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Abstract 

Statistical reasoning is an integral part of modern scientific practice. In The Seven 

Pillars of Statistical Wisdom Stephen Stigler presents seven core ideas, or pillars, of 

statistical thinking and the historical developments of each of these pillars, many of 

which were concurrent with developments in biology. Here we focus on Stigler's fifth 

pillar, regression, and his discussion of how regression to the mean came to be 

thought of as a solution to a challenge for the theory of natural selection. Stigler 

argues that the purely mathematical phenomenon of regression to the mean 

provides a resolution to a problem for Darwin's evolutionary theory. Thus, he argues 

that the resolution to the problem for Darwin's theory is purely mathematical, rather 

than causal. We show why this argument is problematic. 
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Modern scientific reasoning is largely based on statistical tools and methods. In The 

Seven Pillars of Statistical Wisdom (Harvard University Press, 2016) Stephen Stigler 

sets forth to present the seven core ideas, or pillars, that are at the base of statistical 

thinking, in an attempt to give an answer to the question "what exactly is statistics?". 

Both a professor of statistics and a distinguished historian of the field, Stigler does 

not only describe each of the seven pillars, but also provides an account of their 

historical development, with each chapter in the book dedicated to one of the 

pillars. Philosophers of science and biology will greatly benefit from the book, which 

clearly explains complicated statistical ideas and their development; ideas that are 

essential for a good understanding of scientific methodology. Many of the episodes 

discussed in the book concern the interaction between the development of statistics 

and the development of biology. In what follows, we briefly present each of the 

chapters of the book and then discuss at greater length Stigler's description in 

chapter 5 of the concept of regression to the mean, as well as his arguments 

regarding the explanatory value of this concept in evolutionary biology. The 

arguments presented in this chapter are highly relevant to philosophers of biology 

and relate to the philosophical debate about mathematical explanations in science.  

After presenting Stigler's analysis we explain where we find it wanting.  

The first chapter in Stigler's book deals with the discovery of the notion of data 

aggregation, that is, the idea that a statistical summary of a collection of data (such 

as an average) can provide us with more information than can be obtained by simply 

attending to individual data items. Stigler clearly demonstrates how radical this idea 

was prior to its acceptance, as it involves the counter-intuitive argument that in 

order to gain information we should discard parts of the data we gathered (the 

individual items, the order in which they were gathered, etc.). The second chapter, 

which deals with the concept of information, presents the development of another 

counter-intuitive conclusion, namely that the accuracy of our inferences does not 

increase proportionally with the amount of data we gather. The more data we 

gather, the less each new piece of data contributes to the accuracy of the 

investigation. This leads, for example, to the non-intuitive realization that the second 

20 observations we make are not as valuable to our inferences as the first 20 



observations we made, even though they would have been more valuable had they 

been the first 20 observations to be gathered (which would render the other 20 

observations less valuable). 

The third chapter deals with the concept of likelihood, which is necessary when we 

try to understand whether some data supports or contradicts a belief or a hypothesis 

we have. To do that, we need to be able to determine whether data that were 

gathered support or go against a hypothesis. Philosophers will be aware of the 

discussion of the law of likelihood by Ian Hacking (2016 [1965]) and, more recently, 

by Deborah Mayo (1996) and Elliott Sober (2008).  The most common method in use 

to determine whether our data supports or contradicts a hypothesis is Null 

Hypothesis Significance Testing, in which the data is tested against a null hypothesis, 

and the hypothesis is accepted if the probability of the data given this null 

hypothesis (its p-value) is low enough (usually less than 0.05). The uncritical 

acceptance and use of significance tests in many scientific fields has long been 

known, and the historical development of the concept of likelihood and significance 

testing provided by Stigler is an accessible way to understand the foundational 

debates through which these ideas developed. It is particularly enlightening given 

the current "Replication Crisis" to recall the historical debate between Fisher and 

Neyman and Egon Pearson.  

The fourth chapter deals with intercomparison, the idea that some inferences can be 

made solely on the basis of an analysis of the interior variation in the data. That is, 

some inferences can be made without any exterior reference. For example, the p-

value of an empirical result can be inferred based on the standard deviation in our 

sample, without any reference to the exact standard deviation in the entire 

population.  As usual key innovations were made by Francis Galton, Karl Pearson, 

and Ronald Fisher.  Galton used intercomparison in his infamous 1869 book, 

Hereditary Genius, allowing him to use biographical dictionaries to compare talent in 

populations without having to explicitly define talent. 

 The fifth chapter deals with the concept of regression. We elaborate on this chapter 

in the next section. The sixth chapter deals with the design of experiments, and how 

the planned statistical analysis of results should guide this design. It is common 



wisdom that well-designed experiments are necessary for a thorough statistical 

analysis to be possible, and that a statistical analysis cannot fix a study that was not 

designed well. Stigler's discussion goes further to show how combining the right 

design and statistical methods yielded new insights that were not available before. 

Stigler highlights a lovely quote from Fisher who wrote that "Nature…  will best 

respond to a logical and carefully thought out questionnaire; indeed, if we ask her a 

single question, she will often refuse to answer until some other topic has been 

discussed." (p. 153). This flies against the older tradition, still very much alive today, 

which considers good experiments to be ones that ask a single, often dichotomous, 

question. For example, Stigler demonstrates how additive models helped to 

recognize the causal effects of factors such as seeds and fertilizers in agriculture by 

comparing several multi-factor treatments simultaneously (different seeds, different 

fertilizers) and measuring the variation between all the treatments. These effects 

would not have been recognized had only treatment for one factor been made, 

while ignoring the variation in outcome that is due to other factors. Fisher developed 

these techniques while doing agricultural research at Rothamsted Experimental 

Station.  Another interesting topic Stigler discusses in this chapter is the introduction 

of randomization to experimental design, which helps making inferences without the 

need to make assumptions about normality which would otherwise be required.  

Stigler's discussion of the role of randomization in making statistical inferences valid 

and even at times in establishing what he calls the "objects of inference" is highly 

interesting and thought-provoking.  

The seventh chapter deals with the concept of residual, the idea that complicated 

phenomena can be accounted for by first subtracting the effects of known causes 

and then referring to the remaining effects as those that require further explanation. 

Stigler shows how the logic of this idea led to the development of statistical methods 

of comparison of complex models in scientific practice.  

While each and every one of the pillars raises interesting philosophical questions, 

and has an interesting history often related to biology, we find Stigler's discussion of 

the fifth pillar, regression, to be of special interest to philosophers of biology. We 



turn now to the issues we have with Stigler's discussion of Francis Galton's work on 

inheritance and what its implications were for Natural Selection.  

Darwin's problem and regression to the mean 

The fifth chapter in Stigler's book describes Francis Galton's work on inheritance and 

his discovery of regression to the mean. We find this chapter of great interest to 

philosophers of biology for several reasons. First, it describes a problem with 

Darwin's theory of evolution by natural selection that is much less often recognized 

than the famous problem articulated by Fleeming Jenkin (i.e., the problem posed to 

the theory by blending inheritance). Second, Stigler provides a highly informative 

description of how Galton worked towards a solution to this problem using a 

physical model to represent and understand the inherited variation of characters 

across generations. Thus, the chapter can be of interest to those philosophers 

concerned with modelling. Third, Stigler argues that the solution to the problem is 

mathematical rather than causal, but we are not quite sure that this is correct (more 

on this in a minute). This connects directly with the literature on mathematical 

explanations and their differences and relations to causal explanations. 1 

Stigler starts his discussion of Galton's work with a description of a problem in 

Darwin's theory of natural selection that only Galton seemed to have recognized. 

Darwin's theory is built on the core assumption that each parent produces offspring 

that are not identical to it, and thus creates what Stigler refers to as 

intergenerational variability. In other words, parents create additional variation in 

the population when they reproduce. This pattern of inheritance seems to imply that 

the overall variation in the population will increase with every generation, since each 

reproduction event adds to the variation in the population. However, this is not what 

we observe in nature: in most species the distribution of character traits tends to 

stay the same across generations (even with no apparent selection). 

                                                           
1 An important debate concerning the relation between mathematical and causal explanations in the 
philosophy of biology literature is the debate over whether explanations of population change that 
refer to natural selection and random drift are causal or mathematical explanations (e.g. Walsh et al. 
2002; Shapiro & Sober 2007). We will not discuss how our analysis of Stigler's views relates to this 
debate. 



So, while Darwin's assumption about intergenerational variability leads to the 

conclusion that the variation in characters should increase with each generation, in 

effect we see that the variation remains quite the same. This of course casts doubt 

on Darwin's assumption that reproduction events contribute to the variation in the 

population, without which his theory cannot work, and thus creates a problem for 

the structure of the theory. Hence, the problem Galton identified (which Stigler 

refers to as "Darwin's problem" (pp. 130, 131)) is that intergenerational variability 

and stable variation across generations seem to be in conflict, and need to be 

reconciled in order for Darwin's theory to work. In other words, to overcome the 

problem an explanation is needed for the fact that offspring traits are distributed 

around parental traits, yet the overall population distribution does not change from 

generation to generation. This problem is related to a more general concern, namely 

that for natural selection to operate populations need to harbor sufficient variation 

and such variation must therefore be maintained. Darwin's problem, as Stigler here 

identifies it, is a special case of this more general concern, since sufficient variation 

need not be the result of having stable intergenerational variation.  Galton tried to 

find an explanation for intergenerational stability in variation, while offspring traits 

are distributed around parental ones, by looking for a force that "counteracted the 

increased variability yet also conformed with heritable intergenerational variation" 

(p. 115). In other words, he looked for a causal explanation. 2 

 

Stigler provides a clear and illuminating description of how Galton worked towards a 

solution to his problem, which we will follow in our discussion. Galton invented and 

used a device called the quincunx, in which lead balls fall through rows of pins from 

the top of the device to one of several compartments at the bottom. At each row of 

                                                           
2 An alternative interpretation of this chapter is that Stigler describes two distinct problems: 
"Darwin's problem" being the maintenance of sufficient variation in natural populations and "Galton's 
version of Darwin's problem" being the problem of the apparent conflict between intergenerational 
variability and stable variation. We thank an anonymous referee for this suggestion. We prefer our 
reading of the chapter and note that in the section "The Solution to Darwin's Problem", Stigler 
describes only one problem, which is the problem we focus on here. The alternative interpretation 
does not fundamentally affect our argument, which is concerned with Galton's solution for the 
problem of the apparent conflict between intergenerational variability and stable variation in natural 
populations.  



pins, after the ball hits one of the pins it has the same chance of falling to the right or 

to the left of the pin. This implies that each ball is most likely to reach the bottom 

compartment which is directly below the location where it was dropped. The balls 

are less likely to reach the compartments that are further to the left or to the right, 

and thus after a series of balls are dropped from the center we get a bell-shaped 

distribution of balls, with the majority of the balls laying at the center compartment 

and fewer laying at the edges.  

The quincunx was used by Galton to represent the variation within a population and 

to demonstrate how this variation can contribute to the variation in the next 

generation. We can refer to the compartments at the bottom of the quincunx as 

representing the values of a given trait, say height, with middle compartments 

representing medium height, the compartments to the left representing lower 

heights, and the ones to the right representing higher heights. The balls in each 

compartment represent the number of individuals that possess each value of the 

trait, and thus the normal distribution of balls across the compartments after a series 

of drops from the center of the device represents the normal distribution of height 

in the population. Furthermore, if we imagine that we release the balls that are now 

distributed across the bottom compartments for another "round" in the quincunx, 

we can infer the amount of variation in the following generation. The balls will fall 

from their current locations and end in new compartments at the bottom, and this 

represents the distribution of the trait in the following generation. 

Now, if we release a population of balls that are distributed normally for a second 

round in the quincunx, what we get is a larger range of variation at the end of the 

second round (i.e., in the third generation). The balls at the edges are now quite 

likely to end even further to the right or to the left (even though they are most likely 

to end at the same location from which they were dropped). This, of course, is a 

simple demonstration of what was said earlier about Darwin's assumption, namely 

that intergenerational variation leads to the expectation of ever increasing variation 

in the overall population. Galton used the quincunx to try and explain how such 

intergenerational variation can occur while the overall variation in the population 

remains the same, and in 1877 he came up with a possible explanation. If we let the 



balls that are distributed across the compartments fall only from the compartments 

at the center of the quincunx, the distribution will be compressed before it will be 

subjected to further variation, and if we compress it enough, the variation will 

increase only to the same range of variation that exists in the parent generation. He 

named the factors that are responsible for this compression 'inclined chutes'. 

However, he did not have a good explanation of what accounted for the occurrence 

of such a compression in natural populations. 

Galton kept searching for evidence for the compression of intergenerational 

variation in natural populations represented by the inclined chutes. He gathered a 

large amount of data about heights of parents and children and noticed that the 

average height of children was not the average parental height, but rather a value 

that is closer to the average value of the population. In other words, Galton noted 

that tall fathers have sons who are taller than average, but to a lesser extent than 

the fathers and hence closer to the population mean. This seemed like evidence for 

the operation of the inclined chutes, but Galton also noticed that the same pattern is 

observed when he averaged groups of children, with the parents of each group of 

children showing an average height that is closer to the population average (p. 123). 

Furthermore, he discovered that the pattern is observed yet again in data gathered 

from pairs of brothers, such that for a group of individuals with a given average 

height, grouping their siblings does not yield the same average height, but once 

again a height which is closer to the average in the overall population. 

Galton concluded that the phenomenon he observed was not a biological 

phenomenon at all but rather a statistical one, which we now refer to as regression 

to the mean. Put formally, for a given value of X the predicted value of Y using 

ordinary least squared regression, is fewer standard deviations from its own mean 

than X is from its mean. 

Stigler goes beyond noting that regression to the mean is a mathematical 

phenomenon. He argues in addition that regression to the mean solves Darwin's 



problem presented above. 3 Stigler does not provide an account of what makes an 

explanation a mathematical explanation, as opposed to a causal one, and in what 

sense is regression to the mean a mathematical phenomenon4. But recent years 

have seen a growing literature on the nature of mathematical explanations, which 

can shed light on this question. There is somewhat of a consensus among different 

accounts of mathematical explanations that explanations using regression to the 

mean are indeed mathematical. André Ariew, Collin Rice and Yasha Rohwer argue 

that an explanation is mathematical if the explanandum can be deduced as a 

consequence of some mathematical facts without citing any specific causes (Ariew et 

al. 2015).5 Thus, these authors argue that Galton's explanation using regression to 

the mean is mathematical because it shows how the existence of stable variation 

and intergenerational variability can be deduced from mathematical parameters 

which determine a normal distribution (Ariew et al. 2015, p. 645). Similar arguments 

regarding the mathematical nature of Galton's explanation using regression to the 

mean were made by Sober (1980) and Hacking (1990), whom these authors cite as 

well. Marc Lange provides a different account of mathematical explanations, 

according to which an explanation is mathematical if the explanandum is shown to 

be the result of mathematical facts, and these facts seem to account for the 

explanandum to a stronger degree than any causal facts could account for it (Lange 

2013a). Lange also takes explanations using regression to the mean to be 

mathematical (he claims they belong to a sub-type of mathematical explanations he 

calls "Really Statistical" explanations), because these explanations show that the 

explanandum is simply "a statistical fact of life" (Lange 2013b, p. 173). 

                                                           
3It is important to note that this is Stigler's argument, not necessarily Galton's. We are not providing 
an interpretation of Galton's work in this paper, but rather analyze Stigler's interpretation in his 
analysis of Galton's work. 
4 From this point on, whenever we speak of mathematical explanations we mean pure mathematical 
explanations. That is, explanations that are mathematical rather than causal.  
5 These authors take explanations for population changes that appeal to natural selection or drift to 
be mathematical and not causal because these changes "can be explained by referring to the 
deductive consequences of statistical models, independent of considerations of causation" (Ariew et 
al. 2015, p. 636). They note that to be explanatory, it is not sufficient that the explanandum will 
simply be deduced from the mathematical facts. The mathematical facts need to also provide 
counterfactual information, by telling us "how things would have been different in various 
counterfactual situations" (Ariew et al. 2015, p. 655).  



While Ariew et al, Sober, and Hacking describe the mathematical nature of Galton's 

explanation using regression to the mean, none of them discusses whether this 

explanation resolves Darwin's problem. However, Stigler in the book goes further, to 

argue that regression to the mean is the resolution of Darwin's problem, and thus 

that the resolution to this problem is purely mathematical. According to Stigler, the 

apparent conflict between stable variation across generations and Darwin's 

requirement of intergenerational variability was resolved once Galton discovered 

that the two can coexist due to regression to the mean. In a section titled "The 

Solution to Darwin's Problem" Stigler writes: "The problem Galton had identified 

was not a problem after all, but was instead due to a statistical effect that no one 

had identified before. Population equilibrium [i.e. stable variation] and 

intergenerational variability were not in conflict" (p. 130, our italics). Stigler further 

argues, in regards to Darwin's problem, that "…[Galton] showed that, properly 

understood, there was no problem" (p. 131). In other words, Stigler argues that once 

regression to the mean was discovered, Darwin's problem turned out to be a pseudo 

problem, since evidence for both stable variation and intergenerational variability in 

a population were not contradictory.6 

However, we find it hard to see how regression to the mean by itself can fully explain 

the coexistence of intergenerational variability and stable variation and resolve 

Darwin's problem. As the quotes in the paragraph above indicate, Stigler argues that 

the problem was solved because the discovery of regression to the mean showed 

that stable variation and intergenerational variability were not in conflict. But what 

was really shown with the discovery of regression to the mean, and we believe 

Stigler will agree on that, is that stable variation and intergenerational variability 

were not necessarily in conflict. That is, regression to the mean is a phenomenon 

that includes the co-occurrence of stable variation and intergenerational variability, 

implying that the two can co-occur. But this means that Galton's discovery of 

regression to the mean only suggested that an explanation for Darwin's problem is 

possible, it did not solve it. In order to be a full resolution to Darwin's problem, it 

                                                           
6 The argument made here by Stigler, namely that regression to the mean solved Darwin's problem, 
did not appear in his earlier works on Galton and Darwin's problems (e.g. Stigler 2010). We thank an 
anonymous referee for pointing this out. 



must be clarified why an explanation using regression to the mean in fact applies to 

natural populations. 

While it is a general phenomenon, deducing regression to the mean requires making 

statistical assumptions, in particular about the distributions involved. It is easy to 

imagine a situation in which there is intergenerational variation between parents 

and offspring in such a way that there is no stable variation and regression to the 

mean does not occur. This is the case in the ever-expanding range of variation case 

Stigler begins his discussion with, as well as in blending inheritance, probably the 

objection that most worried Darwin. Moreover, stable variation entails regression to 

the mean, but regression to the mean does not entail stable variation. Once you 

have stable variation, that is the parental and offspring generations have the same 

distribution of traits, the central assumption for mathematically deducing regression 

to the mean is satisfied. Not the other way around.  

Thus, in order to convincingly conclude that regression to the mean is the 

explanation why stable variation and intergenerational variability which are 

observed in natural populations co-occur it is not enough to understand the 

phenomenon of regression to the mean. One must also show why the preconditions 

for the occurrence of regression to the mean apply to the populations involved. In 

the case of the natural populations that are relevant to Darwin's problem, some 

causal account of how traits are inherited must be given since, as noted above, traits 

may be inherited in ways that would not make it possible to explain away Darwin's 

problem by appeal to regression to the mean. Thus, Darwin's problem was resolved 

and received a satisfactory explanation once the Mendelian account of genetic 

inheritance explained intergenerational variability and stable variation. Hence, we 

argue, the resolution to this problem was not purely mathematical. 

It seems more enlightening to understand Galton's work as elucidating the 

mathematical conditions of correlation between parents and offspring and 

regression to the mean; conditions that shed light on properties the causal 

inheritance systems should possess. But this of course does not contradict the fact 

that only a good understanding of these causal details of inheritance could provide a 

full explanation of the coexistence of intergenerational variability and stable 



variation and resolve Darwin's problem. Thus, Galton's mathematical explanation 

should not be thought of as replacing the causal explanation focusing on the 

inheritance system. The two explanations are not independent of one another; each 

sheds light and constrains the other.7  

How does this interpretation sit with the correct and well known observation that 

regression to the mean is a statistical phenomenon not a causal one? The thing to 

note is that the question of predicting traits of offspring from those of parents, 

which is what Galton was studying, is indeed a statistical question. Galton discovered 

that regression to the mean does not require an independent causal explanation, 

being a manifestation of how the statistical expectation is derived. Darwin's problem 

as defined above is different. It deals with actual multi-generational variation. What 

Darwin's problem amounts to is how genetic inheritance produces intergenerational 

variability and stable variation. This is a causal question. Galton's problem, in 

contrast, involved the interpretation of evidence. What seemed like contradictory 

conclusions from collected data turned out not to be contradictory. This conundrum 

had a mathematical explanation.  

Concluding remarks 

Stigler's book provides a valuable account of the core ideas in statistics and their 

historical development. Anyone interested in statistical reasoning and more 

generally in modern scientific practice will find the themes in the book highly 

interesting. Furthermore, the discussion of regression to the mean and Darwin's 

problem in chapter five is highly relevant to the philosophical discussions on 

mathematical explanations. We objected to Stigler's argument that regression to the 

mean provides a full resolution to Darwin's problem, which implies that this 

resolution is mathematical and not causal. We tried to show why a full resolution to 

Darwin's problem must take into account the causal details of inheritance. Stigler's 

lucid presentation helps see the issues at stake more clearly. 

                                                           
7 This line of thought is compatible with recent work by Andersen (forthcoming) who suggests that 
mathematical and causal descriptions should be thought of as complementary explanations of 
phenomena. 



Whether the resolution to Darwin's problem is purely mathematical or not, and the 

little we can say here surely does not exhaust this debate, what is beyond dispute, 

and is beautifully presented by Stigler, is that a biological problem that concerned 

Galton led to an important discovery in the field of statistics. This, like many other 

examples in Stigler's book, reminds us of the tightly linked history of the fields of 

biology and statistics. 

Stigler reminds us how little use Darwin himself had for mathematics. In an 1855 

letter to William Darwin Fox he proclaimed "I have no faith in anything short of 

actual measurement and the Rule of Three," the Rule of Three being an arithmetic 

rule taught to elementary school kids: if a is to b, as c is to d, a can be deduced if b,c, 

and d are known. But, as Stigler explains, even the faith in the Rule of Three was 

misplaced. The Rule of Three fails whenever there is variation and correlation.  

Reflecting on Stigler's history seems to us to suggest that Darwin the naturalist, with 

his concentrated focus on variation and ecological interactions, had good reason to 

be suspicious of mathematics. The mathematics of his day was not up to the task of 

supporting the scientific program Darwin played a key role in. Variation and 

interactions were not as well understood mathematically as they are today.  

Another source suspicion, in the generations following Darwin, came from the 

limited biological insight offered by various idealized models, as recounted in Evelyn 

Fox Keller's 2003 Making sense of life: Explaining biological development with 

models, metaphors, and machines. Reading Keller's book together with Stigler's book 

is a good way to encourage students to reflect on the relations between biology and 

mathematics and physics (see Lamm, 2013 for further discussion of these relations).  

Mathematics, most prominently in the form of Statistics, developed in the years 

following Darwin's work, at least in part with the influence of biological questions. 

Understanding this rich history is helped significantly by reading this enjoyable and 

enlightening book.  
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