
UL HPC Users’ session: Mastering big data

Raymond Bisdorff

Université du Luxembourg
FSTC/ILAS

June 2018

1 / 19

Motivation: Showing a performance tableau

Consider a perfor-

mance table show-

ing the service qual-

ity of 12 commercial

cloud providers mea-

sured by an exter-

nal auditor on 14 in-

commensurable per-

formance criteria.

Legend: 0 = ’very weak’, 1 = ’weak’, 2 = ’fair ’, 3 = ’good ’, 4 = ’very good ’,’NA’ =

missing data; ‘green’ and ‘red’ mark the best, respectively the worst, performances on

each criterion.

2 / 19

Motivation: showing an ordered heat map

The same perfor-

mance tableau may

be optimistically col-

ored with the high-

est 7-tiles class of

the marginal per-

formances and pre-

sented like

a heat map,

eventually linearly ordered, following for instance the Copeland ranking

rule, from the best to the worst performing alternatives (ties are

lexicographically resolved).

3 / 19

How to rank big performance tableaux ?

• The Copeland ranking rule, for instance, is based on crisp net
flows requiring the in- and out-degree of each node in the
outranking digraph;

• When the order n of the outranking digraph becomes big
(several thousand or millions of alternatives), this requires
handling a huge set of n2 pairwise outranking situations;

• We use instead a sparse model of the outranking digraph,
where we only keep a linearly ordered list of diagonal
multicriteria quantiles equivalence classes with local
outranking content.

4 / 19

HPC performance measurements HPC school 2017

digraph standard model sparse model
order #c. tg sec. τg #c. tbg τbg

1 000 118 6” +0.88 8 1.6’ +0.83
2 000 118 15” +0.88 8 3.5” +0.83
2 500 118 27” +0.88 8 4.4” +0.83

10 000 118 7”
15 000 118 12”
25 000 118 21”
50 000 118 48”

100 000 (size = 1010) 118 2’ (fill rate = 0.077%)
1 000 000 (size = 1012) 118 36’ (fill rate = 0.028%)
1 732 051 (size = 3× 1012) 118 2h17’ (fill rate = 0.010%)
2 236 068 (size = 5× 1012) 118 3h15’ (fill rate = 0.010%)

Legend:

• #c. = number of cores;

• g : standard outranking digraph, bg : the sparse outranking digraph;

• tg , resp. tbg , are the corresponding constructor run times;

• τg , resp. τbg are the ordinal correlation of the Copeland ordering with the given
outranking relation.

5 / 19

Gaia-80 November 2016 ranking record

6 / 19

New performance measurements Spring 2018

'q outranking relation q fill nbr. run
order size rate cores time

5 000 25 × 106 4 0.005% 28 0.5”
10 000 1 × 108 4 0.001% 28 1”

100 000 1 × 1010 5 0.002% 28 10”
1 000 000 1 × 1012 6 0.001% 64 2’
3 000 000 9 × 1012 15 0.004% 64 13’
6 000 000 36 × 1012 15 0.002% 64 41’

These run times are achieved both:

• on the Iris -skylake nodes with 28 cores,

• on the 3TB -bigmem Gaia-183 node with 64 cores, and

• running cythonized python modules in an Intel compiled virtual Python 3.6.5
environment [GCC Intel(R) 17.0.1 –enable-optimizations c++ 6.3 mode] on
Debian 8 linux.

7 / 19

Successful actions for enhancing the performances - 1

• Algorithmic refinements: The pre-ranking quantiles sorting
algorithm was further optimized, reducing considerably the fill rate
of the sparse outranking digraphs;

8 / 19

Sparse versus standard digraph - Nov 2016
Symbol legend

> outranking for
certain

+ more or less
outranking

’ ’ indeterminate

− more or less
outranked

⊥ outranked for
certain

Sparse digraph bg :
Actions : 50
Criteria : 7

Sorted by : 5-Tiling
Ranking rule :

Copeland
Components : 7
Minimal order : 1

Maximal order : 15
Average order : 7.1
fill rate : 20.980%

correlation : +0.7563

Sparse outranking digraph - Now

10 / 19

Successful actions for enhancing the performances - 2

• Algorithmic refinements: The pre-ranking quantiles sorting
algorithm was further optimized, reducing considerably the fill rate
of the sparse outranking digraphs;

• Reducing the size of python data objects: A special bigData
performance tableau model with integer dictionary keys and float
evaluations is used for optimized Cython and C compiler variable
typing;

11 / 19

Reducing the size of python data objects

tp1 Standard Random 3 Objectives performance tableau instance
with 5000 decision actions and 21 performance criteria:
size(tp1) = 3 602 132 Bytes.

tp2 Same BigData Random 3 Objectives performance tableau
instance: size(tp2) = 1 398 365 Bytes.

12 / 19

Reducing the size of python data objects

tp1 Standard Random 3 Objectives performance tableau instance
with 5000 decision actions and 21 performance criteria:
size(tp1) = 3 602 132 Bytes.

tp2 Same BigData Random 3 Objectives performance tableau
instance: size(tp2) = 1 398 365 Bytes.

bg1 Standard pre-ranked outranking digraph instance generated
from tp1: size(bg1) = 9 471 896 Bytes.

bg2 BigData pre-ranked outranking digraph instance generated
from tp2: size(bg2) = 1 791 755 Bytes.

13 / 19

Efficient Cython inline function declaration with variable
typing

cdef inline int _localConcordance(float d, float ind, float wp, float p):

""" None = -1.0 """

if p > -1.0:

if d <= -p:

return -1

elif ind > -1.0:

if d >= -ind:

return 1

else:

return 0

elif wp > -1.0:

if d > -wp:

return 1

else:

return 0

else:

if d < 0.0:

return -1

else:

return 1

else:

... 14 / 19

Successful actions for enhancing the performances - 3

• Algorithmic refinements: The pre-ranking quantiles sorting
algorithm was further optimized, reducing considerably the fill rate
of the sparse outranking digraphs;

• Reducing the size of python data objects: A special bigData
performance tableau model with integer dictionary keys and float
evaluations is used for optimized Cython and C compiler variable
typing;

• Efficient sharing of static data: Global python variables allow to
efficiently communicate static data objects to parallel threads when
using -bigmem nodes;

15 / 19

Successful actions for enhancing the performances - 4

• Algorithmic refinements: The pre-ranking quantiles sorting
algorithm was further optimized, reducing considerably the fill rate
of the sparse outranking digraphs;

• Reducing the size of python data objects: A special bigData
performance tableau model with integer dictionary keys and float
evaluations is used for optimized Cython and C compiler variable
typing;

• Efficient sharing of static data: Global python variables allow to
efficiently communicate static object data to parallel threads when
using -bigmem nodes;

• Using a multiprocessing tasks queue: Sorting tasks in decreasing
durations and using an automatic multithreading mechanism (see
the multiprocessing python3 documentation)

16 / 19

Using a multiprocessing tasks queue

with TemporaryDirectory(dir=tempDir) as tempDirName:

tasks queue and workers launching

NUMBER_OF_WORKERS = nbrOfCPUs

tasksIndex = [(i,len(decomposition[i][1])) for i in range(nc)]

tasksIndex.sort(key=lambda pos: pos[1],reverse=True)

TASKS = [(Comments,(pos[0],nc,tempDirName)) for pos in tasksIndex]

task_queue = Queue()

for task in TASKS:

task_queue.put(task)

for i in range(NUMBER_OF_WORKERS):

Process(target=_worker,args=(task_queue,)).start()

if Comments:

print(’started’)

for i in range(NUMBER_OF_WORKERS):

task_queue.put(’STOP’)

while active_children() != []:

pass

if Comments:

print(’Exit %d threads’ % NUMBER_OF_WORKERS)

17 / 19

Successful actions for enhancing the performances - 5

• Algorithmic refinements: The pre-ranking quantiles sorting
algorithm was further optimized, reducing considerably the fill rate
of the sparse outranking digraphs;

• Reducing the size of python data objects: A special bigData
performance tableau model with integer dictionary keys and float
evaluations is used for optimized Cython and C compiler variable
typing;

• Efficient sharing of static data: Global python variables allow to
efficiently communicate static object data to parallel threads when
using -bigmem nodes;

• Using a multiprocessing task queue: Sorting tasks in decreasing
durations and using an automatic multithreading mechanism.

• Efficient UL HPC cluster equipments and staff:
Thank you for your support :)

18 / 19

Further documentation resources

Our cythonized Python HPC modules are freely available under the
cython directory on:

• https://github.com/rbisdorff/Digraph3 and on

• https://sourceforge.net/projects/digraph3/

Tutorials and technical documentation + source code listings may
be consulted on:

• https://digraph3.readthedocs.io/en/latest/

19 / 19

