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Abstract

According to the homeostatic property cluster family of accounts, one of the
main conditions for groups of properties to count as natural is that these properties
be frequently co-instantiated. I argue that this condition is, in fact, not necessary for
natural-kindness. Furthermore, even when it is present, the focus on co-occurrence
distorts the role natural kinds play in science.

Co-occurrence corresponds to what information theorists call redundancy: ob-
serving the presence of some of the properties in a frequently co-occurrent cluster
makes observations of other members of the cluster comparatively uninformative.
Yet, scientific practice often, and increasingly often, singles out as natural groups of
properties that are not redundant, but synergic: instantiations of properties in syner-
gic clusters are not necessarily informative about instantiations of other properties
in the cluster; rather, it is their joint instantiation that plays the explanatory role for
which the natural kind is recruited.

1 Introduction

Natural kinds are supposed to help us, among other things, explain the frequent success
of our inductive practices. In the usual caricature, we are often able to move successfully
from this F is a G to all Fs are, likely, Gs, and at least sometimes these inferences are
grounded on the fact that the Fs form a natural kind.1 The question that will interest me
here is how should we construe natural-kindness, so that natural kinds live up to these
theoretical expectations.

One popular answer to this question, and perhaps the default answer until the early
90s, is that all natural kinds have an intrinsic essence: a set of necessary and jointly
sufficient intrinsic properties for an entity to count as a member of the kind in question.
The presence of the essence, in its turn, would cause or otherwise explain the presence
of all of the properties of Fs we are able to draw successful inductive inferences about.
In the usual example of induction, introduced above, it is supposed to work more or less
as follows: we observe that a certain F is G. Now, it just so happens that being an F
consists in having, say, property E—i.e., this property constitutes the essence of F-hood.
It also just so happens that the probability of an entity having property G, conditional

1Not always. See Bird (2015) for discussion.
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on its having property E, is very high. Putting all of this together, we are warranted in
concluding that Fs are likely to be Gs.2

One problem with this appeal to intrinsic essences is that many natural kinds do not
have them. The most prominent example is biological species, where the consensus
among philosophers of biology is that “the idea that species can somehow be ‘defined
in terms of their DNA’ has no basis in biological fact” (Okasha 2002, p. 197). Yet we
are often perfectly justified in inferring, e.g, from the presence of relevant phenotypic
traits in a member of a certain species, the likely presence of those same traits in other
members of the same species.3

The Homeostatic Property Cluster [HPC] theory4, one of the leading contemporary
approaches to the metaphysics of natural kinds, is, among other things, an attempt at
doing induction without intrinsic essences. According to Boyd’s original formulation
(most clearly codified in Boyd 1999, p. 143f), HPCs are individuated by clusters
(groups) of properties that typically meet a number of conditions, the most important of
which are the following two (quoted from Boyd ibid):

Clustering as Co-Occurrence: [These properties] are contingently clustered in nature
in the sense that they co-occur in an important number of cases.

Homeostasis: Either the presence of some of [these] properties tends . . . to favor the
presence of the others, or there are underlying mechanisms or processes that tend
to maintain the presence of [these] properties, or both.

Other conditions make reference to the “causal5 importance” of this property cluster
(i.e., whether effects we care about, theoretically or practically, follow from the co-
instantiation of these properties), or the fact that the kind individuated by this cluster has
no analytic definition. While these other conditions are important in warranting talk of
HPCs as natural kinds, the task of explaining how they help ground inductive inference
is mainly discharged by the two conditions I have singled out. It should be noted that, in
these conditions, no assumptions are made about a privileged essence subset among the
properties in the cluster, from which probabilistic connections would flow to all other
properties. For all the account says, there just is an unstructured probabilistic connection
among properties in the cluster whereby the instantiation of some of them (and none in
particular) makes the instantiation of the rest likely.

2Inductive inference takes widely different forms, of course, and go far beyond this somewhat carica-
turesque example. It is possible that some of the shortcomings of the homeostatic property cluster account I
identify in this paper could be traced back to relying on this kind of simple induction as a guiding example.
As we will see, much of the inductive inference science engages in is significantly more complex.

3In current philosophy of biology, essentialism about species has taken a historical turn (Godman 2015;
Griffiths 1999; Millikan 1999; Okasha 2002) whereby essences are no longer taken to be intrinsic, but rather
historical properties of lineages of populations. In what follows I will be defending a conservative modification
of the homeostatic property cluster theory of natural kinds, and in particular one that is compatible with the
postulation of historical essences for species.

4The original formulation is by Richard Boyd, in his (1989); see also Boyd (1999), Chakravartty (2007),
Kornblith (1993), Magnus (2011), among many others.

5While throughout this paper I often talk of causal structure, the models I will describe in subsequent
sections are causally agnostic, and focus on probabilistic (informational) connections. In any case, whenever
these connections are grounded on causal facts my discussion applies to them as well. See also footnote 6.
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This account is very popular among philosophers working on the metaphysics of natural
kinds, but it has certainly not passed unchallenged. One important group of objec-
tions comes from a series of papers by Marc Ereshefsky and colleagues (Ereshefsky
& Matthen 2005; Ereshefsky 2010; Ereshefsky & Reydon 2015). The main claim
developed by Ereshefsky in this body of work is that the HPC account does not agree
with actual scientific practice. First, scientific kinds (i.e., those appealed to in the process
of scientific inquiry) do not always aim at uncovering causal structure, while the avowed
focus of the HPC account is precisely on “the accommodation of inferential practices to
relevant causal structures” (Boyd 1999, p. 159; cited in Ereshefsky & Reydon 2015, p.
973). Second, in the HPC account, the entry point to the process of delineating causal
structure is similarity (i.e., property overlap) among kind instances: homeostatic clusters
go hand in hand with sets of kind instances in which the same collection of properties is
(noisily) replicated. Yet for many natural kinds similarity among instances is, at best,
of secondary importance: for example, biological species, precisely one of the chief
motivating cases for the HPC account, are often polymorphic (say, sexually dimorphic,
as with mammals), and the similarity among morphs need not be particularly high, and
on occasion is extremely low (Magnus 2011; Martínez 2015). In such heterostatic kinds,
(kinds with stably dissimilar instances; Ereshefsky & Matthen 2005) natural-kindness
and similarity come apart.

In this paper I use simple probabilistic models to examine whether the Clustering as
Co-Occurrence and Homeostasis conditions at the heart of the HPC account are able
to ground inductive inference, whenever natural kinds are called upon to do so. The
upshot of my discussion will be that, even granting Ereshefsky’s first main point that
many bona fide scientific kinds are not covered by the HPC account, and even if we
focus on the delineation of causal structure, the account does not deliver: a great deal of
causal structure (and, correspondingly, very many inferential processes) are not captured
by homeostatic property clusters, as traditionally conceived. On the other hand, I will
characterize a different ingredient in natural-kindness, alongside co-occurrence, able to
accommodate the bits of structure that traditional HPC accounts leave out. In particular,
I will show that heterostatic kinds, pace Ereshefsky, can ground inductive inference, and
are compatible with a view of natural kinds as entities that delineate causal structure.

More concretely, I will argue that meeting Clustering as Co-Occurrence is, in fact, not
necessary for a property cluster to ground inductive inference. I will also argue that,
even when this condition is met, focusing on co-occurrence distorts the role natural
kinds often play in inductive inference. Co-occurrence corresponds to what information
theorists call redundancy: properties in a cluster are redundant insofar as observing the
presence of some of them makes observations of the rest comparatively uninformative;
but scientific practice often (and increasingly often) singles out as natural groups of
properties that are not (or not just) redundant, but synergic. Instantiations of properties in
synergic clusters are not necessarily informative about instantiations of other properties
in the cluster; rather, it is the joint instantiation of all or many of those properties that
plays the explanatory role for which the natural kind is recruited.

In sections 2 and 3 I present a series of probabilistic models where accounts of natural-
kindness can be given formal expression. I will use them to construct idealized examples
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of essence kinds, HPCs, and synergic, largely non-redundant (yet natural) kinds. These
latter synergic kinds are offered as counterexamples to the implicit HPC claim that
homeostatic co-occurrence is enough to accommodate all inference-relevant causal
structure. In section 4 I examine a rejoinder to this counterexample, inspired by Boyd’s
treatment of species polymorphism, that I interpret as aiming at redescribing synergy in
terms of redundancy. I conclude that this redescription relies on metaphysically suspect
claims, and is anyway theoretically idle.

While the bulk of the discussion in this paper is framed in terms of idealized models,
section 5 shows that synergic kinds are not just an academic exercise: I briefly describe
two contemporary research programs, in genetics and neuroscience, that are predicated
on the existence of natural kinds with an important synergic component. Finally, section
6 offers some concluding remarks, and a tentative substitute for the Clustering as
Co-Occurrence and Homeostasis conditions. The resulting theory is a conservative
extension of traditional HPC accounts.

2 Probabilistic Models of Natural-Kindness

As the discussion above suggests, much of the contemporary debate on the metaphysics
of natural kinds (and, at any rate, the aspect of the debate to which this paper aims
at contributing) focuses on which are the criteria for counting groups of properties,
instantiations of which bear different probabilistic relations to one another, as natural. I
will investigate this question through probabilistic models.

To keep it as simple as possible, I will focus on “worlds” in which only six properties
could possibly be instantiated. Each of these properties will be modeled by a binary
random variable, P1 . . . P6, that takes the value 0 if the corresponding property is not
instantiated, and 1 if it is. For simplicity, I will sometimes abuse language and use Pi to
refer to the properties themselves, not the associated random variables.

Events in these worlds are represented by the joint values of the six random variables.
For example, 000111 stands for the event consisting of properties four to six, and no
other, being instantiated. Now, facts concerning which properties are likely, or not, to
co-occur, which properties are likely instantiated conditional on others, etc. can be
summarized in a joint probability distribution over those six random variables. Different
worlds will correspond to different distributions. Our task is to work out which groups
of properties should count as natural in these worlds. To get the hang of things, let’s see
how this works for essence kinds.

2.1 Essence Kinds

Take, to start with, World 1 as described by the probability distribution in Figure 1. In
the figure, the probability distribution is summarized by a Bayesian network: a graph
that is both acyclic (i.e., with no loops), and directed (i.e, where edges have a privileged
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direction). In Bayesian networks, if an edge goes from node A to node B we say that
A is a parent to B (and B a child to A). The graph represents the following so-called
“Markov condition”: every node ni in the network is independent of any other node n j,
conditional on the value of ni’s parents. This means that, given the Bayesian network,
and, for every node, a table of probabilities of that node conditional on its parents,
we can reconstruct the full joint probability distribution. For much more on Bayesian
networks, see Koller & Friedman (2009), chapter 3.

In this world there are two “root” properties, P1 and P4, instantiations of each of which
reliably (if noisily) correlate with the instantiations of two other “children” properties—
P2 and P3 for P1; P5 and P6 for P4. P1 and P4 are independent from one another.

Figure 1: Two essence kinds

Faced with this world, we want to know which groups of properties should be considered
natural. That there should be natural groups of properties seems clear: this world is able
to accommodate induction within certain groups of properties (for example, witnessing
an instantiation of P2 provides very good evidence that properties P1 and P3 will be
instantiated as well; the same happens with properties in the P4, P5, P6 group) but not
across groups (nothing of what we learn about, e.g., P2 gives us any information about,
e.g., P5.)

In this particular case, an essentialist account of natural-kindness is compelling. There is
an asymmetry built into the probability distribution, whereby probability of instantiation
“flows” from root properties onto their children, in the following sense: first, once we
know, e.g., the value of the P1 random variable, P2 is no longer informative about P3,
and vice versa (this is just the Markov condition on Bayesian networks—see above.)
Second, if we have to choose the instantiation of one property among P1, P2 and P3 as
the criterion for the instantiation of the other two, it is P1 that minimizes false alarms
and misses in the instantiations of the other properties (e.g., P(P2|P1) = 0.95, but
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P(P2|P3) = 0.905.) Mutatis mutandis for P4, P5 and P6. It makes sense, then, to see
World 1 as composed of two independent essence kinds, one with P1 as essence, another
with P4 as essence.6

So far, so good, but, as we are about to see, there are other probabilistic structures in
which there are equally compelling candidates for the role of natural kinds, but in which
no one property, or group thereof, has a claim to being the essence of the kind. The
homeostatic property cluster account was formulated with these other structures in mind.
The following subsection provides an example.

2.2 Redundant Kinds

Consider now World 2, described by the probability distribution in Figure 2, together
with the factors in Table 1. In Figure 2, the probability distribution is summarized by
a Markov network, In these graphs, probabilistic influence diffuses in no privileged
direction, and the full joint distribution is constructed by multiplying the so-called
“factors” that record pairwise influences between connected nodes, then normalizing.
For much more on Markov networks, see Koller & Friedman (2009), chapter 4.

This is a world with two clusters, C1 = {P1, P2, P3} and C2 = {P4, P5, P6}, such that
properties within each one of them co-occur frequently, but instantiations of properties
in a cluster are independent from those of properties in the other cluster.

Pi P j

0 0 99
1 0 1
0 1 1
1 1 99

Pi P j

0 0 25
1 0 25
0 1 25
1 1 25

Table 1: The factor in the left table records the way in which properties Pi and P j

within the same cluster influence one another: co-occurrence (and co-absence) are vastly
more probable than situations in which one of the two properties is instantiated but not
the other. The factor in the right table records the way in which properties Pi and P j

influence one another when they belong to different clusters (i.e., Pi ∈ C1 and P j ∈ C2):
all rows are equal, that is, trans-cluster properties are independent from one another.

Here we have as much potential for induction as we had in World 1: instantiations
of properties in C1 (C2) go hand in hand with one another and, for example, seeing
an instantiation of P5 provides excellent evidence that P4 and P6 will be instantiated
too. Yet, this world provides no grounds for the postulation of essences: there is no

6Note that I have not given a causal gloss on the role of essences. This is because causal facts cannot be
read off probability distributions. This causal agnosticism is, I submit, an advantage of the model: it allows it
to apply to the HPC account proper, with its reliance on causal connections, and to other, related accounts such
as Slater (2015)’s stable property clusters, that substitute causal connections with a modal stability constraint.
This kind of constraints, arguably, are precisely what probability distributions inform us of. I discuss Slater’s
account in the following subsection.
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P1 P2

P3

P4 P5

P6

Figure 2: Two HPCs

asymmetry in the pattern of instantiations of properties within each cluster that might
justify such postulation (and the probability distribution itself is causally agnostic).

The HPC suggestion is that we abandon the search for privileged properties, and simply
focus on which groups of properties frequently co-occur with one another. The partition
of World 1 in clusters C1 and C2 is, plausibly, then, the most natural one—the one cutting
at the proverbial joint. Within each cluster, properties are frequently co-instantiated
with one another, but not with those in the other cluster. This is mirrored in the fact
that induction works within each of these two clusters, but not across them. No other
partition of World 1 into clusters has this property.

This probabilistic relation among properties belonging to the same natural kind (prop-
erties within C1 or C2, in our example) is what the HPC account, and other related
ones, single out as one of the main hallmarks of natural-kindness, under the name
of co-occurrence. It is also a sufficient condition for what information theorists call
redundancy (Griffith et al. 2014; Williams & Beer 2010): properties in a frequently
co-occurring cluster tend to be doing the same thing at the same time; this means that a
big part of the information that individual properties carry about World 2 is “repeated”
within a cluster; one can learn from an instance of P5 that all of C2 is likely to be instanti-
ated, and subsequent exposure to instances of P4 and P6 is, to that extent, comparatively
informationally-redundant: roughly, the information that witnessing the instantiation of
several properties gives about the world is less than the sum of the information that each
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such instantiation gives on its own.7

Matthew Slater’s stable property cluster account of natural kinds (2015), has a more
formal bent and its reliance on informational redundancy is, thus, particularly clear.
According to Slater, the main condition to be met by natural clusters of properties is
what he calls cliquish stability:

. . . properties are clustered in such a way that possession of some of them
reliably (if imperfectly) indicates the possession of the whole cluster (Slater
2015, p. 397)

Groups of properties in such clusters are reliable indicators of the whole. Like a real-life
clique, such clusters are boring:

Peg, Quinn, Ralph, Sarah, and Tim form a clique, say. Spotting Peg, Quinn,
and Ralph at the mall means that Sarah and Tim are probably there as well.
(Slater 2015, p. 397)

Peg’s gang are predictable, and this makes them a suitable target for induction. This
is the reason why redundant clusters figure so prominently in the HPC story, but this
fixation on redundacy stems from too narrow a focus on the (undoubtedly central) case
in which the causal structure on which induction depends is of the sort that gives rise to
sets of similar things—things which, more or less noisily, reinstantiate the very same
set of properties, as in worlds 1 and 2.

As I said in the introduction, Ereshefsky & Reydon (2015), among others, have criticized
the almost exclusive focus on similarity in the HPC account: scientific taxonomies
often prioritize other criteria. Ereshefsky’s discussion, though, suggests that this is
because scientific taxonomy has other objectives than just uncovering the grounds of
our inferential practices. This tacit equation between similarity- (and thus redundancy-)
based taxonomies and the explanation of inference is unhelpful. Inference in science
can, and routinely does, go well beyond what similarity affords. Even if we are solely
interested in the accommodation of inferencial practices, then, our account of natural-
kindness needs to go beyond redundancy (co-occurrence, cliquish stability, etc.) In the
following section, World 3 drives this point home.

3 Synergic Kinds

Consider now World 3, as described by the Bayesian network in Figure 3.

World 3 consists in two independent, noisy, exclusive-OR [XOR] logical gates: that
is, P5 is instantiated when one but not both of P4 and P6 is instantiated (plus some
noise). Mutatis mutandis for P2, P1 and P3. This world is not at all about redundancy

7More formally, two properties Pi and P j provide redundant information about the world iff the mutual
information between the joint random variable, W, of all random variables in the world, and the joint random
variable (Pi, P j) is less than the sum of the mutual informations of W and each individual random variable:
I(W; P1) + I(W; P2) > I(W; P1, P2). The definition of redundancy for more than two random variables is an
open theoretical problem.
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Figure 3: Two synergic kinds

(co-occurrence, cliquish stability, etc.): no property reliably indicates the presence of
any other property or subcluster. Take, for example, P1: knowing that this property
is instantiated gives us no information about the state of any other property in the
world. The same happens with any other single property. That is, for all i, j , i,
P(Pi = 1|P j = 1) = P(Pi = 1).

Still, this world is perfectly able to accommodate inductive inference. Within each of
the two clusters C1 = {P1, P2, P3} and C2 = {P4, P5, P6} seeing instances of two of
the properties in a cluster provides very good inductive evidence that the third property
of the cluster is not instantiated. Alternative partitions of the world into clusters (say,
even-numbered and odd-numbered) fail to accommodate these, or any other, inferences.
This suggests that C1 and C2 are just as natural in World 3 as they were in Worlds 1 and
2, and that World 3 has as conspicuous a joint as the other ones.

The main difference between the clusters in Worlds 1 and 2, and the clusters in World 3
is that what makes the latter be natural units is mostly synergic, as opposed to redundant,
information (Anastassiou 2007; Bertschinger et al. 2013): each property individually
carries no information about the others on its own, but the joint instantiation of each
two of them does. This is synergy, roughly, because the information about the world
obtained by witnessing the instantiation of several properties is higher than the sum of
the information provided by each separate instantiation.8 Even then, they do not indicate
that the third property in the cluster will likely be instantiated too, quite the contrary:
the case in which all properties in the cluater are instantiated (the typical member of
an HPC kind) has very low probability. I will talk of synergic kinds to refer to natural

8More formally, two properties Pi and P j provide synergic information about the world iff the mutual
information between the joint random variable, W, of all random variables in the world, and the joint random
variable (Pi, P j) is more than the sum of the mutual informations of W and each individual random variable:
I(W; P1) + I(W; P2) < I(W; P1, P2). The definition of synergy for more than two random variables is also an
open theoretical problem.
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kinds, such as the ones in World 3, that have a significant synergic component.

Slater invites us to picture a clique, a group of friends that hang out together most of
the time, as an intuitive example of a stable cluster kind. A love triangle offers an
analogously intuitive example for synergic kinds: Ralph and Peg are best friends with
one another, and both are in love with Quinn. As a result, the three of them hardly ever
hang out (that would be awkward) but any two of them very often do. If you know that
they form a love triangle, you can leverage this information: if you are looking for Peg
and you see Ralph and Quinn at the mall, you have excellent inductive evidence that she
will not be around, and you should go looking elsewhere.

4 Redundant redescriptions

Synergic kinds are as capable of grounding inductive inference as purely redundant
ones. If, moreover, they meet the other conditions singled out by HPC theorists (causal
importance, existence of a natural kind term, etc. see Boyd (1999), and above) then
they are natural kinds if traditional HPCs are. The exclusive focus on redundancy
in HPC theorizing stems, I have hypothesized, from too narrow a view of the forms
inductive inference can take. Richard Boyd’s discussion of species polymorphism is
a good example of this. Many, perhaps most, biological species present a discrete
set of stably different phenotypic variants, or “morphs”. Mammals, for example, are
sexually dimorphic: they come in two different phenotypic variants, male and female.
As Ereshefsky & Matthen (2005) helpfully put it, such species are heterostatic: it is not
that members of a species fail to be perfectly similar and, e.g., some lions happen to
have a mane and some happen not to; rather, it is a stable characteristic of certain species
that they come into a small number of sets of things that are comparatively similar to
those in the same set, and comparatively dissimilar to those in other sets.

I will presently suggest that, at least sometimes and at least partly, the heterostasis in
polymorphic species needs to be captured in terms of synergic property interactions in
the species in question. Here, however, is Boyd making do with just redundancy:

The fact that there is substantial sexual dimorphism in many species and
the fact that there are often profound differences between the phenotypic
properties of members of the same species at different stages of their
life histories . . . together require that we characterize the homeostatic
property cluster associated with a biological species as containing lots
of conditionally specified dispositional properties for which canonical
descriptions might be something like, “if male and in the first molt, P,” or
“if female and in the aquatic stage, Q.” (Boyd 1999, p. 165)

Boyd’s point, in essence, is that we can increase the redundancy of an arbitrary proba-
bility distribution by adding random variables. To see how this works consider again
the Peg-Quinn-Ralph love triangle introduced above. One way to see it is as a polymor-
phic kind: whenever you encounter the love triange, it’s under the form of one out of
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three stably different “morphs”; Peg-Quinn, Peg-Ralph, and Quinn-Ralph. Boyd’s sug-
gested treatment of polymorphic kinds amounts to introducing three new “conditionally
specified dispositional properties” for the love triangle to have:

• CS 1: the property of being such that, if Peg is there and Quinn is there, then
Ralph is not there.
• CS 2: the property of being such that, if Peg is there and Ralph is there, then

Quinn is not there.
• CS 3: the property of being such that, if Quinn is there and Ralph is there, then

Peg is not there.

and then pointing out that all three morphs have all three new properties. For example,
when it is Ralph and Quinn that are together at the mall, the love triangle still has the
property that if Peg is (were) there and Quinn is there, then Ralph is not (would not be)
there, etc. Once augmented with these three properties, the combinations of properties
of the triangle that concentrate most of the probability is given by Table 2.

Table 2: The “augmented” love triangle. P, Q and R are random variables
associated with Peg, Quinn and Ralph being at the mall, respectively.
The CS i are the Boydian conditionally specified dispositional properties
introduced above.

P Q R CS 1 CS 2 CS 2

1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1

These properties have made the love triangle largely informationally redundant: five
out of six properties are robustly tokened together when a “member” of the kind is
present, and this is probably enough to move it into HPC territory. The thing is, the three
rightmost columns in Table 2 are doing no real theoretical work; they just shadow the
leftmost three, and, in fact, if we were to infer the absence of Ralph from the presence
of Peg and Quinn, by using the new properties we would have to “read into” CS 1—that
is, we would need to consult the other three columns to find out how R behaves when P
and Q are both instantiated. That is to say, while it is certainly true that P, Q and R are
related in the way that the three CS i properties say they are related, this is a property of
the whole kind, not of each individual morph.

Back to species polymorphism proper, the Boydian postulation of conditionally specified
properties amounts to claiming that, e.g., triplewart seadevils (Cryptopsaras couesii) are
extremely sexually dimorphic in virtue of putative facts such as this: each individual
male seadevil (Ken, say), had he been a female, would have had a fully formed diges-
tive system. Whether Ken himself could have been a female triplewart seadevil is a
question best left to metaphysicians,9 and one that has no bearing on the status of sexual
dimorphism (cf. Magnus 2011).

9The answer to this question might have to do, for example, with whether Ken has an individual essence,

11



Recognizing kinds with synergic components alongside purely redundant ones allows
us to see dimorphism as a structural property of the probability distribution associated
with such species. With quite a bit of idealization, this would work as follows. We can
recognize three subclusters in the triplewart seadevil property cluster:10 A COMMON
subcluster, composed of properties (say, genetic, epigenetic or behavioral) typically
common to both morphs; a MALE subcluster, composed of properties typically exclu-
sive of the male morph; and a FEMALE subcluster, composed of properties typically
exclusive of the female morph. These three subclusters are related in a synergistic
manner, reminiscent of love triangles: if a morph has properties in COMMON and in
FEMALE, then it will (typically) not have properties in MALE (female seadevils do not
have properties that are exclusive of the male morph); mutatis mutandis for morphs with
properties in COMMON and FEMALE. Finally, if a morph has many properties in both
MALE and FEMALE then it typically will not be a seadevil, and thus will not have the
properties in COMMON.

Although a more realistic treatment of the seadevil property cluster would surely un-
cover a much more complex probabilistic structure, hopefully the foregoing sketch is
suggestive of the way in which synergy can help describe polymorphic, heterostatic
kinds. Polymorphism lies in the way morphs are informationally related to one another,
not in the exotic metaphysical potentialities of individual morphs (see Martínez 2015
for a fuller account of species polymorphism along these lines.)

5 Synergic Kinds in Science

So far I have argued against the necessity of homeostatic co-occurrence for natural-
kindness using mostly formal models. Synergic kinds, on the other hand, are far from
a mere academic curiosity. Before wrapping up, I will quickly point to two research
programs in which kinds with synergic components are postulated rather explicitly.

The first example is research on epistasis in molecular genetics (Cordell 2002; Fish,
Capra & Bush 2015; Mackay 2014; Moore 2003; Watkinson et al. 2008). Epistasis
consists in “non-linear molecular interactions [underpinning] the genotype-phenotype
map” (Mackay 2014, p. 22). While epistatic effects have been known since the beginning
of the twentieth century (Mackay, Stone & Ayroles 2009, p. 565), it’s only recently that
their systematic study has become computationally feasible.

In epistasis the contribution of different pieces of genetic material to the expression of
phenotypic traits is often synergic, in the sense explained above: the analogues of the
properties in the model worlds discussed in previous sections would be the presence or
absence of certain pieces of genetic material, together with the presence or absence of a

and whether such essence is independent of his sex. Adherents to Kripkean essentiality of origin theses
(Kripke 1980) will answer this question affirmatively if triplewart seadevil sex is fixed after conception, but
there might be other reasonable positions. The worry I am sketching here, and is developed more fully by
Magnus in his (2011), is that Boyd’s approach makes polymorphism hostage to these comparatively arcane
metaphsical considerations.

10This discussion is indebted to an anonymous referee.

12



certain phenotypic complex of interest (say, the one associated with a certain disease.)
The non-linearity associated with epistasis will often mean that the information that
the joint instantiation of different pieces of genetic material carry about the presence or
absence of the phenotype will be different from the sum of the individual informational
contributions of these pieces. One immediate consequence of this is that those traits
for which epistatic interaction is important will come out synergic. Take, for example,
fruit-fly wings: plausibly, they form a natural kind, yet we know that their shape is
underwritten by epistatic effects (Weber et al. 1999, 2001). This means that fruit-fly
wing will be a synergic kind, and not a traditional HPC.

The wings of fruit flies provide an example among many of a kind, antecedently
recognized as natural, that happens to have a synergic component, as a result of the
way in which genotype carries information about phenotype. As a different sort of
example,11 research on epistasis is prompting geneticists to characterize new putative
natural kinds, almost entirely based on synergic connections. E.g., it is suggested that
“gene interaction networks” (also GINs henceforth) in model organisms such as fruit
flies or Sacharomyces cerevisiae, are “likely to be generalizable . . . in other species”
(Mackay 2014, Box 1). One natural way of reading this suggestion is as claiming that
gene interaction network is likely to be a natural kind. The properties of GINs that
are postulated to be generalizable across species include, among others, their being
small-world networks12, or that fitness of double mutants depend on mutant genes being
in the same or different pathways (Mackay, ibid.). These properties go well beyond what
a co-occurrence based architecture can describe: if a GIN is, in particular, a small-world
network, then it is not just a redundant cluster. If one wishes to infer phenotypic traits
from genotypic data, playing fast and loose with network architecture just won’t do.

A possible rejoinder to this second sort of example on behalf of the HPC theorist is
that what Mackay is suggesting in the op. cit. is, precisely, that GINs are HPCs, with
properties such as being a small-world network being part of the property cluster in
question. But, as I argued in section 4 in the context of species polymorphism, if we
wish to use our knowledge of the gene interaction network kind to infer the behavior
of a new, unknown GIN, we will have to “read into” such distribution-summarizing
properties. The claim that most GINs are small-world (just as the claim that all mammals
are sexually dimorphic) is most useful when understood as a constraint on the probability
distribution of any new GIN (mammal species), not as a property to add to a putative
cluster of co-occurrent properties.

The second example of a research program in which synergy is routinely appealed to
is brain connectomics (Alivisatos et al. 2012; Hagmann et al. 2010; Sporns, Tononi &
Kötter 2005; Van Dijk et al. 2010), which is aimed at describing the connectivity network
(the connectome) of different nervous systems, under the hypothesis that “the pattern
of elements and connections as captured in the connectome places specific constraints
on brain dynamics, and thus shapes the operations and processes of human cognition”
(Sporns, Tononi & Kötter 2005, p. 249). What we know about the human connectome

11I would like to thank an anonymous referee for helping me distinguish these two sorts of examples.
12That is, graphs in which individual nodes have a small average number of connections to other nodes, yet

the average distance between two arbitrary nodes in the graph is also small. See Watts & Strogatz (1998).
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suggests, unsurprisingly, that “the human brain is a highly complex organ with a great
number of structurally distinct, heterogeneous, yet interconnected components” (op.
cit., p. 246). Beyond the coarsest level of description, then, a characterization of the
human brain kind will be more complicated, and have considerably more structure, than
the mere agreggation of co-occurrent properties in a cluster. human brain, I suggest,
is another example of a natural kind (antecedently recognized as such) that happens
to be highly informationally synergic. Suppose, for the sake of the exercise, that the
relevant properties in the human brain that should figure in a probabilistic model of the
sort developed in sections 2 and 3 are related to the presence or absence of particular
cortical minicolumns13. The claim then is that the activities related to such properties
depend on one another in a highly synergic fashion, and that mere co-occurrence of
minicolumn-related activity will not be able to capture these dependences.

Martjn van der Heuvel and colleagues’ comparative connectomics aims at uncovering
“conserved themes of wiring” in cross-species brain network topology (Heuvel, Bullmore
& Sporns 2016, p. 345). Here, as it happens in research on epistasis, and for the
same reasons, the restrictions that these wiring themes place on connectomes are not
capturable without residue as redundancy. Here, too, research in connectomics appears
to be postulating the existence of a connectome kind, analogous to the putative gene
interaction network kind discussed above. In this connection, it bears mentioning
that a very prominent psychological theory of the nature of consciousness (Tononi and
colleagues’s Integrated Information Theory of consciousness; Edelman & Tononi 2013;
Tononi & Edelman 1998; Tononi 2004) explicitly identifies consciousness (perhaps a
natural kind in its own right) with highly synergic subsets of the human connectome.

Finally, it should be noted that in the field of behavioral genetics both of the above
research programs, with their attendant synergic kinds, come together. Schaffner’s
excellent (2016) book gives a good sense of the complexities that result from this
interaction. Putative natural kinds in behavioral genetics (schizophrenia, perhaps) are
unlikely to be classical HPCs.

6 Conclusion

The homeostatic property cluster account provides a good approximation to the way in
which natural kinds ground inductive inference in many central cases. On the other hand,
I have argued, it is incomplete: the sorts of probabilistic relations among properties that
sustain inductive inference go well beyond what co-occurrence affords. At least in some
situations, these other relations among properties will warrant the description of kinds
which are as natural as HPCs.

I have suggested that connectomics, and research on epistatic effects on complex traits,
offer examples of what I have called synergic kinds. These two research programs have
taken off only when the analysis of massive datasets has started to be computationally

13Suppose, that is, that cortical minicolumns are the atomic functional units in a mammalian cerebral cortex.
See Sporns, Tononi & Kötter (2005), p. 247, for discussion.
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feasible. It is perhaps significant that Richard Boyd’s original formulation of the HPC
account, in the early 90s, predates these developments. In any event, they show the need
for a reformulation of the HPC account.

I have argued that this reformulation should recognize a synergic component in the in-
formational glue that binds properties together in a natural-kind cluster—over and above
the redundant component on which HPC theorists have single-mindedly focused. That
the mutual information between random variables can be, to varying degrees, redundant
and synergic is, of course, not new to information theorists,14 but the significance of
this fact for HPC-style accounts of natural-kindness has so far been overlooked.

What, then, should substitute co-occurrence in a broadly HPC-style account of natural-
kindness? One natural suggestion is the smallest genus of which redundancy and synergy
are both species: informational dependence, quite simply. The following condition aims
at capturing this, and is offered as a replacement for the Clustering as Co-Occurrence
and Homeostasis conditions in Boyd’s original formulation. A set of properties, F, will
count as natural if, among other things,

Informational Dependence: Properties in F are informationally connected in nature
in the sense that, in an important number of cases, F cannot be partitioned into
two informationally independent subsets.15

Some of the other conditions that a natural group of properties has to meet have been
spelled out in the papers cited in the introduction, and many others. My Informational
Dependence condition is designed to be the smallest possible departure from HPC
orthodoxy that respects the facts about scientific inquiry discussed in this paper, and I
expect that it can be readily plugged in the larger HPC picture. The main change urged
in this paper is sensitivity to the fact that, when two random variables are not perfectly
independent, their connection can be leveraged for inferential purposes. Any kind of
glue, not just co-occurrence, will do.
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