perceptual achievements revealed by observers’ reports of 

the layout of a scene, in terms of a system of representations in the brain that does not include 3D 

coordinate frames. Nonetheless, our proposal undermines Peacocke’s claim that the 

phenomenology of perceptual experience should be characterized in terms of 3D coordinate 

frames. Observers’ reports about a scene are a key empirical measure of phenomenology or 

conscious experience (Weiskrantz 1997; Deheane and Changeux 2004), and our proposal is that 

the system of representations which best explains these reports is not a system of 3D coordinate 

frame representations. 

 

Our explanation of participants’ reports is more powerful than an explanation in terms of 3D 

coordinate frames, because some reports which our proposal explains cannot be explained by any 

‘way of filling out space’ relative to three axes and an origin. For example participants in 

Glennerster’s lab were presented with an expanding virtual scene, and made pairwise comparisons 

of the distances to objects. Although the pairwise comparisons were precise (i.e. highly 

repeatable), there was no consistent depth ordering of the objects that could explain this 

performance (e.g. A>B>D yet also A<C<D). No single 3D-coordinate plotting of the objects’ 

locations is consistent with this form of successful spatial perception (Svarverud et al., 2012), a 

conclusion others have proposed on the basis of similar apparently inconsistent psychophysical 

evidence (Koenderink et al, 2002; Smeets et al, 2009, see Section 5). Our explanation of 

participants’ reports is also simpler than an explanation in terms of 3D coordinate frames, because 
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in contrast with the transformations required by a 3D coordinate frame theory, the type of process 

we propose is one that we know neurons can implement (see Section 5). 

 

These advantages turn on the positive part of our proposal, to which we turn next. Our positive 

claim is that perception and action are achieved through a process of matching the current 

sensory+motivational context with a very long list of stored sensory+motivational contexts. The 

next section specifies this more formally. The consequence of picking one context is an output 

(which usually results in a motor output) and hence a new context, a loop that is entirely familiar 

in the domain of motor control. We propose that this step is a fundamental one in the 

representation of 3D shape and layout, as we illustrate in Section 4. 

3.  Recognising a stored context 

We consider every neural firing rate in the nervous system that might contribute to the next action 

as an element in a long list or vector,  , with length  . This defines the current context. Ther→ n  

nervous system stores synaptic weights in such a way that they can be compared to the firing rates 

listed in   . The current context,  , is compared to a large number of stored contexts, where eachr→ r→  

stored context is a long list of synaptic weights, also of length n. In Marr’s model of the 

cerebellum (Marr, 1969), each of these stored contexts corresponded to the synaptic weights of a 

Purkinje cell but the idea of comparing an input vector of firing rates to a stored vector of synaptic 

weights is a general principle of neural computation that is applicable from the level of a single 

neurons up to very large sets of neurons (e.g. McCulloch and Pitts, 1943; Rolls and Treves, 1998). 

If there are m stored contexts then these synaptic weights form an m by n  matrix,  , with eachW  

row constituting one stored context,    For the sake of notational simplicity (and following.w
(i, )*

 

Marr (1969)), we assume that the magnitude of   is the same as that of each stored context:r→  
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                                          Eq (1)‖r‖ w ‖, ∀i 1, , ] 
→

= ‖
(i, )*

 = [ … m  

 

For example, if each neuron contributing to   is either firing or not (1 or 0) and each synapticr→  

weight is either ‘on’ or ‘off’ (1 or 0), this is equivalent to assuming that the proportion of neurons 

firing at any one time is constant (k) and equal to the proportion of synapses that are ‘on’ in each 

stored context,   There is evidence that this proportion might be quite low (Attwell and.w
(i, )*

 

Laughlin, 2001). 

 

The process of comparing   (n by 1) to the stored contexts,  (m by n), is simply:r→ W  

 

                                                           Eq (2)(W r)k = argmaxi
→  

 

 

where the function   returns the index of the maximum value in  , i.e.   is the index(x)argmaxi
→ x→ k  

to   that gives the maximum correlation between   and   for any   and henceW r→ w
(i, )*

1, , ]i = [ … m  

is the ‘recognised context’. Geometrically, this amounts to searching on an  -dimensionalw
(k, )*

n  

sphere for the context,  , that is closest to   (in the sense of having smallest angle betweenw
(i, )*

r→  

them). Each context,  , is associated with a predetermined output (in the simple case, a motorw
(i, )*

 

output). In this sense, the list of stored contexts can be considered to be a list of ‘reflexes’. 

The proposal is neutral about the location in the nervous system of the relevant synaptic weights, 

, and the firing rates,  .W r→   
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Figure 1. Many stored contexts and one current context. The sphere shown here serves to 

represent a high-dimensional sphere where m stored contexts (components of matrix  ) areW  

illustrated by the red dots and one current state,  , as a yellow dot (i.e. the vector representing ther→  

current state has the same magnitude and dimensionality as the stored contexts). The dashed line 

illustrates that one of the stored contexts is closest to the current state and hence this context 

would determine the output (e.g. motor output).  The diagram on the right is a Voronoi tessellation 

of a 2D space illustrating the same idea. Each red dot is a ‘seed’ that generates a Voronoi region 

bounded by the blue lines. 

 

The current context,  , will always be closest to one stored context  . The surface of the r→ w
(i, )*

n

-dimensional sphere of contexts can be considered as a Voronoi tessellation where each stored 

context is a ‘seed’ in the tessellation (Aurenhammer 1991). The ‘recognised context’,  , isw
(k, )*

 

associated with an output,  , in the above examples that normally leads to a motor movement. Ifo→  

 leads to movement in the world, there is usually a new sensory input, a new motivational inputo→  

and hence a new input vector,  . Labels for   in each of these epochs could be  j  and  j+1, but wer→ r→ r→
 r→  

do not refer to them in the rest of the paper and simply discuss the fact that   changes, e.g. ther→  

‘path of   through sensory+motivational space’, where  ∈ ℝn. Finally, there must be ar→ r→  
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mechanism to compare the new value of   with the expected value, sometimes called a ‘motorr→  

error’ (Waitzman et al. 1988; Porrill et al. 2004). We assume that in many cases there is a ‘virtual’ 

output, with no overt motor response, and a movement of   as a result but considering how thatr→  

might be achieved is beyond the scope of this paper. Also, in the examples that follow (e.g. 

considering judgements of slant, depth, distance) we assume that there is only one Voronoi region 

determining the output (motor or otherwise) at any moment. We do not exclude the possibility that 

people may be engaged in more than one task simultaneously (e.g. walking and humming) and that 

this would be described better by more than one input vector and more than one Voronoi region.  

We describe the input vector to the decision step,  , as a ‘sensory+motivational context’. By thisr→  

we mean that   is a concatenation of a vector of sensory inputs (including different sensoryr→  

domains),  , and a vector of motivational inputs,  , i.e.s→ t
→

  

                                          Eq (3)r s || t  
→

=  
→

→

 

where   ∈ ℝns,   ∈ ℝnt,   ∈ ℝn and, since   and   each add independent dimensions to  ,  i.e.s→ t
→

r→ s→ t
→

r→  

n = ns + nt. 

4.  A 2½D sketch 

Marr and Nishihara (1978) put forward a hypothesis about how the brain might represent depth 

relationships in a scene despite the fact that the observer moves around. They introduced the term 

a ‘2½D sketch’, a representation that was supposed to remain unaffected by vergence movements 

of the eyes. Neither Marr and Nishihara nor Marr in his book (Marr 1982) were very clear on the 

what the coordinates of this sketch might be and it has remained a tricky issue to define a useful 

coordinate system other than an image-based (retinal) coordinate frame or a 3D, world-based 

frame which are the principal coordinate frames used in computer vision (Hartley and Zisserman 

2003; Davison 2003). Here, we describe an alternative version of a ‘2½D sketch’ based on a graph 
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of views connected by actions. 

 

4.1 Looking around 

If the eye (or a camera) were unable to translate in space and could only rotate about its optic 

centre (which is not quite true of the eye, but approximately so), then there would be a certain 

number of objects that it could fixate and a greater number of rotations (the square of the number 

of objects) that would take the eye from fixating one object to another. In most cases, these 

rotations will be saccades but large rotations of gaze may also involve head movements (and in the 

superior colliculus, these are often combined together so that the gaze change is the important 

parameter encoded, Corneil et al 2002). In a graph representation of this situation, each node 

would correspond to a context that includes (i) sensory data that helps identify the fixated object 

and (ii) a signal that specifies the next desired fixation point. Together, these are sufficient to 

specify the rotation of gaze (e.g. saccade) required to fixate the new target. 

 

As we discussed above (Section 3), these two elements (sensory data and a signal about the next 

goal) could be concatenated into a long list or vector and compared to a large number of stored 

contexts that are in the same format (i.e. vectors in the same space). This type of representation is 

a graph rather than a reconstruction in a 3D coordinate-frame: the nodes are contexts and the edges 

joining the nodes are actions.  

 

A practical issue concerns the number of stored contexts that would be required to make this work. 

Eye movement experiments suggest that humans store features in groups, which allows a 

hierarchical, coarse-to-fine strategy to be used to navigate between features and a consequent 

reduction in the number of relationships that would need to be stored (Findlay and Gilchrist, 1997; 

Watt 1987).  
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4.2  Moving around an object 

The idea that object recognition in humans and animals is based on sets of 2-D views rather than 

3-D internal models has a long history (Bülthoff and Edelman 1992; Tarr and Bülthoff 1998) and 

has been bolstered by recent comparisons between object recognition in infero-temporal cortex 

and in deep neural networks (DiCarlo et al 2012). Representing the 3D structure of an object rather 

than simply recognizing it in different poses involves more than a large store of 2D views. For a 

graph representation of object shape, just as in the case of gaze shifts in the previous section, the 

different views of the object form different nodes of the graph and these nodes are connected by 

edges: the actions that would turn one view into another. This time, assuming a static world and a 

moving observer, which is our assumption throughout this section on a 2½D sketch, the actions 

are head movements. Figure 2 shows some of the different views of a cube that can be obtained by 

a monocular observer moving in different directions while maintaining gaze on the object or, in 

the case of the highlighted pair of views, a binocular observer viewing the same cube. A sphere, 

on the other hand will always project a circular image. A planar slanted surface will project to an 

image that deforms in characteristic ways. In the latter case, the same images (nodes of the graph) 

connected by smaller head movements (edges) would be caused by, and would lead to the 

perception of, a surface that is more steeply slanted in depth (Glennerster 2016).  
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Figure 2. Views connected by actions. a) The left and right eye’s view of a cube are circled above 

and shown in plan view below. Also shown are many other views that a monocular observer would 

obtain if they moved their head while fixating the cube.  b) Rotations of the eye (saccades) also 

give rise to a set of images that are related to one another in a consistent way (here, shown on a 

single sphere). c) For both a) and b) the images can be described as a graph of views connected 

by actions. b) is reproduced with permission from Glennerster et al, 2001. Figure is adapted from 

Glennerster (2016). 

 

Our proposal is that the observer’s perception of a cube like the one shown in Figure 2 involves 

nothing more than movement of   between a set of Voronoi regions that are appropriate, so thatr→  

for every movement the observer makes   lands up in the appropriate Voronoi region (i.e. ther→  

sensory information that observer receives matches the expectation for that movement). For 

example, if an observer received all the images shown in a) in a random order as they moved their 

head then they would not perceive a cube but if they received them in a way that was consistent 

with viewing a real cube as they moved then they would perceive a cube. However, the prediction 
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of the sensory consequences does not have to be entirely accurate to perceive a static 3D object. 

For one thing, the degree of tolerance to error may depend on the task, as we discuss in Section 5. 

 

4.3 Object distance 

Finally, to include all the elements Marr and Nishihara (1978) envisaged in a 2½D sketch, the 

representation must incorporate information about the relative distance of objects. A monocular 

observer moving in different directions causes objects to move relative to one another in the image 

(motion parallax). While this can, in theory, be used to calculate the 3D layout of objects in the 

scene, an alternative is that the brain stores a graph of sensory+motivational states, connected by 

actions, just as in the case of 3D shape described above. In this case, the aspects of the images that 

are important are the angular separations of objects and how these change as the observer moves 

their head. Very distant points like the stars do not change in the representation as the observer 

moves. For example, if the current context is that the observer is looking at the pole star and they 

want to look at Ursa Major then Cassiopeia and then back to the pole star, the magnitude and 

direction of those three saccades, hence those nodes in the stored graph, will be independent of the 

location of the observer in the northern hemisphere. Provide that the angles of these saccades are 

large then the fact that the angles do not change with observer translation means that the objects 

must be distant. This type of information can be used to identify near and far objects in a vista 

space (Glennerster, Hansard and Fitzgibbon 2001; Glennerster 2016). It also means that distant 

objects ‘anchor’ the representation relative to the world. 

 

4.4 Neither egocentric nor allocentric 

There are many tasks that only make sense with respect to certain coordinate frames (‘point to 

your left’, ‘look behind the cupboard’, etc). The representation we have described here is 

capable of supporting actions defined by these relationships without having at any stage a 3D 

16 



coordinate frame that describes the location of all points in the scene in an ego-, object- or 

world-centred frame. The representation is a graph of sensory+motivational states that carries 

information about the consequences of orienting movements (e.g. saccades) required to fixate 

different objects in the vista space and the translations of the head that would result in different 

views of a surface, where each sensory+motivational state is a node in the graph and the 

movements that would take the system from one state to another are the edges. Nevertheless, it 

is worth enunciating the links between this type of representation and one using an ego- or 

allocentric frame. If the observer is only making saccades (pure rotations of the eye), then the 

images and actions depicted by the nodes and edges in Fig 2c can be mapped onto the sphere 

shown on the right in Fig 2b. The eye is at the centre of this sphere and, in this sense, the 

representation for saccades is egocentric. But when we consider how distant points are 

represented, there is a sense in which the representation is also world-based, as discussed above 

for the example of looking between stars. All static points in an allocentric representation 

maintain their coordinates when the observer moves. In the representation we propose, the 

relationship between stars remains constant when the observer moves (either rotates or 

translates) and in this sense distant points provide an allocentric foundation for the 

representation. Similar representations based on points at infinity have been described in 

computer vision (Kumar et al, 1995). It may sound contradictory to say that a graph of sensory 

states has similarities with both ego- and allocentric representations at the same time but, since 

the representation has no 3D origin or coordinate frame, it is not identical to either of these 

types of 3D frame (Glennerster et al, 2001, 2009; Glennerster, 2013; Glennerster 2016). 

5. Falsifiable predictions 

It is always helpful to make clear what experimental results would falsify a theory. The focus in 

this paper is on putative 3D coordinate transformations that transform information from a visual 

reference frame into egocentric or allocentric frames. Convincing evidence that this chain of 

17 



events occurs in the brain would make our proposal untenable. Here, we outline examples of 

neurophysiological and psychophysical results that would be highly problematic for our proposal 

(for more detail, see Glennerster, 2016). We also discuss task-dependent performance since, in the 

past, a finding of performance across a number of tasks that was consistent with a single 

(distorted) representation of space has been used to argue that the brain forms a multi-purpose 3D 

reconstruction of the scene. We question this conclusion in the light of more recent data. 

 

An example of a psychophysical experiment that would challenge our hypothesis would be one 

showing evidence of a head-centred representation in situations where the task had nothing to do 

with head orientation. According to the reconstruction hypothesis, egocentric representations such 

as head- and body-centred representations are generated as an intermediate step to (or, at the very 

least, in addition to) building world-centred representations (Burgess and O'Keefe 1996; Burgess, 

2008; Whitlock, Sutherland, Witter, Moser and Moser 2008). By contrast, if the brain simply uses 

the relevant sensory data for a particular task then there should be no psychophysical evidence of 

representation in an irrelevant coordinate frame. For example, if an observer fixates a point and 

there is a moving stimulus on peripheral retina then, after a while, there will be adaptation to the 

moving stimulus at that retinal location. Suppose the observer now rotates their head while 

maintaining fixation so that the moving stimulus now falls at a different head-centric location. 

Note that everything in retinal coordinates remains the same in this situation and also in 

spatiotopic (world-based) coordinates (Melcher, 2005; Knapen, Rolfs and Cavanagh 2009; 

Zimmerman et al 2011; Turi and Burr 2012) because the position of the eye in relation to the scene 

is unchanged. If we arrange it so that the adapting phase is before and the test is after the head 

rotation, then we can look for any trace of adaptation that applies in a head-centred frame. A 

hypothesis that suggested allocentric coordinates are inherited from head-centred coordinates (e.g. 

Snyder et al, 1998; Melcher, 2005) would predict adaptation in head-centred coordinates. By 
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contrast, evidence of head-centred adaptation in this task would present severe difficulties for our 

hypothesis. 

 

Mechanisms that have been proposed for implementing coordinate transformations in the brain 

depend on anatomical relationships such that neighbouring neurons in one area map to 

neighbouring neurons in the next. As a consequence, there is a consistent format to the new 

representation (e.g. Pouget et al 2002). Neurophysiological evidence of representations in 

particular formats could also present difficulties for our proposal. For example, it has been pointed 

out that if one signal, such as a head direction signal, is to determine the output of a transformation 

(e.g. transforming an egocentric representation into a world-centred one) then this could be done 

by generating multiple copies of the egocentric representation and using the head-direction 

information as a gating signal to determine which egocentric map passed on information to the 

world-centred map (Byrne et al, 2007). Although one can see how this might work for the case of 

rotation, it would be much harder to do the same thing for translation where there are many more 

potential input-output relationships. In any case, discovery of an anatomical mechanism of this 

sort for carrying out transformations, including duplication of input representations, would falsify 

our proposal since it is based on quite different principles. In Section 6.3, we discuss strong and 

weaker interpretations of the idea of an egocentric reference frame. An advantage of our proposal 

is that, at the level of neural mechanisms, we are not proposing any novel or complicated 

mechanism of the type put forward by Byrne et al (2007). The only neural operation we mention 

explicitly in our proposal is a fundamental and widely accepted one in neuroscience, namely the 

process of comparing a long vector of firing rates with a large number of similar length vectors 

stored as synaptic weights (Section 3). 

 

Task-dependent performance is a crucial component of the argument about 3D reconstruction 

versus a graph of sensory+motivational states. Indeed, Gogel (1993) argued the opposite case to 
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the one we are putting forward, pointing to the fact that performance in a number of different tasks 

could be explained by assuming by a similar distortion of visual space and using this ‘explanatory 

parsimony’ as evidence that the brain builds a single, multi-purpose internal representation of the 

scene. However, there is now considerable evidence that the internal representation used by the 

visual system is something much looser than this, with no single representation being capable of 

explaining performance. Instead, different tasks lead to the adoption of strategies or heuristics by 

the visual system (Koenderink et al, 2002; Smeets, Sousa and Brenner, 2009; Svarverud, Gilson 

and Glennerster 2012; Glennerster et al 1996; Knill, Bondada and Chhabra, 2011). Task 

dependency fits with the idea of recognising a sensory+motivational context: the task forms part of 

the motivational context and this dictates which aspects of the available sensory information are 

relevant. Together, these determine what the output should be. Although we are discussing 

task-dependency in a section on ‘falsifiable predictions’, we believe that this has already been 

tested and that, in the years since Gogel made his claim, a large body of evidence has built up 

against the idea of a single, multi-purpose representation of space. 

6. Challenges  

Next we consider some challenges to our proposal, starting with challenges arising from the 

philosophical literature. 

6.1 Representation and action-based theories 

Some philosophical work proposes alternatives to representation in 3D coordinate frames by 

emphasizing, as we do, the connection between spatial perception and action (O’Regan and Noë, 

2001; Noë, 2004). We begin by distinguishing between our proposal and these related ideas, and 

explaining why a key challenge to those ideas does not apply to our proposal.  

 

O’Regan and Noë introduce their theory as follows: 
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We propose that seeing is a way of acting. It is a particular way of exploring the 

environment. Activity in internal representations does not generate the experience of 

seeing. The outside world serves as its own, external, representation. The experience of 

seeing occurs when the organism masters what we call the governing laws of sensorimotor 

contingency. 

O’Regan and Noë, 2001: 939 

 

O’Regan and Noë propose that visual experience consists in a way of acting which involves the 

exercise of sensorimotor knowledge—knowledge of how sensory experience will change given 

certain movements—rather than in the reconstruction of a detailed representation of the visible 

scene. For example, visual experience of the shape of a cube consists in an active movement 

which exercises knowledge of the sensory consequences of this kind of movement around a cube. 

Similarly, according to our proposal, visual perception of the shape of a cube consists in 

movement and a matching of current and stored sensory+motivational contexts which registers the 

sensory consequences of this kind of movement around a cube. In both theories, action across a 

space replaces the need for an internal 3D model of that space. 

 

However, there is at least one important respect in which O’Regan and Noë’s theory goes further 

than what we propose here: they argue that the process of vision consists in a way of acting, rather 

than a process involving internal visual representations. By contrast, though we deny that the 

process of vision consists in transformations between 3D coordinate frame representations, we 

propose a process that fundamentally involves internal visual representations of a different kind. 

More specifically, we propose that a large amount of information is stored and that this store of 

information is exploited in a process of comparing current and stored sensory+motivational 

contexts. This store of information is W in the formalism above. Not every brain state which 
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carries information is a representation of that information: there is a good sense in which any 

effect carries information about its causes, and it is notoriously difficult to say exactly what it 

takes for an information-carrying state to count as a representation. But by most criteria W is a 

very plausible candidate for representation, because of the simple computational role it plays in 

perception and action. 

 

For example, one common criterion for a brain state’s representing, rather than merely carrying, 

information is that carrying this information is the brain state’s function. That is, roughly, either 

the ontogenetic (Dretske, 1981) or the phylogenetic (Millikan, 1984) explanation of why the brain 

state occurs in the organism lies in a functional role which the brain state plays in virtue of 

carrying the information in question. The brain state corresponding to W carries information about 

various sensory+motivational contexts which might obtain, and in virtue of carrying this 

information, this brain state plays a distinctive computational role: elements of W are matched to 

the actual sensory+motivational contexts marking any given episode of perception. Our hypothesis 

is that this computational role is integral to successful perception and action. Successful perception 

and action are, in turn, integral to the organism’s development and survival. So it is very plausible 

that W’s functional role as a store of information about sensory+motivational contexts explains 

why the brain state corresponding to W occurs in the organism. It is very plausible that by this 

common criterion for representation, W is a representation. (In the next section, we assess in more 

detail what both   and W represent.)r→   

 

Because W is a very plausible candidate for representation, one influential criticism of O’Regan 

and Noë’s theory does not apply to our proposal. A theory is behaviorist--in the standard 

philosophical terminology--if it reduces cognition to behavior, or if the fully articulated theory 

eliminates references to cognition, replacing them with references to action or behavior. 

Behaviorism is notoriously problematic, in part because it is too liberal in counting as genuinely 
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cognitive any system which exhibits the relevant behavior in the relevant circumstances. Ned 

Block (2001) criticizes O’Regan and Noë’s sensorimotor theory on the grounds that it commits to 

this problematic aspect of behaviorism: it counts as having visual perception any system which 

acts in the right way in the right circumstances, whatever (if anything) in the system mediates 

between circumstances and action. It is a delicate issue whether O’Regan and Noë’s sensorimotor 

theory is in fact behaviorist in this way. But we need not resolve that issue in order to see that our 

proposal is not behaviorist and does not fall foul of Block’s criticism: our proposal treats visual 

perception as fundamentally based on certain stored representations, and so does not claim that 

any form of behavior is by itself sufficient for visual perception. 

 

Our proposal does deny that the process of vision consists in computation over representations of a 

certain kind: spatial representations specified in terms of 3D coordinate frames. So challenges to 

our proposal lie not in the idea that internal representations are required to explain perception, but 

in the more specific idea that 3D coordinate frame representation, or at least some form of 

representation inconsistent with our positive proposal, is required to explain perception. We turn to 

this next. 

 

6.2  Perceptual systems vs mere sensorimotor systems 

The challenges we assess in this section argue that our proposal is ill-placed to explain genuine 

perception of the environment. We have described a system through which the environment’s 

sensory effects generate motor responses, but the challenges we assess here maintain that we have 

not thereby explained genuine perception of the environment. There are difficult philosophical 

questions about what, in principle, constitutes genuine perception, and of course difficult empirical 

questions about how genuine perception is achieved by the human brain. We do not pretend to 

offer a full explanation. Instead we argue that our proposal is as well-placed in this respect as a 3D 

coordinate frame theory. 
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Start with the idea that perceptual representation is distinct from mere sensation, in that perceptual 

representation is representation of a distal environment (Burge, 2010). One possible challenge to 

our proposal argues that it cannot do justice to this distinction.  

 

The sensory component of a current sensory+motivational context is often identified above as an 

‘image’. It may be tempting to read this as if it were an appeal to sensory impressions or sense 

data, construed as proximal objects of conscious experience (Russell 1912; Price 1950; Moore 

1953). If this is combined with a similar reading of the motivational component of a 

sensory+motivational context, as a felt urge or motivating sensation, our proposal may seem to 

commit to a phenomenalist scheme of representation--a scheme such that the world represented by 

visual processes consists in nothing more than a series of experienced sensations connected by 

transitions which those sensations motivate. Our proposal should not be read in that way. The 

sensory component of a current sensory+motivational context includes images only in the sense 

that the set of neural firings   may include neural firings corresponding to the retinotopic signalsr→  

that we know about in visual areas V1, V2, V4, V5, MST, IT etc. These signals form part of the 

input to a process that is responsible for 3D perception, just as in a coordinate frame theory, 

retinotopic signals form part of the input to the computations required to construct 3D coordinate 

frames. In our proposal, just as in a coordinate frame theory, retinotopic signals need not be 

construed as objects of conscious experience. Our proposal does not entail a phenomenalist 

scheme of representation. 

 

In fact our proposal is as well-placed as a coordinate frame theory to explain perception of distal 

vista space. Take a coordinate frame theory in which the format of representations in the visual 

cortex resembles the spatial layout of distal vista space: spatial relations among units of 

representation in the cortex correspond to spatial relations among the objects represented (e.g. 
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Byrne et al., 2007). This resemblance does not explain representation of the distal spatial layout. 

Unlike representation, resemblance is a symmetrical relation, and the environment does not 

represent the cortex. Moreover, many patterns which resemble the layout of an environment do not 

represent it. For example if the layout of objects on my desk happens to resemble the layout of 

objects in your vista space, neither represents the other, because there is no appropriate causal or 

explanatory connection between them (Putnam, 1981). It is controversial what does suffice for a 

brain state to represent a feature of the environment (Stich and Warfield, 1994) but on the face of 

it, any plausible explanation of this achievement will have to appeal to causal or explanatory 

relations between features of the environment, brain states which carry information about those 

features, and/or brain states’ functional contributions to action on those features.  For example, a 
3

coordinate frame theory might claim that the spatial layout of vista space systematically explains 

the corresponding spatial arrangement of neuron-firing in the cortex, and that this relationship in 

turn systematically explains the observer’s capacity to act on vista space; that is why the relevant 

brain states constitute representation of your vista space, while the layout of objects on my desk 

does not.  

 

The same resources are available if our proposal is correct. In the first instance, the set of synaptic 

weights W carries information about sets of possible neural firings. But W and   also carryr→  

information about distal features of the environment including its spatial layout, a layout which 

systematically explains the various values of   as the observer moves their head or eyes, and sor→  

systematically explains why   is matched with certain elements of W during that episode. In turn,r→  

these matches systematically explain the actions on vista space which are outputs of the process. 

For example, take a scene in which three objects are relatively close to the observer. The distance 

3 Some but not all philosophical theories of what a brain state represents appeal to the brain state’s 
functional contributions to action. As discussed in Section 6.1, some theories appeal to the idea that a 
representation of X has the function of carrying information about X. The representation’s having this 
function will involve its functional contribution to adaptive actions involving X. By contrast, Fodor 
(1987) argues that what a brain state represents turn only on what causes or would have caused that brain 
state, not on the brain state’s functional contribution to action. 
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to these objects explains why, as the observer moves her head in different directions, the angular 

separation between the projection of the objects’ on the retina changes (see Object distance 

above). This contribution to  , over the course of the visual episode, marks a distinctive series ofr→  

sensory+motivational contexts precisely in that it is a consequence of the objects’ being relatively 

close (if all three points were distant there would be little change). So when   is matched withr→  

elements of W, yielding further actions distinctive of the sensory+motivational contexts, those 

distinctive further actions occur because the objects are close--more specifically, they occur 

because   and elements of W, and the process of matching them, carry information about ther→  

objects’ being close. 

 

This and similar examples (Glennerster, Hansard and Fitzgibbon 2001, 2009; Glennerster 2013) 

give us reason to think that the mechanism we have described represents the spatial layout of the 

observer’s distal environment. The reason we have given is in line with Tyler Burge’s (2010) 

criterion for perception of a distal environment. For Burge, perceptual constancy -- i.e. the use of 

varying sensory consequences to generate information about constant features of the distal 

environment -- is the key criterion for perception of a distal environment. We have explained how, 

on our proposal, information about distal layout is extracted from variations in  .r→  

 

We do not insist that Burge’s criterion is in fact sufficient for genuine perception. We simply note 

that our proposal is as well placed in this respect as a theory according to which constant features 

of the distal environment are represented in a 3D coordinate frame. We also leave it open which 

specific elements of the mechanism we have proposed bear representational content about the 

distal layout of vista space. On an ‘embodied’ approach to our proposal, the content-bearing event 

is the entire loop, including the physical movements which take the observer between different 

values of   as well as the internal process of matching   with elements of W. Alternatively, on anr→ r→  

approach which treats only internal brain events and brain states as bearers of representational 

26 



content, the content-bearing event or state might be any or all of   elements of W, and the internal,r→  

process of matching them; it might also include a ‘motor error’ signal indicating divergence 

between expected and actual values of   (Section 3; cf. Clark 2013).r→  

 

Now consider a further challenge, which is posed by a more demanding characterization of 

perception. According to this more demanding characterization, the form of perception enjoyed by 

humans is objective in the following sense: we perceive features of the distal environment which 

are in principle independent of the observer’s actual and possible responses.  The challenge 4

maintains that our proposal cannot explain how perception of such features occurs, and so cannot 

explain the form of perception enjoyed by humans. As before, our response is not to offer a full 

explanation of how this occurs, but to argue that our proposal is as well-placed in this respect as a 

3D coordinate frame theory. 

 

John Campbell illustrates this more demanding characterization of perception as follows: 

 

Gibson seems to have thought that the affordances provided by an object are all that we 

ever see. This view is hard to sustain. Once, when I visited Warwick University 

Psychology Department, someone told me the following story. One year, pigeons started 

nesting in the concrete interstices of the multi-storey car parks in the university. 

Presumably, according to my informant, pigeons perceive these Gibsonian affordances 

directly. They would immediately look like good nesting places. But it had never occurred 

to humans that it was so. These affordances are not perceived by humans. But it is not as if 

the matter is entirely opaque to us. For though we cannot perceive the affordances directly, 

we can see the reasons why the interstices would be good for nesting. We do not see the 

affordance itself; we see the ground of the affordance. 

4 The phrase ‘objective perception’ might understood in various ways. Here we stipulate that it is to be 
understood as we just defined it, and as illustrated in the next paragraph. 
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Campbell, 2002: 143  

 

The ground of an affordance is an intrinsic feature of the environment which explains that 

affordance. For example, the shapes of the concrete interstices explain why the interstices make 

possible certain actions, such as nesting, and certain experiences, such as those enjoyed by 

someone looking at the interstices. The grounds explain why these forms of action and perception 

are possibilities, but are in principle independent of these possibilities: if agents and observers 

were differently constituted, the same shapes would not afford the actions and experiences which 

they actually afford. So perceiving the grounds of affordances is objective perception in the sense 

defined above.  

 

Campbell claims that humans perceive the grounds of affordances rather than, or in addition to, 

perceiving the affordances. Now if we perceive affordances as Gibson thought (see also Nanay, 

2015), our proposal is well-placed to explain how we do so. This is because, according to our 

proposal, the spatial layout of vista space is visible insofar as iterated matches of   with W, andr→  

the movements taking an observer between them, carry information about the spatial layout of the 

environment; in the first instance, this information about the environment is information about 

possibilities for active manipulation of visual stimulation which the environment affords. But for 

the same reason, a natural challenge to our proposal argues that it is ill-placed to explain 

perception of the grounds of these affordances, as opposed to the affordances themselves. 

  

One approach to this challenge insists that, in fact, the perceptible grounds of affordances are just 

more affordances. For example, the shapes of Campbell’s concrete interstices are perceptible by 

humans in terms of the human actions which move an observer between various values of  . Morer→  

generally, this approach insists, all perception of spatial properties represents those properties in 

terms of the observer’s actual and possible movements (Poincare, 1946). However, to address the 

28 



challenge at its most demanding, suppose that there is objective perception of space, in the sense 

that we perceive spatial features which are in principle independent of their consequences for 

perception and action. Any explanation of the capacity for objective perception that is consistent 

with our proposal will have to start from the fact that information about the environment’s 

affordances for action and perception is also information about the grounds of those affordances. 

This may seem unsatisfactory as a basis for explaining objective perception, but in fact a 

coordinate frame theory is in just the same position. 

 

For example, consider how objective perception might be explained by a coordinate frame theory 

which appeals to representations with a spatial format in the cortex, corresponding to the spatial 

layout of vista space. In a theory of this kind, the spatial arrangement of neurons--one ground of 

the representation’s functional contribution to spatial perception and action--resembles the spatial 

layout of the environment--the grounds of the environment’s affordances for spatial perception 

and action. But as we saw above, this resemblance does not by itself explain representation of the 

environment’s spatial layout; a brain state represents a feature of the environment only insofar as 

there are appropriate causal or explanatory connections between the feature represented, the brain 

state that represents it, and/or the brain state’s contributions to action. That is, even on a theory 

which postulates cortical representations with a spatial format, the environment’s spatial layout is 

represented only insofar as that layout provides affordances for action and perception. For 

example, the shapes of Campbell’s concrete interstices are represented only insofar as these shapes 

provide affordances for action on them and perception of them. More generally, the grounds of 

affordances are represented only insofar as information about the affordances is also information 

about their grounds. A theory which postulates cortical representations with a spatial format is no 

better placed than our proposal, when it comes to explaining objective perception. 
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Not every coordinate frame theory will appeal to a spatial format in cortical representations. Some 

coordinate frame theories may propose other reasons for saying that brain states have contents 

expressible in a 3D coordinate frame (Grush 2000). But as we have seen, the reasons for saying 

that brain states have such contents must lie in appropriate causal or explanatory connections 

between the spatial relations which constitute the 3D coordinate frame, the brain states that 

represent those relations, and/or the brain states’ contributions to action. So again, a brain state’s 

coordinate frame contents would include the grounds of affordances for action and perception only 

insofar as those grounds provide affordances for action and perception. A theory which postulates 

representations with a coordinate frame content is no better placed than our proposal, when it 

comes to explaining objective perception.  5

 
 
It is often suggested that the key to objective perception is representation in an allocentric, rather 

than egocentric, coordinate frame (O’Keefe and Nadel; Evans, 1982; Grush 2000).  We now 
6

briefly explain why representation in an allocentric coordinate frame is no better placed than our 

proposal, when it comes to explaining objective perception. 

 

An allocentric, as opposed to egocentric, coordinate frame is a coordinate frame whose origin and 

axes are independent of the observer’s current position. For example, O’Keefe’s  slope/centroid 

model (1991) is  constructed as  follows. By keeping track of its  own movements, an organism 

learns  the egocentric vectors  from its  current position and orientation to various  landmarks. This 

allows  the organism to compute, in addition, egocentric vectors  between landmarks. The slope of 

the environment is  the average of the gradients  of these vectors. The centroid is  the ‘centre of 

mass’ of landmarks  in the environment, for example the average of the egocentric vectors  to 

5 For similar reasons, Campbell (2002) claims that objective perception must be a non-representational 
form of experience. Our position here is neutral about this claim.  
6 Things here are complicated by the fact that O’Keefe and Nadel take a cognitive map in the 
hippocampus to be the locus of allocentric and objective representation, while perception-specific 
systems operate in egocentric reference frames. However, the points which follow are independent of this 
particular view.  
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landmarks. The slope and the centroid are invariant with translations  of the organism’s  current 

position, so allocentric vectors  to goals  can be defined in terms  of distance from the centroid and 

angle from the slope. 

  

As we defined it, objective perception is perception of features which are in principle independent 

of the observer’s actual and possible experiences and actions. The claim that perception represents 

spatial layout in terms of allocentric vectors, such as those defined by O’Keefe’s model, does not 

explain how objective perception is possible. In the first instance, vectors are introduced into 

O’Keefe’s model insofar as the organism keeps track of its current movements. The model then 

explains how the organism’s representations abstract from its current position and movements. But 

that is not the same thing as abstracting from all possible positions and movements of the 

organism. For example, if representation of a vector was introduced into the model as 

representation of the organism’s current movement between landmarks, the abstraction generates, 

at best, representation of some movement of the organism between landmarks (movement which is 

not currently available to the organism). At least, nothing in the model explains how a further 

abstraction is possible, such that the spatial features represented are independent of the organism’s 

possible experiences and actions (Campbell 1993). 

 

Consistent with this last point, Grush (2000) gives empirical reasons for thinking that O’Keefe’s 

model should be understood in terms of a capacity for offline or imaginative adoption of an 

‘alter-ego-centric reference frame’: the organism represents allocentric vectors by imagining 

occupying a point of view other than its current one. Grush holds that, in the first instance, 

perception represents spatial layout insofar as perceptual representations contribute to skilled 

action; perceptual representations abstract from current affordances for action insofar as perceptual 

representations are integrated with the offline or imaginative capacity. On this approach, it is 

especially clear that the abstraction generates, at best, representation of some possible affordances 
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(those which would be available from a point of view other than the organism’s current one). 

Grush suggests that this amounts to a form of objectivity--a way of representing one’s current 

location explicitly, as one location among many, as opposed to representing one’s current location 

only implicitly, as the origin of an egocentric frame. However, it is not clear why this form of 

objectivity should require an allocentric coordinate frame, rather than a kind of offline or 

imaginative occupation of a point of view that is consistent with our proposal. (In the terms of our 

proposal, this might involve offline or imaginative changes in  , but discussion of imagination,r→  

rather than perception, is beyond the scope of this article.) Moreover, Grush’s limited form of 

objectivity does not suffice for objective perception as we defined it here. The deeper problem of 

how objective perception is achieved is not solved by postulating allocentric coordinate frames, 

any more than it is solved by our proposal. 

 

In summary, a coordinate frame theory is no better off than our proposal when it comes to 

explaining either genuine perception, as opposed to mere sensorimotor responses, or objective 

perception. This can be obscured by the fact that our proposal appeals immediately to action in a 

space, as the observer’s means of perceiving a 3D layout. But in fact, even on a coordinate frame 

theory, a brain state can be said to represent features of the environment only insofar as there are 

appropriate causal or explanatory relations between these features, the brain state, and the brain 

state’s contributions to action. The same resources are available on our proposal. 

 

6.3 Challenges in relation to neuroscience 

6.3.1 Where is W? 

We have described the set of stored contexts, W, in a very general way since the location of 

these synaptic weights is not critical to the argument. To illustrate this point we describe here 
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two examples of a motor response to a sensory+motivational context. In one, the critical 

neurons are in the spinal cord while in the other the fluctuation of firing rate of a single neuron 

in the cortex moves   from one Voronoi region to another. In a patellar reflex, the mostr→  

important afferents that determine the sensory context are from stretch receptors in the 

quadriceps muscle and the critical synapses are with alpha motor neurons in the spinal cord, 

although the briskness of the reflex can be modulated by input from higher levels in the nervous 

system.  These stretch receptor afferents can be considered to be part of   and the effectivenessr→  

of the spinal synapses is recorded in . Described in terms of our proposal, a patellar reflexW  

corresponds to an extremely large Voronoi region because the same output is triggered by a 

very large range of values of  . (Since   is a vector and especially as it always has the samer→ r→  

length, it might be more appropriate to talk of the ‘direction’ rather than ‘value’ of  , but forr→  

the sake of simplicity, we have used the term ‘value’ throughout.) In a quite different example, 

the firing rate of a single neuron in V5/MT could move   from one Voronoi region to another,r→  

reversing the perceived direction of motion of a rotating cylinder (Dodd et al, 2001). On the 

critical trials, the direction of motion of the cylinder is ambiguous. There is debate about how 

many neurons might need to vary their firing rate to cause (or reflect, Nienborg and Cumming, 

2009; Cumming and Nienborg, 2016) a change in perception  but it is clear that fluctuations in 

the firing rate of a single neuron are highly predictive of the animal’s choice. This means that a 

tiny change in the value of   causes it to cross the boundary between two Voronoi regions. Ther→  

elements of   that are common to both regions define the context (the animal is doing anr→  

experiment, it knows it has to maintain fixation and attend to the direction of motion of the 

cylinder, etc) while the firing of only a tiny number of neurons (in theory, even a single neuron) 

determine whether the animal perceives the cylinder as rotating left or right. In this example, a 

large range of different inputs contribute to the decision (mostly defining the context but a few 

determining the perceived rotation of the cylinder as clockwise or anticlockwise) and these need 
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to be brought together in one place. Where this might happen in the brain is up for discussion. 

One possibility might be the cerebellum which receives input from all over the cortex, has a 

much more significant input than the cortico-spinal tract, is able to compare long input vectors 

with large numbers of vectors of stored weights (Marr, 1969; Albus, 1971; Eccles et al, 1967; 

Manzoni, 2005) and is known to use multi-modal contexts to control motor output. There is also 

a considerable literature on the possible role of the cerebellum in cognition (Schmahmann, 

2004). Other regions that have a wide range of both sensory and motivational inputs and that 

may be relevant to consider in any discussion of a biological implementation include the basal 

ganglia (Krauzlis et al, 2014) and the prefrontal cortex (Mante et al, 2013). 

 

6.3.2 Coordinate transformations (or not) in posterior parietal cortex 

In many accounts of coordinate transformations, posterior parietal cortex plays a special role as 

the site of different ego-centric coordinate frames and as a way-station in the process of 

transforming visual information into an allocentric frame. Here, we take the example of data 

that has been cited as evidence of a ‘hand-centred’ or ‘head-centred’ representation of visual 

space and consider it in relation to two extreme interpretations of this notion. For example, 

‘hand-centred’ neurons respond selectively to the direction and distance of a target object from 

the hand (Buneo and Andersen, 2006) and ‘gaze-direction’ neurons respond best when a target 

is at a given retinal location and the eye has a certain position with respect to the head (Zipser 

and Andersen, 1988; Pouget et al, 2002). Taken literally, transforming 3D visual information to 

a hand-centred frame could mean the following. Suppose that an observer holds up their hand 

so that it is in front of their face. Then, two axes of the hand-centred frame would map onto two 

axes of the visual reference frame (xvis and yvis map onto xhand and yhand, say) while the third 

visual axis, derived from the disparity tuning of neurons in V1, say, maps onto the third axis of 

the hand-centred frame (zvis maps onto zhand). Now consider what happens to the representation 
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of the entire visual scene when the hand rotates to be palm up. zvis now maps onto yhand while yvis 

maps onto zhand. An intermediate hand position would require some complex mix of disparity 

sensitivity and local sign information to determine which V1 firing rates were transferred to 

which neurons in the hand-centred frame. The process would be even more complicated if the 

hand translated to a different location because then the depth of scene points would need to play 

a role in calculation. But in any case, all this must happen rapidly as the hand moves and, by 

assumption, it applies to the whole visual field. The processes would generate a representation 

of the whole visual scene and would follow the format of a visual representation such as that in 

V1 but now centred on the hand and oriented according to the pose of the hand. Data supporting 

such a literal transformation in the brain would be strong evidence against our proposal.  

 

A much less extreme version of an ‘ego-centred representation’ is when a neuron responds to a 

combination of sensory cues that are relevant to a potential movement. In ventral premotor 

cortex, for example, which is involved with the preparation of movement, some neurons have 

both a tactile receptive field on the arm and a visual receptive field but the neuron responds 

most strongly when the visual stimulus comes towards the tactile receptive field. It does this 

despite changes in a variety of other factors such as the animal’s eye position, arm position 

relative to the body or of arm position relative to the scene (Graziano et al, 1994). Responses 

with these characteristics reflect sensitivity to a particular combination of stimuli (including the 

relative visual direction between the hand and the target) but it is quite possible that that is all 

they need to do, rather than being a stepping stone in a coordinate transformation as described 

above. Of course, neurons that are sensitive to a combination of inputs from two modalities are 

common (Zipser and Andersen, 1988; Pouget et al, 2002). Pouget et al have shown how such 

neurons could be involved in a coordinate transformation (Fig 3) but their existence does not, 

by itself, support the notion of a true 3D coordinate transformation. Indeed, this type of logical 

‘AND’ operation is useful for reducing redundancy in the output from the cortex and is widely 
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recognized as an important cortical operation without being part of coordinate transformations 

(Barlow, 2001; Földiak, 1990). 

 

6.3.3 Processing of sensory input to generate  r→  

In describing our proposal, we have said little about the role of the cerebral cortex. In particular, 

we have claimed that at the stage   is compared to the rows of W,   does not consist of 3Dr→ r→  

coordinates in an ego- or allocentric frame derived from visual, retinotopic coordinates by a 3D 

transformation process. Note that the proposal that   is compared to W does not, by itself, rule thisr→  

out. Almost any theory of the brain can be couched in terms of   and W, including one in which r→ r→  

lists the 3D location of the observer and various objects in the scene while each row of W consists 

of a similar list of 3D coordinates. We have suggested that the cortex has an important role in 

redundancy reduction, but this is a long way from the type of processing that would be required to 

transform the representation of objects between different 3D coordinate frames. 

 

Figure 3. Neural response to a combination of cues (adapted from Pouget et al 2002).  The 

firing rate of a putative neuron is shown. The neuron has a retinal receptive field but the gain of 

the response is modulated by eye position relative to the head. As a result it responds best when 
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the stimulus is in a certain retinal location AND the eye has a particular position relative to the 

head. Units are arbitrary. 

 

6.3.4 Learning W 

We have assumed in our discussion that W is already learned. A proper consideration of how that 

might occur (and how large W might need to be) is beyond the scope of this paper but it is clear 

that the learning of W presents a serious challenge. Recent developments in computer vision are 

relevant, particularly end-to-end learning of tasks in a 3D environment such as grasping objects 

(Pinto and Gupta, 2016) or navigating from one place/image to another (Zhu et al, 2016). These 

algorithms do not represent the environment using a 3D coordinate frame and Zhu et al learn using 

a combination of signals about the current image and the goal image (analogous to   and s→ t
→

 

contributing to   in our proposal). Classification in deep artificial neural networks has beenr→  

described as an input feature vector being compared with many stored feature vectors in 

4096-dimensional continuous space, where the similarity is measured as correlation between the 

current and the stored feature vectors (Krizhevsky et al, 2012). This is similar to Equation (2) 

above and to the idea that   will always fall within a Voronoi region around a stored vector,r→  

w(i,*). 

7. Conclusions 

We have proposed that perception and action are achieved through a process of comparing a 

vector,  , with a weight matrix, W (a long look-up table), to choose an output and that in order forr→  

perception and action to be achieved in this way, representation in 3D coordinate frames is not 

required. One advantage of our proposal is that it appeals to neural operations that are well 

accepted (the comparison of a vector of firing rates with many similar vectors stored as synaptic 

weights), whereas there are few specific proposals and no convincing evidence for neural 
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operations that carry out the type of 3D coordinate transformation that would turn a visual 3D 

representation into an egocentric and then an allocentric 3D representation. Almost all theories of 

the brain could be cast in terms of generating a vector   that is then compared to a set of storedr→  

contexts, W, but we claim that the computations leading to the generation of   are relativelyr→  

simple and, in particular, that they do not include the calculation of 3D coordinate transformations. 

We have argued that when it comes to meeting the philosophical demands on a theory of 

perception, a 3D coordinate frame theory is no better placed than our proposal. The real test of our 

proposal is in its empirical predictions and we have set out some here. But in future, it may be 

computer vision that sets the agenda, providing new hypotheses about possible representations of a 

3D world and how to interact with it. 
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