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Abstract

Scientists and Bayesian statisticians often study hypotheses that they know

to be false. This creates an interpretive problem because the Bayesian proba-

bility of a hypothesis is supposed to represent the probability that the hypoth-

esis is true. I investigate whether Bayesianism can accommodate the idea that

false hypotheses are sometimes approximately true or that some hypotheses

or models can be closer to the truth than others. I argue that the idea that

some hypotheses are approximately true in an absolute sense is hard to square

with Bayesianism, but that the notion that some hypotheses are comparatively

closer to the truth than others can be made compatible with Bayesianism, and

that this provides an adequate and potentially useful solution to the inter-

pretive problem. Finally, I compare my “verisimilitude” solution to the in-

terpretive problem with a “counterfactual” solution recently proposed by Jan

Sprenger.
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1 Introduction

According to the standard Bayesian interpretation of probability, the probability of

a hypothesis is the probability that the hypothesis is true. However, scientists, in-

cluding scientists who make use of Bayesian statistical methods, often investigate

models and hypotheses that they know to be false. In particular, statistical models

tend to be constructed on the basis of auxiliary assumptions (e.g. normality and

independence of measurement errors) that are often known to be false. Moreover,

statistical analysis is often restricted to hypothesis sets, such as the set of linear or

exponential functional relationships, that are known to at best be (false) approxima-

tions of the actual functional relationships. Presumably, if something is known to be

false, then it has a probability of 0 of being true, so all of the preceding practices are

hard to reconcile with the standard Bayesian interpretation of probability. Indeed,

Bayesian statistical practice apparently is faced with an interpretive problem: on
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the one hand, Bayesian probabilities are standardly interpreted as probabilities of

truth; on the other hand, Bayesian scientists routinely assign non-zero probabilities

to hypotheses they know to be false.

How serious is the interpretive problem and how may it be solved? I argue that

there are many cases where the interpretative problem does not arise, even when

the statistical model is false. But there are also many cases where the interpretive

problem does arise. Many scientific realists have suggested that successful scientific

models and hypotheses, though usually false, are nonetheless often approximately

true, or – at the very least – that successful hypotheses in general are “closer to the

truth” (or have higher “verisimilitude”) than hypotheses that are less successful. I

argue that, provided we jettison the standard Bayesian interpretation of the proba-

bility axioms, Bayesianism can accommodate the insight that some false hypotheses

are closer to the truth than others, and that this reinterpretation of the probability

axioms is potentially useful. I contrast this solution to the interpretive problem with

another recent proposal due to Jan Sprenger (2016), according to which probabilities

of false hypotheses are interpreted as “counterfactual degrees of belief,” and I argue

that the two approaches – when spelled out in detail – are formally inter-translatable

and help illuminate each other.

2 The Basics of Standard Bayesian Inference

Bayesianism is a prominent approach in both confirmation theory and in statistical

inference. Bayesian confirmation theory and Bayesian statistics clearly have many

things in common, but they are also di↵erent enough that it pays to discuss them

separately. In this paper, I will focus my attention on Bayesian statistical inference,

though much of what I will say also has relevance to Bayesian confirmation theory.

In statistical inference, a set of competing hypotheses is usually indexed by a

parameter, which in general will be a real-valued variable or a vector of real-valued

variables. Given a space of candidate hypotheses parameterized by ⇥, and given

some particular context in which the possible observations or outcomes are x1, x2,

etc. – or X, for short – a statistical model consists of a set of conditional probability

3



(density) distributions, p(x|✓), that jointly specify the probability of each possible

x 2 X given each possible ✓ 2 ⇥.1

Almost invariably, the statistical model is premised on various auxiliary assump-

tions, A, that jointly guarantee that each value of ✓ entails a probability for each

x. Sometimes A itself has free parameters – so-called “nuisance parameters,” N –

that must also be estimated from the data, in which case the conditional probability

distributions will be of the form p(x|✓&n). Thus, a statistical model may in general

be regarded as being composed of two distinct ingredients: the hypotheses of inter-

est, parameterized by ⇥; and the auxiliary assumptions, A, consisting of nuisance

parameters, N , and background assumptions, B. It follows that a statistical model

is “true” if and only if the following conjunction is true: (1) some element of ⇥ is

true and (2) A is true: that is, B is true and some element of N is true.

For example, suppose you are interested in estimating the mass of some object by

measuring it a single time using a scale. The hypotheses of interest are the various

possible masses of the object, which you may index using a real-valued parameter,

m. The possible outcomes, x, are the various possible outcomes of the measurement.

In order to probabilistically link m to x, you may, for example, add the auxiliary

assumption, A, that the measurement outcome is normally distributed around the

true mass with a variance of d. Here d is a nuisance parameter. Then the assumptions

of the statistical model generate the following conditional probabilities:

p(x|m&d) =
1

d
p
2⇡

e�
(x�m)2

2d2 (2.1)

In this case, the statistical model is true if and only if (1) there is some value m0

of m that corresponds to the actual mass of the object, and (2) the measurement

outcome is actually normally distributed around m0 with some variance d0.

What distinguishes Bayesian inference from other sorts of statistical inference is

that Bayesians use probability distributions to assess the plausibility of parameter

values. In addition to requiring a statistical model, a Bayesian analysis therefore

1Note: p is a probability function over the set X if and only if the following three axioms are
satisfied: (1) p(X) = 1. (2) p(x

i

) � 0 for all x
i

2 X. (3) p(
W
x
i

) =
P

p(x
i

), whenever the x
i

in the
disjunction are mutually exclusive.
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requires that the parameters of interest ⇥ and the nuisance parameters N all be

assigned so-called prior probabilities; these are probabilities that are assigned before

the observation of data. Moreover, if there are multiple candidate statistical models,

then all of the models must be assigned prior probabilities as well. In the above

example, prior probabilities must therefore be assigned to each possible value of

m and to each possible value of d. Once these probabilities have been assigned,

the joint distribution of the possible observations and the parameters is defined as

the product of the likelihood and the prior: p(x,m, d) = p(x|m, d) ⇤ p(m, d). The

posterior probability distribution of m is given by Bayes’s theorem, p(m|x, d) =

p(x|m, d) ⇤ p(m, d)/p(x, d)

There is disagreement among Bayesians concerning how prior and posterior prob-

abilities should be interpreted. Some see these probabilities as the subjective or ra-

tional degrees of belief of some agent, whereas others interpret them as evidential

degrees of support or as representing an objective state of information. However,

regardless of whichever more specific interpretation they endorse, Bayesians of all

kinds agree that p(✓) represents the probability that ✓ is true.2 This interpretation

of probability – the standard Bayesian interpretation – leads to problems, however,

because the models and hypotheses that scientists investigate are often believed or

even known not to be true. This problem has not gone completely unnoticed in

the philosophical literature,3 but in general the seriousness of the problem seems

not to have been appreciated. The problem seems to be more acknowledged in the

statistical literature, but no satisfactory resolution has been o↵ered.

3 The Interpretive Problem in Bayesian Statisti-

cal Inference

Statistical models, much like other models in science, contain idealizations and ap-

proximations that render the models strictly speaking false. Typical examples in-

2Or more precisely, the probability that the hypothesis indexed by ✓ is true.
3E.g. Forster and Sober (1994), Sha↵er (2001), and more recently Sprenger (2016).
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clude, e.g., the assumption that measurement error is bell-shaped, or that measure-

ments are independent and identically distributed. To be sure, these assumptions

are often justified because they hold approximately, but they rarely hold exactly. In

other words, the auxiliary assumptions of statistical models are generally false.

For these reasons, the statistician George Box famously said that “all models

are false, but some models are useful.”4 More recently, Andrew Gelman and Cosma

Shalizi write, “To reiterate, it is hard to claim that the prior distributions used in

applied work represent statisticians’ states of knowledge and belief before examining

their data, if only because most statisticians do not believe their models are true, so

their prior degree of belief in all of ⇥ is not 1 but 0.” (Gelman and Shalizi, 2013, p.

19).

A fully Bayesian analysis requires that we assign probabilities to our models

and to the parameters inside the models. But according to the standard Bayesian

interpretation of probability, the probabilities we assign are supposed to represent

the probabilities that the models and parameters are true. If we know that they are

all false, it would seem they should therefore be assigned a probability of 0.

Of course, Bayesian statisticians typically do not assign probabilities of 0 to

parameters or to models; they assign non-zero probabilities. This practice is what

leads to the interpretive problem, which may be phrased in the form of a question:

what does it mean to assign a model or hypothesis that is known to be false a

non-zero probability? To more precisely diagnose the problem, it helps to state the

probability axioms with the standard Bayesian interpretation made explicit:

Suppose H is a set of hypotheses {H1, H2, . . . , Hn}. Then

1S. p(H) = 1. Interpretation: one of the hypotheses in H is true.

2S. p(Hi) � 0 for all Hi 2H. Interpretation: no hypothesis has a negative

probability of being true.

3S. p(
W

Hi) =
P

p(Hi), whenever it is impossible for more than one Hi

in the disjunction
W

Hi to be true.

4This quote is famous enough that it has a Wikipedia page. Box repeated the quote, or variations
of it, in several places. e.g. Box (1980)
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Here we can see that the interpretive problem is really a problem with the stan-

dard interpretation of the first probability axiom. That is, for many of the hypothesis

sets that scientists study, it will not be the case that one of the hypotheses is true.

Hence, strictly speaking, many hypothesis sets will not satisfy axiom 1S. Axioms 2S

and 3S, on the other hand, will generally be satisfied by the kinds of hypothesis sets

that Bayesian statisticians study.

One possible remedy to the interpretive problem that might initially seem attrac-

tice is to try to change the algebra over which the probability function p ranges.5

Later, we shall consider a couple of specific proposals along these lines. However,

there is a fundamental reason why any such proposal will not work. Briefly, the

reason is that if you want to do Bayesian inference on a statistical model that is

parameterized by ✓, then you need to assign probabilities to ✓; you cannot instead

assign probabilities to, e.g., propositions of the sort <✓ = 2 is the best parameter

value> or <✓ = 2 is the parameter value that is most predictively accurate>, be-

cause these propositions are not part of the statistical model. Nor can you amend

the statistical model so that it is instead parameterized by these other propositions.

Gelman and Shalizi’s (2013) solution to the interpretive problem (to the extent

that they see it as a problem) seems to be to refuse to interpret Bayesian probabilities

in any standard way. Bayesian probabilities of parameters inside models, they say,

are “regularization devices” and models themselves should not really be assigned

probabilities at all. This does not seem like a solution so much as an admission of

defeat. Morey et al. (2013) pursue a di↵erent strategy. They reply to Gelman and

Shalizi with the assertion that “...scientific models, including statistical models, are

neither true nor false” (p. 71) and that “Box’s (1979) famous dictum... ...could

be shortened to ‘some models are useful’ without any loss” (p. 71). They then

recommend assigning odds rather than probabilities to models because a “Bayesian

who employs odds is silent on whether or not she is in possession of the true model,

and, in fact, need not acknowledge the existence of a true model at all” (p. 71). It

is, however, unclear how using odds rather than probabilities is supposed to solve

5For example, some might be tempted to consider the algebra generated by the associated
propositions, <H

i

is the best hypothesis>, for each H
i

, or something similar.
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the interpretive problem. And it is not clear how refusing to assign truth values to

models solves the problem either. What does it mean to say that your odds are 5

to 1 in a model that is neither true nor false as against another model that is also

neither true nor false? The interpretive problem seems to be just as severe here as

before.

Moreover, the claim that statistical models do not have truth values seems wrong.

As we saw, a statistical model can be regarded as a conjunction of a claim about

the hypotheses of interest (namely that one of them is true) and a claim about the

auxiliary assumptions (namely that they are all true). It follows that a statistical

model is false either if none of the hypotheses of interest is true or if one of the

auxiliary assumptions is false. The second situation arguably is less serious than the

first.

4 False Auxiliary Assumptions vs False Hypothe-

ses of Interest

If a statistical model is false because one of its auxiliary assumptions is false – which

is almost always the case – then the interpretive problem arises on the level of model

inference. That is, if there are multiple statistical models that all contain known false

auxiliary assumptions, then all of the models will have a probability of 0 of being

true, and hence a standard Bayesian who wants to use Bayesian inference to find the

best model will run into the problem of how to sensibly assign non-zero probabilities

to the models.

How to make sense of model inference and model selection is therefore a serious

problem for Bayesians. However, if the statistical model is not itself the hypothesis

of interest, then the fact that the statistical model is false does not necessarily mean

we are faced with the interpretive problem.

Consider, for example, the previous example involving the estimation of the mass

m of some object. A good way of getting an estimate of m is by embedding m in

a statistical model. Now, even if the statistical model is false because it is based
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on known false (auxiliary) assumptions, probabilistic statements about m will still

be completely sensible; thus, in cases like this one, the interpretive problem does

not arise for inferences about the parameter m. For example, a statement like “the

probability that it’s true that m is 2kg is 0.5” is perfectly sensible as long as it is

remembered that the probability is premised on the auxiliary assumptions of the

model. If those assumptions are seriously wrong, the probability may well be inac-

curate or misleading; however, the probability can still sensibly be interpreted as a

probability of truth.

Because Bayesian parameter inference often makes sense even if the statistical

model is false, George Box famously recommended a reconciliation between Bayesian

and frequentism. According to Box, frequentist methods should be used to identify

a “useful” (albeit false) statistical model; Bayesian inference can then be used to

infer plausible parameter values inside the assumed statistical model. This two-step

procedure makes sense in cases where the hypotheses of interest are parameters that

represent real quantities out in the world, such as for example the mass of an object.

However, it happens not infrequently in science that the hypotheses of interest are

themselves known to be false, strictly speaking; but this has not stopped scientists

from employing Bayesian methods in their research. For example, phylogeneticists

in both biology and linguistics use trees to represent family relationships between

species or between languages. In both cases, the trees investigated omit known re-

lationships and introduce false idealizations. For example, a tree phylogeny for a

language family is premised on the (false) idea that languages bifurcate instanta-

neously and are forever separated thereafter. Yet, even though all phylogenetic trees

are clearly false, Bayesian phylogeneticists are often interested in discovering which

tree has the highest posterior probability. These probabilities cannot comfortably

be interpreted as probabilities that the trees are literally true, and thus we are faced

with the interpretive problem.

The interpretive problem also arises whenever the hypotheses under consideration

posit simple functional relationships that are almost certainly false idealizations.

This is usually the case whenever Bayesian linear regression is used, for example,

because most functional relationships in the world are not actually linear.
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As an example, suppose you are interested in the functional relationship between

just two variables, X and Y . For concreteness, suppose X represents some mea-

surement of a complex system, e.g. the barometric pressure of a weather system,

and Y represents some quantity of interest, e.g. how much it will rain in the next

hour. The true functional dependence of Y on X is in all likelihood very complex.6

Nonetheless, it is very common in such cases to restrict attention to classes of simple

functional relationships, such as the set of linear hypotheses with 0 intercept, which

models the relationship between Y and X as follows:

Y = ↵X + ✏ (4.1)

Here, ✏ represents the (hypothesized) random fluctuation around the linear func-

tion Y = ↵X; ✏ is generally taken to be a normal distribution with a mean of 0

and standard deviation d. ↵ is the parameter of interest while d is a nuisance pa-

rameter (auxiliary assumption); both need to be estimated from data. Note that ↵

does not represent some “real” quantity out there in the world; indeed, if we were

to interpret ↵ as representing a real quantity, then presumably that quantity would

be a rate. Thus, ↵ would refer to the constant rate at which Y changes (on average)

given changes in X. However, if the true functional relationship between X and Y

is not actually linear, then there is no constant rate at which Y changes in response

to changes in X. Thus, in sharp contrast to the previous example concerning the

estimation of the mass of an object, ↵ = 2 cannot be true or false in the same way

that statements such as m = 2 or m = 3 are true or false.

But if ↵ does not represent a quantity in the world, then what does it mean for a

given value of ↵ to be “true” or “false”? Well, ↵ indexes a set of hypotheses, namely

Y = ↵X + ✏, so to say that ↵0 is “true” in this case is the same as saying that there

exists some value of ✏ such that the hypothesis Y = ↵oX + ✏ is the true functional

relationship between X and Y . To paraphrase Sober (2015), ↵ “lives inside” its

6By “the true functional dependence,” I mean the functional dependence that would result if
we were to keep fixed all other predictively relevant variables and see how Y varies given changes
in X. Since X may – indeed probably does – interact with other variables, this definition is too
simplistic, but going into the details here is not worth the pay-o↵.
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model; it has a meaning only in the context of the statistical model of which it is a

part. Not all parameters are created equal.

Note that in this example, it is pretty much a foregone conclusion that no hy-

pothesis of the form Y = ↵X+✏ describes the true functional relationship between Y

(i.e. how much it will rain) and X (the barometric pressure). Hence it’s not merely

the auxiliary assumptions of the model that are false in this case; the very hypotheses

that we are interested in are all known in advance to be false. Hence, the interpretive

problem hits us again with full force: how are we supposed to understand non-zero

probability assignments to values of ↵?

5 Approximate Truth

This is where the notion of approximate truth may be helpful. More generally,

scientific realists would doubt whether any scientific or statistical model could be

“useful” (to use Box’s term) were it not approximately true in some sense; thus, we

should assign a model (or a parameter inside a model) a probability proportional

to the extent to which we find it approximately true (in the relevant sense). The

question we need to ask is whether and how the idea that hypotheses and models

are sometimes approximately true or that some hypotheses are closer to the truth

than others can be accommodated within the Bayesian framework. Because model

inference and parameter inference are di↵erent in some important ways, I will from

now on focus only on parameter inference. That is, I will assume that the hypotheses

of interest are indexed by a parameter ⇥ inside some fixed statistical model, and

that each ✓ 2 ⇥ picks out some hypothesis that does not itself contain adjustable

parameters.

Before we can address properly the question whether some hypotheses can be ap-

proximately true or closer to the truth than others, we must make a few assumptions

about what approximate truth is and how it can be measured.

The study of approximate truth was initiated by Popper (1963) and has by now
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accumulated a large literature.7 The most influential contemporary approach in the

study of approximate truth – known in the literature as the “similarity approach” –

takes seriously the idea that approximate truth is a particular kind of approximation.

To say that something is a good approximation of something else is to say that the

two things are similar in some relevant respect. Thus, to say that a hypothesis or

is approximately true is to say that the hypothesis is su�ciently similar to the true

hypothesis.

This idea can be formalized if we suppose that there is a (context-appropriate8)

verisimilitude measure, v, that takes as its input a hypothesis ✓ and has as its output

some real number that represents how similar ✓ is to the truth. If we presume

that such functions are available, we can say that ✓ is approximately true just in

case v(✓) < ✏, for some suitably chosen ✏. There are certain requirements that the

verisimilitude measure arguably ought to obey. For example, it arguably ought to be

non-negative, and it is also natural to demand that it be continuous whenever the

hypothesis space is indexed by a real-valued parameter.

As a concrete example, one non-negative and continuous divergence measure

that has been suggested as a verisimilitude measure in a statistical context is the

Kullback-Leibler divergence (Forster and Sober, 1994). Supposing that q is the “true”

probability distribution that governs the distribution of the data, then the verisimil-

itude (according to the K-L divergence) of some hypothesis ✓ (that does not contain

adjustable parameters) is KL(✓) = �
R
q(x) log q(x)

p(x|✓)dx.

Unfortunately, the various ways one might try to accommodate approximate truth

within the Bayesian framework face a severe di�culty having to do with the third

probability axiom. Briefly, the problem is that, given a set of hypotheses indexed

by a parameter, there will generally be multiple parameter values that meet any

verisimilitude threshold we set for “approximate truth.” Hence, the di↵erent param-

eter values will not be mutually incompatible in the sense that it will be possible for

several of them to be approximately true simultaneously. However, Bayesian infer-

7See Niiniluoto (1998) for a survey.
8In general I agree with Northcott (2013) that there is little reason to assume a priori that there

will be a single distance measure that appropriately measures approximate truth in all contexts.
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ence requires that the di↵erent parameter values be mutually incompatible. Thus,

Bayesian inference will in general be impossible if we change the goal of inference

from truth to approximate truth. For a more thorough discussion of these issues, and

how exactly a conflict with the third probability axiom is to blame, see the appendix.

The underlying problem is that approximate truth is too coarse-grained a concept

since it fails to distinguish between several hypotheses, all of which are approximately

true. This problem should motivate us to look for an alternative solution to the

interpretive problem.

6 The Verisimilitude Interpretation of Probability

Presumably some hypotheses that are approximately true are closer to the truth than

other ones, and – at least in many cases – one of the hypotheses under consideration

will be closer to the truth than all the others. This suggests a di↵erent interpretation

of probability. In particular, it is tempting to interpret p(✓) as the probability that ✓

is closest to the truth out of the hypotheses in ⇥; note that in contrast to both truth

and approximate truth, closeness to the truth is fundamentally a comparative notion.

I will call this interpretation the “verisimilitude interpretation” of probability, and

I will use pc with a c subscript whenever this is the intended interpretation. It is

helpful to write out all of the probability axioms with the new interpretation made

explicit:

1C. pc(⇥) = 1. Interpretation: one of the hypotheses in ⇥ is closest to

the truth.

2C. pc(✓) � 0 for all ✓. Interpretation: no hypothesis has a negative

probability of being closest to the truth.

3C. pc(
W

✓i) =
P

pc(✓i), whenever it is impossible for more than one ✓i

to be closest to the truth.

There are several things to note here. First, and most importantly, just about

any set of hypotheses will satisfy the verisimilitude interpretation of the probability
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axioms. More precisely, given any set of hypotheses that can be compared using

some verisimilitude measure, at least one of the hypotheses must be maximally close

to the truth according to the verisimilitude measure, so the set of hypotheses will

satisfy 1C. Hence, the verisimilitude interpretation avoids the interpretive problem of

the standard interpretation, which we saw was really a problem with the first axiom.

The verisimilitude interpretation also avoids the problems with the third prob-

ability axiom that we identified with the approximate truth approach. In order for

Bayesian inference to be possible on the set of hypotheses, the hypotheses must be

mutually incompatible in the sense of 3C; that is, it must be impossible for more

than one of the hypotheses to be closest to the truth. This axiom will not always

be satisfied. For example, if the hypotheses are models and some of the models are

contained in others, it may be possible for several of the models to be equally close to

the truth, depending on the verisimilitude measure. However, most of the hypothesis

sets that Bayesian statisticians study will satisfy 3C.

Another important thing to note is that, under the verisimilitude interpretation,

the probability of a hypothesis is always relative to the set of competing hypotheses

under consideration. For example, in the set {H1, H2}, pc(H1) is the probability that

H1 is closer to the truth than H2. On the other hand, in the set {H1, H3}, pc(H1)

is the probability that H1 is closer to the truth than H3. The probability of H1 is,

of course, also relative to the verisimilitude measure. The verisimilitude probability

of a hypothesis is therefore not an absolute number; it is context-dependent and

contrastive. This is in sharp contrast to the standard Bayesian probability of a

hypothesis.

Finally, note that pc(✓) describes an epistemic attitude di↵erent from a degree of

belief in the truth of some proposition. Some might be tempted to interpret pc(✓) as

a standard probability that attaches to the proposition <✓ is closest to the truth>.

However, this is a mistake, for the reasons mentioned earlier. The proposition <✓

is closest to the truth> belongs to a di↵erent algebra than ✓ does. ✓ indexes a set

of hypotheses in a statistical model, but <✓ is closest to the truth> does not. If

Bayesian inference is to be used on the statistical model that is indexed by ✓, the

probabilities must be assigned to the parameter ✓, not to the associated propositions
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<✓ is closest to the truth>. Hence pc(✓) represents an epistemic attitude towards ✓,

namely the attitude that ✓ is closest to the truth out of the hypotheses in ⇥.

7 The Verisimilitude Interpretation of Probability

is Useful

The verisimilitude interpretation of probability is a logically viable solution to the

interpretive problem in the sense that it does not face immediate problems with any

of the probability axioms. However, some characteristics of the verisimilitude in-

terpretation may seem objectionable. In particular, the fact that the verisimilitude

interpretation makes probability assessments contrastive may be regarded as a seri-

ous drawback. Perhaps the appropriate response to the interpretive problem is not

to adopt the verisimilitude interpretation, but rather to not use Bayesian methods

whenever the hypotheses under consideration are all known to be false. On the other

hand, maybe there is an alternative solution to the interpretive problem that is bet-

ter than the verisimilitude interpretation. In this section and the next, I consider

both these alternative responses to the interpretive problem.

In order to determine whether the verisimilitude interpretation is defensible, it is

helpful to step back for a moment and ask a more fundamental question: why use

Bayesian methods at all? If the benefits of Bayesian methods remain even when he

standard interpretation of the probability axioms is replaced with the verisimilitude

interpretation, then the verisimilitude interpretation is not just logically viable, but

potentially useful. The goal of the next subsections is to give a preliminary argument

for the claim that the verisimilitude interpretation is useful.

7.1 Why be a Bayesian?

What is the benefit of using Bayesian rather than other statistical methods? Per-

haps the greatest selling point of Bayesianism is that the prior distribution gives

researchers a principled way of incorporating background information. For exam-

ple, suppose you are estimating the mass of a small cup of water, and suppose you
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model the outcome of your measurement as a likelihood function p(x|m), where x

is the outcome of your measurement and m is a possible value of the cup’s mass.

A standard classical (“frequentist”) method of estimating the mass of the cup is to

choose as your estimate the value of m that maximizes the probability of the ob-

served measurement. This estimation method is known as “maximum likelihood”

estimation.

From a Bayesian point of view, maximum likelihood estimation is essentially

equivalent to Bayesian inference with a flat (improper) prior probability function that

assigns a non-zero and equal probability density to every possible value of m from

�1 to +1, because the maximum likelihood estimate will be equal to the estimate

that has the highest posterior probability if and only if the prior is flat. Clearly,

the prior implicitly used in maximum likelihood estimation neglects to incorporate

common sense background information that we have about m, and is therefore –

from a Bayesian and intuitive point of view – deficient. For example, the mass of an

object cannot be a negative number, so no prior should assign any probability mass

to negative values of m. Furthermore, we can be absolutely certain that a small cup

of water is not going to weigh more than, say, 1kg, so we can also assign a probability

of 0 to all values of m greater than 1kg. Thus, as a minimal requirement, any prior

probability distribution we use should be restricted to the interval [0, 1]. Of course,

we have additional common sense knowledge that allows us to restrict the class of

sensible prior distributions further.

The above example shows how even very obvious background information can

be incorporated in a Bayesian prior in order to improve the inference. Indeed, at

least to Bayesian statisticians and scientists who make use of Bayesian methods, this

is probably the single biggest advantage that Bayesianism has over its competitors.

But how are you supposed to take into account your background information when

you are trying to come up with a prior probability distribution over a class of false

hypotheses? Do the advantages of Bayesianism carry over when the goal of inquiry

changes from finding the truth to finding the hypothesis that is closest to the truth?

In the next subsection, I will suggest that the answer is “yes.” Scientists often have

background knowledge that they can use to discriminate between false hypotheses
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in a principled way. And a good way of incorporating this background knowledge is

through the construction of a Bayesian prior.

7.2 Verisimilitude and Background Knowledge

Consider again the example concerning the relationship between barometric pres-

sure and the expected amount of rainfall. Suppose one of the things you know

about the relationship between barometric pressure and precipitation is that the

expected amount of precipitation is not very sensitive to changes in barometric pres-

sure. Throughout the whole possible range of barometric pressure, a small change

in barometric pressure will not lead to a drastic change in the amount of expected

precipitation.

So far, this is background knowledge about the actual, unknown function relat-

ing barometric pressure and precipitation. What consequences does this background

knowledge have for inferences about the hypothesis set actually under consideration?

Suppose, as before, that the hypothesis set you are considering is the set of linear

functions. That is, you model the relationship between precipitation and baromet-

ric pressure by the set of linear functions l(Y ) = ↵X + ✏, where ✏ is a normally

distributed error term. Can you use your background knowledge to discriminate

between the various false linear hypotheses in a principled way? Arguably, you can.

Intuitively, by any reasonable measure of verisimilitude, linear functions according

to which expected precipitation is not very sensitively dependent on barometric pres-

sure are going to be closer to the truth than are linear functions that model expected

precipitation as very sensitively dependent on barometric pressure.

How can all of this be captured reasonably in a prior probability distribution? Let

us first see how you can formally capture your background information. Suppose f is

the true (and unknown) functional relationship between precipitation and baromet-

ric pressure. Then the background information that precipitation does not depend

sensitively on changes in barometric pressure can be modeled as a claim about the

partial derivative of f (with respect to the barometric pressure variable). The sim-

plest and least sophisticated way of translating your background information into a
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quantitative restriction on f 0 is to to suppose that f 0 is bounded by some interval

(a, b). Next, the intuition that insensitive linear hypotheses are closer to the truth

than sensitive linear hypotheses can be formalized as follows: there is some suitably

large interval (a0, b0) that contains (a, b) such that every linear hypothesis l for which

l0 is bounded by (a0, b0) is closer to the truth than every linear hypothesis that does

not satisfy this requirement. Now, since l0 = ↵, the requirement that l0 be bounded

by (a0, b0) reduces to the simple requirement that every ↵ 2 (a0, b0) is closer to the

truth than every ↵ /2 (a0, b0). This, in turn, translates to a simple rational require-

ment on the prior distribution over ↵, namely that every ↵ /2 (a0, b0) be assigned a

prior probability of 0.

There are more refined ways of formalizing the background information that

expected precipitation does not depend very sensitively on barometric pressure. In

particular, if we assume a specific verisimilitude measure, then we can get tighter

constraints on ↵.9 Furthermore, if the hypotheses under consideration are more

complicated (i.e. contain more parameters), then the background information will

not lead to rational requirements on the prior distribution as neatly. My goal in

this section is not, however, to demonstrate in full generality how to best translate

background information into reasonable requirements on prior distributions over false

hypotheses. My goal is rather to show that it is possible to do so, and that it is

plausibly useful. I defer a more thorough treatment of these issues to another time.

9For example, suppose we use the following reasonable albeit crude distance measure as our
measure of verisimilitude: if f is the true function over the range (m,n) and l is a linear function,
then the verisimilitude of l is v(l) = Max

x2(m,n)|f(x) � l(x)|. In this case, if we assume that we
know that f is bounded by (a, b), then it is possible to prove that every linear function l whose
derivative is bounded by (a, b) is closer to the truth than every linear function whose derivative is
not bounded in this way, where closeness to the truth is measured using v. For the sake of space, I
omit the proof.
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8 The Counterfactual Interpretation of Probabil-

ity

The preceding section shows that the verisimilitude interpretation of the probabil-

ity axioms is a potentially useful solution to the interpretive problem. However, it

may be that there is another solution to the interpretative problem that is better.

Earlier, we examined two candidate solutions to the interpretive problem and found

them wanting. However, in a very recent paper, Jan Sprenger (2016) proposes a new

and di↵erent solution to the interpretive problem that is more promising. Sprenger’s

solution also involves reinterpreting the probability axioms, but he o↵ers a reinterpre-

tation that is interestingly di↵erent from the verisimilitude interpretation. However,

as we will soon see, given certain plausible assumptions, the verisimilitude solution

and Sprenger’s solution are formally inter-translatable.

Sprenger’s suggestion is that the probability of a false hypothesis can sensibly

be interpreted as a counter-factual degree of belief. More precisely, suppose ↵ is a

parameter that indexes a set of hypotheses, all of which are known to be false. Then

any probability assigned to some particular ↵0 should be construed as a degree of

belief in ↵0 that is conditional on the (false) supposition that one of the hypotheses

indexed by ↵ is true. In other words, the probability of ↵0 is really the conditional

probability p(↵0|_↵), where the condition _↵ is the false disjunction that says that

one of the ↵’s is true.

This idea is less abstract than it may seem at first blush. As an illustration,

suppose I have a coin in a locked cabinet. The probability that the coin would land

heads given that I were to toss the coin is 0.5, even if it is false that I ever toss

the coin. Similarly, according to Sprenger, we can evaluate the probability that a

hypothesis is true given that the false supposition that the world were such that one

of the hypotheses under consideration is true.

According to Sprenger, the counterfactual interpretation of probability o↵ers

a simple solution to the interpretive problem that avoids the “muddy waters of

verisimilitude.” However, in order to actually evaluate counterfactual probabilities

in a principled manner, it seems we have to enter waters that are at least as muddy

19



as the verisimilitude waters. Consider again the example concerning the set of linear

hypotheses relating X (barometric pressure) to Y (precipitation in the next hour).

We have already agreed that your actual degrees of belief in all of these linear hy-

potheses is 0. Your degree of belief (or probability density, rather) in some particular

linear hypothesis conditional on the disjunction of all the linear hypotheses may still

be di↵erent from 0, but how are you supposed to figure out what it is? You some-

how have to figure out what your probabilities would be on the assumption that the

world were such that barometric pressure and precipitation were perfectly linearly

related. In order for the counterfactual interpretation of probability to be a viable

alternative, guidance on how to evaluate counterfactual probabilities is necessary, in

the same way that some assumptions about verisimilitude are necessary in order for

the verisimilitude interpretation to be viable.

The standard way of evaluating ordinary counterfactuals is by appealing to possi-

ble worlds. According to (a simplified version of) Lewis’s analysis of counterfactuals

(Lewis, 1973), in order to evaluate a counterfactual such as ”If A were the case, then

B would be the case,” you have to go to the closest possible world in which A is true,

and then see whether B is true in that world. Crucially, Lewis’s analysis depends on

a ranking of worlds, where worlds are ranked by how similar they are to the actual

world.

Presumably counterfactual probabilities should be assessed in a similar manner.

It is not hard to imagine very strange and fanciful possible worlds in which barometric

pressure and precipitation are linearly related, but presumably most of those possible

worlds are not interesting or relevant. As is the case in counterfactual analysis of

conditionals, it is presumably the closest possible worlds that are the interesting

ones. But which possible worlds are those? To answer this question, you need to be

able to rank worlds in terms of their closeness or similarity to the actual world. But

a ranking of possible worlds is hardly easier to come up with than a verisimilitude

ranking of hypotheses.
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8.1 Relationship Between the Verisimilitude and Counter-

factual Solutions

Indeed, in general, any similarity ranking on possible worlds straightforwardly in-

duces a natural verisimilitude ranking on hypotheses, and vice versa.10 More pre-

cisely, suppose we are given a similarity ranking on worlds w↵ � w1 � w2 � . . .,

where w↵ is the actual world. Then we can define a verisimilitude ranking on hy-

potheses as follows: suppose w is the closest world in which H is true and w0 is the

closest world in which H 0 is true, then v(H) � v(H 0) if and only if w � w0.11

Conversely, any verisimilitude ranking induces an ordering of possible worlds.

Suppose v(H0) > v(H1) > v(H2) > . . . is a verisimilitude ranking of hypotheses,

and for any hypothesis p, let Sp denote the set of worlds in which p is true. Then

we can define an ordering of possible worlds in the following way: suppose H is the

hypothesis with the highest verisimilitude such that that w 2 SH and suppose H 0 is

the hypothesis with the highest verisimilitude such that w0 2 S 0
H , then w � w0 if and

only if v(H) � v(H)0.

Thus, although they appear very di↵erent, the verisimilitude interpretation and

the counterfactual interpretation of probability are formally inter-translatable.

Although the two approaches are formally inter-translatable, they provide di↵er-

ent perspectives and help illuminate each other. In particular, it is arguably easier

to come up with a verisimilitude measure than a ranking over possible worlds; for

example, the Kullback-Leibler measure is a well known verisimilitude measure over

statistical models, and this verisimilitude measure will induce a partial ranking over

possible worlds. Thus, the verisimilitude approach helps explain where rankings over

possible worlds are supposed to come from.

On the other hand, the counterfactual approach helps explain several features

of the verisimilitude interpretation as well. For example, earlier we saw that the

10For simplicity, the following informal demonstration presupposes the so-called “Uniqueness
Assumption” according to which, for every A, there is a unique closest possible world in which A
is true. This is a strong and implausible assumption. However, the demonstration does not depend
on this assumption.

11Hilpinen (1976) uses a similar approach to define a specific verisimilitude measure.
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verisimilitude probability of a hypothesis H is relative to the set of hypotheses un-

der consideration. If H is considered as part of the set {H,H 0}, the verisimilitude

probability of H is the probability that H is closer to the truth than is H 0. But if

H is considered as part of the set {H,H 00}, the verisimilitude probability of H is the

probability that H is closer to the truth than is H 0. The counterfactual interpreta-

tion clarifies what is going on here. In the first case, the counterfactual probability

that corresponds to pc(H) is p(H|H _ H 0); in the second case, the counterfactual

probability that corresponds to pc(H) is instead p(H|H _H 00). As can be seen, the

two counterfactual probabilities are conditional on di↵erent disjunctions, and it is

therefore not mysterious that the corresponding verisimilitude probabilities are also

di↵erent.

9 Summary and Future Research

I have argued that the interpretive problem is a serious problem, but that the prob-

lem does not necessarily arise just because the statistical model under consideration

is wrong; rather, the interpretive problem arises whenever the hypotheses of interest

are false. Next, focusing on parameter inference, I have argued that the verisimilitude

reinterpretation of the probability axioms provides a logically viable and potentially

useful solution to the interpretive problem. Finally, I have contrasted the verisimili-

tude reinterpretation with another reinterpretation due to Jan Sprenger, and I have

argued that the two reinterpretations are formally inter-translatable, but that they

nevertheless shed interestingly di↵erent lights on the interpretive problem and on

each other.

Several important questions remain unanswered, however. In particular, I have

not discussed the problem of Bayesian model inference or model selection when all

the models are all false. Nor have I discussed in any detail how researchers can come

up with principled prior probabilities that discriminate between false hypotheses.

Finally, I have not said anything about what consequences reinterpreting the prob-

ability axioms has for evidential principles like the Likelihood Principle or the Law

of Likelihood. All of this is work for the future.
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A Approximate Truth and Bayesianism

There are two natural ways of trying to accommodate approximate truth within

Bayesianism. The first way is to expand the algebra of propositions that p ranges

over, so that it also ranges over propositions such as <✓ is approximately true> – or

P✓ for short. Thus, even though strictly speaking we assign each ✓ a probability of

0 of being true, we can consistently assign its associated proposition P✓ a non-zero

probability, and moreover this probability represents the probability that P✓ is true
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and not just approximately true, since the approximation claim is in the proposition

itself. This way, the standard Bayesian interpretation of the probability axioms is

preserved.

The other natural way of attempting an accommodation is to abandon the stan-

dard Bayesian interpretation of the probability axioms, so that p(✓) is interpreted as

the probability that ✓ is approximately true rather than true. This line of reasoning

is pursued by Niiniluoto (1986) and Festa (1999). Let pa be a potential probability

function where the a subscript indicates that the intended interpretation of pa(✓)

is the probability that ✓ is approximately true rather than true. For concreteness,

we may imagine that pa represents the degrees of belief that some agent has in all

hypotheses (and models, theories, etc) that the agent takes to potentially be approx-

imately true. By contrast, p can be taken to represent the same agent’s degrees of

belief in propositions that the agent takes to potentially be true.12 pa is therefore

defined over a much more expansive set of hypotheses, models, theories, etc. than is

p. However, if we allow propositions such as <✓ is approximately true>, then pre-

sumably there will be a simple correspondence between pa and p in that we should

have pa(✓) = p(P✓).

There is some reason to prefer working with pa rather than with propositions

such as P✓. Bayes’s formula requires that we assign unconditional probabilities to

data x. If we stay inside the original distribution p, this means we have to calcu-

late p(x) =
P

p(x|P✓
i

)p(P✓
i

), but then we are faced with having to make sense of

p(x|P✓
i

), or in other words the probability of x conditional on the assumption that

✓i is approximately true. But this is hard to make sense of. In statistical practice,

each ✓i will, as was mentioned earlier, in general be part of a fully specified statistical

model, which means it will entail a probability for each of the possible outcomes. The

associated proposition, P✓
i

, however, does not entail any probabilities for data, and

it is hard to see how to come up with reasonable conditional probabilities of the form

p(x|P✓
i

). One might try to argue that it is reasonable to hold that p(x|P✓
i

) ⇡ p(x|✓),
and this will provide a rough value for p(x|P✓

i

), but not a precise one.

12Although I hasten to add that a subjective Bayesian perspective will not really play any signif-
icant role here.
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If, on the other hand, we move to the distribution pa, then we can expand the

probability of x as pa(x) =
P

pa(x|✓i)pa(✓i). Now, if we suppose that the statistical

model stays the same, then it is reasonable to suppose that pa(x|✓i) = p(x|✓i); i.e.
✓i still entails the same probability for x in the pa distribution as it does in the p

distribution. The final thing we need to do is to define the joint probability of ✓i and

x, which we can naturally define as follows: pa(✓i&x) = p(x|✓i)pa(✓i). Thus, we can

write pa(x) =
P

p(x|✓i)pa(✓i).
Introducing the pa distribution has problems of its own, however, since it’s not

immediately clear whether such a function can actually satisfy the probability ax-

ioms. For example, physicists use both the liquid drop model (L) and the shell model

(S) of the nucleus in order to generate predictions, even though these models are

logically inconsistent. Presumably, both L and S should be taken to be “approxi-

mately true” since they are both auxiliary assumptions used by scientists to generate

predictions; hence we should expect it to be the case (at least) that pa(L) > 0.5 and

pa(S) > 0.5. However, since L and S are logically inconsistent, the third axiom tells

us that pa(S _ L) = pa(S) + pa(L) > 0.5 + 0.5 = 1, which is impossible because (by

the first axiom) no probability can be greater than 1. Thus, there is apparently a

very foundational problem with trying to change our interpretation of probability so

that probabilities are interpreted as probabilities of approximate truth rather than

probabilities of truth.

However, on closer inspection, this objection fails. The third probability axiom

applies to sets of “logically incompatible” hypotheses; but what does it mean for a

set of hypotheses to be logically incompatible? On the standard interpretation, it

means that it is not possible for more than one of the hypotheses to be true; i.e. the

third axiom is interpreted as follows:

3S. P (✓i) =
P

P (✓i) whenever it is impossible for more than one ✓i to be

true.

However, in contexts where approximate truth rather than strict truth is the

target, this is arguably not how the axiom should be interpreted. Instead, the axiom

should be interpreted in the following way:
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3A. Pa(✓i) =
P

Pa(✓i) whenever it is impossible for more than one ✓i to

be approximately true.

On the new reading, the earlier objection loses its grip, for – as was pointed out

earlier – it is possible for both the shell model and the drop model to be approximately

true, so the condition for applying the formula in the third axiom is not met—the

two models are not logically incompatible in the sense of 3A.

Unfortunately, this feature also leads to a serious problem, because the hypothesis

spaces that scientists generally use will not be logically incompatible in the sense of

axiom 3A, precisely because it will in general be possible for multiple hypotheses

in the hypothesis space to be approximately true. But this is bad news, because

in order for Bayes’s formula to be applicable, the hypothesis space we use must

consist of logically incompatible hypotheses, since the denominator of Bayes’s formula

requires that pa(x) (or p(x)) be expanded in terms of hypotheses that are logically

incompatible. Consider, for concreteness, the class of one-variable linear hypotheses,

y = ax, indexed by the parameter a 2 R, and suppose we have available a continuous

verisimilitude measure v. Now suppose the true relationship between y and x is not

actually linear. Suppose moreover that we set the approximation threshold at ✏ > 0,

so that y = ax counts as approximately true if and only if 0 < v(a) < ✏, i.e. if

and only if v(a) is in the open interval S = (0, ✏). Then the set of hypotheses

that are approximately true is indexed by A = {a 2 R | v(a) 2 S}. Moreover,

v�1(S) = {a 2 R | v(a) 2 S} = A, which means A is also an open interval because

v is continuous. Since A is an open interval, it has either no members or infinitely

many. But this means either none or infinitely many of the hypotheses will be

approximately true. In neither case will Bayesian inference be possible. If none of

the hypotheses are approximately true, then clearly the goal of the inference cannot

be to find a hypothesis that is approximately true. If, on the other hand, infinitely

many of the hypotheses under consideration count as approximately true, then the

hypotheses cannot be used to calculate an unconditional probability for x. But from

this it follows that Bayes’s formula cannot be applied, and so Bayesian inference will

not be possible.
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The above problem arises whenever the verisimilitude measure v is continuous

and the hypotheses we are considering are parameterized by a real-valued parame-

ter. But many of the hypotheses spaces that applied statisticians make use of are

parameterized by continuous parameters; hence the problem arises very widely.

There are, as far as I can see, two ways we can try to get out of this problem.

As was mentioned earlier, there are two ways the unconditional probability of x

can be calculated, depending on whether we use pa or p with an expanded algebra

of propositions. In the pa distribution we have p(x) =
P

pa(x|✓i)pa(✓i). In the p

distribution, we instead have p(x) =
P

p(x|P✓
i

)p(P✓
i

), where P✓
i

is the proposition

<✓i is approximately true>.

If we expand the unconditional probability of x in the first way, we can try to

coarse-grain the hypothesis space; if we expand the unconditional probability of x in

the second way, we can try to create a partition out of the P✓
i

propositions. Neither

alternative is very promising.

Let us consider the second way out first. Carnap (1950) taught us how to create

a partition out of any set of propositions. The method is as follows: given any set

of propositions – A and B, let’s say – we form the state descriptions A&B, A&¬B,

¬A&B, ¬A&¬B. The resulting state descriptions then form a partition. Now, given

a set of hypotheses {✓i}, Carnap’s method can be used to make a partition out

of the set of associated propositions, <{✓i is approximately true}>; the resulting

state descriptions will then be logically incompatible (in the sense of 3S), and we

can therefore use Bayes’s formula on the resulting partition of state descriptions.

There are, however, two major problems with this proposed solution. First, note

that if there are n hypotheses in the hypotheses set, then the partition of state

descriptions will have 2n propositions. But that means that if the hypothesis space

is parameterized by a continuous parameter – so that its cardinality is @1 – the

partition of state descriptions will have cardinality 2@1 . But it is not possible to

assign a regular probability (density) distribution over a set with cardinality 2@1 .

The resulting probability distribution will have to make use of “hyperreal” numbers

(Wenmackers and Horsten, 2013), but there are significant di�culties associated with

hyperreal probabilities—see, e.g., Easwaran (2014) and Pruss (2014).
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The other problem is perhaps even worse. In order to do use Bayes’s formula,

Bayesians who make use of the above proposed solution will have to somehow assign

likelihoods to each of the state descriptions, each of which is a heinous conjunction

of propositions of the form <{✓1 is approximately true}>&<{✓2 is approximately

true}>&¬<{✓3 is approximately true}>& . . .etc. It is very hard to see how reason-

able probabilities can be assigned conditional on such complicated expressions.

The other possible way out of the problem is to coarse-grain the hypothesis space.

If the hypothesis space is parameterized by a continuous parameter, then – as we have

seen – infinitely many hypotheses will in general count as approximately true if any

hypothesis counts as approximately true. However, if we make the hypothesis space

discrete by throwing out most of the hypotheses, then the remaining hypotheses may

well all be logically incompatible (in the sense of 3A). For example, if the parameter

that indexes the hypotheses ranges over the interval (0, 1), then we could coarse-grain

the parameter to (0.2, 0.4, 0.6, 0.8, 1.0), which may well range over hypotheses that

are logically incompatible. However, coarse-graining the hypothesis space in this way

is not very attractive because (1) how to coarse-grain the space would depend on

which ✏ threshold we use, (2) there are multiple ways to coarse-grain a hypothesis

space, and each way arbitrarily throws out most of the viable hypotheses. Needless

to say, no Bayesian statisticians actually coarse-grain the hypothesis spaces they

use in this way; nor, for that matter, do they create state descriptions in the way

suggested in the previous solution. Hence, accommodating approximate truth within

the Bayesian framework does not seem to be feasible when the hypothesis space is

indexed by a continuous parameter.

The above considerations do not show that all is lost for the approximate truth

interpretation of probability, however. In particular, if the hypothesis space is dis-

crete, then the above problems may not arise. On the other hand, the problems

will arise even with discrete hypotheses spaces, provided there are multiple hypothe-

ses that all meet the verisimilitude threshold that is set for approximate truth. So

to prevent these problems from arising, it is necessary to make sure that the hy-

potheses (or models) under consideration are su�ciently distinct from each other so

that only (and precisely) one of them will count as approximately true. Otherwise,
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Bayesian methods will not be applicable because the hypotheses (or models) will not

be mutually exclusive in the requisite sense (i.e. in the sense of 3A).

But this is an awkward problem to have to deal with. And it points to a defect

with the concept of approximate truth: approximate truth is intrinsically too coarse-

grained a concept since it fails to distinguish between several hypotheses, all of which

are approximately true.
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