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Abstract

This paper gives an explicit presentation of Newtonian gravitation on the

backdrop of Maxwell spacetime, giving a sense in which acceleration is rela-

tive in gravitational theory. However, caution is needed: assessing whether

this is a robust or interesting sense of the relativity of acceleration depends

upon some subtle technical issues, and upon substantive philosophical ques-

tions over how to identify the spacetime structure of a theory.
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1 Introduction

The following two observations are well-known to philosophers of physics:

1. Newtonian gravitation admits, in addition to the well-known velocity-

boost and potential-shift symmetries, a “gravitational gauge symme-

try” in which the gravitational field is altered.

2. Newtonian gravitation may be presented in a “geometrised” form known

as Newton-Cartan theory,1 in which the dynamically allowed trajecto-

ries are the geodesics of a non-flat connection.

Moreover, it is widely held that these two observations are intimately related.

However, aspects of this relationship remain somewhat obscure. In particu-

lar, there is widespread disagreement over the sense in which the symmetry of

observation 1 motivates the move from a non-geometrised formulation to the

geometrised formulation of observation 2; and over the extent to which such

motivation ought to be regarded as analogous to the use of the velocity-boost

symmetry to motivate the move from Newtonian to Galilean spacetime, or

to the use of the potential-shift symmetry to motivate the move from a for-

mulation in terms of gravitational potentials to a formulation in terms of

gravitational fields.

In this paper, I seek to clarify this relationship. First, I consider the

symmetry from point 1 above, in the context of Newtonian gravitation set

on Galilean spacetime. I then briefly review the geometrised formulation of

the theory, and discuss some puzzling aspects concerning the relativity of

acceleration. This motivates an exploration of Maxwell spacetime, and the

presentation of a Newtonian theory of gravitation set on Maxwell spacetime.

I then look at how this theory relates to Newton-Cartan theory, and explore

how this illuminates the conceptual issues with which we began.

1Due originally to Trautman (1965).
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2 Galilean gravitation

I will assume familiarity with the differential-geometric architecture stan-

dardly used to present classical gravitational theories.2 All the theories we

will consider postulate at least as much structure as that of Leibnizian space-

time, which comprises data 〈M, ta, h
ab〉: here, M is a differential manifold

which is diffeomorphic to R4; ta is a smooth, curl-free 1-form; and hab is a

smooth, symmetric rank-(0, 2) tensor, of signature (0,+,+,+). ta and hab

are orthogonal, i.e., they satisfy

tah
ab = 0 (1)

Given our topological assumptions, ta induces a foliation of M into three-

dimensional hypersurfaces; we require that each such hypersurface is diffeo-

morphic to R3. hab induces a three-dimensional metric on each hypersurface.

We require that each hypersurface is complete relative to this induced metric,

and that the induced metric is flat.3 We will use L to denote a Leibnizian

spacetime. If L = 〈M, ta, h
ab〉 is a Leibnizian spacetime, then a connection

∇ on M is said to be compatible with L just in case it satisfies

∇atb = 0 (2a)

∇ah
bc = 0 (2b)

We will only consider compatible connections in this paper.

A Galilean spacetime is a Leibnizian spacetime equipped with a flat (com-

patible) connection. The first theory we will consider is that of Newtonian

gravitation on Galilean spacetime—for short, “Galilean gravitation”. Each

model of such a theory comprises the following data:

• A Galilean spacetime 〈L,∇〉
2See Friedman (1983), Earman (1989), and—especially—Malament (2012).
3For more detail on the above, see (Malament, 2012, §4.1).
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• A spacelike vector field Ga

• A rank-(2, 0) tensor field T ab

satisfying the following equations:

∇aG
a = −4πρ (3a)

∇[cGa] = 0 (3b)

∇nT
na = ρGa (3c)

where ρ = T abtatb.

The vector field Ga represents the gravitational field, and the tensor field

T ab represents the mass-momentum of whatever matter or fields are present

(with the scalar field ρ representing the mass density). I have chosen to

work with a gravitational field, related to the mass density by the source

equation (3a), rather than with a gravitational potential. This is simply in

order to remove the gauge symmetries of the potential, so that we can focus

on those symmetries that alter the field itself. Equation (3b), the condition

that the gravitational field is twist-free, ensures that this decision is harmless:

given our assumptions about the topology of L, it holds of Ga if and only if

there is a scalar field ϕ such thatGa = −∇aϕ.4 Finally, equation (3c) encodes

the dynamics of the matter (both gravitational and non-gravitaitonal).

To illuminate this last remark, note that wherever ρ 6= 0, we can decom-

pose T ab by defining5

ξa = ρ−1T abtb (4a)

σab = T ab − ρξaξb (4b)

4See (Malament, 2012, Proposition 4.1.6). Note that this is analogous to the role played
by the equation ∇×E = 0 in electrostatics.

5The below follows (Malament, 2012, pp. 265–266).
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so that

T ab = ρξaξb + σab (5)

ξa is a unit, future-directed timelike field (interpretable as the net motion

of the matter) and σab is a symmetric field spacelike in both indices (inter-

pretable as the stress tensor for the matter). Equation (3c) then holds if and

only if the equations

ρ∇aξ
a + ξa∇aρ = 0 (6a)

ρξa∇aξ
b = ρGb −∇aσ

ab (6b)

hold. Thus, in the presence of mass, equation (3c) encodes both a continuity

equation (6a) and an equation of motion (6b). Given a model of Galilean

gravitation, we will refer to the integral curves of ξa as the dynamical tra-

jectories : so the dynamical trajectories undergo an acceleration due to the

gravitational field, and due to the non-gravitational forces encoded by the

stress tensor. Obviously, in a realistic application one would impose further

equations on T ab, capturing the details of the non-gravitational dynamics.

The theory (3) is only intended to provide a framework for analysing the-

ories involving gravitation, at a reasonably high level of generality (whilst

nevertheless including an explicit representation of the mass-momentum).

It will be helpful to have a term for a structure 〈L,∇, Ga, T ab〉 which does

not necessarily satisfy equations (3).6 We will refer to such a structure as

a model-candidate for Galilean gravitation. The metaphysically inlined may

think of model-candidates as representing worlds which are metaphysically

possible according to Galilean gravitation (they contain the right ontologi-

cal ingredients), and of models as representing worlds which are physically

possible according to Galilean gravitation (they contain the right ontological

ingredients, arranged in the right way).

Our concern in this paper is with a certain transformation one can make

6That is, what in e.g. Belot (2007) is referred to as a “kinematical possibility”.
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of the models of this theory—specifically, one obtained by altering the con-

nection and gravitational field as follows:

∇ 7→ ∇′ = (∇, ηatbtc) (7a)

Ga 7→ G′a = Ga − ηa (7b)

where ηa is any spacelike vector field such that ∇aηb = 0. The notation

(∇, ηatbtc) follows Malament: (Malament, 2012, Proposition 1.7.3) shows

that given any connection ∇ on a manifold M , any other connection ∇′

may be expressed in the form (∇, Ca
bc) (for some symmetric tensor field Ca

bc),

meaning that for any tensor field T a1...arb1...bs
on M :

∇′cT
a1...ar
b1...bs

=∇cT
a1...ar
b1...bs

− Ca1
cnT

na2...ar
b1...bs

− · · · − Car
cnT

a1...ar−1n
b1...bs

+ Cn
cb1
T a1...arnb2...bs

+ · · ·+ Cn
cbsT

a1...ar
b1...bs−1n

(8)

It is straightforward to show that the transformation (7) is a symmetry of

Galilean gravitation, in the following sense: if ∇′ = (∇, ηatbtc) and G′a =

Ga − ηa are substituted into the equations (3), we get the same equations

out again (and if∇ is flat, then so is∇′). Consequently, any model-candidate

〈L,∇, Ga, T ab〉 is a model of Galilean gravitation if and only if 〈L,∇′, G′a, T ab〉
is also a model of Galilean gravitation.

Now, if we read the theory literally, then these two models would appear

to represent distinct possibilities (since the two models are not isomorphic

to one another). That is, if all the mathematical structures present in the

models are taken to represent physical structure, then the two models dis-

agree over what the world is like: they disagree over the magnitude of the

gravitational field, for instance, and over the acceleration of matter. Yet this

is a problematic judgment, since it seems that two such possibilities would

be epistemically indistinguishable from one another: all seemingly observa-

tionally accessible quantities, such as relative distances, are the same in the
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two models. Such epistemic underdetermination gives us some reason to

think that we should seek another theory which, read literally, does not give

rise to such a problem (whilst still capturing the “good” content of Galilean

gravitation, i.e., the content that is invariant under (7)).7

3 Newton-Cartan gravitation

The standard view is that such a theory is provided by Newton-Cartan grav-

itation. Let us say that a Newton-Cartan connection, for a given Leibnizian

spacetime, is a (compatible) connection ∇̃ whose curvature tensor R̃a
bcd obeys

the homogeneous Trautman conditions :

R̃ab
cd = 0 (9a)

R̃a c
b d = R̃c a

d b (9b)

and that a Newton-Cartan spacetime consists of a Leibnizian spacetime L

together with a Newton-Cartan connection for L. Note that all flat con-

nections obey the conditions (9), and so are Newton-Cartan connections; as

such, Galilean spacetime is a Newton-Cartan spacetime. A model of Newton-

Cartan gravitation then comprises

• A Newton-Cartan spacetime 〈L, ∇̃〉

• A tensor field T ab

7The above kind of argument is an instance of a more general one: the claim that
that the differences between symmetry-related models of a theory are (in some sense) not
differences that should be taken seriously, and which should motivate us either to interpret
the theory in such a way that it is not committed to that structure, or to replace the theory
by a more parsimonious one (for discussion, see Møller-Nielsen (2016)). However, it is
controversial both how exactly the notion of “symmetry” should be defined, and how (or
whether) this general interpretational maxim should apply (see Saunders (2003), Brading
and Castellani (2003), Baker (2010), Dewar (2015), Caulton (2015), Dasgupta (2016), and
references therein). Since the general debate is tangential to our purposes, I pass over it
here.
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such that the following equations hold:

R̃bc = 4πρtbtc (10a)

∇̃nT
na = 0 (10b)

where the Ricci tensor R̃bc = R̃a
bca and (as before) ρ = T abtatb.

Thus, the source equation (10a) relates the mass density to the curvature

of spacetime, rather than to the gravitational field. If we have ρ 6= 0, then

we can decompose T ab as in equation (5) to obtain

ρ∇̃aξ
a + ξa∇̃aρ = 0 (11a)

ρξa∇̃aξ
b = −∇̃aσ

ab (11b)

So the continuity equation (11a) is unchanged, but the equation of motion

(11b) only features acceleration due to non-gravitational forces: the grav-

itational acceleration has been “absorbed” into the curved Newton-Cartan

connection.

The relationship between Galilean gravitation and Newton-Cartan grav-

itation is captured in what are known as the geometrisation and recovery

theorems.8 The former states that from any model of Galilean gravitation,

one can obtain a unique model of Newton-Cartan gravitation: namely, that

given by taking ∇̃ = (∇, Gatbtc). Note that two models of Galilean grav-

itation which are related by the transformation (7) will generate the same

model of Newton-Cartan gravitation. The latter asserts that given a model

of Newton-Cartan gravitation, there is a model of Galilean gravitation re-

lated to it by ∇̃ = (∇, Gatbtc) for some twist-free spacelike field Ga; several

models, in fact, corresponding to different choices of Ga (and all related to

one another by transformations of the form (7)). It is in this sense that

Newton-Cartan gravitation captures the invariant content of Galilean grav-

itation: there is a systematic one-to-one correspondence between models of

8See (Malament, 2012, Propositions 4.2.1, 4.2.5), Trautman (1965).
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Newton-Cartan gravitation and equivalence classes of (7)-related models of

Galilean gravitation.

At the same time, however, there is something potentially puzzling about

this case. As mentioned above, the acceleration of the matter represented

by ξa is not invariant under the transformations (7). If models related by

such a transformation correspond to the same physical situation, then the

natural reading would seem to be that accelerations are not a real, or objec-

tive, or absolute feature of the world (according to Newtonian gravitational

theory). This notion is supported by reflection on the transition from setting

Newtonian gravitation on Newtonian spacetime (wherein there is a standard

of absolute rest) to setting it on Galilean spacetime. Here, we observe that

applying a “boost” transformation is a symmetry of the dynamics. In New-

tonian spacetime, trajectories have (absolute) velocities, relative to absolute

space; but those velocities are not invariant under boosts. This is generally

taken to licence the claim that such velocities are not real, or objective, or

absolute features of the world (according to the best interpretation of the

theory). This claim is supported by the fact that we can set the theory in-

stead on Galilean spacetime, in which there is not the structure required to

impute absolute velocities to trajectories. So if this transition involves the

repudiation of absolute velocities (since they are not invariant under boosts),

analogous reasoning would suggest that the move from Galilean gravitation

to Newton-Cartan gravitation should involve the repudation of absolute ac-

celerations (since they are not invariant under (7)).

However, the orthodox view is that this is decisively not the case. The

reason for this is straightforward: any model of Newton-Cartan gravitation

does have enough structure to make pronouncements on the accelerations of

trajectories, since it contains a privileged connection ∇̃. As such, in transi-

tioning from Galilean to Newton-Cartan gravitation,

We eliminate the notions of absolute acceleration and rotation

relative to ∇, but we replace them with new notions of absolute
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acceleration and rotation relative to ∇̃. Hence, the move from

[Galilean gravitation] to [Newton-Cartan gravitation] does not

involve a relativization of acceleration parallel to the relativiza-

tion of velocity [. . . ]9

Here is another way of expressing the idea that Newton-Cartan spacetime is

just as committed to absolute acceleration as Galilean spacetime was: the

Newton-Cartan connection is not invariant under a transformation of the

form (7a).10 So let us consider what kind of structure is so invariant.

4 Maxwell gravitation

Given a Galilean spacetime 〈L,∇〉, the structure that is invariant under a

transformation of the form (7a) goes by the moniker of Maxwell spacetime.11

Intuitively, the idea is that a Maxwell spacetime contains a “standard of

rotation”, but no “standard of acceleration”. More precisely,12 we say that a

pair of connections ∇ and ∇′ compatible with a given Leibnizian spacetime

L are rotationally equivalent if, for any unit timelike field θa on L, ∇[aθb] = 0

iff ∇′[aθb] = 0. Then, a Maxwell spacetime comprises

• A Leibnizian spacetime L

• A standard of rotation [∇]: an equivalence class of rotationally equiv-

alent flat affine connections (compatible with L)

The following proposition demonstrates the invariance of Maxwell spacetime

under (7a):

9(Friedman, 1983, p. 122); I have modified Friedman’s notation to fit with that used in
this paper.

10The question of whether it is invariant under a transformation of the form (7) is rather
more subtle.

11(Earman, 1989, chap. 2)
12This definition follows Weatherall (2015).
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Proposition 1. Let 〈L, [∇]〉 be a Maxwell spacetime, and consider any ∇ ∈
[∇]. For any other flat connection ∇′, ∇′ ∈ [∇] (i.e. ∇′ is rotationally

equivalent to ∇) iff ∇′ = (∇, ηatbtc), for some spacelike field ηa such that

∇aηb = 0.

Proof. The “if” direction is straightforward: if ∇′ = (∇, ηatbtc), then

∇′[aθb] = ∇[aθb] − tntkθkhn[aηb]

= ∇[aθb]

and so ∇ and ∇′ are rotationally equivalent.

The “only if” direction follows immediately from the proof of Proposition

3 in Weatherall (2015).

So given a pair of models of Galilean gravitation related by (7), the struc-

ture shared by their Galilean spacetimes 〈L,∇〉 and 〈L,∇′〉 is that of their

common Maxwell spacetime 〈L, [∇]〉.
Recently, Saunders (2013) has queried whether we really should regard

Newton-Cartan theory as the spacetime theory that properly encodes the

lessons of the symmetry canvassed above: he argues that we can “interpret

[Newton’s] laws [. . . ] directly as concerning the relative motions of particle

pairs”,13 and hence, as describing a theory set on Maxwell spacetime rather

than Galilean spacetime.14 Saunders’ analysis concerns the point-particle

formulation of Newtonian gravitation, but he continues:

There remain important questions, above all, moving over to a

manifold formulation: What is the relation between a theory of

gravity (and other forces) formulated in Maxwell space-time and

one based on Newton-Cartan space-time?15

13(Saunders, 2013, p. 41)
14Strictly, against the backdrop of a spacetime structure equivalent to it, which Saunders

refers to as “Newton-Huygens spacetime”.
15(Saunders, 2013, p. 46)
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Obviously, assessing that relationship requires us to first present such a the-

ory set on Maxwell spacetime.

Without further ado, then, a model of Maxwell gravitation comprises

• A Maxwell spacetime 〈L, [∇]〉

• A tensor field T ab

such that the following equations hold wherever ρ 6= 0:

ta∇nT
na = 0 (12a)

∇a(ρ
−1∇nT

na) = −4πρ (12b)

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = 0 (12c)

where ∇ is an arbitrary element of [∇]. Moreover, we also require that if

there are regions of L in which ρ = 0, then the quantity ρ−1∇nT
na converges

as such a region is approached.

This is only well-specified if the choice of ∇ is indeed arbitrary. The

following proposition shows that this is, indeed, the case.

Proposition 2. Let 〈L, [∇], T ab〉 be a model-candidate for Maxwell gravi-

tation, and consider any ∇,∇′ ∈ [∇]. Then the equations (12) hold with

respect to ∇ iff they hold with respect to ∇′.

Proof. By Proposition 1, ∇′ = (∇, ηatbtc), for some spacelike field ηa such

that ∇aηb = 0. It follows that

∇′nT na = ∇nT
na − ρηa (13)

First, from equation (13)

ta∇′nT na = ta∇nT
na (14)

so equation (12a) holds with respect to ∇ iff it holds with respect to ∇′.
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Second, we find that

∇′a(ρ−1∇′nT na) = ∇′a(ρ−1∇nT
na − ηa)

= ∇a(ρ
−1∇nT

na − ηa)− ηatatr(ρ−1∇nT
nr − ηr)

= ∇a(ρ
−1∇nT

na)−∇aη
a

Since ∇aηb = 0, ∇aη
b = taθ

n∇nη
b, where θn is any future-directed unit

timelike field; it follows that ∇aη
a = 0.16 So (12b) holds with respect to ∇

iff it holds with respect to ∇′.
Finally,

∇′c(ρ−1∇′nT na) = ∇′c(ρ−1∇nT
na − ηa)

= ∇c(ρ−1∇nT
na − ηa)− hdcηatdte(ρ−1∇nT

ne − ηe)

= ∇c(ρ−1∇nT
na)

And so equation (12c) also holds with respect to ∇ iff it holds with respect

to ∇′.

As with the two previous theories, wherever ρ 6= 0 we can decompose T ab

using (5). It is then straightforward to show that (12a) holds iff

ρ∇aξ
a + ξa∇aρ = 0 (15)

does—i.e., the continuity equation carries over.

There is not a straightforward analogue of (6b) or (11b) for Maxwell

gravitation (which is to be expected, given that Maxwell spacetime lacks

an absolute standard of acceleration). However, we can show that Maxwell

gravitation determines the relative acceleration of the dynamical trajectories.

That is, given a unit timelike vector field θa on a Maxwell spacetime 〈L, [∇]〉,
let λa be a connecting field for θa: a spacelike vector field such that Lθλa = 0

16This observation is adapted from (Malament, 2012, p. 277).
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(where Lθ denotes the Lie derivative along θa). Intuitively, we think of λa as

joining integral curves of θa to “neighbouring” integral curves. The relative

acceleration of such neighbouring curves is then given by

θn∇n(θm∇mλ
a) (16)

and has radial component (magnitude in the direction of λa)

λaθ
n∇n(θm∇mλ

a) (17)

where λa = ĥabλ
b, for ĥab the spatial metric associated to θa.17 These expres-

sions are easily shown to be independent of the choice of ∇ ∈ [∇], but they

do depend on λa. If, however, we introduce three connecting fields
1

λa,
2

λa,
3

λa

which are orthonormal to one another, then we can define the average radial

acceleration of θa as the average of the three radial components,

Aθ :=
1

3

3∑
i=1

i

λaθ
n∇n(θm∇m

i

λa) (18)

It can then be shown that the average radial acceleration is independent of

the choice of connecting fields
i

λa; indeed, we have

Proposition 3. Let θa be a unit timelike field on some Maxwell spacetime

〈L, [∇]〉, and suppose that {
i

λa}i are three orthonormal spacelike fields such

that Lθ
i

λa = 0. Then for any ∇ ∈ [∇],

Aθ =
1

3
∇a(θ

n∇nθ
a) (19)

Proof. First, some straightforward algebra shows that for any connecting

17In fact, given that λa is spacelike, we could have used the spatial metric associated
to any unit timelike field; but since we have a particular such field knocking around, it is
helpful to fix on it.

14



field λa,18

θn∇n(θm∇mλ
a) = λm∇m(θn∇nθ

a) (20)

Since the connecting fields are orthonormal,19

∑
i

i

λa
i

λc = δ c
a − taθc (21)

Therefore,

Aθ =
1

3

3∑
i=1

i

λaθ
n∇n(θm∇m

i

λa)

=
1

3

∑
i

i

λa
i

λc∇c(θ
n∇nθ

a)

=
1

3
(δ c
a − taθc)∇c(θ

n∇nθ
a)

=
1

3
∇a(θ

n∇nθ
a)

Now observe that, given equation (15),

∇n(ρξnξa + σna) = ρξn∇nξ
a +∇nσ

na (22)

It follows that if T ab obeys equation (12b), then

Aξ = −4

3
πρ− 1

3
∇a(ρ

−1∇nσ
na) (23)

In other words, Maxwell gravitation specifies the relative acceleration of tra-

jectories (and characterises them as having both a gravitational and non-

gravitational component).

18The calculation is just an adaptation of the proof of (Malament, 2012, Proposi-
tion 1.8.5) to the case where θa is not a geodesic and ∇ is flat.

19(Malament, 2012, Equation 4.1.12)
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5 Comparing Maxwell gravitation and Newton-

Cartan gravitation

We now consider the relationship between Maxwell gravitation and Newton-

Cartan gravitation. First, we say that a connection is compatible with a

given Maxwell spacetime if it is compatible with the Leibnizian substructure

of the Maxwell spacetime, and rotationally equivalent to the members of [∇].

We now prove an intermediate proposition, giving the relationship between

different Newton-Cartan connections compatible with a given standard of

rotation.

Proposition 4. Let 〈L, [∇]〉 be a Maxwell spacetime, and let ∇̃ be any

Newton-Cartan connection compatible with [∇]. Then for any other connec-

tion ∇̃′, ∇̃′ is a Newton-Cartan connection compatible with [∇] if and only

if ∇̃′ = (∇̃, ζatbtc), for some spacelike field ζa such that ∇̃[aζb] = 0.

Proof. First, suppose that ∇̃′ = (∇̃, ζatbtc) for such a field ζa. Then for any

timelike θa,

∇̃′[aθb] = hn[a∇̃′nθb]

= hn[a∇̃nθ
b] − hn[aζb]θmtmtn

= ∇̃[aθb]

So clearly, ∇̃′[aθb] = 0 iff ∇̃[aθb] = 0, i.e., ∇̃ and ∇̃′ are rotationally equiva-

lent. It remains to show that ∇̃′ satisfies the homogeneous Trautman condi-

tions (9). Applying the standard condition relating two Riemann tensors,20

we obtain

R̃′abcd = R̃a
bcd + 2tbt[d∇̃c]ζ

a (24)

20(Malament, 2012, Equation 1.8.2)
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It is then a straightforward computation to show that

R̃′abcd = R̃ab
cd (25)

So clearly, R̃′abcd = 0 iff R̃ab
cd = 0.

Next, suppose that R̃a c
b d = R̃c a

d b. Again, a straightforward computation

(together with the twist-freedom of ζa) yields

R̃′a cb d = R̃′c ad b (26)

where the third equality uses our supposition, and the twist-freedom of ζa.

Showing that if R̃′a cb d = R̃′c ad b then R̃a c
b d = R̃c a

d b proceeds similarly.

The converse half of the proof is adapted from Weatherall (2015). Suppose

that ∇̃′ is a Newton-Cartan connection compatible with [∇]. Since ∇̃ and

∇̃′ are both compatible with L, there is some antisymmetric tensor field κab

such that ∇̃′ = (∇̃, 2hant(bκc)n).21 Now let θa be some unit timelike field such

that ∇̃[aθb] = 0 (some such field is guaranteed to exist, since ∇̃ obeys the

homogeneous Trautman conditions).22 Using the fact that ∇̃′[aθb] = 0, we

can show that ∇̃′ = (∇̃, ζatbtc) for some spacelike field ζa (see (Weatherall,

2015, p. 91) for details of the computation).

It remains to show that ζa is twist-free. By using equation (24), we obtain

R̃′a cb d = R̃a c
b d + 2tbtd∇̃cζa (27)

So by exchange of indices, and applying the second homogeneous Trautman

condition,

tbtd∇̃cζa = tbtd∇̃aζc (28)

Since ta 6= 0, ∇̃[cζa] = 0.

We can now explore the relationship between Maxwell gravitation and

21(Malament, 2012, Proposition 4.1.3)
22See (Malament, 2012, Proposition 4.3.7).
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Newton-Cartan gravitation. The relationship is limited in an important way:

we can establish a correspondence between the models of Maxwell gravitation

and those of Newton-Cartan gravitation only in the case of an everywhere

nonvanishing mass density. However, each such model of Newton-Cartan

gravitation is naturally associated with a unique such model of Maxwell

gravitation, and vice versa. This provides a sense in which the two theories

might be regarded as equivalent over the nonvanishing-mass sector, since

the mutual pair of associations might be regarded as showing how the two

theories are intertranslatable with one another.23

Proposition 5. Let 〈L, ∇̃, T ab〉 be a model of Newton-Cartan gravitation

such that at all points in L, ρ 6= 0. Then there is a unique standard of

rotation [∇] such that ∇̃ is compatible with [∇]; and 〈L, [∇], T ab〉 is a model

of Maxwell gravitation.

Proof. First, define [∇] as consisting of all and only those connections which

are flat, and which are rotationally equivalent to ∇̃. By the Trautman re-

covery theorem, there is at least one such connection, so [∇] is nonempty.

Hence, it is indeed a standard of rotation with which ∇̃ is compatible—and

it is manifestly unique in this regard.

It remains to show that 〈L, [∇], T ab〉 is a model of Maxwell gravitation.

Let ∇ be an arbitrary element of [∇]. ∇ is a Newton-Cartan connection,24

and is evidently compatible with [∇]; so by Proposition 4, ∇̃ = (∇, ζatbtc)
for a spacelike ζa such that ∇̃[aζb] = 0. Since ∇̃ and ∇ are rotationally

equivalent, we also have that ∇[aζb] = 0. By equation (10b),

ρζa = ∇nT
na (29)

So first, the fact that ζa is spacelike entails that (12a) is satisfied.

23cf. Glymour (1970), Glymour (1977), Barrett and Halvorson (2015).
24As remarked earlier, any flat connection trivially satisfies the homogeneous Trautman

conditions.
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Second, from (10a) and the standard equation relating curvature tensors

for different connections, we obtain

4πρtbtc = R̃bc

= 2tbt[a∇c]ζ
a

= −tbtc∇a(ρ
−1∇nT

na)

Since ta 6= 0, it follows that equation (12b) is satisfied.

Finally,

∇c(ρ−1∇nT
na)−∇a(ρ−1∇nT

nc) = ∇[cζa]

= 0

So equation (12c) is satisfied.

Proposition 6. Let 〈L, [∇], T ab〉 be a model of Maxwell gravitation such that

at all points in L, ρ 6= 0. Then there is a unique Newton-Cartan connection

∇̃ compatible with [∇] such that 〈L, ∇̃, T ab〉 is a model of Newton-Cartan

gravitation.

Proof. First, we show existence. Let ∇ be an arbitrary element of [∇], and

define

∇̃ = (∇, tbtcρ−1∇nT
na) (30)

∇̃ is a Newton-Cartan connection compatible with [∇]. For, given Propo-

sition 4, it suffices to observe that ρ−1∇nT
na is a spacelike field which is

twist-free (by equations (12a) and (12c)).

Further, 〈L, ∇̃, T ab〉 is a model of Newton-Cartan gravitation. First, from

equation (12b),

R̃bc = −tbtc∇a(ρ
−1∇nT

na)

= 4πρtbtd
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So equation (10a) is satisfied. Second,

∇̃nT
na = ∇nT

na − tntk(ρ−1∇mT
mn)− tntk(ρ−1∇mT

ma)T nk

= ∇nT
na −∇mT

ma

= 0

where we have used equation (12a). So equation (10b) is satisfied.

We now prove uniqueness. Suppose that ∇̃ and ∇̃′ are two Newton-

Cartan connections, compatible with [∇], such that ∇̃nT
na = ∇̃′nT na =

0. By Proposition (4), ∇̃′ = (∇̃, ζatbtc), where ∇̃[aζb] = 0. But then by

equation (13), ∇̃′nT na = ∇̃nT
na − ζa. So by supposition (and the fact that

ρ 6= 0), ζa = 0, and so ∇̃′ = ∇̃.

6 Constructing spacetime

Let’s take stock. On the face of it, a model of Maxwell gravitation 〈L, [∇], T ab〉
might be imagined to have strictly less structure than a model of Newton-

Cartan gravitation 〈L, ∇̃, T ab〉: the latter has all the same stuff which the

former has, but also includes a standard of acceleration. What Proposition 6

shows is that—in the case that ρ is nowhere-vanishing—there is a sense in

which this appearance is misleading, since the “extra” structure (the stan-

dard of acceleration) can be defined from the other structure in the model:

the standard of acceleration is defined as that according to which the net

gravitational acceleration of the matter encoded by T ab is zero.

Note that we do need to represent the matter by a mass-momentum

tensor (rather than just a mass density) if this reconstruction is to work: a

mere mass density does not carry enough information to fix a standard of

acceleration, i.e., to determine a unique Newton-Cartan connection.25 For

25Wallace (2016b) and Weatherall (2015) both make the same observation: the underly-
ing point is just that Poisson’s equation admits of homogeneous solutions which correspond
to nontrivial gravitational fields—and since it is linear, superimposing such a solution onto
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example,26 let 〈L, ∇̃, T ab〉 be some model of Newton-Cartan gravitation, and

consider the structures 〈L, ∇̃, ρ〉 and 〈L, (∇̃, (∇̃aφ)tbtc), ρ〉 (with ρ = T abtatb)

where in some coordinate system (t, x, y, z) adapted to L,

φ = exey sin(
√

2z) (31)

One can show that both structures satisfy equation (10a) (the satisfaction

of equation (10b) does not arise)—and clearly, both structures give rise to

the same standard of rotation, and so both correspond to the same Maxwell-

spacetime-based structure 〈L, [∇], ρ〉.
Now, compare the possibility of reconstructing a model of Newton-Cartan

gravitation from a model of Maxwell gravitation with an observation made

by Pooley.27 He notes that the presentation by Earman and Friedman of

Newtonian spacetime as 〈L,∇, Aa〉 (where Aa is the timelike vector field

representing absolute space) has a certain redundancy: 〈L,Aa〉 has the same

structure, in the sense that the derivative operator∇may be defined from the

structure of L and Aa. One way of thinking about Proposition 6 is as showing

that a Newton-Cartan model 〈L, ∇̃, T ab〉 (in which ρ 6= 0 everywhere) carries

a similar form of redundancy: provided we know the standard of rotation

associated to ∇̃, and provided we know the character of T ab, we can “fill in

the blanks” to reconstruct ∇̃ itself.

That said, there are two important differences between this case and the

case raised by Pooley. The first is that in the example of Newtonian space-

time, we note that a piece of spatiotemporal structure (the connection) may

be defined in terms of other pieces of spatiotemporal structure (the Leibnizian

spacetime structure, plus the structure of absolute space). By contrast, here

a given solution for a fixed mass density ρ will yield another solution for that same mass
density ρ. Note that imposing boundary conditions will typically restore uniqueness of
solutions.

26I take this example from Jim Weatherall; for further discussion, see Dewar and
Weatherall (2017).

27(Pooley, 2013, §4.5)

21



we have a piece of spatiotemporal structure (the standard of acceleration) be-

ing defined in terms of spatiotemporal structure (the Maxwellian spacetime

structure) and non-spatiotemporal structure (the mass-momentum tensor).

This gives us a better handle on the question of whether acceleration is ab-

solute or relative in the context of Newtonian gravitation. To claim that

acceleration is relative in Maxwell gravitation would mean taking the space-

time structure in a model 〈L, [∇], T ab〉 to be given by the Maxwell spacetime

〈L, [∇]〉, rather than by the Newton-Cartan structure 〈L, ∇̃〉 definable within

the model. In favour of this interpretation, note that L and [∇] are the only

primitive geometrical structures in any model of Maxwell gravitation; so on

a view which identifies spacetime structure as just the primitive geometrical

structure of a theory, it would be very natural to read this theory as a theory

with merely relative acceleration.28 On the other hand, if one has a different

conception of spacetime structure, then it may well be that the Newton-

Cartan connection is properly identified as spatiotemporal structure—the

fact that it is derived from material dynamical structures (i.e., T ab) notwith-

standing. In particular, Knox’s “spacetime functionalism”29 holds that the

spacetime structure in a theory is whatever structure encodes the relevant

notion of inertial frame in that theory. There are good grounds for thinking

that this role is played by the Newton-Cartan connection—and hence, for the

spacetime functionalist to maintain that acceleration in Maxwell gravitation

is absolute. Thus, this case provides a useful (although admittedly partial)

illustration of the so-called “dynamical approach to spacetime geometry”,30

in which one seeks to characterise spacetime geometry as a codification of

the behaviour of dynamical structures.31

The second (perhaps related) distinction is that such a unique reconstruc-

28For example, Maudlin (2012) and Dorr (2011) are both plausibly read as employing a
methodology of this kind.

29Knox (2014)
30Brown (2005), Stevens (2015)
31Wallace (2016a) discusses these issues in more depth.
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tion is always available in the Newtonian spacetime case,32 whereas unique

reconstruction is here only guaranteed by requiring the nonvanishing of the

matter: in effect, by requiring that there be sufficient material structure to

everywhere “probe” the spatiotemporal structure.

What happens when the matter distribution does vanish in some re-

gions, then? In such a case, we are still able to construct a Newton-Cartan

connection—but, in general, the connection will not be unique. For example,

consider the case where T ab = 0. Trivially, 〈L, [∇],0〉 is a model of Maxwell

gravitation; but we can show that 〈L,∇,0〉 and 〈L, (∇, (∇aφ)tbtc),0〉, where

∇ ∈ [∇] and φ is as in equation (31), are both models of Newton-Cartan

gravitation for which T ab = 0. However, these models are distinct (non-

isomorphic): the connection (∇, (∇aφ)tbtc) is not flat (but merely has a

vanishing Ricci tensor).

Bearing this in mind, consider the following remarks of Saunders:

What of possible worlds, and distinctions among them drawn

in [Newton-Cartan gravitation], invisible to ours? Take possible

worlds each with only a single structureless particle. Depending

on the connection, there will be infinitely many distinct trajecto-

ries, infinitely many distinct worlds of this kind. But in [Maxwell-

gravitation] terms, [. . . ] there is only one such world—a trivial

one in which there are no meaningful predications of the motion

of the particle at all. Only for worlds with two or more particles

can distinctions among motions be drawn.33

We have now seen how to extend this observation to a field-theoretic formu-

lation of Newtonian gravitation: in general, there are distinct but “materi-

ally identical” models of Newton-Cartan gravitation (such as 〈L,∇,0〉 and

〈L, (∇, (∇aφ)tbtc),0〉), which will correspond to a single model of Maxwell

32Admittedly, “always” is a slightly odd term to use here, since there is effectively only
one case: Newtonian spacetime is unique up to isomorphism.

33(Saunders, 2013, pp. 46–47)
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gravitation.

The natural next question is whether Saunders is correct that the extra

structure of Newton-Cartan gravitation compared to Maxwell gravitation

is “surplus”. Consider a pair of such materially identical models M,M ′ of

Newton-Cartan gravitation. The only difference between M and M ′ concerns

the nature of spacetime in empty regions. So, at issue is whether such a

difference constitutes an empirical difference. It turns out, however, that this

is not a clear-cut question, for one can find (intuitively plausible) criteria of

empirical equivalence that generate different answers. On the one hand, M

and M ′ agree with respect to all material structure: thus, the full collection

of every piece of observational data regarding M is identical to that regarding

M ′. On the other, it is not straightforwardly the case that M and M ′ agree

on the content of all possible observations. For although there is not (in

fact) any matter in the empty regions, there could have been—and were

such matter to have been introduced, the motions that it would have made

would suffice to empirically discriminate between M and M ′ (or to rule them

both out in favour of some third alternative). More generally, the distinction

at issue is whether unactualised dispositions may properly be considered as

empirically respectable properties.34

Finally, I turn to comparing the analysis given here with the (related) ac-

count of Weatherall (2015). One difference is with regards to the framework:

Weatherall’s analysis represents the source matter via a mass density ρ, and

considers what kinds of trajectories for test particles would be permissible

for such a mass density. By contrast, the analysis above uses the mass-

momentum tensor T ab to represent matter which is simultaneously source

and test: in the Newton-Cartan theory, for instance, equation (10a) encodes

T ab’s role as source matter, and equation (10b) encodes its role as test mat-

ter. Moreover, the only dynamics in play in Weatherall’s paper is that of

34For an illuminating discussion of Newton’s attitude towards such dispositions (in the
gravitational context), see Stein (1970).
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gravitation.

Within this framework, Weatherall characterises the dynamically per-

missible trajectories (for a given mass density ρ on Maxwell space-time) as

follows. First, observe that given a Maxwell spacetime equipped with a mass

density, 〈L, [∇], ρ〉, for any ∇ ∈ [∇], there exists a spacelike vector field Ga

such that 〈L,∇, ρ, Ga〉 satisfies equations (3a) and (3b). Given such a Ga,

the allowed trajectories are then all and only those curves whose tangents

satisfy

ξn∇nξ
a = Ga (32)

Note that the choice of Ga (for a given ∇) is not unique, and not just in

the manner captured by the gravitational gauge symmetry (7): for instance,

given a scalar field φ of the form (31), then 〈L, [∇], ρ, Ga + ∇aφ〉 will also

satisfy (3a) and (3b)—but will pick out a different set of allowed trajecto-

ries, where the two sets of trajectories do not even agree on the relative

accelerations of bodies (and hence, correspond to distinct Newton-Cartan

connections).

The models of gravitation on Maxwell spacetime are then identified as

follows: 〈L, [∇], ρ, {γ}〉 (where {γ} is a set of timelike curves on L) is a

model if and only if (i) for any ∇ ∈ [∇], there is some spacelike field Ga
∇ such

that 〈L,∇, Ga
∇, ρ, {γ}〉 satisfies equations (3a), (3b) and (32); and (ii) {γ} is

appropriately maximal, i.e., if γ′ is a curve such that ξ′n∇nξ
′a = Ga

∇ (with

respect to any ∇ ∈ [∇]), then γ′ ∈ {γ}. Note that these conditions don’t

quite line up with Maxwell gravitation as I’ve defined it, even allowing for the

difference in framework: Weatherall’s approach doesn’t encode a continuity

equation. More significantly, each model is equipped with all the allowed

trajectories for test particles, even in empty regions (i.e. regions in which

ρ = 0).

Weatherall’s key result is then the following (where I have modified his

notation, to match that used in this paper):

Let {γ}ρ be the collection of allowed trajectories for a given
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mass distribution ρ in Maxwell-Huygens [i.e., Maxwell] space-

time 〈L, [∇]〉 [. . . ]. Then there exists a unique derivative operator

∇̃ such that (1) {γ}ρ consists of the timelike geodesics of ∇̃ and

(2) 〈L, ∇̃〉 is a model of Newton-Cartan theory for mass density

ρ.35

One word of warning: speaking of the collection of allowed trajectories for

a given mass distribution (in a Maxwell spacetime) is a little infelicitous,

since—as discussed above—a mass density on Maxwell spacetime does not

fix a unique collection of allowed trajectories for test particles. So it would

be better to speak of a collection of allowed trajectories.36

Now, to facilitate the comparison between this and Proposition 6, recall

that (in the contexts where ρ 6= 0, i.e., the contexts in which Proposition 6

applies) we can decompose the mass-momentum tensor into a vector field

ξa and a stress tensor σab—and if σab vanishes (i.e. in the absence of non-

gravitational interactions) the reconstructed connection is that according to

which the integral curves of ξa are geodesics. So whereas Weatherall’s obser-

vation is that a full collection of dynamically allowed trajectories is sufficient

to pick out a unique Newton-Cartan connection, Proposition 6 shows that a

single congruence of such trajectories is sufficient. This makes Weatherall’s

result slightly less strong than Proposition 6, at least in the context of non-

vanishing ρ: it is a generic feature of differential geometry that a connection

is uniquely identified by its geodesics, whereas it is not typically the case

that a single congruence of geodesics is sufficient.37 (It suffices in the context

of Proposition 6 only because of the further requirement that the Newton-

Cartan connection be compatible with the background Maxwell spacetime.)

35(Weatherall, 2015, Proposition 4)
36To be clear, it’s evident that Weatherall appreciates this—I’m just aiming to forestall

potential confusions that might arise from quoting him out of context.
37Which is not to say that the observation is trivial: it is a nontrivial fact that one can

identify a collection of allowed trajectories in such a manner that they will be apt to be
the geodesics of some connection. (For a discussion of how to determine whether a class
of curves may be interpreted as the geodesics of some connection, see Matveev (2012).)
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That said, because Weatherall’s approach also includes the trajectories for

test particles in empty regions, a model of Newton-Cartan gravitation can

always be reconstructed from a model of Weatherall gravitation, even if there

are empty regions.

Weatherall argues that this result shows that Saunders has made an error

here:

[The proposition above]—at least as I interpret it here—reveals

a certain inadequacy in Saunders’s account. Saunders insists

that there is no privileged standard of acceleration in Maxwell-

Huygens space-time. [. . . ] Nonetheless, it turns out that once one

takes the dynamically allowed trajectories into account, one can

define a standard of acceleration, namely, the unique one relative

to which the allowed trajectories are geodesics.38

Of course, Weatherall’s technical claim here is quite correct; but I suggest

that the technical claim doesn’t quite capture what Saunders has in mind.

From Saunders’ remarks, it seems clear that he is not including all dynam-

ically allowed trajectories as part of the empirical content of the theory;

rather, he is including only the actual trajectories, the actual motions of

matter. In other words, the disagreement between Saunders and Weatherall

is essentially that already discussed, over what the most appropriate criterion

of empirical equivalence between models of Newton-Cartan gravitation is.

Saunders appeals to the former criterion (where empirical equivalence means

agreement with respect to material structure), and so concludes that Newton-

Cartan gravitation draws distinctions without differences; Weatherall appeals

to the latter criterion (where empirical equivalence requires agreement about

the counterfactual motions of hypothetical test particles),39 and so denies

38(Weatherall, 2015, pp. 89–90)
39For instance, “given some distribution of matter in space-time, it is these curves [the

allowed trajectories] that form the empirical content of Newtonian gravitational theory.”
(Weatherall, 2015, p. 89)
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that Newton-Cartan gravitation draws distinctions without differences. In-

sofar as Maxwell gravitation does collapse those distinctions, it—rather than

Weatherall’s theory—represents the natural extension of Saunders’ remarks

to the field-theoretic context.

Finally, even besides these differences over which class of models are

picked out, there is also (I claim) a value to having equations which more

simply and directly pick out the models. In particular, it helps us see a little

more clearly the reason why the theory may be set on Maxwell spacetime,

but not on anything weaker. If the game is just that of picking out a certain

class of models, then we can set a gravitational theory on Leibniz spacetime

just as easily as upon Maxwell spacetime. For consider the following theory,

of “Leibniz gravitation”: a triple 〈L, ρ, {γ}〉 is a model of Leibniz gravitation

if and only if for some ∇ compatible with L, there is some spacelike field Ga

such that 〈L,∇, Ga, ρ, {γ}〉 is a model of Galilean gravitation; and (ii) {γ} is

appropriately maximal. We can prove a reconstruction theorem for Leibniz

gravitation of just the same sort as Weatherall gravitation: given any model

of Leibniz gravitation 〈L, ρ, {γ}〉, there is a unique derivative operator ∇̃
such that 〈L, ∇̃, ρ, {γ}〉 is a model of Newton-Cartan gravitation.40

Yet Leibniz gravitation is a blatant pseudo-theory—“arrant knavery”, as

Belot rightly derides it.41 Why is it knavery? I say: because we cannot give

any set of equations, formulated in terms which refer only to the structure

of Leibnizian spacetime, which picks out those models. This is not to say

that there isn’t a distinction between the forms of Leibniz gravitation and

Weatherall gravitation: in Leibniz gravitation, rather than universally quan-

tifying over connections compatible with the background structure, we exis-

tentially quantified over them. My claim is just that the fact that Maxwell

gravitation is a legitimate theory, whereas Leibniz gravitation is not, can be

40We can only do this because of the presence of all members of {γ}, though. Unlike
Maxwell spacetime, Leibniz spacetime has insufficient structure to enable one to infer a
unique connection from a single vector field.

41Belot (2000)
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hard to see when both are presented merely as classes of models. By contrast,

if we insist that the class of models be picked out by a set of equations, then

we can more easily keep ourselves honest.42
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