

Title	Molecular identification and characterization of piroplasm species in Hokkaido sika deer (Cervus nippon yesoensis), Japan
Author(s)	Elbaz, Elzahara; Moustafa, Mohamed Abdallah Mohamed; Lee, Kyunglee; Mohamed, Wessam Mohamed Ahmed; Nakao, Ryo; Shimozuru, Michito; Sashika, Mariko; Younis, Emad Elsayed Ahmed; El-Khodery, Sabry Ahmed; Tsubota, Toshio
Citation	Ticks and Tick-Borne Diseases, 8(5), 802-807 https://doi.org/10.1016/j.ttbdis.2017.06.007
Issue Date	2017-08
Doc URL	http://hdl.handle.net/2115/71113
Rights	© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Manuscript.pdf

Title: Molecular identification and characterization of piroplasm species in Hokkaido	1
sika deer (Cervus nippon yesoensis), Japan	2
Elzahara Elbaz ^{a1*} , Mohamed Abdallah Mohamed Moustafa ^{a2*} , Kyunglee Lee ^b ,	3
Wessam Mohamed Ahmed Mohamed ^c , Ryo Nakao ^d , Michito Shimozuru ^a , Mariko	4
Sashika ^a , Emad Elsayed Ahmed Younis ^e , Sabry Ahmed El-khodery ^e , Kyoko	5
Hayashida ^f , Chihiro Sugimoto ^f , Toshio Tsubota ^a	6
^a Laboratory of Wildlife Biology and Medicine, Department of Environmental	7
Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University,	8
Sapporo, Japan.	9
^b Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, Republic	10
of Korea.	11
^c Division of bioinformatics, Hokkaido University Research Center for Zoonosis	12
Control, Sapporo, Hokkaido, Japan.	13
^d Laboratory of Parasitology, Department of Disease Control, Graduate School of	14
Veterinary Medicine, Hokkaido University, Sapporo, Japan.	15
^e Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary	16
Medicine, Mansoura University, Mansoura, Egypt.	17
^f Division of Collaboration and Education, Hokkaido University Research Center for	18
Zoonosis Control, Sapporo, Japan.	19

¹ Permanent address: Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.

² Permanent address: Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.

^{*} These first authors contributed equally to this article.

Corresponding author:	20
Toshio Tsubota	21
Laboratory of wildlife biology and medicine, department of environmental veterinary	22
sciences, graduate school of veterinary medicine, Hokkaido University, Sapporo,	23
Japan.	24
Address: 060-0818, North 18 West 9 Sapporo, Hokkaido, Japan.	25
Email: <u>tsubota@vetmed.hokudai.ac.jp</u>	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

Abstract

Babesia and Theileria species are tick-borne protozoan parasites that have a	46
veterinary and zoonotic importance. In order to investigate the prevalence and genetic	47
diversity of these parasites, a total of 269 sika deer blood DNA samples collected	48
from Hokkaido, Japan, were examined for Babesia and Theileria species by touch-	49
down PCR targeting the 18S rRNA gene. Reverse line blot (RLB) hybridization was	50
then used to detect 12 piroplasm species. The results revealed that 95.5 % (257/269),	51
94.1 % (253/269), 14.1 % (38/269), 87.7 % (236/269) and 11.5 % (31/269) of the	52
examined PCR products hybridized with the probes which were designed to detect all	53
Babesia and Theileria spp., all Theileria spp., all Babesia spp., Theileria sp. Thrivae	54
and Babesia divergens-like, respectively. The 18S rRNA gene partial sequences were	55
divided into Theileria sp. Thrivae, T. capreoli, B. divergens-like and an undescribed	56
Babesia species. This study showed the first detection of the undescribed Babesia sp.	57
from Japan. Therefore, more studies are required to understand the ecology of the	58
newly detected tick-borne pathogens in Hokkaido.	59
Keywords	60

Babesia; Theileria; Sika deer; Reverse line blot.

Introduction

Babesia and *Theileria* species are tick-borne protozoan parasites that have a
veterinary and zoonotic importance (Mans et al., 2015). *Babesia* and *Theileria* spp.
are obligatory intracellular parasites and genetically close to each other (Homer et al.,
2000), however, both have different life cycles. In the mammalian host, *Babesia* spp.
sensu stricto infect erythrocytes (Schreeg et al., 2016), while *Theileria* spp. infect both
releukocytes and erythrocytes (Li et al., 2014).

In cattle, East Coast fever and tropical theileriosis are caused by *T. parva* and *T. 74 annulata*, respectively, and exhibit fever, enlargement of lymph nodes and weight loss 75
(Mans et al., 2015; Olds et al., 2016). In addition, *B. bovis* and *B. bigemina* are highly 76
pathogenic in cattle and cause bovine babesiosis, a diseases which shows fever, 77
hemolytic anemia and hemoglobinuria (Decaro et al., 2013). *Babesia ovis, B. motasi* 78
and *B. crassa* cause sever disease in sheep which is characterized by anemia, fever, 79
icterus and hemoglobinuria (Hashemi-Fesharki, 1997). 80

To the best of our knowledge, there is no published description of clinical81manifestations in sika deer (*Cervus nippon yesoensis*) with piroplasmosis. However,82clinical piroplasmosis may occur in the case of exposure to high stressful conditions83such as malnutrition (Yabsley et al., 2005). The clinical symptoms of theileriosis in a84white-tailed deer (*Odocoileus virginianus*) fawn were previously reported from the85USA and included icterus and anemia (Yabsley et al., 2005).86

One of the zoonotic *Babesia* spp. is *B. divergens*, which has been reported from
several deer species including reindeer, roe deer and red deer in Europe (Michel et al.,
2014). Recently, another zoonotic *B. divergens*-like has been detected in sika deer in
Japan (Zamoto-Niikura et al., 2014). Whereas, many *Theileria* spp. have been
90

detected in cervids, for example T. cervi, which is a non-pathogenic Theileria sp. that	91
has been reported from white-tailed deer and elk (Cervus canadensis) in USA and	92
Canada (Chae et al., 1999). However, another T. cervi, which is genetically separated	93
from T. cervi in the USA and Canada, has been found in sika deer from China (Liu et	94
al., 2016), but has been reported as Theileria sp. Thrivae in Japan (Watanabe et al.,	95
2016). Nevertheless, all Theileria spp. have not been recognized as zoonotic	96
pathogens (Zanet et al., 2014).	97

The sika deer (Cervus nippon) is widely distributed in Asia and acts as a reproductive 98 host for several tick species such as Heamaphysalis longicornis, H. flava, H. Yeni, H. 99 megaspinosa, H. Formosensis, H. kitaokai and Ixodes ovatus were detected on sika 100 deer in Japan (Inokuma et al., 2002). In Japan, sika deer populations have an 101 important role in maintaining several tick-borne pathogens, such as Anaplasma sp. 102 Ap-sd (Moustafa et al., 2015), Theileria sp. Thrivae (Watanabe et al., 2016), B. 103 divergens-like (Zamoto-Niikura et al., 2014) and Borrelia lonestari-like (Lee et al., 104 2014). In Hokkaido, sika deer population density has been expanding (Ijima et al., 105 2015) and they live in close proximity to human settlements and livestock. 106 Consequently, sika deer may facilitate the transmission of several tick-borne 107 pathogens to both humans and livestock. 108

In spite of the enormous research on the role of sika deer in the transmission of tick-109borne pathogens, a continuous survey is needed to detect the new emerging110piroplasmids in sika deer in Japan. Previously, conventional polymerase chain111reactions (PCR) have been used to detect *Babesia* and *Theileria* spp. in Japan112(Watanabe et al., 2016). Here, the reverse line blot hybridization (RLB) was applied113in this study for the specific detection of 12 different piroplasm species. This114technique is a useful tool in identifying many tick-borne pathogens in a large number115

of samples (Kong and Gilbert, 2006) with high specificity and less cost than	116
sequencing a large number of samples. The objective of this study was to estimate the	117
infection rates and molecular characterization of several Babesia and Theileria spp.	118
among sika deer in Hokkaido.	119
Materials and methods	120
Blood samples and DNA extraction	121
Whole blood samples were obtained from the jugular vein of 269 sika deer (C. nippon	122
yesoensis) that were culled for nuisance control during 2010 to 2013 from Hokkaido	123
prefecture, Japan. These blood samples were collected in EDTA-Na containing tubes	124
and stored at -20 °C until used. DNA was extracted from the blood samples by using	125
the Wizard ®Genomic DNA purification Kit (Promega, Madison, WI, USA) as per	126
manufacturer's instructions and kept at -20 °C until analysis.	127
Touch-down Polymerase Chain Reaction (PCR)	128
A touch-down PCR targeting the 18S rRNA gene of Babesia and Theileria species	129
was performed by using PCR System 9700 (Applied Biosystems, Foster City, CA),	130
QIAGEN Multiplex PCR kits (Qiagen, Hilden, Germany) and the primer pair RLB-F2	131
and RLB-R2 (Gubbels et al., 1999; Matjila et al., 2004). To amplify a 460-540 bp	132
fragment, PCR mixtures composed of 9 μ l of molecular grade water, 1.25 μ l of each	133
primer (10 pmol), 12.5 μ l of 2 x QIAGEN Multiplex PCR Master Mix and 1 μ l DNA.	134
The PCR consisted of an activation step at 94 °C for 15 min, a touch down step of 12	135
cycles at 94 °C for 30 s, 69 °C for 90 s and 72 °C for 90 s with annealing temperature	136
decreasing every cycle by 1°C. This followed by 40 cycles at 94°C for 30 s, 57°C for	137
90 s and at 72°C for 90 s and a final extension step at 72°C for 10 min. PCR products	138
were stained with 10× Midori Green Direct (Nippon Genetics, Düren, Germany) and	139

examined by electrophoresis through 1% agarose gel and visualized by UV	
illuminator.	141

Oligonucleotide probes and reverse line blot (RLB) hybridization 142

A total of 8 newly designed and 9 previously published oligonucleotide probes (Table 143 1) were received from Sigma Aldrich Co., LLC, Japan. The probe designing process 144 was performed according to (Kong and Gilbert, 2006). Briefly, the 18S rRNA gene 145 sequences for the target pathogens (Table 1) were downloaded from the GenBank and 146 aligned by using MEGA software version 6 (Tamura et al., 2013). The probe 147 sequences were selected for each target and evaluated by OligoEvaluator software 148 (Sigma Aldrich, MO, USA) to ensure optimum physical characteristics. Finally, the 149 selected probe sequences were searched in the Nucleotide Basic Local Alignment 150 Search Tool (BLASTn) (Altschul et al., 1990) and tested against the positive control 151 samples to ensure its specificity. 152

RLB was carried out with the PCR products as described before (Kong and Gilbert, 153 2006; Moustafa et al., 2016) with modifications. Briefly, a 15 x 15 mm Biodyne C 154 membrane (Pall Life Scince, Ann Arbor, MI, USA) was activated for 10 min at room 155 temperature by 20 ml 16% 1-ethyl-3-(3-dimethyl-amino-propyl) carbodiimide 156 (EDAC) (Sigma Aldrich, MO, USA). The membrane was washed gently with milliQ 157 water for 2 min and placed in Miniblotter MN45 (Immunetics, Boston, Massa-158 chusetts). A total of 17 oligonucleotide probes (Table 1) linked with C6 amino linker 159 were received from Sigma Aldrich Co., LLC, Japan, and reconstituted into 100 pmol 160 solutions. Ten microliters of each 100 pmol/µl probes were diluted in 0.5 M NaHCO3 161 to a final volume of $170 \,\mu$ l. The openings of the miniblotter were filled with a 150 μ l 162 of each diluted oligonucleotide and the membrane was incubated at room temperature 163 for 5 min. The membrane was inactivated in 250 ml 0.1 M NAOH with gentle shaking 164 for exactly 8 min at room temperature, then washed at 60°C with prewarmed 250 ml165of $2 \times$ SSPE/0.1% SDS. Finally, the membrane was kept with 15µl of 20 mM EDTA166in a sealed plastic bag for the future use.167

A total of 10 µl of each PCR product was diluted in 2× SSPE/0.1% SDS to a final 168 volume of 170 µl and denatured by heating at 99.9°C for 10 min and immediately 169 cooled on ice. The denatured mixtures were introduced to the membrane, and 170 hybridized at 60°C for 1 hr. Afterwards, this membrane was washed in 250 ml of $2\times$ 171 SSPE/0.5% SDS twice at 52°C for 10 min and then incubated with diluted peroxidase 172 labeled NeutrAvidine (Thermo Fisher Scientific, Walyham, MA, USA) for 45-60 min 173 at 42°C. Subsequently, NeutrAvidine was washed away by 250 ml 2× SSPE/0.5% 174 SDS twice at 42°C for 10 min and 2× SSPE twice at room temperature for 5 min. To 175 visualize the results, the membrane was exposed for 5 min to 15 ml ImmobilonTM 176 Western Chemiluminescent HRP Substrate (Millipore, Japan), and photographed by 177 Ez-Capture MG/ST (ATTO Corp., Japan). To remove the PCR products, the 178 membrane was washed twice in pre-warmed 1% SDS at 90°C for 30 min and washed 179 with 250 ml of 20 mM EDTA. For the future reuse, the membrane was kept with 15 180 ml of 20 mM EDTA in a sealed plastic bag at 4°C. 181

Cloning and sequencing

182

To confirm RLB results, randomly selected twenty-one RLB-positive PCR products183were subjected to direct sequencing. The selected PCR products included eight, one184and twelve samples that hybridized with the probes which were designed to detect185*Theileria sp.* Thrivae, *Babesia divergens*-like and all *Babesia* and *Theileria* spp.,186respectively. To amplify a fragment of 460-540 bp from 18S rRNA gene of piroplasm187spp., KOD-Plus-Neo high fidelity DNA polymerase kit (Toyobo Co. Ltd., Japan) and188the above-mentioned primers were used. PCR consisted of 2.5 μl of 10× KOD-Plus-189

Neo buffer, 2.5 µl of dDNTPs (2mM), 1.5 µl of 25 mM MgSO4, 0.75 µl of each	190
primer (10 pmol), 0.5 μ l of KOD-Plus-Neo DNA polymerase and 1 μ l of DNA. The	191
PCR conditions were 2 min at 94°C and 40 cycles of 10 s at 98°C, 30 s at 57°C and 30	192
s at 68°C, followed by a final extension 7 min at 68°C. The PCR products were	193
examined by electrophoresis and the positive bands at 460-540 bp were excised for	194
purification by NucleoSpin® Gel and PCR clean up (Macherey-Nagel, GM & CO KG,	195
Germany). The purified PCR products were sequenced by using the Big- Dye	196
Terminator version 3.1 Cycle Sequencing Kit and purified by BigDye®	197
XTerminator [™] Purification Kit (Life Technologies Co., NY, USA). Subsequently,	198
the purified products were sequenced by ABI PRISM TM 310 genetic analyzer (Life	199
Technologies Co., NY, USA). BLASTn (Altschul et al., 1990) searches were	200
performed to compare the obtained sequences to reference sequences recorded in	201
GenBank for identification.	202

A total of 3 sequencing results with mixed signals were resolved by TA cloning. The 203 purified PCR products were A-attached by mixing 0.9 µl of 10× KOD-Plus-Neo 204 buffer, 0.9 µl of 2 mM dDNTPs, 0.54 µl of 25 mM MgSO4, 6.66 µl of each purified 205 PCR product and 1µl of 10× A-attachment mix (Toyobo Co. Ltd.) at 60°C for 10 min. 206 One microliter of each A-attached product was cloned with pMD20 T-vector (Takara 207 Bio, Otsu, Japan). Five colonies per sample were selected and screened by 208 EmeraldAmp MAX PCR (Takara Bio, Otsu, Japan) as described in the manufacturer's 209 manual and sequenced as mentioned above. When a sequence was detected from one 210 clone, more 5 clones from the same sample were sequenced. The sequences were 211 considered genuine when they were recovered from more than 3 clones. 212

213

Phylogenetic analysis

A total of twenty-two 18S rRNA partial sequences were submitted to DDBJ. The	214
accession numbers were: (LC271196 - LC271213) from the direct sequencing of	215
eighteen PCR products and (LC215385 - LC215388) from cloning and sequencing of	216
three other PCR products. The obtained sequences were identified by using BLASTn	217
search against the sequences of Babesia and Theileria spp. in the GenBank. The	218
divergence distances between sequences were calculated by the Maximum Composite	219
Likelihood model in MEGA software version 6 (Tamura et al., 2013). The	220
evolutionary distance matrix was visualized as a heat map (Fig. 3 & 4) that was	221
developed by using the R Stats package in the R studio software (http://www.R-	222
project.org/).	223
Results	224
A total of 269 sika deer blood DNA samples were molecularly screened for the	225
presence of Babesia and Theileria species by touch-down PCR and RLB	226
hybridization using 17 oligonucleotide probes (Table 1). The specificity of the newly	227
designed 8 oligonucleotide probes was ensured through examining the genomic DNA	228
samples of B. microti-US type, B. microti-Hobetsu type, B. rodhaini, B. divergens-	229
like, B. bovis, B. bigemina, Theileria sp. Thrivae and T. orientalis positive controls	230
(Fig. 1).	231
The results showed that 95.5% (257/269), 94.1% (253/269), 14.1% (38/269), 87.7%	232
(236/269) and 11.5% (31/269) of the sika deer blood DNA samples hybridized with	233
the Babesia/Theileria spp. catch-all, Theileria spp. catch-all, Babesia spp. catch-all,	234
Theileria sp. Thrivae and B. divergens-like oligonucleotide probes (Table 2),	235
respectively. In addition, 10.0% (27/269) of the PCR products hybridized with both	236
Theileria sp. Thrivae and B. divergens-like oligonucleotide probes, while 6.3%	237
(17/269) were positive for Babesia / Theileria spp. catch-all and Theileria spp. catch-	238

all probes, but negative for all species-specific probes (Fig. 2). Interestingly, 2.6%	239
(7/269) hybridized with Babesia / Theileria spp. catch-all, Theileria spp. catch-all,	240
Theileria sp. Thrivae and Babesia spp. 1 catch-all probes, but were negative for all	241
Babesia spp. species-specific probes (Fig. 2).	242

The obtained 18S rRNA partial gene sequences were mainly divided into two	243
Theileria and two Babesia spp. (Fig. 3 & 4). The similarity between the accession	244
numbers (LC271208 - LC271213 and LC215385) was from 99 to 100%. Whereas	245
sequence accession numbers (LC271196 - LC271207 and LC215386) were 99 - 100%	246
similar to each other. The obtained sequence (LC215385) was identical to T. cervi	247
(KT863532) from sika deer in China and 99% similar to Theileria sp. (AB012199 &	248
AB012194) from sika deer in Japan, whereas sequence (LC215386) was identical to	249
Theileria sp. (AB012189) from sika deer in Hokkaido, Japan and 99% similar to T.	250
capreoli (KJ188219) from red deer in China. In addition, the obtained sequence	251
(LC215387) was identical to <i>B. divergens</i> -like (KC465973 & KC465975) from sika	252
deer in Japan, whereas sequence (LC215388) was 98% similar to Babesia sp. Kh-	253
Hj42 (GU057380) from <i>Haemaphysalis japonica</i> in Russia.	254

Discussion

Sika deer act as reproductive hosts for several tick species, which may transmit	256
several tick-borne pathogens to wildlife, livestock and human beings (Watanabe et al.,	257
2016). During the last two decades, numbers of sika deer (C. nippon) populations in	258
Hokkaido have been increasing (Ijima et al., 2015). In Japan, previous studies stated	259
that sika deer act as reservoir hosts for <i>Theileria</i> sp. Thrivae and <i>B. divergens</i> -like	260
(Ikawa et al., 2011; Inokuma et al., 2004; Zamoto-Niikura et al., 2014). In this study,	261
we examined sika deer from Hokkaido for infection with 12 different piroplasm	262
species by touch-down PCR and RLB hybridization. This study identified four	263

piroplasm species; B. divergens-like, undescribed Babesia sp., Theileria sp. Thrivae	264
and T. capreoli. Unfortunately, no species-specific oligonucleotide probes were	265
designed for the detected Babesia sp. and T. capreoli; both organisms were detected	266
in this study by cloning and sequencing. The respective infection rates of the <i>B</i> .	267
divergens-like (11.5%) and Theileria sp. Thrivae (87.7%) detected in this study were	268
similar to and higher than previously published reports from Japan (Ikawa et al., 2011;	269
Watanabe et al., 2016; Zamoto-Niikura et al., 2014). This is possibly due to the higher	270
sensitivity of RLB technique than conventional PCR assays. The hybridization results	271
were confirmed by sequencing, which showed that all obtained sequences have the	272
same hybridization sites as their species-specific probes. However, a total of 7 and 17	273
PCR products, which were hybridized with the respective catch-all probes for Babesia	274
and Theileria species, were negative for all other Babesia and Theileria species-	275
specific probes.	276

The obtained partial 18S rRNA gene sequences were divided into two *Babesia* and277two *Theileria* species. One *Babesia* sp. clustered with the previously published *B*.278*divergens*-like (Fig. 3) from sika deer in Japan (Zamoto-Niikura et al., 2014). The279second *Babesia* sp. sequence was completely separated from the other *Babesia* spp.280and clustered with a *Babesia* sp. which was detected in *Haemaphysalis japonica* from281Russia (Fig. 3). Hence, additional research on this *Babesia* sp. is required to fully282understand its molecular taxonomy and to identify its vector in Japan.283

The phylogenetic position of the detected *Theileria* spp. in the sika deer of this study284was among the benign theileriosis group, which includes *T. orientalis* and *T. buffeli*285(Inokuma et al., 2008; Li et al., 2014). One *Theileria* spp. cluster was very similar to286*Theileria* sp. Thrivae (Fig. 4), which was reported from sika deer in Japan (Watanabe287et al., 2016) and *T. cervi* from sika deer in China (Liu et al., 2016). However, this288

cluster was completely divergent from T. cervi (U97054) that was detected in white-	289
tailed deer and elk (Cervus canadensis) from the USA and Canada (Fig. 4),	290
respectively (Chae et al., 1999). The second Theileria spp. cluster was closely related	291
to T. capreoli (Fig. 4). Previously, T. capreoli 18S rRNA gene sequence (AB012189)	292
was deposited into the GenBank from Japan, however, this study was not published.	293
In addition, Theileria sp. Sola, which is 97.8% similar to T. capreoli, and was	294
previously reported from Japan (Watanabe et al., 2016), was not detected in this study.	295
Conclusions	296
This study identified the role of sika deer in maintaining 4 different tick-borne	297
protozoan parasites in Hokkaido, Japan with Theileria sp. Thrivae having the highest	298
infection rates and T. capreoli needing more examinations to understand its ecology.	299
Furthermore, a potentially novel Babesia sp. was detected in the sika deer samples of	300
this study. However, this study lacks information about the prevalence of the	301
undescribed Babesia sp. and T. capreoli in sika deer in Hokkaido. Future	302
investigations will also be needed to identify the vector hosts for these organisms to	303
fully understand the ecology of piroplasm spp. in Japan.	304
Competing interests	305
The authors declare that they have no competing interests.	306
Acknowledgements	307
This study was supported in part by the Program for Leading Graduate Schools	308
"Fostering Global Leaders in Veterinary Science for Contributing to One Health"	309
grant no. (F01), MEXT, Japan and the Mitsui & Co., Ltd. Environment Fund. The	310
authors gratefully acknowledge Professor Xuenan Xuan and Dr. Paul Franck Adjou	311
Moumouni (National Research Center for Protozoan Diseases, Obihiro University of	312

Agriculture and Veterinary Medicine, Japan) for providing us with the genomic DNA	313
samples of the positive controls.	314
Reference	315
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local	316
alignment search tool. J. Mol. Biol. 215, 403-410.	317
Chae, J.S., Waghela, S.D., Craig, T.M., Kocan, A.A., Wagner, G.G., Holman, P.J.,	318
1999. Two Theileria cervi SSU RRNA gene sequence types found in isolates from	319
white-tailed deer and elk in North America. J. Wildl. Dis. 35, 458-465.	320
Decaro, N., Larocca, V., Parisi, A., Losurdo, M., Lia, R.P., Greco, M.F., Miccolis, A.,	321
Ventrella, G., Otranto, D., Buonavoglia, C., 2013. Clinical bovine piroplasmosis	322
caused by Babesia occultans in Italy. J. Clin. Microbiol. 51, 2432-2434.	323
Gubbels, J.M., de Vos, A.P., van der Weide, M., Viseras, J., Schouls, L.M., de Vries,	324
E., Jongejan, F., 1999. Simultaneous detection of bovine Theileria and Babesia	325
species by reverse line blot hybridization. J. Clin. Microbiol. 37, 1782-1789.	326
Hashemi-Fesharki, R., 1997. Tick-borne diseases of sheep and goats and their related	327
vectors in Iran. Parassitologia 39, 115-117.	328
Homer, M.J., Aguilar-Delfin, I., Telford, S.R., Krause, P.J., Persing, D.H., 2000.	329
Babesiosis. Clinical Microbiology Reviews 13, 451-469.	330
Ijima, H., Fujimaki, A., Ohta, U., Yamamura, K., Yokomizo, H., Uno, H., Matsuda,	331
H., 2015. Efficient management for the Hokkaido population of sika deer Cervus	332
nippon in Japan: accounting for migration and management cost. Population Ecology	333
57, 397-408.	334

Ikawa, K., Aoki, M., Ichikawa, M., Itagaki, T., 2011. Occurrence of two distinct	335
Theileria lineages in sika deer (Cervus nippon) of Iwate Prefecture, Japan .J. Vet.	336
Med. Sci. 73, 1371-1373.	337
Inokuma, H., Fujimoto, T., Hosoi, E., Tanaka, S., Fujisaki, K., Okuda, M., Onishi, T.,	338
2002. Tick infestation of sika deer (Cervus nippon) in the western part of Yamaguchi	339
prefecture, Japan. J. Vet. Med. Sci. 64, 6.617-15	340
Inokuma, H., Nagala, M., Hosol, E., Ilamolo, K., Okuda, M., 2008. Divergence of	341
p33/34 gene of Theileria found in Cervus nippon in Japan. J Vet Med Sci 70, 401-	342
405.	343
Inokuma, H., Tsuji, M., Kim, S.J., Fujimoto, T., Nagata, M., Hosoi, E., Arai, S ,.	344
Ishihara, C., Okuda, M., 2004. Phylogenetic analysis of Theileria sp. from sika deer,	345
Cervus nippon, in Japan. Vet. Parasitol. 120, 339-345.	346
Kong F. Gilbert G.I. 2006 Multiplex PCR-based reverse line blot hybridization	3/17
Kong, T., Onbert, O.L., 2000. Multiplex Tex-based reverse line blot hybridization	547
assay (mPCR/RLB)a practical epidemiological and diagnostic tool. Nat. Protoc. 1,	348
2668-2680.	349
Lee, K., Takano, A., Taylor, K., Sashika, M., Shimozuru, M., Konnai, S., Kawabata,	350
H Tsubota T 2014 A relansing fever group <i>Borrelia</i> sp similar to <i>Borrelia</i>	351
	551
lonestari found among wild sika deer (Cervus nippon yesoensis) and Haemaphysalis	352
spp. ticks in Hokkaido, Japan. Ticks Tick Borne Dis. 5, 841-847.	353
Li, Y., Chen, Z., Liu, Z., Liu, J., Yang, J., Li, Q., Li, Y., Cen, S., Guan, G., Ren, Q.,	354
Luo, J., Yin, H., 2014. Molecular identification of <i>Theileria</i> parasites of northwestern	355
Chinaga Camidaa Deregitas & vestors 7, 225	250
Chinese Cerviaae. Parasnes & vectors 1, 225.	356

Liu, J., Yang, J., Guan, G., Liu, A., Wang, B., Luo, J., Yin, H., 2016. Molecular	357
detection and identification of piroplasms in sika deer (Cervus nippon) from Jilin	358
Province, China. Parasit Vectors 9, 156.	359
Mans, B.J., Pienaar, R., Latif, A.A., 2015. A review of Theileria diagnostics and	360
epidemiology. Int J Parasitol Parasites Wildl 4, 104-118.	361
Matjila, P.T., Penzhorn, B.L., Bekker, C.P., Nijhof, A.M., Jongejan, F., 2004 .	362
Confirmation of occurrence of Babesia canis vogeli in domestic dogs in South Africa.	363
Vet. Parasitol. 122, 119-125.	364
Michel, A.O., Mathis, A., Ryser-Degiorgis, M.P., 2014. Babesia spp. in European	365
wild ruminant species: parasite diversity and risk factors for infection. Veterinary	366
research 45, 65.	367
Moustafa, M.A., Lee, K., Taylor, K., Nakao, R., Sashika, M., Shimozuru, M., Tsubota,	368
T., 2015. Molecular characterization and specific detection of Anaplasma species	369
(AP-sd) in sika deer and its first detection in wild brown bears and rodents in	370
Hokkaido, Japan. Infect. Genet. Evol. 36, 268-274.	371
Moustafa, M.A., Taylor, K., Nakao, R., Shimozuru, M., Sashika, M., Rosa, R., Thu,	372
M.J., Rizzoli, A., Tsubota, T., 2016. Dynamics, co-infections and characteristics of	373
zoonotic tick-borne pathogens in Hokkaido small mammals, Japan. Ticks Tick Borne	374
Dis. 7, 922-928.	375
Olds, C.L., Paul, T., Scoles, G.A., 2016. Detection of Theileria parva in tissues of	376
cattle undergoing severe East Coast fever disease show significant parasite DNA	377
accumulation in the spleen Vet Parasitol 232, 32-35	378

Schreeg, M.E., Marr, H.S., Tarigo, J.L., Cohn, L.A., Bird, D.M., Scholl, E.H., Levy,	379
M.G., Wiegmann, B.M., Birkenheuer, A.J., 2016. Mitochondrial genome sequences	380
and structures aid in the resolution of Piroplasmida phylogeny. PLoS One 11,	381
e0165702.	382
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6:	383
Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.	384
Watanabe, Y., Fukumoto, S., Harasawa, R., 2016 .Prevalence of tick-borne hemolytic	385
microbes in Free-living sika deer (Cervus nippon) captured in a deer-overcrowded	386
area. Japanese Journal of Zoo and Wildlife Medicine 21, 17-27.	387
Yabsley, M.J., Quick, T.C., Little, S.E., 2005. Theileriosis in a white-tailed deer	388
(Odocoileus virginianus) fawn. J. Wildl. Dis. 41, 806-809.	389
Zamoto-Niikura, A., Tsuji, M., Imaoka, K., Kimura, M., Morikawa, S., Holman, P.J.,	390
Hirata, H., Ishihara, C., 2014. Sika deer carrying <i>Babesia</i> parasites closely related to <i>B</i> .	391
divergens, Japan. Emerg Infect Dis 20, 1398-1400.	392
Zanet, S., Trisciuoglio, A., Bottero, E., de Mera, I.G., Gortazar, C., Carpignano, M.G.,	393
Ferroglio, E., 2014. Piroplasmosis in wildlife: Babesia and Theileria affecting free-	394
ranging ungulates and carnivores in the Italian Alps. Parasites & Vectors 7, 70.	395
	396
	397
	398
	399

Probe	Sequence (5'-3')	Reference	
Babesia /Theileria all	TAATGGTTAATAGGARCRGTWG	Moustafa et al. (2016)	
Theileria spp. all	ATTAGAGTGCTCAAAGCAGGC	Matjila et al. (2008)	
Babesia spp. all 1	ATTAGAGTGTTTCAAGCAGAC	Matjila et al. (2008)	
Babesia spp. all 2	ACTAGAGTGTTTCAAACAGGC	Matjila et al. (2008)	
B. microti all	GRCTTGGCATCWTCTGGA	Matjila et al. (2008	
B. microti Otsu and Hobetsu	GGGTACTGTTTCCAGGGT	This study	
<i>B</i> microti US	GGGTACTATTTTCCAGGAT	This study	
B. aihsoni	TACTTGCCTTGTCTGGTTT	Matijla et al. (2008)	
D. glosoni		This study	
B. alvergens-like		This study	
B. roanaini		This study	
B. bigemina		This study	
B. bovis	GAGCATGGAATAACCTTGTAT	This study	
B. venatorum	GAGTTATTGACTCTTGTCTTTAA	Gigandet et al. (2011)	
B. divergens & B. capreoli	GGTGTTAATATTGACTRATGTCGAG	Moustafa et al. (2016)	
B. duncani	AGTTGAACTTCTGCCGCTT	Moustafa et al. (2016)	
Theileria sp. Thrivae	ACGAGTGTCTGTATTGCG	This study	
Theileria orientalis /buffeli / sergenti	TTTGAGTTTGTTATTGTGG	This study	
for its detection	<i>Theueria</i> spp. and their oligonucleo	nde probes used	401
			403
			404
			406
			407
			408
			409
			410
			411
			412
			413
			414
			415
			416
			417

No. of positive deer samples ((%)
--------------------------------	-----

Total

16 155 (96.3) 12 (7.5) 150 (93.2) 6 (3.7) 269 257 (95.5) 253 (94.1) 38 (14.1) 236 (87.7) 31 (11.5) BLE 2 Summary of <i>Babesia</i> and <i>Theileria</i> spp. detection in sika deer blood ples. 9 </th <th>wn 108</th> <th>102 (94.4)</th> <th>98 (90.7)</th> <th>26 (24.1)</th> <th>86 (79.6)</th> <th>25 (23.1)</th>	wn 108	102 (94.4)	98 (90.7)	26 (24.1)	86 (79.6)	25 (23.1)
BLE 2 Summary of <i>Babesia</i> and <i>Theileria</i> spp. detection in sika deer blood ples.	dult 161	155 (96.3) 257 (95 5)	155 (96.3) 253 (94.1)	12 (7.5) 38 (14 1)	150 (93.2) 236 (87.7)	6 (3.7) 31 (11 5)
BLE 2 Summary of <i>Babesia</i> and <i>Theileria</i> spp. detection in sika deer blood ples.	209	231 (73.3)	233 (JT.1)	30 (17.1)	230 (01.1)	51 (11.5)
BLE 2 Summary of <i>Babesia</i> and <i>Theileria</i> spp. detection in sika deer blood ples.						
ples.	ARIE	? Summary of <i>Ba</i>	hasia and Tha	<i>ilaria</i> s nn det	ection in sike de	er blood
ples.		2 Summary of Da	Desia and The	<i>iieria</i> spp. dei		
	amples.					

FIG 1 Validation of the newly designed oligonucleotide probes in this study. RLB	437
result of Babesia and Theileia spp. genomic DNA derived 18S rRNA gene partial	438
sequence (1-8). Oligonucleotide probes are listed on the left of the figure.	439

Babesia and Theileria catch all		440
Theileria spp. all		
Babesia spp. 1		4.4.1
Babesia spp. 2	8 8 H	441
Theileria orientalis / buffeli/ sergenti		
Theileria sp. thrivae		442
B. gibsoni		
B. bigemina		110
B. bovis	•	445
B. divergens & B. capreoli		
B. venatorian		444
B. divergens like		
B. duncani		
B. rodhaini	8	445
B. microti US		
B. microti Otsu and Hobetsu	8	446
B. microti all	2	
Babesia spp. 2	2 2 R	
Babesia spp. 1		447
Theileria spp. all		
Babesia and Theileria catch all		448

....

FIG 3 Phylogenetic relationship between 18S rRNA gene sequences of Babesia spp. from GenBank. Sequences from the current study are labeled in bold. The DNA sequences from this study was deposited to DDBJ as accession number LC215387 and LC215388. The evolutionary distance matrix is visualized as a heat map. In the heat map, numbers in the table are presented as colored shades scaled from light to dark purple according to the degree of homology between sequences. The darker color the higher homology (less evolutionarily distant). White colors represent the same sequence

FIG 4 Phylogenetic relationship between 18S rRNA gene sequences of Theileria spp. from GenBank. Sequences from the current study are labeled in bold. The DNA sequences from this study was deposited to DDBJ as accession number LC215385 and LC215386. The evolutionary distance matrix is visualized as a heat map. In the heat map, numbers in the table are presented as colored shades scaled from light to dark blue according to the degree of homology between sequences. The darker color the higher homology (less evolutionarily distant). White colors represent the same sequence

