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1 Introduction

This essay is about how the notion of “structure” in ontic structuralism might be made
precise. More specifically, my aim is to make precise the idea that the structure of the
world is (somehow) given by the relations inhering in the world, in such a way that
the relations are ontologically prior to their relata. The central claim is the following:
one can do so by giving due attention to the relationships that hold between those
relations, bymaking use of certain notions from algebraic logic. In the remainder of this
introduction, I sketch two motivations for structuralism, and make some preliminary
remarks about the relationship between structuralism and ontological dependence; in
the next section, I outline my preferred way of unpacking the notion of “structure”;
in §3, I compare this view to Dasgupta’s algebraic generalism; and finally, I evaluate the
view, by considering how well it can be defended against objections, and how well it
discharges the motivations with which we began.

1.1 Motivations for structuralism

I don’t intend to spend a lot of time discussing the motivations for structuralism: this
essay ismore aboutwhat the best waymight be to understand structuralism, rather than
about whether or not structuralism is a compelling position. Nevertheless, whether a
given proposal is the best way to understand structuralism will clearly depend on the
extent to which that proposal recovers motivations for structuralism and renders them
compelling. So in this section, I outline two motivations for structuralism (and give
thumbnail sketches of arguments for them).1

1There are other motivations, of course, such as metaphysical underdetermination ([Ladyman, 1998],
[French, 2006], [French, 2011]), or certain features of particle physics ([Roberts, 2011],
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First, consider the argument from the history of science.2 The argument here is that
although there is, as the pessimistic meta-induction notes, significant change in the
content of our best scientific theories over time, this change does not (or does not
so strongly) alter the structural features of those theories. Thus (to take a well-worn
example), the idea is that in the transition from Fresnel’s theory of light to Maxwell’s,
although there is indeed radical change in the ontological commitments of our theories
(since the ontological commitment to the ether is dropped between the one theory
and the next), there is nevertheless a structural continuity—as evidenced by the fact
that Fresnel’s equations governing light propagation were retained in the new theory.
This is then taken to show that if scientific realists are to resist the pessimistic meta-
induction, they ought to confine their belief in theories to just the structural aspects
of those theories, since it is those aspects which are most likely to survive into future
theoretical incarnations. Moreover, this observation is taken to show, or suggest, that it
is the structural aspects of a theory to which a theory’s empirical success ought properly
to be attributed: as Worrall puts it,

Roughly speaking, it seems right to say that Fresnel completelymisidentified
the nature of light; but, none the less, it is no miracle that his theory enjoyed
the empirical predictive success it did; it is no miracle because Fresnel’s
theory, as science later saw, attributed to light the right structure.3

Second, consider the argument from redundancy.4 Here, the concern is that an object-
laden ontology exhibits a certain kind of redundancy, analogous to the redundancy of
Newtonian spacetime with respect to Newtonian dynamics. For, consider any initial
state of some systemdescribed in terms of particular individuals, and compare itwith an
initial state obtained by amere permutation of those individuals (so that the distribution
of qualitative properties and relations remains the same, with the only change being
which individuals bear which properties and relations). The relevant observation is
then that such a permutation commutes with the dynamics: the final states obtained by
letting the original and permuted states evolve (under any dynamics with which we are
familiar) will be related by exactly that same permutation. Therefore the permutation
is, in a certain sense, “decoupled” from the dynamical evolution: differences at one time
over which individuals have which properties and relations do not lead to any other

[McKenzie, 2014b], [McKenzie, 2014a]). I only outline two here, because they are the two which
connect most directly with what I want to say; for a comprehensive overview of structuralism and the
motivations for it, see [Frigg and Votsis, 2011].

2[Worrall, 1989]
3[Worrall, 1989, p. 157]
4[Dasgupta, 2009], [Dasgupta, 2011]
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differences at any other times. This provides a sense inwhich the facts about individuals
do not seem to play any physically significant role, and hence seem to be redundant to
our physical theorising. Moreover, insofar as we take ourselves and our processes of
knowing to be physical processes, this observation seems to imply that those facts are
not empirically accessible. For what it shows is that if two situations differ merely with
respect to these facts (i.e., are related by a permutation of some kind), then there can be
no physical process which converts that difference into any other kind of difference: a
difference, for example, regarding whether I say “wow, the individuals here aren’t the
ones I dealt with previously!”, or regarding my written response to any question about
which individuals are here before me. But plausibly, a necessary condition on a certain
kind of fact being empirically accessible to me is that it should (in principle) be possible
to set up a reliable correlation between facts of that kind and facts about what I say,
inscribe, etc. So what we see is that the physical redundancy of individuals negates the
possibility of setting up such a correlation, even in principle—and hence, that the facts
about individuals will not be empirically accessible.
One might be concerned that this argument does not, by itself, deliver a case for

saying anything revolutionary about the ontological status of individuals. All it seems
to require is denying the possibility of merely haecceitistic differences (differences only
over which individuals play which qualitative roles);5 so why not simply be an anti-
haecceitist about objects, rather than anything more radical?6 I’m sympathetic to this
concern, but for the purposes of this essay I will bracket my sympathy and speak on
behalf of the structuralist who is moved by the argument from redundancy. What such
a structuralist should say, I think, is that it is not enough to just assert that objects lack
individual haecceities; some account ought to be given of what objects are like, in a
manner which illuminates or makes transparent just why they lack those haecceities.7
The relevant analogy is that of something like electromagnetic potentials. It’s one thing
to assert that two potentials related by a gauge transformation are physically equivalent,
i.e., to deny the possibility of merely gauge differences; it is quite another to provide
an account of the invariant structure underlying those gauge-related potentials, in such
a way as to make transparent just why gauge transformations do not change anything
physical. In this case, electromagnetic fields provide such an account. Thus, the issue
is whether the structuralist can find some account of what the world is like, which will
stand to the usual account of objects as the account of electromagnetic fields stands to

5Here, I’m employing [Melia, 1999]’s definition of haecceitism as “the view that there are distinct possi-
bilities that differ only over which objects play which roles.”

6cf. [Pooley, 2006], [Greaves, 2011].
7cf. [McSweeney, ming], [Sider, 2016].
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the account of electromagnetic potentials (and which will undergird anti-haecceitism,
in the same way that fields undergird gauge-equivalence).

1.2 Dependence, elimination, and determination

Ontic structuralists claim that they can provide such an account, by holding that objects
are ontologically dependent on structures. To unpack this thought, let’s distinguish
some attitudes one might have towards the relative ontological dependence of structure
and objects. (At this stage, I’ll leave undefined what is meant by “structure”, “object”,
or “ontological priority”: the aim is just to enumerate some slogans, the exact content of
which is yet to be determined.) One could think that structure is ontologically dependent
on objects, but not vice versa; one could think that objects are ontologically dependent
on structure, but not vice versa; one could think that neither objects nor structures are
ontologically dependent on the other; or one could think that both objects and structure
are ontologically dependent on one another. Generally speaking, ontic structuralism is
identified with either the second or fourth positions: that is, ontic structuralism is
characterised by a belief that objects are ontologically dependent on structures. The
fourth view, according to which structures are reciprocally dependent on objects, I’ll
refer to as moderate ontic structuralism;8 the second view, according to which structures
are not ontologically dependent on objects, I’ll refer to as radical ontic structuralism.9
Within radical ontic structuralism, there is a further subdivision. According to the
eliminativist, objects do not—strictly speaking—exist at all. Rather, the structure is all
there is; speaking of objects is amere façon de parler for describingwhat the structure is up
to. According to the non-eliminativist, objects do indeed exist—it’s just that whenever
they exist, they’re ontologically dependent on structures.The structuralism articulated
in this essay is a form of radical ontic structuralism. It can, I think, be adapted into
either an eliminative or non-eliminative version; I now say a few words about what
might constrain adapting it one way or the other.
The relevant constraint is the extent to which the structural facts determine the objec-

tual facts. That is, what kinds of objectual facts are fully fixed by the structural facts, and
which are left open? It seems implausible that any structuralist view will enable the
recovery of haecceitistic structural facts, facts about which objects are which—indeed,
given that the avoidance of haecceitism is a motivation for structuralism, it would be
a problem if this were so. Formally, we can model this by supposing that on any
structuralist position, the structural facts should be expected to determine the objectual
8[Esfeld and Lam, 2010]
9[French and Ladyman, 2003], [French and Ladyman, 2010]
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facts only up to qualitative isomorphism: i.e., that given two objectual representations
(Tarski-models)M andN which are qualitatively isomorphic (so that there is a bĳection
f : |M| → |N | such that for any qualitative predicate P , f(PM) = PN ),M and N will
correspond to the same structural representation. The idea behind this formulation
is to leave open how to best model haecceitism: whether as holding that isomorphic
models may represent distinct possibilities,10 or as holding that one ought to include
non-qualitative predicates (e.g. predicates representing haecceities) in one’s models.11

However, this only commits us to thinking that qualitative isomorphism should be
a sufficient condition for sameness of structural representation, not that it should be a
necessary condition. So the further question remains: does a full specification of the
structural facts determine the objectual facts up to qualitative isomorphism, or might a
given configuration of structural facts be consistent with two objectual representations
which are not qualitatively isomorphic to one another? I will make the following
assumption: the radical non-eliminativist must assume that the structural facts suffice
to fully fix the objectual facts (up to qualitative isomorphism); the radical eliminativist,
however, may allow that two qualitatively non-isomorphic configurations of objects are
consistent with the same structural facts.
The idea behind this assumption is that the latter, but not the former, can to at least

some extent be an anti-realist about the objectual facts: they can think, for example,
that there may just be no (genuine) fact of the matter about how many objects there
are, or about precisely what those objects are up to. After all, if object-talk is just a way
of characterising structure-configurations, then it may well turn out that two different
descriptions in the “objectual mode” can characterise the same structure-configuration.
In such a case, the eliminativist structuralist can shrug their shoulders, and just regard
these descriptions as equivalent. That’s not a problem, for although the twodescriptions
disagree about what exactly objects are up to, they agree on the structural facts; and
only the latter are (genuine) facts. Such an attitude is analogous to (say) the attitude
of most physicists towards electromagnetic potentials, or of ordinal utility theorists
towards utilities. Two potential-distributions related by a gauge transformation, or two
utility-functions related by an increasing monotonic transformation, are regarded as
equivalent. That’s not a problem, for although those descriptions disagree over what
exactly the potentials or the utilities are up to, they agree on the facts regarding fields
or preferences—and only the latter constitute (genuine) facts.
The non-eliminativist structuralist, by contrast, does not have this same freedom. For,

10cf. [Kaplan, 1975]
11I read [Weatherall, 2016] as advocating that haecceitism should be modelled in this latter fashion.

5



I take it, what it is to be committed to the existence of objects is to be committed to
regarding (at least) the qualitative facts about objects as genuine, bona fide facts. So on
the one hand, they have to get those facts from somewhere; and on the other, if they are
really serious that all the fundamental facts are structural facts, then it seems the only
place fromwhich they could get them is from facts about the structure. That’s a problem
if it turns out that the same structure-configuration is compatible with multiple object-
configurations: for then, it’s not clear in what sense the objectual facts are being derived
from the structural facts. In other words, the following principle seems plausible: if the
x-facts fully depend upon the y-facts, then the y-facts should fix or determine the x-facts.
(For instance, it seems like a necessary condition on taking the thermodynamical facts
to depend upon the statistical-mechanical facts is that the statistical-mechanical facts
fix the thermodynamical facts.) The moderate structuralist denies that the object-facts
do fully depend upon the structural facts; the eliminative structuralist denies that the
qualitative distribution of objects really ought to be (always) regarded as facts at all; but
the radical, non-eliminative structuralist can do neither.

2 Structure as the web of relations

2.1 No relations without relata?

Thus, our challenge is to characterisewhat the “structural facts” are,which the “objectual
facts” could be thought of as (perhaps superfluously) representing. The good news
is that there is a fairly well-known answer to this which radical ontic structuralists
have offered: that the structure of the world consists in the web or family of relations
instantiated in the world. Thus, for example, [French and Ladyman, 2010] write that

On either formof [radical ontic structuralism], we are basically saying the fol-
lowing: although the set-theoretic representation of structure, 〈A,R〉 (where
A is a set of elements andR a family of relations) must be written down from
left to right, from an ontological perspective it should be read semitically,
that is, from right to left.12

Later, the identification is made even more explicit when they remark (in passing) that
“as far as the structuralist is concerned, there is nothing but the structure—that is, the
set of relations” [French and Ladyman, 2010, p. 14?]. Other commentators have also
suggested this as a reading of radical ontic structuralism: for example, [Wolff, 2012]

12[French and Ladyman, 2010, p. ???]
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characterises the view as holding that “structure was to be understood as something
like a web of relations.”13

The bad news, however, is that when radical ontic structuralism is combinedwith this
conception of structure, the view is regarded bymany as incoherent: for, the slogan goes,
one cannot have relations without relata. Thus consider, for instance, Chakravartty’s
attack:

Consider the idea that SR [structural realism] tells us nothing about entities
that partake in relations. This is false in at least the banal sense that, as
noted earlier, the existence of relations allows us to ascribe, if nothing else,
existence to the entities so related,whatever theymaybe exactly andhowever
we may describe them. A famous dictum of Quine’s holds that ‘to be is to
be quantified over’ in some first order language. [. . . ] This muchmust seem
obvious—one cannot intelligibly subscribe to the reality of relations unless
one is also committed to the fact that some things are related.14

My preferred reading of this criticism is that it faces the structuralist with a dilemma.
Suppose that we do indeed seek to identify structure15 with a set of relations {Ri}. The
dilemma is this: are the elements of this set understood as primitive entities, or as being
(say) sets of tuples? Somebody who uses the latter construal cannot, it seems, be a
radical structuralist: for in their ontology, relations are not fundamental entities, but
are instead derivative constructions. So, the radical structuralist must have in mind the
first construal. But, goes the other horn of the dilemma, this just isn’t any account of
relations at all—if she is serious about taking relations as primitive, and about taking
“structure” to be the set of relations, then all she is saying is that structure is constituted
by a set of primitive “we-know-not-what”s; the only structural fact, on such a reading
of “structure”, would be facts about how many relations there are (since the only facts
that a set of unstructured primitives supports are facts about its cardinality).

2.2 Boolean structuralism

I now propose a way out of this dilemma: specifically, a way in which the second horn
can be neutralised, so that the eliminative structuralist can maintain both that relations
are primitive entities in the ontology (i.e., are not structured entities that have been

13[Wolff, 2012, p. 607]
14[Chakravartty, 1998, p. 399]
15The structure of what? For the purposes of this discussion, either the world, or some model-theoretic

representation thereof.
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constructed out of objects), whilst having a suitably rich conception of structural facts.
The trick is to reject the claim that the structure be identified with amere set of relations,
and instead identify the structure with a structured set of relations: specifically, with an
algebra of relations. In effect, the idea is that the structuralist’s ontology should include
both the relations (as primitive entities), and the relationships that those relations bear
to one another. As I’ll show below, this gets around the objection above; it also has the
advantage that the appropriate kinds of algebraic structures have been introduced and
studied extensively by mathematicians and logicians, and so we have “off-the-shelf”
ways of making the view precise.
Let’s begin with a simple case. Suppose that we wished to capture the “structure”

of a modelM of predicate logic, for a language containing only monadic predicates
{F,G,H, . . . }.M consists of a set |A|, together with extensions FM ⊆ |M|,GM ⊆ |M|,
etc. The relevant observation is that there are, in general, various important relationships
between those extensions: for instance, perhaps (it turns out) the extension of F is
disjoint from the extension of G; perhaps, even, the two extensions are the complement
of one another. Or perhapsG lies entirelywithinH . Or perhaps the intersection ofF and
H strictly includes G. On the object-oriented viewpoint, such claims are understood in
terms of the set-theoretic makeup of the extensions: that is, we interpret “intersection”
as set-theoretic intersection, complement as set-theoretic complement, etc.
The proposal to hand, however, is to instead take them as self-standing claims in

their own right, asserted to hold between the extensions construed as primitive entities
(rather than as sets of objects).16 In order to do so, we had better say something about
the interpretation of terms such as “intersection” or “complement”. Here’s the trick:
rather than interpreting them explicitly as certain kinds of set-theoretic constructions,
we instead interpret them implicitly by providing an appropriate axiomatisation. In this
case, an appropriate set of axioms is the axioms forBoolean algebras. Recall that a Boolean
algebra consists of a set equipped with two binary operations · (“meet”) and + (“join”),
one unary operation − (“complement”), and two privileged elements 0 (“bottom”) and
1 (“top”), obeying the following axioms: for any elements a, b, c of the algebra,

(B1) a+ (b+ c) = (a+ b) + c

(B2) a · (b · c) = (a · b) · c

(B3) a+ b = b+ a

16Thus, this proposal—especially if taken in an eliminativist vein—may naturally be viewed as a form of
the bundle theory.
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(B4) a · b = b · a

(B5) a+ 0 = a

(B6) a · 1 = a

(B7) a+ (b · c) = (a+ b) · (a+ c)

(B8) a · (b+ c) = (a · b) + (a · c)

(B9) a+−a = 1

(B10) a · −a = 0

Inwhat sense are these axioms appropriate? Recall that we are postulating these axioms
in order to implicitly define the relationships amongst the extensions, as an alternative to
defining those relationships explicitly in set-theoretic terms. So a minimal desideratum
is that all of these axioms should be satisfied when those relationships are given their
set-theoretic interpretations (i.e. interpreting meet as intersection, join as union, and
complement as complement). It’s not hard to verify that this is indeed the case, subject
to one important proviso: in order to get a Boolean algebra out of our modelM, it is
not enough to consider the atomic extensions FM, GM, etc.; we need to also include the
complex extensions (e.g. the set of objects in |M| satisfying (Fx ∧ Gx)) in the algebra.
Thus, one aspect of the appropriateness of the Boolean-algebra axioms is that they are
(in a certain sense) “sound” with respect to the set-theoretic interpretation: for any
modelM in a monadic language, the definable extensions overM (together with the
set-theoretic operations of intersection, union and complement) constitute a Boolean
algebra. We will denote this algebra as B(M).

However, there’s another factorwhichmakes theBoolean-algebra axiomsappropriate.
Not only can any set of subsets be interpreted as a Boolean algebra; any Boolean algebra
can be interpreted as a set of subsets of some domain. This result is known as Stone’s
theorem: stated more carefully, it is the result that for any Boolean algebra B, there is
some set X such that B is isomorphic to a Boolean algebra constructed out of subsets
of X .17 Thus, the axioms of Boolean algebras are, in a certain sense, “complete” with
respect to the set-theoretic interpretation: any Boolean algebra B can be thought of as
arising from, or as represented by, subsets of some domain of objects. That said, it will
not always be the case that this representationwill take the form of amodel of (monadic)
predicate logic, as can be seen by a simple cardinality argument: at least in a standard
17Isomorphic, in this context, meaning that there is a bĳection f between the two algebras which preserves

the algebraic operations (so f(a · b) = f(a) · f(b), f(−a) = −f(a), etc.).

9



first-order language, there are only countablymany formulae, andhence amodel of such
a language will contain only countably many definable extensions; thus, no such model
can represent a Boolean algebra containing uncountably many elements. In a slogan,
we could say that although the axioms (B1)–(B10) are complete with respect to the set-
theoretic interpretation of Boolean algebras, they are not complete with respect to the
model-theoretic interpretation. But that seems like a reasonable form of completeness to
demand; demanding completeness with respect to the model-theoretic interpretation
would amount to fetishising finitary first-order logic.
If someone were to understand structure in this sense, they would have to deny that

the structural facts suffice to fully determine the objectual facts. The reason for this
is the following technical observation: in general, there are non-isomorphic models of
monadic predicate logic with isomorphic Boolean algebras, as the following (trivial)
example illustrates. Suppose that our signature has just one monadic predicate,K, and
letM1 andM2 be models for that signature defined as follows:M1 has one element in
its domain,M2 has two elements, and in both cases, KMi = |Mi|. Then in both cases,
the Boolean algebra of definable extensions is (or rather, is isomorphic to) the trivial
two-element algebra 2—even though the two models are not isomorphic (since they
disagree over the number of objects that exist). A less trivial illustration is as follows.
For any modelM of any language of monadic predicate logic, consider the following
equivalence relation ≈ over |M|: a ≈ b whenever there is an automorphism h ofM
such that b = h(a). LetM�≈ be the quotient ofM by≈, i.e., the model whose elements
are ≈-equivalence classes ofM, and where for any predicate P , [a] ∈ PM�≈ iff a ∈ PM

(this is well-defined, since it is guaranteed that if a ≈ b, then a ∈ PM iff b ∈ PM). Then
M andM�≈will give rise to the isomorphic Boolean algebras, and hence have the same
Boolean structure.18 These examples show that for the “Boolean structuralist”, fixing
the structure of the world does not suffice to determine the objectual character of the
world. As discussed above, that suggests that the radical Boolean structuralist would
have to be an eliminativist structuralist; if structural equivalence really is to suffice for
bona fide equivalence, then the Boolean structuralist will have to be an anti-realist about
objects.

Howmuch of an anti-realist do they have to be? That is, howmuch disagreement over
objects must the Boolean structuralist be willing to brook? To answer this question, first
recall the notion of a definitional expansion of a modelM of (not necessarily monadic)
predicate logic. If the vocabulary ofM is Σ, then a definitional expansion ofM is a

18This corresponds to thewell-knownobservation that the bundle theory is (at least prima facie) committed
to the identity of indiscernibles.
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model whose vocabulary is Σ+, where Σ ⊂ Σ+, such that:

• |M+| = |M|

• M+ �Σ=M (whereM+ �Σ is the reduct ofM+ to Σ)

• For every Π ∈ Σ+ \ Σ, ΠM
+ is definable inM

We then say that twomodelsM andN are definitionally equivalent if they have a common
definitional expansion: that is, if there are definitional expansionsM+ and N+ such
thatM+ = N+. Second, recall that two models are said to be elementarily equivalent if
they satisfy exactly the same sentences of their associated languages. We then have the
following result:

Proposition 1. Suppose that M and N are two models of models of two monadic
first-order languages (without identity).19 Then B(M) ∼= B(N ) iffM is elementarily
equivalent to somemodel definitionally equivalent toN (that is, iff there are definitional
expansionsM+ and N+ such thatM+ is elementarily equivalent to N+).

Proof. See [Monk, 2000, Theorem 3.3].

2.3 Cylindric structuralism

Of course, the limitation to monadic extensions is somewhat antithetical to the struc-
turalist credo. But the algebraisation of a collection of subsets by Boolean algebra is
only the simplest example of this kind of construction. The extension to binary relations
yields the notion of a relation algebra: this encodes not only the Boolean operations, but
also the operations of conversion and composition. The theory of relation algebras is
sufficient to express any first-order formula containing no more than three variables—
and hence, to express virtually all the mathematics one is liable to use—but if one did
want to go further, then two natural options are the theory of polyadic algebras,20 or
that of cylindric algebras21. A polyadic algebra has, in addition to the standard Boolean
operations, an operation corresponding to existential quantification; a cylindric algebra
has the standard Boolean operations, an operation corresponding to existential quan-
tification, and privileged elements corresponding to the identity.22 Thus, which kind
19I stress that the language iswithout identity in order to stress that the elementary equivalence here iswith

respect to that language: i.e., thatM+ andN+ will not (in general) satisfy the same identity-sentences.
20[Halmos, 1954], [Halmos, 1962]; for interesting reflections on the development of polyadic algebras, see

[Halmos, 2000].
21See [Monk, 2000].
22As this suggests, one can think of cylindric algebras as polyadic algebras enriched with an operation

of identity: more precisely, one can show that the “locally finite” polyadic algebras with identity are
equivalent to the “locally finite” cylindric algebras (see [Galler, 1957] or [Plotkin, 2000, §1.2]).
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of algebra is appropriate for capturing the structure will depend on the structuralist’s
attitude towards identity. For structuralists willing to admit identity as a bona fide
autonomous relation,23 then cylindric algebras would seem to be the more appropriate
choice; for those unwilling to do so, polyadic algebras recommend themselves. For the
sake of concreteness and generality, I will discuss cylindric algebras (but extending my
remarks to polyadic algebras should be straightforward).

So, let us start by describing the cylindric-algebraic structure of a modelM of first-
order (polyadic) predicate logic. We will suppose that the variables of the associated
first-order language come with some specific ordering, x1, x2, . . . . Now, consider any
infinite sequence a = 〈a1, a2, . . . , 〉 of elements of |M|, and any formula φ(ξ1, . . . , ξn) of
the language ofM. We will say that a satisfies φ inM just in caseM satisfies φ relative
to some (hence, any) variable-assignment sending each ξi to ai. We will denote this as
M |= φ[a]. Let the extension of φ be φM = {a : M |= φ[a]}. Thus, we can form the set
of allM-definable extensions, M = {φM : φ is a formula of the language ofM}. We
will take this set as the domain of the algebra.24 Since each element of M is a subset
of the set of all infinite sequences, we can equip M with Boolean structure in the same
fashion as the monadic case; and since the language is closed under the propositional
operations, M is closed under the Boolean operations. Then, as mentioned above, we
also equip M with two further pieces of structure. First, for any i, j ∈ N, we define the
(i, j)-th diagonal setDij to be the extension (xi = xj)

M. Second, for any i ∈ N, we define
i-cylindrification to be the mapping Ci : M→M given by Ci(φ

M) = (∃xiφ)M.
As in the Boolean case, the cylindric structuralist proposes that the elements of this

algebra—the relations—not be given a set-theoretic interpretation (i.e., that they not be
interpreted as sets of sequences) but rather taken as primitive, fundamental entities. As
in the Boolean case, the legitimacy of this proposal depends on the possibility of replac-
ing the explicit, set-theoretic interpretation of the algebraic structures by an implicit,
axiomatic interpretation. Fortunately, we do indeed have such an interpretation. An
(abstract) cylindric algebra consists of a set A, equipped with

• Boolean operations ·, +, −, and privileged elements 1, 0;

• For each i, j ∈ N, a privileged element dij ;

• For every i ∈ N, a unary operation ci : A→ A

23cf. [Leitgeb and Ladyman, 2008]
24Thus, the elements of the algebra are sets of infinite sequences, not—as one might have thought—sets of

n-tuples. This just avoids certain technical wrinkles that we would have to deal with if working with
sequences of different lengths: see the discussion in [Németi, 1991, §4].
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obeying the Boolean axioms (B1)–(B10), as well as the following axioms (for any r, s, t ∈
A, and any distinct i, j, k ∈ N):

(C1) ci0 = 0

(C2) r ≤ cir

(C3) ci(r · cis) = (cir) · (cis)

(C4) cicjr = cjcir

(C5) dii = 1

(C6) dik = cj(dij · djk)

(C7) ci(dij · r) · ci(dij · (−r)) = 0

In what sense are these axioms appropriate? Well, first, we have soundness (with
respect to the set-theoretic interpretation) in the same sense as for Boolean algebras:
for any modelM, the axioms (B1)–(B10) and (C1)–(C7) are satisfied if we take M as
the underlying set, the set-theoretic operations as the Boolean operations, the diagonal
sets Dij as the dij and the cylindrification operations Ci as the ci. We will denote this
cylindric algebra as C(M). More generally, given any set U and ordinal α, we can
construct cylindric algebras whose elements are sets of α-length sequences of elements
of U (i.e., all functions α→ U ). Such an algebra is referred to as a cylindric set algebra (of
dimension α).25

The issue of completeness is slightly more delicate. There is no straightforward ana-
logue of the Stone theorem: in general, there are cylindric algebras (i.e. structures
satisfying the axioms (B1)–(B10) and (C1)–(C7)) which are not isomorphic to any cylin-
dric set algebra. Indeed, it is known that the class of those cylindric algebras which
are isomorphic to some cylindric set algebra—the so-called representable cylindric alge-
bras26—cannot be finitely axiomatised.27 However, it can be recursively axiomatised;
moreover, there exist various other (non-trivial) ways of picking it out.28 So we do
have some means of characterising the representable cylindric algebras, and one could
regard these means as providing the implicit definition of the algebraic operations that
25The cylindric set algebras of the form C(M), for some model M of predicate logic, are exactly the

ω-dimensional cylindric set algebras which are “regular” and “locally finite”: see [Monk, 2000, §11].
26Strictly speaking, the representable cylindric algebras are those which are isomorphic to some subdirect

product of cylindric set algebras. But one can show that any such algebra is directly representable as a
cylindric set algebra (see [Németi, 1991, p. 503]).

27[Monk, 1969]; see [Németi, 1991, Theorem 4].
28See [Henkin et al., 1986] for a survey.
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we sought. Alternatively, if one thought that the implicit definition ought to be appro-
priately “surveyable” in some sense (and denied that recursively axiomatisability was
sufficient for surveyability), then one could take (C1)–(C7) to provide at least some grasp
of themeanings of the algebraic operationswithwhichwe have spelled out our notion of
structure—albeit not one that permits us to infer that the structural facts will always be
representable by some distribution of objects equipped with properties and relations.
(A really radical structuralist might deny that this is even a problem: perhaps, they
think, there are structural possibilities which correspond to no objectual possibility.)
Again, the (cylindric) structural facts underdetermine the objectual facts, in the fol-

lowing sense: there are non-isomorphic modelsM andN such that C(M) ∼= C(N ). In
fact, we have the following analogue of Proposition 1.

Proposition 2. For any modelsM and N of first-order predicate logic with identity,
C(M) ∼= C(N ) iffM is elementarily equivalent to a picture definitionally equivalent to
N (that is, iff there are definitional expansionsM+ andN+ such thatM+ is elementarily
equivalent to N+).

Proof. See [Monk, 2000, Theorem 3.3].

Note that the elementary equivalence here is with respect to a language containing
identity, unlike the elementary equivalence referred to inProposition 1. Hence, the cylin-
dric structuralist does not face asmuch underdetermination as the Boolean structuralist:
indeed, ifM and N are finite, then C(M) ∼= C(N ) iffM is definitionally equivalent to
N (since for finite structures, elementary equivalence implies isomorphism).

3 Algebraic generalism

I’m not the first to defend the idea that ideas and resources from algebraic logic could
be used to articulate and defend some form of structuralism. [Dasgupta, 2009] uses (a
modified form of) Quine’s predicate-functor logic to express a structuralist view, which
he refers to as “generalism”. For our purposes, the relevant observation is that Dasgupta
spells out his “generalist language” G by using algebraic resources, as follows:

The generalist’s ontology consists of a domain of properties, each with a
given adicity. Properties of adicity greater than one might be better called
relations, but I will use the term ‘property’ to cover them all. To talk about
these properties the generalist introduces to language G terms of the form
Pn, where n indicates the adicity of the property denoted. [. . . ] According
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to the generalist, the domain of properties instantiates a certain algebraic
structure. To talk about this structure, she introduces six expressions to G:
&, ∼, c, p, ι, and σ. Syntactically, they apply to terms to give a complex
term—much like ‘the father ofx’ in English applies to terms to give a complex
term—so we can call them ‘term-functors’. [. . . ]

In addition to these term-functors, the generalist also helps herself to a 2-
place term I2 which denotes what we ordinarily think of as the relation of
identity.29

These term-functors are drawn from Quine’s “predicate-functor” logic. The idea is
that they may be applied to terms for properties in order to form other, complex terms
for properties. Using λ-calculus notation, and letting Φn = λx1 . . . xn.φ(x1, . . . , xn) and
Ψm = λx1 . . . xm.ψ(x1, . . . , xm), the relationship between the expressions of G and those
of ordinary first-order predicate logic are as follows:

• ∼ Φn = λx1 . . . xn.¬φ(x1 . . . xn)

• (Φn&Ψm)k = λx1 . . . xk.(φ(x1, . . . , xn) ∧ ψ(x1, . . . , xm)), where k = max(n,m)

• σΦn = λx1 . . . xn.φ(xn, x1, x2, . . . , xn−1)

• ιΦn = λx1 . . . xn.φ(x2, x1, x3, . . . , xn)

• (cΦn)n−1 = λx1 . . . xn.∃x1φ(x1, . . . , xn)

• (pΦn)n+1 = λx1 . . . xn+1.φ(x1, . . . , xn)

G is then equipped with a single predicate for 0-place terms, obtains: asserting that
Φ0 obtains is what the generalist does in lieu of asserting that φ.

The resemblance to the cylindric-algebra apparatus is hopefully clear: clearly, the
operations being used here are designed to do the same sort of thing as the cylindric-
algebraic operations. I don’t want to go into the details of the relationship between
the two; the more important thing is that the only explanation Dasgupta gives of the
language G is in terms of ordinary predicate logic, PL. In particular, he gives a semantics
for G which is based on ordinary, predicate-logic models—essentially, the semantics
obtained by “pulling back” the standard Tarskian semantics for predicate logic by the
correspondence given above. (To be more accurate, he gives a semantics for a closely
related language Q, in terms of which he defines a consequence relation on G. I’ll gloss

29[Dasgupta, 2009, pp. 52–53]
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over this, since I don’t believe anything significant hangs on it.) This then leads to a
concern that what we have here is not a newmetaphysics, but just a curious notation for
expressing the old, object-oriented metaphysics. Dasgupta’s main result, that one can
translate at will between G and PL, is hardly likely to reassure us in this regard: that
just adds to the suspicion that G is no more generalist (structuralist) than PL.
Dasgupta does address this concern, however: he writes that

Earlier [. . . ] I explained what the term-functors of G mean by appealing to
our ordinary understanding of properties being instantiated by a domain of
individuals. But the generalist claims that individuals are not constituents
of the fundamental facts of the world. So was that method of explanation
legitimate?

Similarly, I just used the semantics for Q to define a relation of implication
on G and a relation of equivalence between G and PL. But the semantics for
Q used ordinary models of PL of the formM = (D, v), where D is a domain
of individuals. Was that legitimate?

I think itwas. The key is to distinguish betweenmetaphysical and conceptual
priority. Metaphysically, the generalist claims that the fundamental facts of
the world are those expressed by G. But conceptually, I have explained
the view to you in terms that you are familiar with, namely in terms of
individuals. Once you are competent with G you can then, if you so wish,
become a generalist by giving up your understanding of G in terms of a
domain of individuals and simply taking the term-functors and predicate of
G as undefined primitives.

There is no space to defend the cogency of the strategy here in full. I shall
only plead innocence by association, for there are many other cases in which
we adopt it. The case of velocity is [. . . ] a good example. Our ordinary
concept of the relative velocity between twomaterial things is defined as the
difference between their absolute velocities. Once you are competent with
the concept, you can then (if you so wish) dispense with absolute velocity
and either think of relative velocity as a primitive concept or define it in
other terms. And this is precisely what we do when we adopt a Galilean
conception of space-time.30

My response to this will probably be unsurprising: I don’t think that this is a legitimate
strategy. The mere adoption of a variable-free notation like G is surely not enough to
30[Dasgupta, 2009, p. 66]
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renounce commitment to objects—not if the only explanation that can be offered of the
meaning of that notation is exactly the same as that offered to explain the meaning of
its variable-laden cousin PL. Dasgupta’s proposal seems to be that having used this
semantics to induce a consequence-relation on G, we kick away the ladder by retaining
the consequence-relation but forgetting the semantics from which it arose. On the one
hand, it’s then not clear what the purpose of introducing G is after all: why not perform
the same manoeuvre with respect to PL, and save the time required to learn a new
notation?31 On the other, it’s not clear that this retains any meaning for the language
G at all. Absent a semantics, what makes G a language equipped with a relation of
implication at all, rather than (merely) a set of strings equipped with a certain partial
order?
What is needed is a semantics for G which explains how the world could make

sentences of G true, even if the world is (as the radical eliminative structuralist claims)
not fundamentally constituted by individuals standing in properties and relations, and
therefore not apt to be represented by a Tarski-style model. I agree with Dasgupta
that the analogy with Galilean spacetime is instructive here, although I don’t think its
implications arewhat he suggests. It’s one thing to abjure talk of absolute velocities, and
to promise that one will only use sentences that speak in terms of velocity-differences:
i.e. to promise that terms such as v1 or v2 will not be used to assert anything about
the world, unless they have been made safe by embedding into terms such as (v2 − v1).
Nevertheless, if the only account that one can give of the meaning of a term such as
(v2−v1) is one which defers to the meanings of v1 and v2 (as being absolute velocities in
something like Newtonian spacetime), then one has not fully succeeded in articulating
a metaphysics which is free of absolute velocities.32 The power of Galilean spacetime is
precisely that it provides a structure in which a term like (v2−v1) is interpreted directly,
not via an interpretation of its component parts. Cylindric algebras, I claim, provide
just such a semantics for G—or, equivalently, for PL.

31Here’s a possible answer: elsewhere, Dasgupta writes that “it is arguably analytic of the existential
quantifier that existentially quantified facts are grounded in their instances.” [Dasgupta, 2011, p. 131]
The problem is that what makes this an analytic feature of the existential quantifier is surely the form
of the semantics for it—as Dasgupta then goes on to say, “this understanding of the quantifier is
arguably implicit in the standard Tarskian semantics for PL.” [Dasgupta, 2011, pp. 131–132]. If so, then
it will equally well be analytic of the operator c that facts of the form (cΦ1)0 obtains are grounded in
instantiations of Φ1.

32Indeed, this is arguably the bind in which Newton’s opponents found themselves: determined to
renounce talk of absolute velocities, but unable to provide an appropriate structure for interpreting
that talk (without also having to renounce talk of absolute accelerations).
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4 Evaluation

In this final section, I evaluate the proposed form of structuralism: first, by considering
two objections to it, and then by looking at how well it satisfies the motivations for
structuralism that I introduced earlier.

4.1 Objections and replies

The first objection is that this is all (mere) metaphysics, of no relevance to any actual
science. Our best scientific theories are most certainly not phrased in terms of first-order
predicate logic: so why should we worry about such esoterica as whether representable
algebras can be finitely axiomatised, the gap between elementary equivalence and iso-
morphism, etc? My first response to this is to plead così fan tutte: confining attention to
the case of first-order theories and models is, for better or worse, a standard feature of
the literature on structuralism (and, indeed, the metaphysics of science more generally).
So insofar as my aim here is just to give a version of structuralism that is superior to
its rivals on the market, the fact that I also engage in this practice is not dialectically
relevant. However, I also think that a more substantial defence can be given.
For, there are goodgrounds for thinking that in actual, realistic theories, we can indeed

find algebraic representations of the models of those theories which are sympathetic to
the structuralist’s aims. For instance, in spacetime theories there has been substantial
interest in representing a manifold via its smooth algebra: the commutative, associative,
unital algebra (overR) of smooth scalar fields on the manifold. Such an algebra encodes
a great deal of information about the structure of the manifold; indeed, one can show
that two manifolds have isomorphic smooth algebras iff they are diffeomorphic to
one another. Moreover, geometric object fields on the manifold (e.g. vector fields, a
metric, etc.) can be represented by certain structures on the smooth algebra (e.g. a
vector field corresponds to a derivation on the smooth algebra).33 Thus, a model of
a spacetime theory 〈M,Oi〉 (with M a manifold and the Oi being geometric object
fields) can be represented by an appropriate spacetime algebra 〈M,Oi〉, whereM is the
smooth algebra and the Oi are the algebraic representations of the Oi: for example, if
〈M, g〉 is a Lorentzian manifold, then 〈M, g〉 is known as an Einstein algebra. Similarly,
in analysing quantum theories it often proves insightful to consider a collection of
operators on a givenHilbert space to constitute a certain kind of algebra, known as aC∗-
algebra; in classical mechanics, the smooth scalar functions on phase space may usefully

33Indeed, in modern differential geometry one standardly defines a vector field as a derivation on the
smooth algebra (e.g. [Baez and Muniain, 1994, Chapter 3]).
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be characterised as a Poisson algebra; and so on and so forth. For our purposes, the
relevant observation is that in such cases, we form an algebra whose elements represent
qualitative properties (smooth scalar fields in the case of smooth algebras, physical
observables in the case of C∗- or Poisson algebras), and so abstract away from the
individuals which would, in a more traditional presentation, be taken to be the bearers
of those properties. Thus, the algebraic approach to structuralism looks as though it will
generalise to more realistic scientific contexts. Moreover, by studying the (relatively!)
simple case of algebras for first-order models, we can get insight into what questions to
ask, and what kinds of answers it is reasonable to expect. For example, the standard
definition of a smooth algebra is (roughly speaking) that it is a commutative, associative,
unital algebra (over R) which is isomorphic to the smooth algebra of scalar functions
over some manifold; given the discussion of representability for cylindric algebras, we
are motivated to ask whether any independent, complete characterisation of the class
of smooth algebras is possible. (So far as I know, this remains an open question.)
Similarly, the fact that isomorphism at the level of algebras does not necessarily lead
to isomorphisms at the level of objectual representations suggests that we should look
for analogous “gaps” between the algebraic and non-algebraic representations in other
theories: which, in the context of C∗-algebras, is precisely the question of what to say
about unitarily inequivalent Hilbert-space representations of the same C∗-algebra.34
The second objection is that algebraic structuralism does not succeed in truly ex-

punging objects from the ontology. After all, a cylindric algebra consists of a bunch
of things—the elements of the algebra—standing in certain algebraic relations to one
another. So (the objection goes) rather than eliminating objects from the ontology, the
algebraic structuralist has merely replaced them: they have shown how one kind of ob-
ject (“ordinary” objects) can be eliminated in favour of another (elements of a cylindric
algebra), but not how one might do without objects altogether. Lam andWüthrich raise
this concern in the context of Einstein algebras:

[. . . ] let us emphasize that the mere non-trivial elimination of manifold
points (or their correlates) does not suffice to give [radical ontic structural-
ism] the upper hand against [moderate ontic structuralism]. What must
be shown to establish this, instead, is that any relata whatsoever are non-
trivially eliminated from the formulation of the theory; [moderate ontic
structuralism] does not include or entail a commitment to any specific set of
relata such as manifold points.35

34[Ruetsche, 2011]
35[Lam and Wüthrich, 2015, p. 624]
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Similarly, Psillos remarks that “Even in group theory—Ladyman and French’s paradigm
case for their thesis—the group-structure is detached from any particular domain of
individuals, but not from the very notion of a domain of individuals.”36

This objection, however, rests upon a conflation of representational and metaphys-
ical criteria. The objection concedes that the algebraic account does indeed present
relations as atomic, unanalysed components of the metaphysics, lacking any internal
structure; it then complains that, in virtue of that very fact, we are no longer talking about
relations—because (says the objection) to take something as an atomic metaphysical
component, devoid of internal structure, just is to treat it as an object rather than a
relation. But this conflates being a subject of predication with being an object.37 The fact
that our representational apparatus is that in which some characteristics are ascribed of
some entities does not mean that the entities must be identified as objects. Indeed, even
if we had some representational apparatus that (somehow) avoided taking the form of
such ascriptions,38 merely recasting the standard object-oriented metaphysics into that
apparatus would not thereby make us into structuralists; it would do so only if, by the
lights of that apparatus, relations were treated as not being constituted by objects. By
the same token, a view onwhich relations are not so constituted is a structuralist view—
independently of whether that view is presented using a (broadly) subject-predicate
apparatus like that employed here, or some other apparatus.

4.2 Meeting desiderata

Let us now turn to whether algebraic structuralism is an apt vehicle for the motivations
considered in section 1.1. First, the argument from the history of science claimed that
the “structure” of a theory will be preserved across theory change, at least to a greater
extent than other aspects of a theory. Evaluating this claim is not straightforward, for
two reasons: first, that (as already discussed) the only case we’ve considered in detail
is the rather unrealistic case of first-order theories; second, that in this essay I’ve only
talked about using algebraic means to characterise the structure of models of a theory,
rather than the structure of a theory as a whole.39 Nevertheless, even within these

36[Psillos, 2001, p. S22]
37Of course, there is a long-standing philosophical tradition of identifying substance with the ultimate

subject of predication. But the question of whether it is structures or objects which constitute the
fundamental substance of the world is exactly what is at issue.

38It remains an open question, to my mind, whether there is or could be such an apparatus: the best hope
is likely something category-theoretic, but the details remain to be made out.

39One might have thought that characterising the structure of a theory would just be a matter of charac-
terising the structure of each of its models. However, that risks neglecting those aspects of a theory’s
structure concerning the relationships between models, which may be important for determining the
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constraints, I think we can see some ways in which algebraic structuralism may be able
to support such a claim. Since the characteristic feature of the relevant algebras is that
they comprise physical properties and relations, and it is those properties and relations
which most immediately connect to empirical results, then—given the assumption that
the empirical success of the old theory will be incorporated into its successor—we
have some grounds for thinking that the algebraic structure of the two theories should
exhibit the kind of continuity the argument demands. Of course, we don’t expect that
the algebraic structure will be fully preserved, i.e., that the algebraic representations
offered by the successor theory will be precisely isomorphic to those offered by its
predecessor: if that were so, then it’s hard to see how the two theories could (for the
structuralist, at least) really be regarded as distinct. But we can expect that the structure
of the predecessor theory will be somehow embedded in that of the successor theory,
i.e., that the algebras associated to the latter will, in some appropriate limit, reduce to
or approximate towards the algebras associated to the former. And if we attend to the
examples mentioned above, then we find that this picture is (somewhat) borne out: for
example, in the use of deformation quantisation to analyse the relationship between
algebras of classical and quantum observables.
Second, consider the argument from redundancy. The argument here was that we

need an account ofwhat individuals arewhichwill deliver anti-haecceitism. I claim that
algebraic structuralism does, indeed, succeed in doing that. Two objectual representa-
tions which are related by a permutation are, for the algebraic structuralist, merely two
ways of representing the same structural facts (by Proposition 2, given that isomorphism
entails elementary equivalence). We therefore have a characterisation of the invariant
reality underlying such representations, which helps to explain why anti-haecceitism
holds. One concern (related to the second objection above) is that although algebraic
structuralism avoids the permutation argument for individuals, it is subject to a higher-
order version of the same problem: by permuting the relations in an algebra, one can
obtain an algebra that differs only over which relations play which algebraic role. That
appears to mean that we will face the same problems of redundancy and inaccessibility;
and hence, one might question what has really been gained.40 I don’t have space for a
full response here, but let memake a couple of remarks. First, the permissibility of such
permutations will depend upon the extent to which one is a nomic essentialist: i.e., on
whether one thinks that it is possible for a property or relation to play a different role

theory’s content (see [Halvorson, 2012, §7] for an elaboration of this claim).
40This is, essentially, the point that [Rynasiewicz, 1992] makes in the context of spacetime algebras.
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in the laws to that which it actually plays.41 If nomic essentialism is true, and if nomo-
logical roles are unique, then no such permutation will deliver a possible world—so the
arguments for redundancy and inaccessibility cannot get off the ground. Second, even
if one does not find nomic essentialism plausible with respect to ordinary properties
and relations, it seems tome that it is highly compellingwith respect to the higher-order
properties and relations constituting the algebraic relationships (e.g. +, ci, etc.): given
that (on the structuralist’s account) the nature of these relations is constituted purely
by their implicit definitions via the axioms (B1)–(B10) and (C1)–(C7), it is very hard
to make sense of the idea of (say) the operation ci coming apart from the “ci-role” in
the axioms. If this is granted, and given that permutations of (first-order) properties
and relations are just present in the non-structuralist picture as the structuralist picture,
then the algebraic structuralist is at least dealing with one fewer permutation problem
than the non-structuralist: zero rather than one (if nomic essentialism about first-order
properties is accepted) or one rather than two (if nomic essentialism about first-order
properties is rejected).

5 Conclusion

So, to conclude: I’ve argued that the most charitable way to unpack the notion of “struc-
ture as the web of relations” is by characterising structure as an algebra of relations—
specifically, at least in the context of first-order theories, as a cylindric algebra. There
remain many open questions. Some of these are of a technical nature: what sort of
algebra is appropriate in a context where we permit a stronger background logic, e.g.
infinitary or higher-order logic? Howwould such algebras bear on the “representation”
theorems, like Proposition 1 and 2? And what does the analysis look like in the context
of Einstein algebras or C∗-algebras? Others are more philosophical: how exactly do
technical results like Propositions 1 and 2 bear on theses about ground or ontological
dependence? Does this apparatus apply to epistemic forms of structuralism, or only
to ontic structuralism? Are the motivations for structuralism really compelling, after
all? Nevertheless, I hope that this work has laid the foundations for good progress on
these questions; and that I have convinced you that whether or not “relations without
relata” is the right view to hold about what the world is like, it is at least a coherent and
intelligible view.

41See e.g. [Hawthorne, 2001], [Schaffer, 2005].
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