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Abstract

Software-defined Significance-based
Computing

by

Charalampos Chalios

A thesis presented for the degree of Doctor of Philosophy

School of Electornics, Electrical Engineering and Computer Science

Queen’s University of Belfast

April 2017

Approximate computing has been an emerging programming and system design

paradigm that has been proposed as a way to overcome the power-wall problem that

hinders the scaling of the next generation of both high-end and mobile computing

systems. Towards this end, a lot of researchers have been studying the effects of

approximation to applications and those hardware modifications that allow increased

power benefits for reduced reliability. In this work, we focus on runtime system

modifications and task-based programming models that enable software-controlled,

user-driven approximate computing.

We employ a systematic methodology that allows us to evaluate the potential

energy and performance benefits of approximate computing using as building blocks

unreliable hardware components. We present a set of extensions to OpenMP 4.0

that enable the programmer to define computations suitable for approximation. We

introduce task-significance, a novel concept that describes the contribution of a task

to the quality of the result. We use significance as a channel of communication from

domain specific knowledge about applications towards the runtime-system, where

we can optimise approximate execution depending on user constraints.
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Finally, we show extensions to the Linux kernel that enable it to operate seam-

lessly on top of unreliable memory and provide a user-space interface for memory

allocation from the unreliable portion of the physical memory. Having this frame-

work in place allowed us to identify what we call the refresh-by-access property

of applications that use dynamic random-access memory (DRAM). We use this

property to implement techniques for task-based applications that minimise the

probability of errors when using unreliable memory enabling increased quality and

power efficiency when using unreliable DRAM.
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Chapter 1

Introduction

1.1 Motivation

The unprecedented increase in computing capabilities that we experienced in the

past decades was founded in mainly two principles. First, the number of transistors

that we can fit into an integrated circuit doubles approximately every two years. This

property, which is commonly known as the "Moore’s Law", stems from the ability

of material scientists to halve the size of metal-oxide semiconductor field-effect

transistor (MOSFET) transistors, used for manufacturing central processing units

(CPUs), every two years. At the same time, Dennard scaling indicates that, as

transistors get smaller, their power consumption in proportion to their area stays

constant (i.e., approximately every two years, we pack twice the number of transistors

in the same chip, consuming the same amount of power as before).

These trends have translated into significant performance improvements with

every new generation of processors, since hardware architects have scaled the CPU

clock without significantly increasing the power consumption of the chip. The CPU

frequency increase along with the architectural optimisations are made possible

by the abundance of transistors in the chip, boosting applications without the need

for major software optimisations. However, in the middle of the last decade, we

experienced the end of the Dennard scaling era. In small manufacturing processes, the

leakage current, which could previously be ignored, now poses significant challenges

to hardware designers.



2 Introduction

Fig. 1.1 Intel CPU introductions, clock speed and power consumption [83].

Leakage current consumes non-negligible static power and contributes signif-

icantly to the heating of the chip, which further burdens the power budget of the

processor. To restrict static power consumption due to leakage, designers kept the

supply voltage of the chip high, and at the same time, the switching frequency

stopped following the increasing trends of previous generations. Thus, while our

needs for computing and memory capacity continue to increase, our ability to build

systems that cover those needs is hindered by the unsustainable power consumption

these devices would require, a problem that was named the ‘power-wall’. Conse-

quently, the power-wall significantly hurt the performance of the processors, which

already suffer from the saturation of the instruction-level parallelism (ILP). The free

lunch was over.

This trend is depicted in Figure 1.1. Although the number of transistors in

the chip keeps increasing as predicted by Moore’s law, the increase of both the

ILP and frequency have halted. Consequently, architects started using the extra

transistors to fit more processing elements (cores) into one chip, causing a revolution

in the computer science world. People from the software layers, systems software,

and applications needed to put effort to take advantage of more cores found in the
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processors to make up for the performance loss due to the CPU clocks not scaling as

they did previously. Thus, new programming models and advanced operating and

runtime systems were created in the software labs of academia and industry.

However, the electrical power that is required to operate all the cores of the CPU

concurrently can exceed the available power budget of the chip. This means that

only some of the available cores can operate simultaneously. This phenomenon is

called ‘dark silicon’. Part of the cores (silicon) are powered off during operation to

not exceed the available power budget. This new reality makes power consumption a

problem that we cannot expect the semiconductor technology to solve for us in the

near future. Instead, both academia and industry focus on holistic approaches where

power consumption is a first-order concern for everyone from the hardware architect

and software developer to the system administrator.

According to Dennard scaling, reduction of supply voltage has been the most

useful tool. Hardware designers must reduce the power consumption of complemen-

tary metal-oxide semiconductor (CMOS)-based chips. Lately, hardware vendors

have allowed software mechanisms to control CPU voltage and frequency. These

mechanisms were used in the core of several tools that tried to take advantage of

opportunities for voltage scaling in situations where the CPU is idle. Several re-

searchers [19, 54] have pointed out that the most energy-efficient voltage region of

operation for CMOS transistors lies in the sub-threshold voltage region. However,

operating in the sub-threshold region comes with significant performance reduction

due to aggressive scaling of the CPU frequency. Thus, it is deemed more beneficial

to operate in the near-threshold voltage (NTV) region, sacrificing a small amount of

energy efficiency to maintain some of the performance. This system design is called

near-threshold voltage computing (NTVC). Even in the NTV region, CMOS oper-

ation poses significant challenges related to system reliability due to the increased

process variation. Consequently, a lot of research focuses on tackling the reliability

challenges connected with NTVC.

Problems with reliability do not appear only in NTV operation. State-of-the-art

systems consume a considerable amount of power to ensure correct operation of

logic and memory circuits. Manufacturers apply pessimistic guard bands to circuits

to ensure correct operations. This pessimistic approach is exacerbated due to process
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variation, which has worsened in current technologies. Process variation (i.e., the

variation of the transistor characteristics during the manufacturing process) creates

a spread in the optimal operating point (e.g., supply voltage) across transistors in

the chip. This means that, to avoid incorrect operation of some of the transistors,

we need to select a supply voltage higher than required for most transistors. In

other words, the requirement for reliability (high voltage margins) clashes with the

significant objective of power efficiency.

Similarly, dynamic random access memory (DRAM) specifications define the

average refreshing period to be uniform for all DRAM cells, regardless their retention

time (i.e., the time after which the cell will lose the information it holds if it does

not get refreshed). For example, the double data rate fourth generation (DDR4)

specification defines that the whole memory should refresh every 64 ms, whereas

studies have shown that, for many DRAM devices, we observe a worst-case scenario

retention time of approximately 1 s. Therefore, DRAM devices pessimistically

consume an amount of power that, in future DRAM generations, is projected to be a

significant proportion of the total DRAM power consumption.

The requirements for high reliability and accuracy also affect performance.

Moreover, CPU overclocking has been known to increase the probability of timing

failures within paths of the processor. Supply voltage determines the length of

the critical path of the circuit. The critical path, in turn, determines the maximum

frequency that we can use without timing violations. Similarly, refresh operations

in DRAM interfere with normal memory accesses. When a refresh operation is

on-the-fly in a bank of the DRAM chip, this bank is unavailable for loads and stores,

which decreases the effective bandwidth of the main memory. There is an obvious

trade-off between reliability and power consumption and performance.

The struggle between reliability against power consumption and performance is

not restricted to the hardware domain. Software developers often must compromise

power and/or performance to ensure sufficiently accurate computations. For example,

using higher precision floating-point data types (e.g., double vs float) increases

the execution time and the amount of memory we need to store the representation of

our data.
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Recently, researchers have proposed relaxing the requirements for correctness

and accuracy of computing systems, when this is acceptable, as a step towards over-

coming the power-wall problem. Many applications can tolerate reduced accuracy

in their output, while studies also show that it is possible to handle errors at the

hardware level within the software stack. Thus, these observations triggered a great

amount of research related to how we can systematically harness approximation to

save other precious resources (e.g., power consumption and CPU cycles) and opened

the way to a new computing paradigm, called approximate computing.

1.2 Approximate Computing

Approximate computing is a computing paradigm that allows an acceptable amount

of inaccuracy in the result of a computation in exchange for reduction in the resources

required for that computation. What makes approximate computing useful is the

existence of applications that can afford bounded levels of inaccuracy in their results

(e.g., the human eye can perceive up to a certain frame rate while watching a video).

As a result, a video decoder can drop frames, as long as it ensures this critical frame

rate is achieved.

Approximation can be realised both at the software and hardware level. Software

schemes substitute a code block with an alternative implementation that produces

the same result semantically, only with reduced accuracy. However, the approximate

version of the computation consumes less resources in terms of power consumption

or CPU time. For example, the loop perforation technique skips some of the itera-

tions of a loop when this does not affect the quality significantly. Similar algorithmic

approaches are followed by hardware designers. Alternative hardware implementa-

tions of an algorithm trade off accuracy for power consumption, execution time, or

area. However, hardware approximation can be also implemented in general purpose

CPUs as well as memory systems, such as DRAM or static random access memory

(SRAM).

To cope with technological limitations, hardware designers enforce strict guard

bands in the operating points of chips to minimise the failure probability of com-

puting systems. Approximate computing allows chips to be configured outside the
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nominal operating points (e.g., CPU is undervolted or overclocked, an SRAM cache

undervolted, and a DRAM chip refreshed less frequently). The consequence is

increased failure probability, meaning that the probability of an error happening

during the lifetime of an application is a possibility that can no longer be neglected.

The responsibility of dealing with the errors that will occur due to operating the

hardware in unsafe configurations is left to the software layers.

Since the burden of dealing with errors shifts towards the software stack, a sig-

nificant amount of research has been carried out for studying application-specific

methods to handle errors or algorithmic-based fault tolerance (ABFT). The ABFT

approaches are methods specific to each algorithm that ensure the correct (or approx-

imate) termination of the algorithm, even in the presence of errors or inaccuracies.

Despite the strength of ABFT methods for dealing with errors, for approximate

computing to become a prominent computing paradigm, there must be more general

and systematic ways to handle errors. Towards this end, researchers have made

efforts towards designing system-wide solutions for fault tolerance.

1.3 Contribution - Synopsis

The rest of the thesis is organised as follows. In Chapter 2, we discuss the background

of approximate computing. We present the fundamental problem approximate

computing attempts to solve and the different paths and research related to this

field. Furthermore, we show how the work presented in this thesis deviates from this

research.

In Chapter 3, we present an experimental evaluation of fault-tolerance charac-

teristics of a popular iterative solver, Jacobi. We present a first case study of the

energy efficiency of Jacobi when executed on an NTV processor. For our evaluation

of NTVC, we account for the consequences of unreliability in the execution time

of Jacobi. We show that it is possible to attain energy savings between 35% and

67% compared to a system operating at nominal voltage ranges. Next, we present

a more systematic approach to evaluate the energy efficiency of an NTV system,

using two additional iterative solvers, conjugate gradient (CG) and the generalised

minimal residual method (GMRES). We use the concept of isometrics to show that
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it is theoretically possible to build a system based on NTV components that is more

energy efficient than a state-of-the-art high-end Xeon processor. In our evaluation,

we consider the performance penalty of unreliability. We show that a system using

unreliable NTV components can provide better energy to solution (ETS) for per-

formance penalty, due to unreliability between 7% and 129% for a fault tolerant

version of the CG algorithm and between 178% and 359% of the GMRES algorithm,

compared to execution with an off-the-shelf server at nominal operating points.

In Chapter 4, we show a programming model based on OpenMP 4.0 tasks that

allows the programmer to express approximation in task-based parallel applications

and the detailed implementation of a runtime system that implements the semantics

of the programming model. We introduce the concept of task significance, which

describes the contribution of a task to the quality of the result of the algorithm.

Significance describes the semantics of approximation systematically and allows

the runtime system to optimise the execution by enabling acceptable, according

to the programmer, trade-offs between accuracy and energy efficiency. Moreover,

we present a framework that optimises approximate execution based on application

profiles and a runtime-defined energy budget. We compare our framework to loop

perforation, a well-known approximation technique, for many selected benchmarks.

We show that our framework can achieve similar energy savings to loop perforation.

However, we also achieve a graceful degradation of the quality, depending on the

enforced level of approximation, a feature that loop perforation cannot achieve due to

the lack of information regarding the approximation characteristics of the application.

In Chapter 5, we study the potential for energy savings by relaxing the require-

ments for refreshing the DRAM memory. Requirements for refreshing the DRAM

of devices are often pessimistic and are predicted to be a roadblock for the next

generation, higher density devices. We design and implement a system architecture

that can reliably operate on top of DRAM devices that are refreshed less frequently

than nominal or are even not refreshed at all. From the point of view of software,

we identify a novel property, refresh-by-access that allows us to minimise the errors

occurring during the lifetime of an application because of the relaxed refresh rate.

We design a scheduling policy for task-based applications on top of the refresh-

by-access property that manages to reduce the number of DRAM errors observed
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by applications up to an order of magnitude. Our policy enables additional energy

savings since it doubles the amount of data we can store unreliably for a given level

or user-defined quality of output.

Finally, Chapter 6 concludes the thesis. We discuss the potential and prerequisites

of approximate computing to emerge as a useful computing paradigm. We also

discuss potential future work.



Chapter 2

Background

2.1 Near Threshold Voltage Computing

Traditionally, voltage scaling has been the most prominent means of reducing the

power consumption of CPUs. Dennard scaling allowed manufacturers to reduce

the supply voltage of chips and provide abundance of computational power, re-

maining within the available power budget. Moreover, when the power-wall started

becoming a visible obstacle, vendors implemented mechanisms for dynamic volt-

age and frequency scaling (DVFS). These mechanisms were the building blocks

of several techniques and tools for system administrators and software developers

to reduce the power consumption of their systems without sacrificing significant

performance [16, 29, 43, 50, 62, 69, 92, 93].

The CMOS transistors can operate, even using supply voltage Vdd below the

threshold voltage Vth, with a theoretical minimum being determined as early as 1972

[84]. However, reducing Vdd does not come without a penalty. To avoid timing errors

within the CMOS circuit, the operating frequency needs to scale proportionally to

Vdd , which diminishes performance. However, because power consumption depends

quadratically on voltage, scaling down Vdd while in the super-Vth region (Vdd >Vth)

saves energy. When moving in the sub-threshold region (Vdd <Vth), leakage energy

increases exponentially with Vdd . The leakage energy eventually dominates, and a

sweet spot for energy consumption forms (Figure 2.1).

Scaling Vdd from the super-Vth region to the NTV region (Vdd ≈Vth) yields an

energy reduction of 10× with a performance penalty of the same order of magnitude.
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In contrast, further scaling Vdd towards the sub-Vth region and the point of mini-

mum energy consumption provides only an additional 2× improvement in energy

efficiency with a significant increase of performance degradation of an additional

50 – 100×. Thus, several researchers [19, 54] have proposed that operation in the

NTV region is a good trade-off between energy efficiency of the CMOS chip and

performance degradation.

Fig. 2.1 Energy and delay in different supply voltage operating regions [19]

The requirement to scale the operating frequency of CMOS-based chips propor-

tionally to the voltage scaling stems from the need to produce robust chips. Voltage

scaling increases the delays of CMOS circuits, so without equivalent scaling of

the frequency, timing errors will occur within the circuits, harming their correct

operation. Moreover, decreased Vdd is responsible for increased failure probability

of SRAM memory cells, a 5× increase of bitcell failure rate when operating at

near-Vth region according to [19]. To make things worse, reliability issues are further

exacerbated due to increased process variation [19, 42, 64, 78] when operating at

the sub-Vth region. Figure 2.2 shows a ±2× frequency variation of a chip operat-

ing when operating in the near-Vth region as opposed to a ±18% at the super-Vth
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region. Moreover, chips operating in the near-Vth region are increasingly sensitive to

temperature variations, which hinders their robustness.

Fig. 2.2 Modeling and measurements of variation [42]

The attractiveness of NTVC has given rise to a significant amount of research to

address the challenges that NTVC presents. [19, 54] have established that operating

in NTV presents a nice trade-off between energy efficiency and performance loss.

[54] proposed yielding some of the energy savings of the sub-Vth region to gain back

some of the performance, and simultaneously, they utilised a new family of logic

circuits to further increase energy savings. [19, 41, 42, 64] suggested that the lost

performance due to frequency reduction in NTVC will be recovered by manycore

architectures. They proposed using group silicon islands, and depending on the

variation, they presented and applied different operating frequencies, instead of

applying a worst-case scenario universal frequency across the die. [19, 40, 78] also

tried to apply circuit-level optimisations to reduce the variability for chips operating

in the near-Vth region, while [12] examined various SRAM designs considering the

process variation under NTVC to increase the yield of SRAM-based chips. The

common ground of this research line is that they tried to optimise chip designs for

NTVC to cope with the parametric variations and avoid errors.

On the other hand, over the past couple of decades, there have been researchers

that have attempted to understand how errors at the circuits reflect at the microarchi-
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tectural level. For example, [72] studied the effect of errors from the perspective of

individual hardware units within microprocessors, nonetheless, without examining

their consequences for the software. Moreover, [15, 45] proposed allowing errors

to occur in selected hardware units instead of struggling to harden microprocessors

against errors, using pessimistic, worst-case scenario guard bands and fault-tolerance

mechanisms within the microarchitecture. Their proposal is based on the observation

that there are applications that can tolerate these errors without compromising much

of their output quality. They focus on the so-called recognition, mining, and synthesis

(RMS) applications that present algorithmic and cognitive resilience. Algorithmic

resilience stems from the fact that imprecision in their computations does not signifi-

cantly affect the result. Cognitive resilience relates to the fact that imprecision at the

algorithm’s result is acceptable as long as this is acceptable for human users.

Therefore, we are presented a novel and interesting trade-off, one of reliability

versus energy efficiency and performance. To build robust hardware, we need to

forsake potential for additional energy savings and performance improvements. For

example, we retain the Vdd and high frequency of chips to avoid issues with process

variation and timing errors. Alternatively, we could try to design systems that relax

the requirement for reliability in a controlled way to allow energy and performance

optimisation opportunities.

In this thesis, we propose a methodology based on isometrics for evaluating the

viability of NTVC as an efficient computing paradigm. We assume an architecture

that exposes the software layer to faults occurring at the microarchitecture level

and consider the effect of these errors on the execution time of the applications

running on the unreliable platform. In our study, we focus on iterative solvers in

which errors might slow convergence, but our methodology can be extended to

applications where the overhead of unreliability can occur from other sources as well

(e.g., checkpointing and restarting).

We introduce isometrics[82] as a framework for comparing two platforms regard-

ing their energy efficiency. We use a low-power ARM Cortex-A7 processor as an

emulation of an NTV processor. Cortex-A7 features very low power consumption

and a very simple in-order pipeline. This design is in line with the description of an

NTVC single core in the literature [40], where advanced microarchitecture features
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are sacrificed for simplicity and stability against process variation. We assume

a manycore architecture built of many such cores and compare it against a more

powerful ARM Cortex-A15 processor and a high-end Xeon processor. We extend the

concept of isometrics to account for the performance overhead that is a consequence

for using unreliability.

2.2 Approximate Computing

Approximate computing is the system design and programming paradigm that can

perform a computation in an imprecise way, if the quality of the result of the

computation is acceptable by the final user of the system or the application. The

approximation can originate at the hardware level, where some of the hardware units

operate in an unreliable way, or at the software level where programmers define parts

of the application that will use a less accurate algorithm to perform a task.

Approximation is inherent in many applications (e.g., probabilistic algorithms or

algorithms that produce a result in which the quality depends on the perception of

the user of the algorithm). For example, video decoding applications are required to

produce a fixed number of frames per second depending on the quality requirements

of the decoded video. Even if the system can provide enough throughput to produce

a higher frame rate (better quality) it is acceptable that the decoder does not compute

the extra frames to save resources (e.g., power consumption in embedded devices).

Moreover, there are algorithms that present fault-tolerance properties that allow them

to produce acceptable results even in the presence of errors. For example, iterative

solvers repeatedly improve the accuracy of the output across iterations; thus, the

effect of an error can be mitigated by subsequent iterations of the algorithm.

These observations have led to the advent of research that studies fault-tolerant

and approximation properties of algorithms that enable the use of approximate

frameworks. These frameworks are based either in the relaxed reliability of the

hardware or the explicit substitution of certain computations with equivalent code

blocks that perform the same task semantically, only with reduced accuracy. In both

cases, the goal is to reduce resource utilisation, that being power consumption or
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CPU time. As a result, research regarding approximate computing can be separated

into two categories:

1. Application-based fault tolerance that studies the effects of errors on applica-

tions and methods to minimise those and

2. Approximate computing frameworks that endeavours to create programming

models that allow programmers to develop approximate applications and

runtime systems that manage the approximation-related information provided

by the programmers to optimise execution.

2.2.1 Application-based Fault Tolerance

Application fault tolerance has been of interest for researchers and engineers for

decades. Computing systems of any scale, from embedded devices to the highest

ranked supercomputers, presents hardware failures despite the efforts of system

designers to protect them from those using advanced error protection mechanisms

within the hardware (e.g., error detection and correction codes, high guard bands in

voltage and frequency, high refresh rate in DRAM memories, etc.). Thus, researchers

of software-level error mitigation techniques have proposed methods that primarily

rely on periodically checkpointing the state of applications and restarting from the

latest saved state when an error has been detected [30]. Other methods [21] replicate

the state of the algorithm to be able to detect errors, such as silent data corruption.

[53] proposed more advanced replication schemes that enable both detection and

recovery from such errors.

Apart from system-level methods for software resilience, there are solutions

[1, 13, 20, 28, 57, 61, 76] that investigate algorithmic properties that we can presume

upon to increase the resilience of the algorithm. This body of work can be exploited

to enable the adoption of a system design paradigm that allows increased error

probability in selected hardware components. For example, [28, 76] made use of

certain algorithmic properties of two iterative solvers, GMRES and CG, to enable

selective reliability. The algorithms are split in two parts, one that is allowed to

run on hardware with relaxed reliability and a second one that always runs reliably.

Even if an error occurs during the execution of the former, it is guaranteed that,
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once the latter part is executed reliably, it will bring the algorithm back on track for

convergence. However important, this method makes no assumption regarding the

effect of the error on the convergence rate of the algorithms (i.e., the algorithm will

converge, albeit, it might take a significantly increased number of iterations to do so,

negating any energy gains due to operating in NTVC.

The ABFT presents solutions that are inherently application-specific and applied

in an ad-hoc manner. For approximate computing to become a useful programming

paradigm, there is the need for a systematic method of expressing possibilities for

approximation during the implementation of an algorithm.

In this thesis, we design a programming model and runtime system that provides

the required abstractions for the programmer to express approximation semantics

for the developed algorithm. We opt for an OpenMP-like task parallel programming

model because: a) parallelism is inevitable when performance is required. The

NTVC system designs suggest that performance loss due to reduced frequency

will be regained by massively parallel systems, and b) tasks present an intuitive

abstraction level for describing approximation. A task is a well-defined block of

computation to which the programmer can attribute approximation properties, such

as this task is a good/bad candidate for approximation. In this way, we can decouple

what is a candidate for the approximation from how it will be approximated.

We introduce the property of task significance, which, in our context, describes

how much a task contributes to the quality of the results. Consequently, a significant

task should always run accurately, whereas a non-significant or less-significant task

is a candidate for approximation. Finally, the level of approximation is defined

by user-defined constraints, which include the level of accuracy required from the

computation and the available energy budget. We call this programming paradigm

significance-driven computing.

2.2.2 Parallel Approximation Frameworks

Quickstep [56] is a tool that approximately parallelises sequential programs. The

parallelised programs are subjected to statistical accuracy tests for correctness. Quick-

step tolerates races that occur after removing synchronisation operations that would

otherwise be necessary to preserve the semantics of the sequential program. Quick-
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step thus exposes additional parallelisation and optimisation opportunities via ap-

proximating the data and control dependencies in a program. On the other hand,

Quickstep does not enable algorithmic and application-specific approximation, which

is the focus of our work, and does not include energy-aware optimisations in the

runtime system.

Variability-aware OpenMP [68] and variation tolerant OpenMP [67] are sets of

OpenMP extensions that enable a programmer to specify blocks of code that can be

computed approximately. The programmer may also specify error tolerance in terms

of the number of most significant bits in a variable that are guaranteed to be correct.

We follow a different scheme that allows approximate –in our context, not significant–

tasks to be selectively dropped from execution and dynamic error checks to detect

and recover from errors via selective task restarting. Variability-aware OpenMP

applies approximation only to specific floating-point unit (FPU) operations, which

execute on specialised FPUs with configurable accuracy. Our framework applies

selective approximation at the granularity of tasks, using the significance abstraction.

Our programming and execution model thus provides additional flexibility to drop

or approximate code, while preserving output quality. Furthermore, our framework

does not require specialised hardware support and runs on commodity systems.

2.2.3 Other Approximation Frameworks

Several frameworks for approximate computing discard parts of code at runtime,

while asserting that the quality of the result complies with the quality criteria pro-

vided by the programmer. Green [4] is an application programming interface (API)

for loop-level and function approximation. Loops are approximated with a reduction

of the loop trip count. Functions are approximated with multi-versioning. The API

includes calibration functions that build application-specific quality of service models

for the outputs of the approximated blocks of code as well as recalibration functions

for correcting unacceptable errors that may be incurred due to approximation. Sloan

et al. [81] provided guidelines for manual control of approximate computation and

error checking in software. These frameworks delegate the control of approximate

code execution to the programmer. We explore an alternative approach where the

programmer uses a higher level of abstraction for approximation, namely, computa-
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tional significance, while the system software translates this abstraction into energy-

and performance-efficient approximate execution.

Loop perforation [79] is a compiler technique that classifies loop iterations as

critical and non-critical. The latter can be dropped, as long as the results of the loop

are acceptable from a quality standpoint. Input sampling and code versioning [97]

also use the compiler to selectively discard inputs to functions and substitute accurate

function implementations with approximate ones. Similar to loop perforation and

code versioning, our framework benefits from task dropping and the execution of

approximate versions of tasks. However, we follow a different approach whereby

these optimisations are driven from user input on the relative significance of code

blocks and are used selectively in the runtime system to meet user-defined quality

criteria for energy saving and performance gain. While these approaches demonstrate

aggressive performance optimisation due to approximation, they do not consider

parallelism in execution. Furthermore, these techniques operate at a granularity

different from parallel tasks or specific runtime energy optimisation opportunities,

which are exposed through approximation.

Several software and hardware schemes for approximate computing follow a

domain-specific approach. ApproxIt [96] is a framework for approximate iterative

methods, based on a lightweight quality control mechanism. Unlike our task-based

approach, ApproxIt uses coarse-grain approximation at a minimum granularity of

one solver iteration. Gschwandtner et al. used a similar iterative approach to execute

error-tolerant solvers on processors that operate with NTVC and reduce energy

consumption by replacing cores operating at nominal voltage with NTVC cores [24].

Schmoll et al. [77] presented algorithmic and static analysis techniques to detect

variables that must be computed reliably and variables that can be computed approx-

imately in an H.264 video decoder. Although we follow a domain-agnostic approach

in our approximate computing framework, we provide sufficient abstractions for

implementing the application-specific approximation methods.

Other tools automate the generation and execution of approximate computa-

tions. SAGE [74] is a compiler and runtime environment for automatic generation

of approximate kernels in machine learning and image processing applications.

Paraprox [73] implements transparent approximation for data-parallel programs by
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recognising common algorithmic kernels and then replacing them with approximate

equivalents. Moreover, ASAC [70] provides a sensitivity analysis for automatically

generated code annotations that quantify significance. We do not explore automatic

generation of approximate code in this work. However, our techniques for quality-

aware, selective execution of approximate code are directly applicable to scenarios

in which the approximate code is derived from a compiler, instead of source code

annotations.

2.3 DRAM Reliability and Fault Tolerance

Figure 2.3 shows the organisation of a DRAM-based memory subsystem. In modern

architectures, there is one on-chip DRAM controller per CPU, attached to one or

more memory channels, which can operate independently to maintain high bandwidth

utilisation. One or more dual inline memory modules (DIMMs), which consist of

one or more ranks, can be connected to each channel. Each rank is a set of DRAM

chips that operate in unison to complete one memory operation. Note that each

DRAM chip consists of one or more banks, each of which has a dedicated control

logic, so that multiple banks can process memory requests in parallel. Finally,

banks are organised in two-dimensional (2D) arrays of rows and columns of DRAM

cells, which are composed of one access transistor and a capacitor that holds the

information in the form of an electric charge.

Due to the ‘dynamic’DRAM nature, the charge of the capacitor of the DRAM

cell leaks gradually and may lead to a complete loss of the stored information. The

time interval during which the information stored in a DRAM cell can be retrieved

correctly is called the retention-time TRET of the cell. To maintain the integrity of the

data stored in the cell, the charge on each capacitor must be periodically restored.

Auto-refresh: Modern memory chips employ the so-called auto-refresh (AF)

operation, where the memory controller periodically issues a refresh command,

during which the DRAM device refreshes one or more rows per bank depending

on the DRAM size. During AF, a DRAM bank cannot serve any request and all

open rows in a rank remain closed. This causes performance loss and consumes

significant power since every opening of a row is expensive. According to the DDR3
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Fig. 2.3 DRAM Organisation
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Fig. 2.4 Power and performance overheads on current and future DRAM technologies
[48]

specification [33, 34] every row of the DRAM should be refreshed at least once in

a period TREFW = 64 ms and the DRAM controller needs to send, on average, one

refresh command every TREFI = 7.8 us, which means that in TREFW , 8192 refresh

commands must be issued. As the density of DRAM devices increases, the number of

rows that need to be refreshed with every refresh command grows. Therefore, TREFC
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needs to increase proportionally. Consequently, the power consumption and the

throughput loss incurred by the refresh operation is expected to increase considerably

in future DRAM generations, as depicted in Figure 2.4.

2.3.1 Pessimism of Auto-Refresh Operation

Recent studies on custom field-programmable gate array (FPGA) boards have shown

that the cell retention time varies considerably across and within a DRAM chip.

Typically, only a very small number of cells needs to be refreshed once every

TREFW = 64 ms [8, 37, 44, 47]. To verify this observation on typical server envi-

ronments, we have performed experiments on various 8 GB DDR3 DIMMs of a

premium vendor, where we used our experimental prototype and a memory tester

with random and uniformly-distributed data designed to detect the retention time of

DRAM bit cells. The details of our memory tester will be discussed in a following

section. Figure 2.5a shows the spatial distribution of the retention time for one of the

DIMMs, where it is evident that around 80% of the cells have a retention time of 5 s

or more, far higher than the 64 ms minimum assumed by the DDRx specification.

Going one step further, Figure 2.5b plots the cumulative distribution function (CDF)

of bit errors on all 8-GB DIMMs of our system by aggressively relaxing the refresh

period from the conservative 64 ms to 5 s and up to 60 s. Interestingly, even if, in

our experiments, the refresh period is relaxed from 78× (5 s) to 937× (60 s), the

cumulative bit error rate (BER) stays low, ranging from less than 10−9 to about

10−5. Selecting the appropriate refresh period depends on the number of errors

that is acceptable for applications running on the system. Furthermore, the system

needs to guarantee that those errors do not affect any critical system data and lead to

catastrophic failures, an issue that we address in this work.

Commercial DRAMs target a BER ranging from 10−12 to 10−9 when operating

under conservative refresh [60]. Even under this common scenario, our results

indicate that, within our server, the refresh rate can be relaxed at least by 78× (5 s)

if we are prepared to adopt a BER of 10−9. This indicates that insisting on a fixed

refresh rate of 64 ms is extremely pessimistic and wastes power and throughput.

Accepting a BER of 10−9 or even lower may allow aggressive relaxation of the
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refresh-rate, but this highly depends on the effect that these errors have on the

correctness and output quality of applications.
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Fig. 2.5 Retention Time Characterisation on a Commodity Server with Server-Grade
DRAMs

2.3.2 Related Work on Relaxing the Refresh-Rate and Open Is-

sues

Recent schemes have tried to exploit the non-uniform retention time of DRAM cells

for relaxing the refresh rate, either by: a) targeting a very low memory BER by



22 Background

selectively applying retention-aware refresh on cells performing poorly or well, or

b) by allowing a higher memory BER and permitting errors to be masked by the

resilient data portions of the application.

Multi-rate Refresh: Techniques that preserve low BERs [9, 17, 36, 48, 58, 59,

91], which we refer to as multi-rate refresh, group rows into different bins based on

an initial retention time profiling. This approach is similar to the one we apply in

our server to select a higher refresh rate for rows belonging to the lower retention

bin. However, such approaches are highly intrusive since they assume fine-grain

control of the refresh rate (i.e., at the level of the row). Such schemes have been

abandoned in modern DDRx technologies due their high cost. Furthermore, such

schemes are deemed impractical since they neglect the fact that the retention time of

each cell depends on the stored data and can change at runtime [26, 65]. Therefore,

their essential profiling step cannot be accurate, and some cells may be refreshed

at an inadequate refresh rate. In practice, this will lead to errors, which may affect

the system data and result in catastrophic system failures. One can try to address

these errors and minimise their effect on the system or the output-quality through

error-correcting codes [46, 65], but this will essentially limit the gains realised out

of the relaxed refresh.

Error-resilient Techniques: Another viable solution for addressing potential

errors is to allow them and mitigate them at the application layer by exploiting

inherent application-resilience properties [14, 75]. Recent studies have revealed

error-resilient properties of numerous applications, including the processing of a

probabilistic data, iterative structure, which allows averaging of the effect of any

error, or user tolerance to small deviations in output quality. A very limited number

of works have utilised such a paradigm in DRAMs [49, 66]. These researchers

exclusively employ critical-aware data allocation (CADA) on different memory

domains.

Flikker [49] is the most representative case of CADA in the literature. The

Flikker framework assumes the separation of the memory into two domains, the

reliability of which is controlled by the refresh rate. The CADA techniques ensure

that critical portions of program data are stored on a reliable domain (using the

conservative refresh rate), while the rest are stored on a less-reliable domain (with a
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relaxed refresh rate). Although such an approach may have offered an interesting

programming model for exploiting application resilience and may help users accept a

lower memory BER and lower the refresh rate compared to the multi-rate techniques,

it has the following key limitations:

• The options to describe the criticality of data are effectively limited to a

binary criticality measure (critical or non-critical), resulting in high-energy

consumption for the refreshing of data, which cannot afford the highest error

rates that may occur in the system. Supporting intermediate categories of

criticality may present a significant opportunity for further reduction of refresh

operations.

• It does not provide other error mitigation mechanisms for keeping the effect

of errors under acceptable levels apart from moving data to the reliable but

highly power-inefficient domain. As such, the scope for errors on non-critical

data is limited. This limits the aggressiveness of the refresh-rate reduction.

• It has been implemented and evaluated using simulation, thus ignoring the

implications of the full system stack and the time-dependencies that exist

between data accesses and cell retention. This has an effect on the efficacy of

the method and on the assumed application-specific error-resilient properties.

However, the most important limitation of CADA and of multi-rate-refresh

schemes is that they use only spatial techniques for applying relaxed refresh to a few

retention bins or a specific memory domain. They ignore an important property of

applications, which is an implicit ability to refresh data by accessing it. Temporal

properties of memory accesses in applications can be exploited to achieve natural

refresh and error resilience, which in turn enables more aggressive refresh-rate

relaxation than CADA.

2.3.3 Refresh-by-access

Every access to memory naturally opens every row and consequently restores the

stored charge in the capacitor of each DRAM cell, thus incurring an implicit refresh

operation that can help relax the pessimistic rate assumed by the conservative auto-

refresh operation or even skip it completely. We call this property refresh-by-access,



24 Background

and as we demonstrate in this thesis, its exploitation can yield more aggressive

DRAM refresh relaxation than CADA for a wide range of applications. Essentially,

such a property can help to significantly reduce the number of manifested errors

under relaxed refresh rates and improve application resilience and system reliability.

Studying such a property requires the use of real DRAMs and cannot take place

on simulators since, to the best of our knowledge, there are no models that jointly

capture the time-dependent relation between access and retention time. The efficacy

of refresh-by-access depends on the temporal properties of the application-specific

access patterns. To better understand the potential of the technique, we used on an

off-the-shelf server and server-grade DRAMs, the details of which are discussed in

a later section, and executed three different applications (discrete cosine transform

(DCT), Sobel, and K-means). The results are shown in Figure 2.5b. We observe that

the inherently frequent memory accesses of each application result in a much lower

number of errors than the number assumed at each relaxed refresh point. The effect

of this outcome is two-fold: a) it shows that, in practice, refresh-by-access helps

limit the number of manifested errors that need to be tolerated by the application and

b) that the behaviour of an application on a real system will be completely different

that one observed on simulators, as the latter do not capture the effect of refresh-by

access. Therefore, solutions based on CADA may demonstrate completely different

efficacy than the one shown in current simulation-based evaluations. The question

that remains open is how to intelligently exploit such a temporal property in isolation

or in combination with other methods that exploit spatial properties of retention and

how to properly evaluate and capture all the time-dependent interactions on a real

and complete system stack.



Chapter 3

Use Cases for Approximate

Computing

3.1 On the Potential of Significance-Driven Execution

for Energy-Aware High-performance Computing

3.1.1 Introduction

The interest in energy consumption in high-performance computing (HPC) has

increased over the past decade. While high performance is still the main objective,

many considerations have been raised recently that require including power and

energy consumption of hardware and software in the evaluation of new methods

and technologies. The motivational reasons are diverse, ranging from infrastructural

limits, such as the 20 MW power limit proposed by the US Department of Energy, to

financial or environmental concerns [86].

Thus, the hardware industry has shifted focus to include power and energy min-

imisation into their designs. The results of these efforts are evident by features such

as DVFS or power and clock gating. Moreover, DVFS has been an efficient tool

to reduce power consumption; however, increased voltage margins –resulting from

shrinking transistors– put a limit on voltage scaling. Although an energy-optimal

voltage setting would often be below the nominal transistor threshold voltage, this

would give rise to increased variation, timing errors, and performance degradation

that would be unacceptable for HPC applications. An alternative approach is to
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operate hardware slightly above the threshold voltage (also called NTV). The NTV

would achieve substantial gains in power consumption but with acceptable perfor-

mance degradation, which is caused by a rather modest frequency reduction and can

be compensated for by parallelism [40].

Methods for tolerating errors in hardware have been studied in the past [21, 30].

This resulted in several solutions at different levels of the design stack, in both

hardware and software. However, these solutions often come with non-negligible

performance and energy penalties. As an alternative, the shift to an approximate

computing –also known as significance-based computing– paradigm has recently

been proposed [5, 40, 45, 75]. Approximate computing tries to trade reliability

for energy consumption. It allows components to operate in an unreliable state

by aggressive voltage scaling, assuming that software can cope with the timing

errors that will occur with higher probability. The objective is to reduce energy

consumption using NTV and avoid the cost of fault-tolerant mechanisms.

In this work, we are trying to utilise the potential for power and energy reduction

that NTV computing promises combined with significant-based computing. We

investigate the effects of operating hardware outside its standard reliability spec-

ifications on iterative HPC codes, incurring both computational errors as well as

reductions in energy consumption. The HPC domain is a suitable candidate for

applying our techniques. There is an increasing need for computational power in the

HPC world, which we cannot deliver at the moment mainly due to power constraints.

Moreover, a significant number of HPC applications are build on top of iterative al-

gorithms which in many cases are inherently tolerant to errors. Our techniques could

naturally be applied to other domains with power constraints e.g., embedded systems,

but in this thesis we focus on the HPC domain. We show that codes can be analysed

in terms of their significance, describing their susceptibility to faults with respect

to the convergence behaviour. Using the Jacobi method as an example, we show

that there are iterative HPC codes that can naturally deal with many computational

errors, at the cost of increased iterations to reach convergence. We also investigate

scenarios where we distinguish between significant and insignificant parts of Jacobi

and execute them selectively on reliable or unreliable hardware, respectively. We

consider parts of the algorithm that are more resilient to errors to be insignificant,



3.1 On the Potential of Significance-Driven Execution for Energy-Aware High-performance
Computing 27

whereas parts in which errors increase the execution time substantially are marked

significant. This distinction helps us to minimise the performance overhead due to

errors and utilise NTV optimally.

We show that, in our platform, we can achieve 65% energy gains for a parallel

version of Jacobi running at NTV compared to a serial version at super-threshold

voltage along with time savings of 43%, when we execute with 20% of the super-

threshold frequency.

The notion of significance is introduced in Section 3.1.2. We will describe our

methodology and experiment setup in Section 3.1.3 and analyse and illustrate our

results in Section 3.1.4. Finally, Section 3.1.5 will conclude and provide an outlook

for future research.

3.1.2 Significance

We propose the notion of code significance (i.e., that different parts of an application

show different susceptibility to errors in terms of the change in the result). This

applies to data as well as operations and gives rise to considering partial protection

methods, employed only where and when necessary. This distinction, coupled with

the prospect of NTVC, creates the opportunity for significant amounts of power

savings by running non-significant parts of the computation on unreliable hardware.
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We want to illustrate the applicability of significance classification on iterative

solvers and their resilience in the presence of faults. Iterative solvers operate by

repeatedly updating the solution of a system of equations until it reaches the re-

quired level of accuracy. Errors occurring in these algorithms can be gracefully

mitigated at the cost of an increased number of iterations to reach convergence.

Thus, these applications are suitable candidates for trading accuracy for lower energy

consumption.

We selected the weighted Jacobi method as a representative use case to study the

resilience to errors in the broader class of iterative numerical applications. Jacobi

solves the system Ax = b for a diagonally dominant matrix A. It starts with an initial

approximation of the solution, x0, and in each step updates the estimation for the

solution, according to:

x(k+1)
i = ω

(
1
aii

bi −∑
j ̸=i

ai jxk
j

)
+(1−ω)xk

i . (3.1)

The algorithm iterates until the convergence condition ∥Ax−b∥ ≤ limit is satisfied

and is guaranteed to converge if A is strictly diagonally dominant, that is:

|aii|> ∑
j ̸=i

|ai j|. (3.2)

To demonstrate the applicability of significance to Jacobi, Figure 3.1 presents

the effect of a single bit flip fault happening in matrix A at various iterations of an

otherwise fault-free Jacobi run. It shows the relative overhead of Jacobi (i.e. the

number of additional iterations) required to reach the convergence limit compared

to a fault-free run. Generally, Jacobi exhibits a logarithmic convergence rate and

later iterations are more significant due to the overhead required to recover from a

fault. Furthermore, because the achieved residual for later iterations is lower than

for earlier iterations (due to the better x that has been computed), later iterations

also show higher sensitivity to faults. Both these factors render late Jacobi iterations

more significant than early iterations [20]. This motivates the potential application

of protection or recovery mechanisms for later Jacobi iterations only.
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In addition, Figure 3.1 illustrates that Jacobi can cope well with flips happening

in lower bit positions, as they cause little to no overhead. This can be attributed

to the high precision of double-precision floating-point numbers. Flips happening

in the high bits of the exponent for elements of A, however, can have two possible

outcomes, depending on their position and the error they introduce. If the flip causes

a positive error in the floating-point number and happens aside the diagonal, there

is a risk of violating Jacobi’s convergence condition of strict diagonal dominance

for A (Eq. (3.2)) (analogously for negative errors on the diagonal). These cases

manifest themselves as the solid bar shape in Figure 3.1 for bits 57–62. For most

cases that violate this condition, Jacobi does not converge and ends up with a residual

of either infinity (Inf ) or not a number (NaN), depending on the operations involved.

Overall, Figure 3.1 shows that, for most bit positions, there is no protection or

recovery necessary, except for a few high bits of the exponent that justify mitigation

techniques.
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Fig. 3.2 Relative time overhead of Jacobi for faults in A at all matrix positions,
averaged over all bit positions (N = 10).

In addition to Jacobi’s varying significance depending on the progress of the

algorithm, significance can also vary depending on the component that is exposed to a

fault (A, b or x) as well as the position within a component. As an example, Figure 3.2

presents the relative overhead of injecting a fault on the diagonal and offside the

diagonal of iteration matrix A (for illustrative clarity, we chose the problem size

to be 10 × 10). The fact that elements on the diagonal have lower effects (and

hence lower significance) can be attributed to two reasons. First, these elements are
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used in a division operation, whereas the others are used in a multiplication (see

Eq. (3.1)). Second, we use a uniform distribution to randomly initialise the elements

of A and b, that leads to most numbers being positive and greater than 1. Hence, a

multiplication operation tends to increase any effect a fault might have, whereas a

division generally reduces it. For this reason, our experiment results presented in

Section 3.1.4 involving matrix A are based on sampling positions both on and aside

the diagonal and computing a weighted average for the entire matrix. It should be

noted that the weighting between diagonal vs aside elements naturally changes with

the matrix dimensions. Consequently, the overall significance of A is also partially

dependent on the input data size.

Detecting significance can be difficult for large applications. It is an algorithm-

specific attribute; hence, input from programmers can be indispensable for a system

that provides support for significance-based computing. Such a system would rely

on the programmer’s knowledge about the algorithm, who would denote the parts

that can be executed unreliably. Large pieces of software are often composed from

smaller mathematical kernels whose tolerance in faults has been extensively studied.

Such studies could be used by programmers to mark code regions as significant

or non-significant, without having to perform extensive profiling. Moreover, there

is ongoing research for algorithmic detection of the significance of code based on

profiling (e.g., automatic differentiation [89]). This approach studies the sensitivity

of code blocks, monitoring the range of the output of a code block after perturbation

applied to the input. A code block is then considered more sensitive to errors,

when the range of possible output values is larger. Nevertheless, automatically and

efficiently detecting code significance is still an open research area.

Furthermore, the design of a system for significance-based computing should

provide contingencies for applications that cannot afford unreliability in their exe-

cution. For these applications to be able to benefit from NTVC, the system must

employ software or hardware fault-recovery mechanisms.
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3.1.3 Methodology

This section describes the fault model of our work. Moreover, it elaborates the power

and energy effects that we expect from operating hardware unreliably and provides

details about the hardware and our measurement methods.

Fault Model

Following common practice in related work [72], faults can be categorised as:

• No impact: The fault has no effect on the application.

• Data corruption:

– Silent: only detectable with knowledge about the application,

– Non-silent: detectable without knowledge about the application, and

– Looping: faults that cause the application to loop.

• Other (e.g., illegal instructions or segmentation faults).

Of these fault classes, we consider silent data corruption (SDC) faults since they are

the most insidious ones in high performance computing. Signalling errors, such as

Inf or NaN or application crashes due to illegal instructions, are comparatively easily

detectable. Additionally, looping could be identified by detecting fixed points in the

iteration data of an application or constraints on the execution time of code regions.

In contrast, SDCs can cause graceful exits with possibly wrong results, making them

particularly important to handle.

Moreover, SDCs can be categorised further as persistent or non-persistent. Persis-

tent faults occur at the source of the data in question (i.e., if the data is read multiple

times, it will exhibit the same deviation each time). Non-persistent faults, on the

other hand, are faults in temporary copies of data that are only used once (e.g., faults

happening directly in execution units or registers).

We consider persistent faults, mappable to faults happening in CPU data caches

that are read multiple times and might also be written back to the main memory. We

do not account for errors in machine code in instruction caches because these can

lead to non-recoverable errors. We assume that instruction caches are employed with

protection mechanisms.
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Energy Savings Through Unreliability

We explore execution schemes that deliberately compromise processor reliability,

using NTV operation, for achieving power and energy savings in HPC codes [19].

Karpuzcu et al. [40] suggested that power savings between 10× and 50× are possible

with NTV, albeit with a 5× to 10× reduction in clock frequency. Under these

assumptions, a processor would consume 2× to 5× less energy per operation with

NTV, compared to above-threshold voltage operation. Given a fixed power budget,

a system design could replace a few cores operating in the above-threshold region

with many cores operating in the NTV region. A similar strategy of trading each

reliable core with many unreliable NTV cores could be applied to achieve a fixed

performance target.

Experiment Setup

The experimental testbed used for testing our method consists of an HPC node

equipped with four Intel Xeon E5-4650 Sandy Bridge EP processors. Each CPU

offers eight cores with 32 KB and 256 KB of private caches each, and a processor-

wide shared cache of 20 MB. The system runs a 3.5.0 Linux kernel and we used the

GNU Compiler Collection (GCC) 4.8.2 for compilation.

Our workload —a C implementation of Jacobi— was parallelised using OpenMP.

The problem size N = 1000 was chosen such that all data reside in the last-level

cache to minimise main memory interaction not covered in the energy measurement

scope (described below), while still being large enough to ensure reasonable runtimes

with regard to our measurements. Time measurements were done via x86’s rdtsc

instruction and we used Intel’s well-documented running average power limit (RAPL)

interface to obtain energy consumption information [32]. Its PP0 domain provides

readings encompassing all cores at a sampling rate of approximately 1 kHz and a

resolution of 15.3 µJ, and recent work has shown it to be sufficiently accurate for

our use case [25]. To achieve consistent energy readings, the target hardware was

warmed up for an ample amount of time before taking measurements.

Since our target hardware system only allows reliable operation, we must sim-

ulate unreliable operation resulting in power and energy savings as well as faults.

The former can be achieved by correcting the energy consumption data obtained
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via RAPL regarding the observations of near-threshold computing as discussed in

Section 3.1.3. Moreover, to be able to simulate an arbitrary number of reliable or

unreliable cores on non-configurable, commodity multi-core hardware, we need to

take care when processing RAPL data, as it includes off-core entities that might be

oversized or not necessarily present in some cases (i.e., ring bus for a single core).

To that end, we profiled the target CPUs regarding their power consumption for all

numbers of cores in a weak scaling experiment with Jacobi. Figure 3.3 shows the

results of this endeavour. It indicates that the power consumption increases linearly

with the number of cores with an offset for off-core entities of 7.1 W, which will be

removed in subsequent data analysis to provide a fair comparison between arbitrary

numbers of reliable or unreliable cores. The figure also shows a different maximum

power consumption for the two CPU samples (44.3 vs 39.6 W), that can be explained

by differences (e.g., in supply voltage or the temperature).
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Fig. 3.3 Power consumption per number of cores on two Intel Xeon E5-4650 for a
weakly scaling Jacobi run as measured by RAPL, and offcore amount as inferred via
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As previously mentioned, our target hardware only supports reliable operation;

therefore, we need to simulate faults in the software. We inject persistent faults

represented by bit flips in the original data at a range of bit positions of double

precision floating-point numbers prior to the computation of a Jacobi iteration.

This simulates bit flips happening in the data caches of CPUs, which are accessed

frequently during the computation. The implementation of the fault simulation is

based on binary operators applied to the respective element in an inline function,
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causing only negligible performance overhead compared to the overall execution

time of a Jacobi iteration. We assume a single bit flip per overall execution of

Jacobi (i.e., over multiple iterations), since related work indicates that the effects of

multiple faults will lead to similar observations [3] and because it reduces simulation

complexity. Hence, an experiment is defined by:

• The data component in which the fault occurs (in the case of Jacobi matrix A,

or vectors x or b);

• The bit position i at which a flip occurs;

• The Jacobi iteration k when the switch from unreliable to reliable mode occurs,

with 1 < k < K and K denoting the total number of iterations, and

• The Jacobi iteration j that occurs before the execution of the fault, with

1 ≤ j < k.

To minimise simulation time, we do not inject faults at every possible element

of the vectors and matrices of Jacobi but perform representative sampling (e.g.,

elements both on and aside the diagonal of a matrix) with respect to the algorithm.

Furthermore, we employ a convergence limit of a factor of 10. This means that we

consider a faulty Jacobi run as not converging if it takes more than 10 times the

number of iterations of a correct Jacobi run for the same input dataset.

IEEE 754 Double-precision Floating-point Format

The data type in use for storing A, x, and b in our Jacobi implementation is the

default double-precision floating-point type of C, double. The analysis of our results

in Section 3.1.4 is based on the bit positions within the IEEE 754 binary represen-

tation of these numbers, the binary64 format. Elliot et al. has already provided a

detailed discussion regarding the effects of bit flips in this representation in [20].

Nevertheless, for clearness, we feel it is necessary to include a brief description of

this representation and elaborate on the magnitude of errors introduced by bit flips,

dependent on the position of the bit.

Figure 3.4 shows the binary layout of the widely-used binary64 format. The

first 52 bits (positions 0–51) correspond to the mantissa, and the following 11
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63 52 0

sign
exponent mantissa

Fig. 3.4 IEEE 754 binary64 format.

bits (positions 52–62) are used for the exponent, while bit 63 denotes the sign.

Furthermore, within the mantissa and the exponent, the lowest bits are the least

significant ones. The decimal value v of a floating-point number is then computed

using the formula:

v = (−1)s(1+
51

∑
i=0

bi2i−52 ×2e−1023), (3.3)

where s denotes the sign bit, bi the i-th bit of the mantissa and e− 1023 the

exponent (stored with a bias of 1023). Hence, the altered floating-point number

resulting from a single bit flip in position j can be expressed as:

a′ =


a±2 j−52 ×2e−1023 flip in mantissa, (3.4a)

a2±2 j
flip in exponent, (3.4b)

−a flip in sign. (3.4c)

We will evaluate the effect of these perturbations on the energy consumption and

execution time of Jacobi in Section 3.1.4.

3.1.4 Results

In this section, we compare executing Jacobi in parallel on unreliable hardware at

NTV to sequential and parallel versions of Jacobi executed on reliable hardware at

nominal voltage. The results present three cases.

First, we run Jacobi at NTV in parallel throughout its entire execution (i.e., all

iterations) and analyse and discuss the energy savings that can be gained compared

to a sequential run at nominal voltage. Since we are dealing with an HPC code, we

will also investigate the effect of operating at NTV on performance.
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Second, the same analysis is repeated when compared to a parallel execution of

Jacobi.

Third, we explore the possibility of switching from NTV to nominal voltage

for later iterations, motivated by our discussion in Section 3.1.2. We investigate

whether later iterations of Jacobi are sufficiently significant to justify the energy and

performance expense. This could create a potential trade-off, since executing late

iterations at nominal voltage also prevents late faults and thereby saves convergence

overhead.

Given the absence of documentation on the clock frequency impairment that

results from near-threshold computing, we consider two extreme cases: a frequency

reduction by a factor of 5 (i.e., 20% of the nominal frequency, denoted by f = 0.2,

best case) and a reduction by a factor of 10 (i.e., 10% of the nominal frequency,

denoted by f = 0.1, worst case), as discussed in Section 3.1.3. We inject exactly

one error in matrix A of Jacobi under NTV execution using the process outlined in

Section 3.1.2.

The results illustrate the significance of matrix A, since it is the biggest component

of Jacobi in terms of memory consumption and therefore presumably more prone to

faults than smaller components. Furthermore, we assume the worst case regarding the

iteration before which a fault can happen (i.e., the last unreliably executed one). All

results presented are averages over 50 random input datasets, with an overall variance

of 10−5 for the relative overhead of the number of iterations for fault-injected Jacobi

runs.

Sequential Reliable Jacobi

First, we investigate replacing a single, reliable core by multiple (in our case 16)

unreliable cores to execute Jacobi under the same power envelope, as supported by

NTVC (per-core power reductions of 10×–50×). Hence, we assume their maximum

power consumption to be equal. Figure 3.5 illustrates the results of such a series of

experiments, where, in each experiment, a fault happens in a different bit position. It

shows the relative energy and time savings over a sequential, reliable run of Jacobi

for all possible bit positions where faults may happen.
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The results show that the effects of bit flip faults on energy and time may be

categorised as follows:

A: no observable loss in energy or time,

B: observable loss in energy or time, and

C: divergence.

Moreover, this classification coincides with the bit position that is flipped within an

IEEE 754 double-precision floating-point number. Faults happening in bit positions

0–32 can be categorised as class A: since they show no effect on energy savings.

This can be contributed to both Jacobi’s resilience to faults with small magnitudes as

well as the overall high precision of double-precision floating point numbers. Note

that bits 0–32 are part of the mantissa and that a bit flip in these positions can affect

normalised floating-point numbers by at most 2−20 ×2e−1023 (see Eq. (3.4a)). As a

result, energy savings of 31% and 65% are possible for a 10x (f=0.1) and 5x (f=0.2)

frequency reduction respectively.

Bit positions 33–54 and 63 are classified as B:, with higher bit positions up to 54

showing a higher effect on energy and time. The maximum possible floating-point

error for this class is ±2−1 for the mantissa (c.f. Eq. (3.4a), bit 51) and a factor of

2±254
for the exponent (c.f. Eq. (3.4b), bit 54). As such, energy savings are reduced

to 48% for f = 0.2 in the worst case. Bit 63 is not part of the exponent but holds

the sign, and as such, a flip in this position induces an absolute error of 2a (c.f.

Eq. (3.4c)) for a floating-point number a, resulting in average energy savings of

52%. Class B: warrants protection mechanisms if the user wishes to control the

performance penalty incurred by NTV execution.

The missing data points at bit positions 55–62 are a member of class C: since they

are the highest significant bits of the exponent of a double-precision floating-point

number (induced errors between 2±255
and 2±262

). For our setup, flips in any of these

positions aside the diagonal of matrix A cause violations in Jacobi’s convergence

criteria, lead to divergence, and have Jacobi break eventually with a non-silent Inf or

NaN in most cases (see Section 3.1.2), which are easily detectable. Therefore, these

bit positions should be protected in any case.
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Fig. 3.5 Relative energy and time savings of an unreliable, parallel run of Jacobi
on 16 cores compared to a reliable, sequential one. The missing data at bits 55–62
denote divergence.

The correlation of time and energy savings in our results is a direct consequence

of both our constant workload (i.e. arguably leading to constant power consumption)

and the fact that we assume the same power budget for the unreliable cores and the

reliable one.

Parallel Reliable Jacobi

Our second experiment compares executing Jacobi in parallel at NTV against a

parallel run at nominal voltage. The results of this comparison (Figure 3.6) show

an identical classification of bit positions compared to our previous experiment.

Nevertheless, one should note the lower performance compared to the previous

scenario, attributed to the frequency reduction of near-threshold hardware by a factor

of 5 to 10 as well as Jacobi’s sub-linear scaling behaviour.

Therefore, for class A: faults, performance losses between 413% and 925% are

visible. Second, energy savings increase slightly (up to 35% and 67%, respectively).

This is expected due to the more energy-expensive nominal-voltage setup, since

Jacobi does not scale perfectly with the number of cores. As a result, the increase in

power consumption is not fully compensated for by a reduction in runtime, hence

leading to a higher energy consumption. In turn, the relative energy reduction of the

NTV execution increases.
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Fig. 3.6 Relative energy and time savings of an unreliable, parallel run of Jacobi
compared to a reliable, parallel run on 16 cores. The missing data at bits 55–62
denote divergence.

Significance-dependent Reliability Switching

In our third scenario, we investigate whether a fraction of the last iterations of Jacobi

are sufficiently significant to justify running them reliably at nominal voltage, and if

so, when a switch from parallel execution at NTV to sequential execution at nominal

voltage should occur. On one hand, switching to sequential execution increases

run time and energy consumption. On the other hand, running at nominal voltage

prevents faults and guarantees convergence, without necessitating recovery iterations.

To that end, we run experiments where we switch from NTV execution to

execution with nominal voltage at three points during a Jacobi run: 75%, 85%,

or 95% through completion. The intuition for this choice of switching points is

Figure 3.1, where we observe that Jacobi experiences a significant slowdown when

faults happen past the upper quartile of iterations. The energy consumption of these

adaptive executions is depicted in Figure 3.7. For brevity, we only show results

for f = 0.2. Switching later implies that faults in lower bit positions will have a

higher effect since they happen in iterations with higher significance for convergence.

Thus, switching at the 75% mark results in bit positions 0–47 that are categorised

as class A:, while the same class includes only bits 0–35 when switching at the

95% mark. This naturally changes the lower bit boundary of class B: accordingly.

However, it should be noted that it does not affect class C:. If a bit flip in matrix A

leads to divergence of Jacobi, it will always do so, regardless of when it happens.
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Fig. 3.7 Relative energy savings of an adaptive reliable/unreliable run of Jacobi on
16 cores compared to a reliable, sequential one, for switching to reliable hardware at
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Overall, Figure 3.7 shows that switching at any of these three points in time does

not provide a benefit if the objective is to minimise energy consumption. The best

strategy is to switch as late as possible (in our case at 95%); however, all adaptive

executions are outperformed by executing all iterations at NTV (65% energy savings

vs 43% for switching at 95%).

Figure 3.8 shows execution time with adaptive execution. Similar observations

can be made for classification of flipped bits and their effect on energy consumption.

However, with NTV, the best strategy from an execution time perspective depends on

the position of the bit flip, which affects the effect of late class B: faults. For example,

when a flip happens at bit position 48, switching at the 75% mark yields a relative

time loss of 44%, while the time loss is 60% when switching at the 85% mark and

78% when switching at the 95% mark. Furthermore, it is evident that switching at

the 85% mark or earlier already yields performance losses due to the time spent in

sequential execution. Overall, our results lead us to conclude that, while Jacobi does

indeed show an increase in significance for later iterations, this increase is generally

too small —within the boundaries of our setup— to justify switching from parallel

execution at NTV to sequential execution at nominal voltage.

3.1.5 Conclusion

In this work, we explored the applicability and effect of NTV computation to a

representative HPC code. We have shown that it can be a viable means of reducing
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the energy consumption, and that performance impairments caused by NTV can be

mitigated via parallelism. We presented the notion of significance-driven execution,

attributing varying significance to parts of a code or data and thereby determining

whether they are candidates for NTV computation. Our results show potential energy

savings between 35% and 67%, depending on the use case. As such, significance-

driven execution and NTV are viable methods of reducing the energy consumption

in HPC environments without compromising correctness or performance. Future

research opportunities include a detailed analysis of the effect of different degrees of

parallelism, protection mechanisms for intolerable faults as identified in Section 3.1.4,

and investigating and comparing the significance of additional iterative HPC codes.

Additionally, ways of automatically determining the significance of code regions

within compiler frameworks could be explored.

3.2 Evaluating Fault Tolerance on Asymmetric Mul-

ticore Systems-on-Chip using iso-metrics

3.2.1 Introduction

The performance of today’s computing systems is limited by the end of Dennard

scaling [18] and the cooling capacity of CMOS technology [52]. To address these

challenges, processor vendors turned towards multicore designs more than a decade
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ago. To further curb power consumption, power-saving techniques that were orig-

inally designed for battery-operated, embedded, and mobile appliances, such as

DVFS and sleep states, were integrated into mainstream desktop and server sys-

tems. Unfortunately, these efforts seem unable to support higher performance under

reasonable power budgets. Computing systems are threatened by the dark silicon

phenomenon, wherein large portions of hardware real estate remain dormant to avoid

power emergencies. Exploring alternative methods to better utilise hardware real

estate is thus paramount.

The simple, low-power processors in smartphones and tablets as well as emerg-

ing low-voltage processors that operate near or even below threshold voltage are

promising alternatives to tackle the power wall in computing systems. Broadly, these

technologies attempt to modestly or drastically reduce supply voltage, while sustain-

ing processor core clock frequencies to the greatest extent possible. However, these

technologies may compromise performance and, in the case of NTVC, hardware

reliability [40]. When these technologies are adopted, it is hoped that expected

reductions in performance caused by frequency decay might be compensated for

by including additional cores into the same power budget. In turn, this increase in

hardware concurrency can be leveraged to improve performance and, in the case of

NTVC, provide error tolerance by allocating cores to implement resilience techniques

that address eventual data corruption.

This Section uses the principle of isometrics [11] to evaluate and compare conven-

tional server class processors against low-power embedded architectures and NTVC

processors that support ABFT. We compare these three classes of architectures under

iso-power and iso-performance scenarios [82]. Specifically, we use the heteroge-

neous ARM cores on the big.LITTLE system-on-a-chip (SoC) as an actual embedded

platform and an emulated NTVC platform. We use a high-performance Intel Xeon

E5-2650 server as a baseline. To provide a fair comparison and in-depth insight, we

use an important and well-studied algorithm, the CG method [71]. The CG method

is a memory-bound algorithm for solving linear systems; it is gaining prevalence

in HPC because it represents the type of operations and performance exhibited by

many other scientific and engineering programs executing on supercomputers [2].
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As an additional contribution, we describe the energy-saving potential of NTVC

under a realistic application execution scenario. For this purpose, we leverage two

fault-tolerant variants of CG, respectively enhanced with (i) an inner-outer detection

and correction iteration [28] and (ii) a self-stabilising (SS) recovery mechanism [76]

to assess the practical energy trade-offs between hardware concurrency, CPU fre-

quency, and the hardware error rate. We again use the ARM big.LITTLE core

architectures as an emulation platform.

Our central conclusion from both studies is that emerging low-power processor

technologies can reliably sustain performance and significantly improve energy

efficiency compared with the state of the art. For NTVC in particular, we demonstrate

that highly optimised ABFT approaches effectively preserve the energy benefits of

extreme low-power hardware.

The remainder of the Section is structured as follows: Section 3.2.2 discusses

our experimental setup. Section 3.2.3 compares high performance and low-power

processors using isometrics for performance and power. Section 3.2.4 investigates

NTVC processors and the effect of NTVC on the CG method. We conclude in

Section 3.2.5.

3.2.2 Experimental Setup

The CG method

The CG method is a key algorithm for the numerical solution of linear systems of the

form Ax = b, where A ∈ Rnxn is symmetric positive definite (SPD) and sparse, b ∈ Rn

contains the independent terms, and x ∈ Rn is the sought-after solution [71]. The

cost of this iterative method is dominated by a sparse matrix-vector multiplication

involving A, which must be computed once per iteration. For a matrix A with

nz nonzero entries, this operation requires roughly 2nz floating-point arithmetic

operations (flops). Additionally, each iteration involves a few vector operations that

cost O(n) flops each.

For our evaluation, we employ IEEE 754 real double-precision arithmetic and

terminate the CG loop after 2,000 iterations. Furthermore, for simplicity, we do not

exploit the symmetric structure of the matrix. Under these conditions, we estimate the
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cost of CG to be 2nz flops per iteration (i.e., we disregard the lower cost of the vector

operations). Moreover, for efficiency, we leverage multi-threaded implementations of

the matrix-vector multiplication kernel in Intel MKL (version 11) for the Intel-based

CPU. For the ARM-based cores, we rely on our own multi-threaded implementation

of this operation, which is based on the CSR sparse matrix layout [28] and built upon

the OpenMP parallel programming interface.

Target Architectures and Scenarios

The experiments in this Section were performed using three different multicore

processors. The first processor, Xeon, is a high-performance Intel Xeon E5-2650

processor with eight cores, connected to 16 GB of DDR3-1333 MHz RAM. The

alternative low-power architectures are two ARM quad-core clusters, based on

Cortex-A15 and Cortex-A7 cores, in an Exynos5 SoC of an ODROID-XU board.

These two clusters share 2 GB of DDR3-800 MHz RAM. Table 3.1 lists the most

important features of the processor architectures considered in this Section. The

row labelled ‘stream memory bandwidth’reports the memory bandwidth measured

using the triad test of the stream benchmark (http://www.cs.virginia.edu/stream),

when executed with all cores available in the sockets. The row labelled ‘Roofline

GFLOPS’corresponds to the theoretical upper bound on computational performance

(in terms of GFLOPS, or billions of flops per second) derived from the roofline

model [94].

Intel Xeon E5-2650 ARM Cortex-A15 ARM Cortex-A7

#Cores 8 4 4

Frequency range (GHz) 1.2 - 2.0 0.8 - 1.6 0.5 - 1.2

LLC: level, type, size (Mbytes) L3,shared,20 L3,shared,2 L2,shared,0.5

TDP (W) 95 N/A N/A

Peak mem. bandwidth (GBytes/s) 51.2 N/A N/A

Stream mem. bandwidth (GBytes/s) 44 5.4 2.07

Roofline GFLOPS 11 1.35 0.51

Table 3.1 Hardware specifications of the target architectures

For our experimental analysis, we investigate scenarios that vary the number of

cores, the core clock frequency, and the application benchmarks. For simplicity, we
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XEON A15 A7

Name Rows #nonzeros Name Rows #nonzeros Name Rows #nonzeros

apache1 80800 542184 aft01 8205 125567 bcsstk21 3600 26600
cbuckle 13681 676515 bcsstk13 2003 83883 bcsstm12 1473 19659

denormal 89400 1156224 bloweybq 10001 49999 ex33 1733 22189
finan512 74752 596992 ex10hs 2548 57308 mhd4800b 4800 27520

G2_circuit 150102 726674 ex13 2568 75628 msc00726 726 34518
Pres_Poisson 14822 715804 nasa4704 4704 104756 nasa1824 1824 39208

thremal1 82654 574458 s1rmq4m1 5489 262411 plat1919 1919 32399
thermomech_TK 102158 711558 sts4098 4704 104756 plbuckle 1824 39208

Table 3.2 Sparse matrices from UFMC employed in the evaluation

consider the lowest and highest clock frequencies (disregarding Intel’s turbo-mode)

for each architecture. We also consider a collection of inputs that represent ‘on-

chip’execution, whereby the target working data fill the last-level cache (LLC) of

each architecture. Our previous study in [11] exposed the poor scalability attained

with CG when the key working sets reside off chip. We purposely omit off-chip

working sets to avoid blurring the isometric comparison of processor architectures

with memory effects. As part of future work, we intend to perform full system

comparisons that also consider alternative memory technologies.

The performance of CG, as well as the fault-tolerant methods built upon it,

strongly depend on the implementation of the kernel for the sparse matrix-vector

multiplication. The throughput of this operation, in turn, is governed by the sparsity

structure and storage layout of the matrix, which dictates the memory access pattern.

To capture the behaviour of different scenarios, for each architecture, we use a set

of eight sparse matrices as well as one dense matrix, all of which fit into the LLC.

The sparse cases in Table 3.2 were obtained from the University of Florida Sparse

Matrix Collection (UFMC). For each metric (GFLOPS, power, and GFLOPS/W),

we present the average value obtained for the cases selected, for each architecture.

3.2.3 High Performance vs Low Power

In this section, we perform an experimental evaluation of the target CPU architectures,

assuming they operate in nominal regions. We use the CG method, implemented

on top of optimised multi-threaded versions of the sparse matrix-vector kernel from

MKL and our ad-hoc OpenMP routine. The purpose of this analysis is to expose

the trade-offs between performance, power dissipation, and energy efficiency for a

memory-bound method, such as CG, with the goal of answering two key questions:
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• Q1 (Iso-performance): Can we attain the performance of the Intel Xeon

processor with the low-power ARM clusters while yielding a more power-

efficient solution?

• Q2 (Iso-power): What level of performance can be attained using the low-

power ARM clusters within the power budget of the Intel Xeon socket?

Trade-offs

Figure 3.9 illustrates the results from the evaluation of the multithreaded CG imple-

mentations in terms of performance (GFLOPS), power dissipation (W), and energy

efficiency (GFLOPS/W). An evaluation in terms of GFLOPS and GFLOPS/W allows

a comparison of these metrics for problems that vary in size and number of FLOPS

performed. Table 3.3 quantifies the trends captured by the figure. Our analysis of

these results is organised along three axes: number of cores (#cores), frequency, and

architecture (configuration parameters) as well as three metrics. From the point of

view of concurrency (#cores), increasing the number of these resources produces

fair speed-ups for irregular memory-bound problems, which are slightly superior

for Xeon processors and similar for both ARM architectures, independent of the

frequency. For example, the use of four cores on A15 and A7 produces speedups

between 2.0 and 2.4 for any of the two frequencies. The equivalent speedup on Xeon

is 3.1 with four cores and both frequencies.

From the perspective of power, a linear regression fit to the data shows a high

y-intercept for Xeon, which corresponds to static power, and can be explained by

its large LLC, the complex pipeline, the large area dedicated to branch prediction,

and other complex micro-architecture structures of the Xeon. By comparison, A15

and A7 exhibit much lower static power, reflecting the simpler design of these

CPU clusters. This difference between the Intel and ARM-based architectures has

a major effect on energy. Increasing the number of Xeon cores results in shorter

execution time. Moreover, the large static power can be detrimental for energy

efficiency (GFLOPS/W). This is a clear indicator of the potential benefits of a ‘race-

to-idle’policy, which can be applied to this architecture to amortise its high static

power consumption. The effect of increasing the number of cores for A15 and A7 is

the opposite, owing to their low static power.
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Fig. 3.9 Evaluation of performance, power, and energy on the target architectures
using multi-threaded implementations of the CG method on both the on-chip and
off-chip problems.

We proceed with the analysis of frequency. Independent of the number of cores,

the effect of this parameter on performance is perfectly linear for Xeon but sub-linear

for A15, where doubling the frequency only improves performance by a factor of

approximately 1.8; the improvement is slightly higher for A7, where raising the

frequency from 0.5 to 1.2 GHz (a factor of 2.4x) results in a performance increase of

2.1x. The effect of frequency on power is sub-linear for Xeon (a factor between 1.28

and 1.62x, depending on the number of cores) and is super-linear for both A15 (3.24 -

3.59x) and A7 (3.58 - 3.75x). The net effect of the variations of time and power with

the frequency is that, on Xeon, increasing the frequency slightly improves energy

efficiency (again pointing to a race-to-idle strategy for energy-aware execution),

while on the ARM-based clusters, it reduces energy consumption by a factor close to

48% for A15 and 55% for A7

Finally, we observe some additional differences between the processor archi-

tectures. The eight-core Intel processor produces significantly higher performance
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CPU Freq. (GHz) #cores Time per iter. (ms) GFLOPS Speed-up Power Energy

XEON

1.2

1 3.11 0.72 1.0 18.4 0.039

2 1.73 1.35 1.8 20.4 0.065

4 1.02 2.39 3.1 24.2 0.096

6 0.78 2.88 4.0 27.8 0.101

8 0.66 3.76 4.8 31.3 0.116

2.0

1 1.87 1.19 1.0 23.7 0.050

2 1.05 2.24 1.8 27.9 0.079

4 0.61 4.00 3.1 35.7 0.108

6 0.47 4.82 4.0 43.4 0.107

8 0.39 6.34 4.8 50.9 0.119

A15

0.8

1 1.20 0.17 1.0 0.61 0.272

2 0.76 0.26 1.5 1.01 0.258

4 0.55 0.36 2.1 1.69 0.214

1.6

1 0.71 0.31 1.0 1.98 0.154

2 0.46 0.47 1.5 3.32 0.140

4 0.34 0.64 2.0 6.08 0.103

A7

0.5

1 1.38 0.048 1.0 0.031 1.563

2 0.84 0.081 1.6 0.066 1.236

4 0.58 0.124 2.4 0.128 0.966

1.2

1 0.65 0.103 1.0 0.111 0.926

2 0.40 0.170 1.6 0.238 0.718

4 0.27 0.259 2.4 0.481 0.540

Table 3.3 Evaluation of performance, power, and energy on the target architectures
using multi-threaded implementations of the CG method on the on-chip problems

rates and therefore shorter execution times than the ARM clusters at the expense of a

much higher power dissipation rate and much lower energy efficiency (GFLOPS/W).

The differences between the two types of ARM clusters also follow a similar pattern,

offering higher performance with the A15 in exchange for higher power and lower

energy efficiency.
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Analysis of isometrics

We start the study of isometrics by noting that the questions Q1 (iso-performance)

and Q2 (iso-power), formulated at the beginning of this section, can be explored in

a different number of configurations/scenarios. Here, we select one that is relevant

for design space exploration. Concretely, for Q1, we set the performance of one to

eight Xeon cores, clocked at 2.0 GHz as the baseline. Then, we evaluate how many

clusters (consisting of A15 or A7 cores, operating at either the lowest or highest

frequencies) are necessary to match the reference Xeon performance. Question Q2 is

the iso-power counterpart of Q1, with the baseline power budget fixed by the values

obtained with one to eight Xeon cores operating at 2.0 GHz.

The left plot in Figure 3.10 reports the results from the iso-performance study.

To achieve the performance of eight Xeon cores (2.0 GHz), it is necessary to use

almost 10 A15 clusters (i.e., quad-cores) at 1.6 GHz or more than 51 A7 clusters at

0.5 GHz (note the different scales of the y-axis depending on the type of cluster).

In this comparison, we implicitly introduce a simplification that favours the ARM

processors. Specifically, on the multi-socket ARM platform, data and operations

must be partitioned between the clusters, incurring an overhead associated with

communication. For the CG method, we can expect that this additional cost comes

primarily from the reduction vector operations (which are analogous to synchroni-

sation). Furthermore, there is additional overhead caused by the relatively small

problem sizes assigned to each core. These sources of overhead are disregarded

in our study, due to the lack of access to a real platform that would allow us to

measure these overheads. In that sense, our analysis presents a best-case scenario

for the iso-metrics platform. In reality, for the iso-power scenario we would need

to take into account the power consumed on the interconnects, which would result

in a platform with less ARM platforms fitting in the power budget of a Xeon thus

delivering less performance. Similarly, for the iso-performance scenario, we would

need more ARM clusters to match the performance of the Xeon-based system, thus

consuming more power.

The right-hand side plot in Figure 3.10 illustrates the ratio between the power

rates dissipated by four configuration ‘pairs’ that attain the same performance. Each

pair contains a Xeon core and either a A15 or A7 core, at the lowest or highest
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Fig. 3.10 Evaluation of iso-performance. Left: Number of A15 or A7 clusters
required to match the performance of a given number of Xeon cores at 2.0 GHz.
Right: Comparison of power rates dissipated for configurations delivering the same
performance.

frequency. Using the previous examples, eight Xeon cores (2.0 GHz) deliver the

same performance as 9.9 clusters consisting of A15 cores at 1.6 GHz; however, the

A15 clusters consume 18% more power. On the other hand, using 51.1 clusters of

A7 cores at 0.5 GHz only requires a fraction of the power rate dissipated by Xeon;

concretely 12%.

Figure 3.11 displays the results from the complementary study on iso-power.

The plot on the left illustrates that the power budget of one to eight Xeon cores

can accommodate a moderate number of A15 clusters or a very large volume of

A7 clusters. (Note again the different scales in the y-axis.) The performance ratio

between these ARM-based clusters with respect to the Xeon, shown on the right-hand

side plot, reveals decreasing gains with the increasing number of A15 clusters and

equal performance with respect to seven or more Xeon cores. The ratio also decays

for the A7 clusters; however, in this case, it stabilises around a factor of eight.

We note that not all ARM-based configurations considered in the iso-performance

and iso-power study contain the same on-chip memory capacity (iso-capacity) as
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Fig. 3.11 Evaluation of iso-power. Left: Number of A15 or A7 clusters that match the
power dissipated by a given number of Xeon cores at 2.0 GHz. Right: Comparison
of performance rates attained for configurations dissipating the same power rate

Xeon. At least 10 A15 clusters and 40 A7 clusters would be required to achieve an

iso-capacity scenario from the perspective of on-chip memory with respect to the

LLC in Xeon.

3.2.4 Energy Cost of Reliability

The experiments and analysis in this section aim to explore the potential effect of

NTVC on energy, a technique that trades lower processor voltage and frequency for

higher concurrency but a higher failure rate. To perform this study, we make the

following assumptions:

• To emulate a reliable/unreliable execution, we consider a big.LITTLE SoC

consisting of several (N) quad-core A15 clusters plus the same number of A7

clusters. Here, the A15 clusters operate at the highest frequency, are reliable,

and apply the fault-tolerance mechanism (i.e., the stabilising part in SS or

the computations other than CG in the GMRES-based solver). On the other

hand, the A7 clusters operate at the lowest frequency, operate in the NTV
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region, and are de facto less reliable than the A15 clusters. The A7 clusters

are thus used to compute the CG iterations. We will refer to this SoC as

NA15/A7, and we will use performance and energy-efficiency data for the

corresponding on-chip problems for all experiments. Furthermore, we assume

that idle clusters (e.g., the N A7 clusters during the execution of the stabilising

operations) still contribute to the total consumption with an idle power. Safety

measures integrated in the hardware prevent us from using these architectures

below the minimum nominal frequency/voltage. The A7 consumes 0.128 W

when used at the highest frequency. Given that these operating values are

significantly lower than state-of-the-art high performance cores, we use the

A7 power and performance regions as representative NTV cores.

• We employ a tuned variant of our multi-threaded implementations of the CG

method equipped with an SS recovery mechanism [76] to cope with silent

data corruption introduced by unreliable hardware. Following the experiments

in [76], the SS part is activated once every 10 iterations in the CG method, and

must be performed on reliable cores. From the computational point of view, the

major difference between an SS iteration and a ‘normal’CG iteration (baseline

routine) is that the former performs two matrix-vector products instead of only

one. However, these two operations can be performed simultaneously, as they

both involve matrix A. Therefore, for a memory-bound operation, such as the

matrix-vector product, we assume that, in practice, the two types of iterations

share the same computational cost.

• Additionally, we consider an outer GMRES iteration that leverages CG as the

inner solver [28] and integrates a conventional detection/correction mechanism

for fault tolerance. The cost of this inner-outer iteration is dominated by the

CG solver plus two additional matrix-vector products involving matrix A.

The CG iteration can be performed on unreliable cores, but the remaining

computations should be executed on reliable cores. Following the experiments

in [28], we perform 20 iterations of the outer method, with the inner solver

executed for 50 iterations each time it is invoked. With these numbers, 96.2%

of the FLOPS are performed on unreliable cores and only 3.8% are performed

on reliable cores.
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• The convergence rate of the CG iteration depends on the condition number

of matrix A [71]. The convergence of the fault-tolerant variants degrades

logarithmically with the error rate [76]. The SDC occurs during the matrix-

vector product, introducing bit flips into any of its results and propagates

from there to the remainder of the computations. The convergence rate of the

fault-tolerant variants also depends, to some extent, on whether the bit flips

are bounded to the sign/mantissa or can also affect the exponent.

Under the conditions, we perform an experimental analysis of the energy gains

that a hybrid reliable/unreliable big.LITTLE SoC can achieve, against a reliable

single quad-core A15 cluster operating at the highest frequency. We compare the

architectures again under iso-performance and iso-power conditions. Note that, for

the latter, we still consider the power of a single idle quad-core A7 cluster.

Under iso-performance assumptions, we aim to determine how many NA15/A7

clusters must be involved during the execution of the fault-tolerant CG iterations so

that, when combined, the hybrid clusters match the performance of the baseline CG

solver running on a single A15 cluster operating at the highest frequency. Table 3.4

lists these values, which were determined experimentally for each problem (matrix)

and fault-tolerant solver. For example, for the dense case, 7.06 NA15/A7 clusters

are required to run the SS variant at the same GFLOPS rate as the baseline CG

solver executed on a single A15 cluster. For simplicity, we will round this number

to seven NA15/A7s. Next, we can compare the power dissipation rate of the two

configurations (for the dense case and SS): 4.28 W for one A15 cluster (plus one idle

A7 cluster) and 2.1 W for seven NA15/A7s. This implies that, for this benchmark

case and fault-tolerant solver, it is possible to accommodate an increase in the

number of iterations (decay of convergence) that is close to a factor of 2 and still

attain the same ETS. Figure 3.12 reports the percentage of increase in the number of

fault-tolerant solver iterations (executed on unreliable clusters) that would produce

the same ETS as the baseline CG executed on the reliable platform. These results

demonstrate the energy gains that can be expected from operating with simpler

low-power cores at low frequencies for these applications. Concretely, depending on

the benchmark case, NA15/A7 outperforms a single A15 in terms of ETS when the
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degradation occurs in up to 7% to 129% more iterations for SS and 178% to 359%

for the fault-tolerant version of GMRES furnished with an inner-outer iteration.

benchmarks iso-performance CG-SS iso-performance GMRES

dense 7.06 5.02

nasa1824 9.24 7.42

bcsstk21 9.78 8.23

bcsstm12 13.1 9.35

plat1919 8.53 6.74

msc00726 13.09 9.02

ex33 11.67 8.33

plbuckle 11.94 8.71

Table 3.4 Iso-performance of reliable A15 cluster vs unreliable NA15/A7.
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Fig. 3.12 Iso-performance ETS for the original CG (right) and GMRES (left) methods
executed by A15 at the highest frequency (reliable mode) and the SS variant of CG
executed by NA15/A7 under unreliable conditions that degrade convergence.

We also conducted an iso-power study. We set the power dissipated by the A15

cluster operating at the highest frequency as the baseline. We derive how many

NA15/A7 clusters operating at the lowest frequency fit within the same power budget.

This exercise produces the same ETS as the iso-performance analysis. This is to be

expected because any increase in NA15/A7 clusters yields a proportional increase in

its GFLOPS rate or, equivalently, an inversely proportional decrease in execution
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time. Simultaneously, the power dissipation will be increased in the same proportion,

yielding the same ETS.

To conclude this section, we focus on the iso-capacity problem. For this case

study, we require the aggregated LLC of the A7 clusters in NA15/A7 to equal the

capacity of A15. Now, the A15 includes a 2 MB LLC cache and four A7 clusters, to

match the LLC capacity of a single A15 cluster (see Table 3.1). In conclusion, we

can build an NA15/A7 system that can solve problems that are the same in size to

those tackled by a single A15.

3.2.5 Conclusions

The computation and data processing requirements of future systems demand more

energy-efficient processors. In this study, we utilise processors designed for the

mobile computing market and future processors that operate outside the nominal

supply voltage regions to investigate whether they can be used to build HPC systems

and data centres with better energy-to-performance ratios. We concretely show that

it is possible to use power-efficient ARM clusters to match the performance of a

high-end Intel Xeon processor while operating, in a worst-case scenario, within

the same power budget. Conversely, it is possible to use a rather large number of

ARM clusters, fit within the power budget of one Intel Xeon processor, and attain

higher performance. As a further contribution, we tested a reliable CG execution in

an A15 cluster and compared it with an execution of fault-tolerant variants of this

method using a hybrid configuration of A15 and A7 clusters to emulate an unreliable

processor that operates in the NTVC region. From this study, we find that it is

possible to improve ETS, even when errors significantly slow the convergence of

CG.

Because the cornerstone of the CG method is the sparse matrix-vector product,

we believe that the significance of this study carries over to many other numerical

methods for scientific and engineering applications. On the other hand, the study

has certain limitations. For example, we did not consider factors such as the cache

hierarchy, interconnection networks, memory buses, and bandwidth, which can be

relevant in large-scale designs and affect both performance and power consumption.

We made this choice to be able to extract some first-order conclusions about the
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potential of employing NTVC; however, we intend to investigate those matters in

more depth in the future.



Chapter 4

Exploiting the Significance of

Computations for

Energy-constrained Approximate

Computing

4.1 Introduction

Energy consumption is a fundamental challenge for the entire computing ecosystem,

from the tetherless devices that must operate in severely energy-constrained environ-

ments to the data centres that must tame the data deluge. Large-scale computational

experiments that underpin big science are hampered because the inordinate power

draw of high-performance computing hardware makes the implementation of exas-

cale systems impractical. Likewise, current technologies are too energy inefficient

to realise smaller and more intelligent wearable devices for a range of ubiquitous

computing applications that can benefit society, such as personalised health care.

Computing systems execute programs under the assumption that every instruction

in a program is equally significant for the accuracy of the program output. This

conservative approach to program execution may unnecessarily increase the energy

footprint of software. Earlier work on approximate computing [4, 68, 75] shows

that in several application domains, a program may produce virtually unaffected

output if some parts of the program generate incorrect results or even fail completely.
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Fig. 4.1 Our methodology to maximise the output quality of applications that approx-
imate computations while respecting a user-specified energy constraint to gracefully
trade off output quality for energy reduction.

Many data-intensive applications and kernels from multimedia, data mining, and

visualisation algorithms can tolerate a certain degree of imprecision.

As an example, the DCT is a module of popular video compression kernels,

which transforms a block of image pixels to a block of frequency coefficients. The

DCT can be partitioned into different layers of significance because the human eye

is more sensitive to lower spatial frequencies rather than higher ones. Then, by

explicitly tagging operations that contribute to the computation of higher frequencies

as less significant, one can leverage smart underlying system software to trade off

video quality with energy and performance improvements.

Approximate computing is particularly interesting for programs that execute

in energy-constrained environments. Consider, for example, an embedded system

running on batteries, such as a mobile phone or an autonomous robot; when the

battery is low, it may be preferable to run certain computations with a limited energy

budget to prolong system lifetime, even if this comes at reduced output quality or

an acceptable compromise in user experience. As another example, cloud providers

contemplate billing their clients based on the energy consumption of the hosted

client applications. Clients would like to make their applications energy-aware and

flexible, so that the energy cost of each application fits the owner’s available budget.

Furthermore, the willingness of a specific client to pay for energy may vary over

time.

In this Chapter, we introduce the first significance-driven programming frame-

work for energy-constrained approximate computing. The framework comprises a

programming model, a compilation-profiling-modelling tool chain and a runtime

system. The programming model allows the developer to express the significance
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of computational tasks, depending on how strongly these tasks contribute to output

quality. The developer can also provide approximate versions of selected tasks with

lower complexity than that of their accurate counterparts. Approximate tasks may

return inaccurate results or just a meaningful default value.

Our framework compiles and subjects each program to an offline profiling phase

that uses different input datasets to measure the energy footprint of the program under

different levels of concurrency, different processor frequency steps, and different

degrees of approximation. This information is used to train a model, which is then

employed at runtime to pick the proper configuration that achieves the highest output

quality under a user-defined energy budget for a new dataset as shown in Figure 4.1.

This Chapter makes four contributions: (a) We introduce a programming model

that allows the developer to structure the computation in terms of distinct tasks with

different levels of significance and to supply approximate versions of non-significant

tasks; (b) We introduce a profiling and model-training process to predict the energy

footprint of programs as a function of the input size, the number and frequency

configuration of the cores used to run the program, and the ratio of tasks that are

executed accurately; (c) We introduce a runtime system that employs our model

to pick the configuration that achieves the highest possible output quality within a

user-defined energy budget; (d) We experimentally evaluate our approach for several

application benchmarks, showing that our framework model performs very well in

most cases, and achieves better output quality compared to loop perforation [79] (a

well-known compiler-based approximation technique) for the same energy budget.

Specifically, our system can predict energy consumption accurately for all but

three out of nine benchmarks. This prediction is used effectively by the runtime

system to degrade output quality in a graceful way, even when operating under

severe energy constraints (down to 20% of the energy footprint of the most efficient

accurate execution). In one of the three benchmarks where our model fails to make

good predictions, application behaviour depends not only on the size but also on

the structure of the input data. The other two benchmarks have widely varying

locality patterns, which in turn lead to additional data transfers between the last-level

non-shared caches of the cores. Such inherently unpredictable programs are not

amenable to profile-driven modelling and optimisation.
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The rest of the Chapter is structured as follows. Section 4.2 introduces the

programming model. Section 4.3 describes the runtime system that exploits our

model to allow graceful quality degradation of applications. Section 4.4 evaluates the

runtime system in terms of its performance and ability to enforce the policies defined

at the programming model level. Section 4.5 discusses the energy modelling and

prediction methodology, that our framework depends on to optimise execution based

on the significance information defined by the programmer and the energy constraints

defined at execution time. Section 4.6 presents the experimental evaluation of our

framework on a multi-core server, using nine benchmarks that we ported to our

programming model. Section 4.7 concludes the Chapter and presents directions for

future work.

4.2 Programming Model

Part of the problem of energy inefficiency in computing systems is that all parts in a

program are treated as equally important, although only a subset of these parts may be

critical to produce acceptable program output. Tagged computations of the program,

which must be executed accurately from those that are of less importance, thus can

be executed approximately. Our vision is to elevate significance characterisation

as a first-class concern in software development, similar to parallelism and other

algorithmic properties on which programmers traditionally focus. To this end, the

main objectives of the proposed programming model are to enable programmers

to: (i) express the significance of computations in terms of their contribution to the

quality of the output, (ii) specify approximate alternatives for selected computations,

(iii) express parallelism beyond significance, and (iv) optimise and explore trade-offs

via offline and online methods.

1 int sblX(byte *img , int y, int x) {

2 return img[(y-1)*WIDTH+x-1]

3 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]

4 - img[(y-1)*WIDTH+x+1]

5 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];

6 }

7

8 int sblX_appr(byte *img , int y, int x) {

9 return /* img[(y-1)*WIDTH+x-1] Ommited taps */

10 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
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11 /* - img[(y-1)*WIDTH+x+1] Ommited taps *//

12 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];

13 }

14

15 /* sblY and sblY_appr are similar */

16 void row_acc(byte *res , byte *img , int i) {

17 unsigned int p, j;

18 for (j=1; j<WIDTH -1; j++) {

19 p = sqrt(pow(sblX(img , i, j) ,2) +

20 pow(sblY(img , i, j) ,2));

21 res[i*WIDTH + j] = (p > 255) ? 255 : p;

22 }

23 }

24

25 void row_appr(byte *res , byte *img , int i) {

26 unsigned int p, j;

27 for (j=1; j<WIDTH -1; j++) {

28 /* abs instead of pow/sqrt ,

29 approximate versions of sblX , sblY */

30 p = abs(sblX_appr(img , i, j) +

31 sblY_appr(img , i, j));

32 res[i*WIDTH + j] = (p > 255) ? 255 : p;

33 }

34 }

35

36 double sobel(void) {

37 int i;

38 byte img[WIDTH*HEIGHT], res[WIDTH*HEIGHT ];

39 /* Initialize img array and reset res array */

40 ...

41 for (i=1; i<HEIGHT -1; i++)

42 #pragma omp task label(sobel) approxfun(row_appr) \

43 in(img[i*WIDTH +1:(i+1)*WIDTH -1]) \

44 out(res[i*WIDTH +1:(i+1)*WIDTH -1]) \

45 significant((i%9 + 1) /10.0)

46 row_acc(res , img , i); /* Compute a single

47 output image row */

48 #pragma omp taskwait label(sobel) ratio(0.35)

49 }

Listing 4.1 Programming model use case: Sobel filter

#pragma omp task [significant (...)] [label (...)] [in(...)] [out (...)]

[approxfun(function ())]

Listing 4.2 #pragma omp task

We adopt a task-based paradigm where the programmer expresses both paral-

lelism and significance using #pragma directives; this facilitates non-invasive and



62
Exploiting the Significance of Computations for Energy-constrained Approximate

Computing

incremental code transformations without extensive code refactoring and rewriting.

Task scheduling decisions are taken by the runtime system, which considers resource

availability and the data dependencies between tasks. The directives proposed by

our model are extensions to those in the latest version of OpenMP [63]. Listing 4.1

illustrates the Sobel filter, which we use as a running example, implemented with

our programming model.

Tasks are specified using the #pragma omp task directive (Listing 4.2), fol-

lowed by the task body function. Task input and output is explicitly specified via the

in() and out() clauses. This information is exploited by the runtime to detect task

dependencies. Task significance is given by the significant() clause. It takes

values in the range [0.0, 1.0], indicating the relative importance of the task for the

quality of the output. Depending on their significance, tasks may be approximated

or dropped at runtime. The special values 1.0 and 0.0 are reserved for unconditional

accurate and approximate execution, respectively.

For tasks with a significance of less than 1.0, the programmer may provide an

alternative, approximate task body, through the approxfun() clause. This function

is executed whenever the runtime opts to approximate a task. It typically implements

a simpler version of the computation in the task, which may even degenerate to

setting default values for the task output. If the runtime system decides to execute a

task approximately and the programmer has not supplied an approxfun version, the

task is dropped. The approxfun function implicitly takes the same arguments as the

function implementing the accurate version of the task body.

Finally, label() can be used to group tasks under a common identifier (name),

which is used as a reference to implement synchronisation at the granularity of task

groups (discussed later in this section).

As an example, lines 41-46 of Listing 4.1 create a separate task to compute each

row of the output image. The significance of the tasks gradually ranges between 0.1

and 0.9 (line 45), so that there are no extreme quality fluctuations across the output

image. The approximate function row_appr implements a lightweight version of the

computation. All tasks created in the specific loop belong to the Sobel task group,

using img as input and res as output (lines 43-44).
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#pragma omp taskwait [label (...)] [ratio (...)]

Listing 4.3 #pragma omp taskwait

Explicit barrier-like synchronisation is supported via the #pragma omp taskwait

directive (Listing 4.3). If the label() clause is missing, this serves as a global bar-

rier, instructing the runtime to wait for all tasks spawned up to that point. Otherwise,

it becomes a barrier for the task group that is specified via label(), in which case,

the runtime system waits for the termination of all tasks of that group.

Importantly, taskwait can also be used to control the quality of application

results. Using the ratio() clause, the programmer can instruct the runtime to

execute in an accurate way (at least) the specified percentage of tasks (globally

or within a group, depending on the scope of the barrier) while respecting task

significance. A more significant task should not be executed approximately while a

less significant task is executed accurately. The ratio takes values in the range [0.0,

1.0] and serves as a single, straightforward knob to enforce a minimum quality in the

performance/quality/energy optimisation space. Smaller ratios give the runtime more

energy reduction opportunities with a potential penalty in terms of output quality.

As an example, line 48 of Listing 4.1 specifies a barrier for the tasks of the Sobel

task group. In this case, the runtime is instructed to ensure that, at a minimum, the

most significant 35% of the tasks of the group are executed accurately. Note that the

runtime may opt for a higher ratio (e.g., if this is feasible with the energy budget of

the program).

The programming model is implemented by a source-to-source compiler, based

on the SCOOP [95] infrastructure. It recognises the pragmas of the programming

model, and lowers them to corresponding calls of the runtime system (discussed in

Section 4.3). The resulting code is then compiled by the standard GCC tool chain to

produce the final executable.
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4.3 Runtime

We demonstrate how to extend existing runtime systems to support our programming

model for approximate computing. To this end, we extend a task-based parallel

runtime system that implements OpenMP 4.0-style task dependencies [88].

Our runtime system is organised as a master/slave work-sharing scheduler. The

master thread starts executing the main program sequentially. For every task call

encountered, the task is enqueued in a per-worker task queue. Tasks are distributed

across workers in round-robin fashion. Workers select the oldest tasks from their

queues for execution. When a worker queue runs empty, the worker may steal tasks

from other worker queues.

The runtime system furthermore implements an efficient mechanism for identify-

ing and enforcing dependencies between tasks that arise from annotations of the side

effects of tasks with in(...) and out(...) clauses. Dependence tracking is not

affected by our approximate computing programming model. As such, we provide

no further details on this feature.

4.3.1 Runtime API Extension

The runtime exposes an API that matches the pragma-based programming model.

Every pragma in the program is translated in one or more runtime calls. The runtime

API is extended to convey the new information in the programming model. Task

creation is extended to indicate the task group and significance of the task as well

as an alternative (approximate) task function. On the first use of a task group, the

compiler inserts a call to tpc_init_group() to create support data structures in the

runtime for the task group. This API call also conveys the per-group ratio of tasks

that must be executed accurately.

An additional waiting API call is created. Next to the API call tpc_wait_all(),

which waits for all tasks to finish, we create the API call tpc_wait_group() to

synchronise on the completion of a task group.
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4.3.2 Runtime Support for Approximate Computing

The job of the runtime system is to selectively execute a subset of the tasks approx-

imately while respecting the constraints given by the programmer. The relevant

information consists of (i) the significance of each task, (ii) the group to which a task

belongs, and (iii) the fraction of tasks that may be executed approximately for each

task group. Moreover, preference should be given to approximating tasks with lower

significance values as opposed to tasks with high significance values.

The runtime system has no a priori information on how many tasks will be issued

in a task group, nor the distribution of the significance levels in each task group.

This information must be collected at runtime. In the ideal case, the runtime system

knows this information in advance. Then, it is straightforward to approximately

execute those tasks in each task group with the lowest significance . The policies

we design must however work without this information and estimate it at runtime.

We define two policies, one globally controlled policy based on buffering issued

tasks and analysing their properties, and a policy that estimates the distribution of

significance levels using per-worker local information.

4.3.3 Global Task Buffering (GTB)

1 TaskDesc buffer[BUFFER_SIZE ]; // to analyze tasks
2 size_t task_count = 0; // buffer occupation
3 float group_ratio; // set by #pragma
4

5 void buffer_task(TaskDesc t) { // called by master thread
6 buffer[task_count] = t;
7 task_count ++;
8 if (task_count == BUFFER_SIZE)
9 flush_buffer ();

10 }
11

12 void flush_buffer () { // when tasks need to execute
13 sort(buffer); // sort by increasing significance
14 for (i=0; i<task_count; i++) {
15 if (i < group_ratio * task_count)
16 issue_accurate_task(buffer[i]);
17 else
18 issue_approximate_task(buffer[i]);
19 }
20 task_count = 0;
21 }

Listing 4.4 Global task buffering policy to choose the accuracy of a task

In the first policy, the master thread buffers several tasks as it creates them,

postponing the issue of the tasks in the worker queues. When the buffer is full
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or when the call to tpc_wait_all() or tpc_wait_group() is made, the tasks

in the buffer are analysed and sorted by significance. Given a per-group ratio of

accurate tasks Rg, and several B tasks in the buffer, the Rg ·B tasks with the highest

significance level are executed accurately. The tasks are subsequently issued to the

worker queues. The policy is described in Listing 4.4 for a single task group. The

variables described (buffer, task count, and per-group accuracy ratio) are replicated

over all task groups introduced by the programmer.

The task buffering policy is parameterised by the task buffer size. A larger buffer

size allows the runtime to take more informed decisions. Notably, if the buffer size is

sufficiently large, the runtime can end up buffering all tasks until the corresponding

synchronisation barrier is encountered and thus take a fully correct decision as to

which tasks to run accurately/approximately. In our implementation, the buffer size

is a configurable parameter passed to the runtime system at compile time.

The global buffer policy has the potential disadvantage that it slows the program

by postponing task execution until the buffer is full and sorted. In the extreme case,

the runtime system needs to wait for all tasks to be issued and sorted in the buffer

before starting their execution. This overhead can be mitigated using a smaller

window size and tasks of sufficiently coarse granularity, so that the runtime system

can overlap task issues with task execution. Using smaller window sizes will incur

the cost of not making fully correct decisions for approximate execution. Section 4.4

demonstrates that the global task buffering (GTB) policy sustains low overhead in

practice.

4.3.4 Local Queue History (LQH)

The local queue history (LQH) policy avoids the step of task buffering. Tasks are

issued to worker queues immediately as they are created. The worker decides whether

to approximate a task right before it starts its execution, based on the distribution of

significance levels of the tasks executed so far, and the target ratio of accurate tasks

(supplied by the programmer). Hence, the workers track the number of tasks at each

significance level as they are executed.

Formally, the LQH policy operates as follows. Let tg(s) indicate the number

of tasks in task group g observed by a worker with significance s or less. These
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statistics are updated for every executed task. Note that the significance levels s

are constrained to the range 0.0 to 1.0. In the runtime system, we implement 101

discrete (integer) levels to simplify the implementation, ranging from 0.0 to 1.0

(inclusive) in steps of 0.01. By construction, tg(1.0) equals the total number of tasks

executed so far. Let Rg be the target ratio of tasks that should be executed accurately

in task group g, as set by the programmer. Then, assuming a task has significance

level s, it is executed accurately if tg(s)> (1−Rg)tg(1.0), otherwise it is executed

approximately.

This policy attempts to achieve a ratio of accurately executed tasks that converges

to Rg and approximates those tasks with the lowest significance level, as stipulated

by the programming model.

The LQH algorithm is performed independently by each worker using only local

information from the tasks that appear in their work queue. Tasks of one group are

distributed among the workers via pushing of tasks to different local queues by the

master and work stealing. Thus, each worker has only partial information about each

group.

The overhead of the LQH algorithm is the bookkeeping of the statistics that

form the execution history of a group. This happens every time a task is executed.

Updating statistics includes accessing an array of size equal to the number of dis-

tinct significance levels (101 in the runtime), which is negligible compared to the

granularity of the task.

The LQH algorithm requires no global snapshot of all tasks in the program and

no synchronisation between workers and the master. It is thus more realistic and

scalable than GTB. However, given that each worker has only a localised view of

the tasks issued, the runtime system can only approximately enforce the quality

requirements set by the programmer.

4.4 Experimental Evaluation of the Runtime System

We performed a set of experiments to investigate the performance of the proposed

programming model and runtime policies using different benchmark codes that

were rewritten using the task-based pragma directives. We evaluate our approach in
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terms of: (a) the potential for performance and energy reduction, (b) the potential

to allow graceful quality degradation, and (c) the overhead incurred by the runtime

mechanisms. In the sequel, we introduce the benchmarks and the overall evaluation

approach and discuss the results achieved for various degrees of approximation under

different runtime policies.

4.4.1 Approach

Benchmark
Approximate Approx Degree

Quality
or Drop Mild Med Aggr

Sobel A 80% 30% 0% PSNR
DCT D 80% 40% 10% PSNR
MC D, A 100% 80% 50% Rel. Err.

Kmeans A 80% 60% 40% Rel. Err.
Jacobi D, A 10−4 10−3 10−2 Rel. Err.

Fluidanimate A 50% 25% 12.5% Rel. Err.
Table 4.1 Benchmarks used for the evaluation. For all cases, except Jacobi, the
approximation degree is given by the percentage of accurately executed tasks. In
Jacobi, it is given by the error tolerance in convergence of the accurately executed
iterations/tasks (10−5 in the native version).

Fig. 4.2 Different levels of approximation for the Sobel benchmark.

We use a set of six benchmarks, outlined in Table 4.1, where we apply different

approximation approaches, subject to the nature/characteristics of the respective

computation.

Sobel is a 2D filter used for edge detection in images. The approximate version

of the tasks uses a lightweight Sobel stencil with just two-thirds of the filter taps.
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Additionally, it substitutes the costly formula
√

sblx2 + sbl2
y with its approximate

counterpart |sblx|+ |sbly|. The method of assigning significance to tasks ensures that

the approximated pixels are uniformly spread throughout the output image.

The DCT is a module of the JPEG compression and decompression [80] al-

gorithm. We assign higher significance to tasks that compute lower frequency

coefficients.

A Monte Carlo (MC) [90] approach is applied to estimate the boundary of a

subdomain within a larger partial differential equation (PDE) domain by performing

random walks from points of the subdomain boundary to the boundary of the initial

domain. Approximate configurations drop a percentage of the random walks and the

corresponding computations. A modified, more lightweight methodology is used to

decide how far from the current location the next step of a random walk should be.

The K-means clustering method aims to partition n observations in a multi-

dimensional space into k clusters by minimising the distance of cluster members to

a cluster representative. In each iteration, the algorithm spawns several tasks, each

being responsible for a subset of the entire problem. All tasks are assigned the same

significance value. The degree of approximation is controlled by the ratio used at

taskwait pragmas. Approximated tasks compute a simpler version of the Euclidean

distance, while at the same time considering only a subset (1/8) of the dimensions.

Only accurate results are considered when evaluating the convergence criteria.

Jacobi is an iterative solver of diagonally dominant systems of linear equations.

We execute the first five iterations approximately by dropping the tasks (and compu-

tations) corresponding to the upper right and lower left areas of the matrix. This is

not catastrophic, since the matrix is diagonally dominant and thus most of the infor-

mation is within a band near the diagonal. All the following steps, until convergence,

are executed accurately, at a higher target error tolerance than the native execution

(see Table 4.1).

Fluidanimate, a code from the PARSEC benchmark suite [10], applies the

smoothed particle hydrodynamics (SPH) method to compute the movement of a fluid

in consecutive time steps. The fluid is represented as several particles embedded in

a grid. Each time step is executed as either fully accurate or fully approximate by

setting the ratio clause of the omp taskwait pragma to either 0.0 or 1.0. In the
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approximate execution, the new position of each particle is estimated, assuming it

will move linearly in the same direction and with the same velocity as it did in the

previous time steps.

Three different degrees of approximation are studied for each benchmark: mild,

medium, and aggressive (see Table 4.1). They correspond to different choices in

the quality vs energy and performance space. No approximate execution led to

abnormal program termination. It should be noted that, with the partial exception

of Jacobi, quality control is possible solely by changing the ratio parameter of the

taskwait pragma. This is indicative of the flexibility of the programming model.

As an example, Figure 4.2 visualises the results of different degrees of approximation

for Sobel: the upper left quadrant is computed with no approximation, the upper right

is computed with mild approximation, the lower left with medium approximation,

whereas the lower right corner is produced when using aggressive approximation.

The quality of the result is evaluated by comparing it to the output produced by a

fully accurate execution of the respective code. The appropriate metric for the quality

of the result differs according to the computation. For benchmarks involving image

processing (DCT and Sobel), we use the peak signal to noise ratio (PSNR) metric,

whereas for MC, K means, Jacobi and Fluidanimate, we use the relative error.

In the experiments, we measure the performance of our approach for the different

benchmarks and approximation degrees for the two different runtime policies GTB

and LQH. For GTB, we investigate two cases. The buffer size is set so that tasks

are buffered until the synchronisation barrier (referred to as the max buffer GTB);

the buffer size is set to a smaller value, depending on the computation, so that task

execution can start earlier (referred to as GTB).

As a reference, we compare our approach against:

• A fully accurate execution of each application using a significance agnostic

version of the runtime system.

• An execution using loop perforation [79], a simple yet usually effective com-

piler technique for approximation. Loop perforation is also applied in three

different degrees of aggressiveness. The perforated version executes the same

number of tasks as those executed accurately by our approach.
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The experimental evaluation is carried out on a system equipped with two Intel(R)

Xeon(R) CPU E5-2650 processors clocked at 2.00 GHz, with 64 GB shared memory.

Each CPU consists of eight cores. Although cores support SMT execution (hyper-

threading), we deactivated this feature during our experiments. We use a Centos

6.5 Linux operating system with a 2.6.32 Linux kernel. Each execution pinned 16

threads on all 16 cores. Finally, the energy and power are measured using likwid [87]

to access the RAPL registers of the processors.

4.4.2 Experimental Results

Figure 4.3 depicts the results of the experimental evaluation of the system. For each

benchmark, we present execution time, energy consumption, and the corresponding

error metric.

The approximated versions of the benchmarks execute significantly faster and

with less energy consumption compared to their accurate counterparts. Although the

quality of the application output deteriorates as the approximation level increases,

this is typically done in a graceful manner, as it can be observed in Figure 4.2 and

the ‘Quality’column of Figure 4.3.

The GTB policies with different buffer sizes are comparable with each other.

Even though the max buffer GTB postpones the task issue until the creation of all

tasks in the group, this does not seem to penalise the policy. In most applications,

tasks are coarse grained and are organised in relatively small groups, thus minimising

the task creation overhead and the latency for the creation of all tasks within a group.

The LQH is typically faster and more energy-efficient than both GTB flavours, except

for K-means.

In the case of Sobel, the perforated version seems to significantly outperform

our approach in terms of both energy consumption and execution time. However,

the cost of doing so is unacceptable output quality, even for the mild approximation

level as shown in Figure 4.4. Our programming model and runtime policies achieve

graceful quality degradation, resulting in acceptable output even with aggressive

approximation, as illustrated in Figure 4.2.

The DCT is friendly to approximations; it produces visually acceptable results

even if a large percentage of the computations are dropped. Our policies, except for
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Fig. 4.3 Execution time, energy, and quality of results for the benchmarks used in
the experimental evaluation under different runtime policies and degrees of approxi-
mation. In all cases, lower is better. Quality is depicted as PSNR −1 for Sobel and
DCT, relative error (%) is used in all other benchmarks. The accurate execution
and the approximate execution using perforation are visualised as lines. Note that
perforation was not applicable for Fluidanimate.

the max buffer version of GTB, perform comparably to loop perforation in terms of

performance and energy consumption, yet result in higher quality results1. This is

1Note that PSNR is a logarithmic metric
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Fig. 4.4 Different levels of perforation for the Sobel benchmark. Accurate execution,
perforation of 20%, 70%, and 100% of loop iterations on the upper left, upper right,
lower left, and lower right quadrants respectively.

because our model offers more flexibility than perforation in defining the relative

significance of code regions in DCT. The problematic performance of GTB (max

buffer) is discussed later in this section, when evaluating the overhead of the runtime

policies and mechanisms.

The approximate version of MC significantly outperforms the original accurate

version without suffering much of a penalty on its output quality. Randomised

algorithms are inherently susceptible to approximations without requiring much

sophistication. It is characteristic that the performance of our approach is almost

identical to that of blind loop perforation. We observe that the LQH policy attains

slightly better results. In this case, we found that the LQH policy undershoots the

requested ratio, evidently executing fewer tasks 2. This affects quality, which is

lower than that achieved by the rest of the policies.

The K-means method behaves gracefully as the level of approximation increases.

Even in the aggressive case, all policies demonstrate relative errors less than 0.45%.

The GTB policies are superior in terms of execution time and energy consumption

in comparison with the perforated version of the benchmark. Noticeably, the LQH

policy exhibits slow convergence to the termination criteria. The application termi-

nates when the number of objects that move to another cluster is less than 1/1000 of

the total object population. As mentioned in the Section 4.4.1, objects that are com-

puted approximately do not participate in the termination criteria. The GTB policies

2Note: 4.6% and 5.1% more than requested tasks are approximated for the aggressive and the
medium case, respectively.
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behave deterministically, therefore always selecting tasks corresponding to specific

objects for accurate executions. On the other hand, due to the effects of dynamic

load balancing in the runtime and its localised perspective, LQH tends to evaluate

different objects in each iteration accurately. Therefore, it is more challenging for

LQH to achieve the termination criterion. Nevertheless, LQH produces results with

the same quality as a fully accurate execution with significant performance and

energy benefits.

Jacobi is an application, in the sense that approximations can affect its rate

of convergence in deterministic, yet hard to predict and analyse ways. The blind

perforation version requires fewer iterations to converge, thus resulting in lower

energy consumption than our policies. It also results in a solution closer to the real

one, compared with the accurate execution.

The perforation mechanism could not be applied on top of the Fluidanimate

benchmark. This is because if the evaluation of the movement of part of the particles

during a time step is totally dropped, the physics of the fluid are violated, leading

to completely wrong results. Our programming model offers the programmer the

expressiveness to approximate the movement of the liquid for a set of time steps.

Moreover, to ensure stability, it is necessary to alternate accurate and approximate

time steps. In the programming model, this is achieved in a trivial manner by

alternating the parameter of the ratio clause at taskbarrier pragmas between

100% and the desired value in consecutive time steps. It is worth noting that

Fluidanimate is so sensitive to errors that only a mild degree of approximation leads

to acceptable results. Even so, the LQH policy requires less than half the energy

of the accurate execution, with the two versions of the GTB policy being almost as

efficient.

Fig. 4.5 Normalised execution time of benchmarks under different task categorisation
policies with respect to that over the significance-agnostic runtime system.
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Following this, we evaluate the overhead of the runtime policies and mechanisms

discussed in Sections 4.3.3 and 4.3.4. We measure the performance of each bench-

mark when executed with a significance-agnostic version of the runtime system,

which does not include the execution paths for classifying and executing tasks ac-

cording to significance. We then compare it with the performance attained when

executing the benchmarks with the significance-aware version of the runtime. All

tasks are created with the same significance, and the ratio of tasks executed accurately

is set to 100%, eliminating any benefits of approximate execution.

Figure 4.5 summarises the results. It is evident that the significance-aware

runtime system typically incurs negligible overhead. The overhead reaches in the

order of 7% in the worst case (DCT under the GTB max buffer policy). The DCT

creates many lightweight tasks, stressing the runtime. Simultaneously, given that

task creation is a non-negligible percentage of the total execution time for DCT, the

latency between task creation and task issues introduced by the max buffer version

of the GTB policy results in a measurable overhead.

Benchmark
(%) Inversed Significance Tasks Average Ratio Diff
LQH GTB(UD) GTB (MB) LQH GTB(UD) GTB (MB)

Sobel 2.7 0 0 0.07 0 0
DCT 2.7 0 0 0.18 0 0
MC 4.8 0 0 0.17 0 0

KMeans 0 0 0 0.9 0 0
Jacobi 0 0 0 0.12 0 0

FluidAnimate 0 0 0 0 0 0
Table 4.2 Degree of accuracy of the proposed policies.

The last step of our evaluation focuses on the accuracy of the policies in terms

of respecting the significance of tasks and the user-supplied ratio of accurate tasks

to be executed. Table 4.2 summarises the results. The average offset in the ratio of

accurate tasks executed is calculated by the following formula:

ratio_di f f = ∑
Groups
i=1 |requestedratioi−providedratioi|

TotalGroups

The two versions of GTB perfectly respect task significance and the user-specified

ratio. This is expected for the max window version of GTB. The version of GTB

using a limited window benefits from the relatively small task groups created by
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the applications and the smoothly distributed significance values in the tasks of

each group. The LQH, in turn, is inherently more inaccurate due to its localised

perspective. It manages to avoid significance inversion only in cases where all

tasks within each task group have the same significance (K-means, Jacobi, and

Fluidanimate). Even in these cases, LQH may slightly deviate from the specified

ratio due to the loose collaboration of policy modules active on different workers.

4.5 Modelling and Prediction of Application Energy

Footprint

We introduce an analytical model to predict the energy consumption of an application

under different input sizes and execution configurations, in terms of number of cores

used, processor frequency, and the mix of accurately and approximately executed

tasks. The reason for introducing the processor frequency as one of the parameters

that are explored by our model is that we have experimentally observed that the

energy footprint of a computation may correlate to the combination of frequency and

the task approximation ratio in a non-trivial way.

For example, Figure 4.6 depicts the energy consumption of the fisheye benchmark

(discussed in more detail in Section 4.6.1) for 16 cores, different CPU frequencies,

and different ratios of accurate/approximate tasks. The plot shows that the most

energy-efficient executions when low quality can be tolerated (ratios 0.0-0.3) are at

either 1.2 or 2.8 GHz, while the best frequency when targeting higher quality (ratios

0.6-0.8) is 2.4 GHz. In addition, note that 1.6 GHz is a bad choice, independent of

the desired quality of the result.

Next, we describe our modelling and prediction approach in more detail. As

an underlying platform, we assume a general-purpose shared-memory architecture

with multiple multi-core processors/CPUs. All cores within each CPU share the

same LLC and operate at the same frequency (as is the case with the popular Intel

processors). We start by presenting the analytical model for the execution time of a

multi-tasking computation on top of such a platform, and the energy that is expected

to be consumed by it. We then discuss the process that is followed to train the model

through an offline profiling and fitting phase.
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Fig. 4.6 Energy footprint of the fisheye benchmark under different
(CPUFrequency,TaskRatio) configurations.

4.5.1 Analytical Model of Execution Time

Let a computation employ m task-groups, with each group i consisting of ni tasks.

Let the accurate task ratio for group i be ri. Additionally, let the average execution

time of accurate and approximate task versions for group i be equal to Taccuratei and

Tapproxi , respectively. For simplicity, we assume that a task group is well balanced,

and that all tasks roughly take the same time to execute, subject only to whether

they are executed accurately or approximately. Then, the time that is required for

the computation to be executed in a purely sequential way is given by Eq. 4.1, as a

function of the input size s, the CPU frequency f , the ratios r⃗, and number of tasks n⃗

for each group.

Tseq( f ,⃗r,s, n⃗) =
m

∑
i=1

(
ni · (ri ·Taccuratei( f ,s,ni)

+(1− ri) ·Tapproxi( f ,s,ni))

)
(4.1)

Note that larger problem sizes s may also require a larger number of tasks in certain

groups or more work per task or both. Indeed, the number of tasks ni and the time it
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takes for a task of group i to execute in its accurate or approximate version (Taccuratei

and Tapproxi) are open parameters of the model. This makes it possible to implicitly

account for effects that can significantly affect task execution time, such as locality,

caching, and memory traffic due to different input and intermediate data footprints

associated with different problem sizes

Equation 4.2 estimates the parallel execution time for the same computation, as a

function of the number of cores c that are used. The assumption is that all cores run

at the same frequency f , which is typically the case in most off-the-shelf platforms,

including the one we use in our evaluation.

Tpar( f ,⃗r,s, n⃗,c) =
Tseq( f ,⃗r,s, n⃗)

c · scaling( f ,s,c)
(4.2)

The term scaling ( f ,s,c) captures the scalability of the computation as a function

of input size s, the frequency f at which (all) cores run, and the number of cores c.

On a multiprocessor with multi-core CPUs, we assume a ‘packed’ CPU allocation

strategy, whereby the runtime exploits all cores in a CPU before using the cores in

another CPU. Thus, at most, one CPU can have unused cores, which is the most

energy-efficient allocation strategy for common platforms.

4.5.2 Analytical Model of Power and Energy Consumption

The power consumption of the processing elements is given in Eq. 4.3.

P( f ,c,s,⃗r) = Pbackground( f ,c)+Pdynamic( f ,c,s,⃗r) (4.3)

where Pbackground captures the ‘background’power consumed by the number of

active cores c running at frequency f , when idle. The Pdynamic component corre-

sponds to the dynamic power consumption, which depends on the computation that

is being executed. This, in turn, is a function of the number of cores used, the

frequency of these cores, the input size, and the mix of accurate/approximate tasks.

The rationale behind this is that the same task-group might behave differently for

different ratio values. The actual accurate/approximate mix affects the instruction

mix of the overall application as well as the memory locality and access pattern.
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Since Power and Time have been thoroughly modelled we can now properly

define the Energy model:

Energy( f ,⃗r,s, n⃗,c) = Tpar( f ,⃗r,s, n⃗,c)∗P( f ,c,s,⃗r) (4.4)

4.5.3 Offline Profiling and Model Fitting

In a profiling phase, the computation is executed with three different representative

input datasets, of varying size s (and thus also different memory footprints). To

account for locality, caching, and memory traffic effects, we execute with a small

working set that fits in the LLC of a single processor, a large working set that

exceeds the total LLC capacity of all processors in the system3 and, finally, an

intermediate working set. For each input, we execute the computation for all possible

configurations (varying the number of cores c, the frequency f and the task ratio r⃗).

We measure the average execution time of approximate and accurate tasks for each

task group, and the total execution time of each group.

Then, a step-wise model fitting phase follows, where the performance data that

was gathered in the profiling phase is used as input to a regression process. The

objective is to train the different terms of the analytical models presented above, so

that they predict execution time and energy consumption of a given computation for

the different configurations.

The first step is to produce estimation functions for Taccuratei and Tapproxi in

Eq. 4.1. We perform regression to map the average execution time of tasks in a group

i, for both their approximate and accurate versions, to the frequency f , problem size

s, and number of tasks ni. A separate function is created for each of the frequencies

that are supported by the platform. We use the average execution time of tasks that

is observed when executing across all ratios. Exponential, polynomial, and linear

fitting functions are all attempted, and we use one that minimises the prediction error

with respect to profiling data.

3We skip problem sizes that are unrealistic. This is done for the large dataset in the Monte Carlo
and MD benchmarks.
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Next, we produce the function for the scaling term in Eq. 4.2, using the measured

sequential and parallel execution times for different combinations of problem sizes

and number of cores (the latter for parallel execution times). We also experiment

with exponential, polynomial, and linear fitting functions. The result is a separate

function for each frequency, which correlates scalability to problem size and the

number of cores used.

In a last step, a similar approach is followed to produce the function for the

dynamic power consumption Pdynamic component used in Eq. 4.3. Again, a separate

function is produced for each frequency, which returns an estimation based on the

problem size, task ratio, and number of cores used. Note that Pbackground can be

computed just once, measuring the power consumption as a function of the number

of cores that are turned on, without running any computation.

The whole profiling and model-fitting process is repeated for each application,

yielding different functions for each case. This application-specific information is

then made available to the runtime system to pick the best configuration for a given

energy budget.

4.6 Experimental Evaluation of Approximate Com-

puting Framework

We use nine benchmarks to validate our framework and its ability to execute applica-

tions with a pre-defined energy budget, while gracefully trading off output quality

with energy efficiency. The benchmarks have been manually ported to the proposed

significance-driven programming model. We compare our framework against loop

perforation [79] in terms of quality of results under the same energy constraints.

4.6.1 Benchmarks

We apply different approximation approaches to each benchmark, subject to algorith-

mic characteristics of the underlying computation.

Sobel is a 2D filter for edge detection in images. The approximate version

of the tasks uses a lightweight Sobel stencil with just two-thirds of the filter taps.

Additionally, it substitutes the costly formula
√

sblx2 + sbl2
y with its approximate
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counterpart |sblx|+ |sbly|. Significance is assigned to tasks in a round-robin manner,

which ensures that approximated pixels are uniformly distributed throughout the

output.

The DCT is a module of the JPEG compression and decompression algo-

rithm [80]. We assign higher significance to tasks that compute lower frequency

coefficients, as the human eye is more sensitive to those frequencies. Should a task

be executed approximately, the computation is dropped.

Fisheye lens distortion correction [6] is an image processing application that

transforms images distorted by a fisheye lens back to the natural-looking perspective

space. The exact algorithm initially associates pixels of the output of the perspective

space image to points in the distorted image. Then, interpolation on a 4×4 window

is applied to calculate each pixel value of the output, based on the values of neigh-

bouring pixels of the corresponding point in the distorted image. The approximate

task also performs the inverse mapping procedure; however, instead of calculating

each output pixel by interpolating around the corresponding point in the input, it

simply uses the value of the nearest neighbouring pixel.

The K-means approach is an iterative algorithm for grouping data points from

a multi-dimensional space into k clusters. Each iteration consists of two phases.

Chunks of data points are first assigned to different tasks, which independently

determine the nearest cluster for each data point. Then, another task group is used to

update the cluster centres by considering the position of the points that have moved.

The first phase is characterised as non-significant because errors in the assignment

of individual points to clusters can be tolerated. Approximate tasks compute a

simpler version of the Euclidean distance while also considering only half of the

total dimensions. The second phase is significant, as it is harder to recover from a

wrong estimate of a cluster centre.

A Monte Carlo (MC) [90] approach to estimate the boundary of a sub-domain

within a larger PDE domain, by performing random walks from points of the sub-

domain boundary to the boundary of the initial domain. Approximate configurations

drop a percentage of the random walks and the corresponding computations. An

approximate, lightweight methodology is also used to decide how far from the current

location the next step of a random walk should move.
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Canneal, a code from the Parsec benchmark suite [10], applies an annealing

methodology to optimise the routing cost of a chip design. This optimisation method

pseudo-randomly swaps net-list elements. If the swap results in a better routing cost,

it is accepted immediately. Local minima are avoided by rarely accepting swaps that

increase the routing cost of the net-list. Approximate tasks try less swaps (1/8) than

accurate ones. All tasks are assigned the same significance value, so the tasks to be

approximated are randomly selected by the runtime, according to the target ratio.

The MD (molecular dynamics) application simulates the kinematic behaviour

(position and velocity) of liquid argon atoms within a bounded space, under the

effects of a force produced by a Lennard-Jones pair potential [35]. The potential is

defined as a function of distance (r) and two material specific constants (σ and ε):

V (r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]

(4.5)

The significance of the interaction between atoms is strongly correlated with the

distance between them. The greater the distance between atom A and atom B, the

less the kinematic properties of A affect those of B (and vice versa). In the task-based

version of MD, the 3D container of the particles is partitioned into regions that are

updated every few time steps to populate a list of the particles that reside inside them.

For each given atom, one task per region is instantiated to calculate the forces that

operate on the atom due to the particles contained in that specific region. The task

that performs the calculation for the region that contains the atom in question, is

tagged as fully significant. The significance of tasks that are responsible for other

regions drops with increasing distance to the atom home region.

Black Scholes is a benchmark of the Parsec suite [10]. It implements a mathe-

matical model for a market of derivatives, which calculates the buying and selling of

assets to reduce the financial risk. The computation of a stock price can be broken

down to four blocks of code A, B, C, D, with sig(A) > sig(B)≫ sig(C) > sig(D).

The least important parts (C and D) are approximated using less accurate but faster

implementations of mathematical functions, such as exp and sqrt [55].

There is a wide variety of applications that model the behaviour of materials

when colliding or being subjected to forces. Lulesh [39] implements a solution of the
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Sedov blast problem for a material in three dimensions. It defines a discrete mesh that

covers the region of interest and it partitions the problem into a collection of elements

where hydrodynamic equations are applied. We introduce an approximate version

of the hourglass force calculation. Similar to MD, we consider the significance of

particles to be diminishing when moving away from the impact site. Computations

involving the least significant particles can be dropped at execution time.

4.6.2 Experimental Methodology

The experimental analysis was conducted on a system equipped with two Intel(R)

Xeon(R) E5-2650 processors with 64 GB shared DRAM. Each processor has eight

cores and can be clocked at 1.2, 1.6, 2.0, 2.4, or 2.8 GHz. Energy and power are

measured using the RAPL registers of the processors.

The profiling phase uses a pool of representative input sets for each benchmark,

discussed in Section 4.5. At the end of the profiling and model fitting process, each

benchmark is associated with a model estimating its energy consumption per input

size and execution configuration. This formula is, in turn, used by the runtime system

to take online decisions on the execution configuration.

To evaluate our approach, we use unseen input sets (and input set sizes) that have

not been used during the training phase for all benchmarks. All benchmarks are

executed accurately, in all possible core and frequency configurations. From those

executions, we identify the one that consumes the least energy. This is our baseline

scenario for each benchmark.

We then perform several experiments for each benchmark, while requesting a

gradually smaller energy budget, expressed as a percentage of the baseline. The

framework uses the model to decide, at runtime, the ratio and concurrency level with

which it can achieve execution within the requested energy budget, while minimising

the effect on output quality by maximising the ratio of accurate tasks.

We present a comparison of the quality achieved using our framework with a

perforated execution of each benchmark targeting the same energy budget. We

also present the optimal (oracular) configuration (cores and ratio) for each case and

compare it to the one selected by our system.
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4.6.3 Experimental Evaluation and Discussion

Figure 4.7 summarises our results. In all charts, the horizontal axis represents the

requested energy budget as a percentage of the energy consumed by the most energy-

efficient accurate execution. The y-axis of the first set of charts corresponds to the

energy that was consumed by approximate executions as a percentage of the energy

consumed by the accurate execution. The second set of charts is used to quantify

output quality.

We use two references to assess the effectiveness of our methodology: a) loop

perforated versions of the benchmarks guided by an oracle and b) an oracle (optimal)

configurator for the approximate versions of the benchmarks. Loop perforation is a

compiler technique that drops loop iterations deemed less significant for the output

quality while keeping critical loop iterations that must always be executed [79].

In practice, the oracles iterate through the configuration space in the following

dimensions: a) number of cores, b) loop-perforation/approximation ratio value, c)

energy consumption, and d) output quality. Their goal is to identify and report the

highest output quality configuration of the configurations that consume less energy

than the user-specified energy gap. The only difference between the approximate

oracle and the loop-perforation oracle is that the first one accesses the approximated

configurations, whereas the second one reads the loop-perforation configurations.

For the first three applications (DCT, Sobel, and fisheye) output quality is quanti-

fied using PSNR (higher is better). The PSNR is a logarithmic metric. For K-means,

the metric of the quality of output is the relative difference of the average distance

between data points and the centre of the cluster to which they are assigned, com-

pared with that of the fully accurate execution (lower is better). For the remaining

five benchmarks, we report the relative error with respect to an accurate execution

(lower is better).

Our framework produces configurations whose energy consumptions are very

similar to the optimal ones. Even in cases in which the runtime opts for a non-optimal

configuration, the difference in the achieved energy footprint and quality of results is

negligible, with the exception of Canneal, K-means, and Lulesh, which are discussed

in more detail later in this section. Both our approach and the optimal tend to adapt
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Fig. 4.7 Quality and energy metrics for different energy targets (as a percentage of
the most energy-efficient accurate execution). Energy and quality plots show the
results achieved by our system, an oracle selecting the optimal configuration, and
loop perforation.
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concurrency to utilise all cores of both CPUs. This is expected, as the dominant term

in power estimation is due to the activation of additional CPUs.

Imaging and media applications are well-suited for our programming framework,

as they take full advantage of the significance and approximation features of the

programming model. Moreover, the specific implementations scale to larger inputs

by adapting the number of tasks instead of modifying the work per task. Therefore,

it is easier for our model to predict behaviour with high accuracy. Finally, the

execution of approximate tasks has a straightforward and easy-to-model effect on

execution time: more approximate tasks result in less computation and thus more

energy savings.

For Sobel, DCT, and fisheye, respectively, perforated executions capped at the

same amount of energy produce results of inferior quality, corresponding to PSNRs

of 10.75, 14.48, and 8.19 dB, respectively. Our methodology clearly results in higher

quality of results with the same energy budget. However, it sometimes slightly

overshoots the energy budget constraints by picking ratio values that are higher than

the optimal. In the case of DCT, we overspend, on average, by 6.2%. For Sobel, this

number is 2.1% and finally Fisheye overspends by 6.4%. This leads to a pitfall in

Figure 4.7 where our framework seems to outperform the oracle, which is clearly

impossible. Figure 4.8 depicts the Lena portrait compressed and decompressed using

DCT with a ratio of 0.3. The resulting output has a PSNR of 34.62 dB (no visible

quality loss), at a 45% energy gain with respect to the most energy-efficient accurate

execution.

The MD is another well-behaved application for our framework. In most cases,

we choose configurations that result in energy consumption that is very close to

what an oracle achieves. In fact, our estimations, excluding the energy budgets 10%

and 20% result in energy consumption that differs by 4.5% from the user-specified

energy budget. Moreover, we always achieve better quality results than the perforated

version of the benchmark. With just 30% of the energy budget of the most energy

efficient accurate execution, MD computes results with a relative error on the order

of 0.0006%.

For MC, we observe that our framework makes optimal choices in almost every

case. Approximation in MC drops random walks, similarly to perforation; therefore,
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Fig. 4.8 Lena portrait compressed and decompressed using DCT with a ratio of 0.3.

we observe similar results with both techniques. A lower energy budget results in

pruning some of the random walks of the search space. This reduces energy, albeit

with a measurable effect in quality. We can achieve consumption as low as 30% of

the energy required by the most energy-efficient accurate execution, using a ratio of

0.2, which results in a relative error of 5.9%.

Regarding Lulesh, we notice that for energy budgets higher than 10%, the

framework version always produces higher quality than the perforated one, but it

tends to overshoot the energy budget. The case of the energy budget being 10% of

the optimal accurate case is particularly peculiar; the perforated version is better

in terms of quality and energy than both our framework and the oracle. This is

because the approximated executions must spend some of their energy budget to

compute the significance of tasks. Furthermore, approximated tasks do not access the

memory with a regular pattern. Elements are visited according to their distance from

the point of blast. Unfortunately, this access pattern affects memory locality in a

detrimental fashion. On the other hand, the perforated version has a regular memory

access pattern, and the respective energy drops linearly with respect to the number

of the dropped iterations. However, for higher – and realistic – energy budgets, our
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approach always produces results of better quality compared with the perforated

executions. We do have to note that the two issues described above limit the accuracy

of our framework estimations. Figure 4.9 depicts the positions of particles calculated

by a small-scale approximate execution with ratio set to 0.2. Particles are coloured

according to the relative error of their final position with respect to the fully accurate

execution. The maximum relative error is negligible (on the order of 10−8).

Fig. 4.9 Final positions of particles for an approximate execution with ratio 0.2.
Particles have been coloured according to the relative error of their position with
respect to an accurate execution.

Black Scholes calculates prices for several assets. The main loop iterates across

different assets; however, there is no loop involved in the calculation of each partic-

ular asset [79]. Thus, perforation is not applicable, and we limit our comparison

between the proposed framework and the optimal configuration by an oracle. Be-

cause of the computational cost of approximate tasks, the lowest energy budget

obtained by the oracle is 60% of the accurate execution; the framework follows

closely at 63.3%. Once again, we produce results of higher quality than the oracle

for energy budgets higher than 60% due to slightly overshooting the target energy

budget by executing more accurate tasks.
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Our model is less accurate in its predictions for Canneal. This is a consequence

of the bad, unpredictable locality pattern of the application. Canneal uses large

data structures to store information on net-list elements. The random way each

task accesses memory locations increases cache misses, in particular, false sharing

misses that introduce excessive data transfers between the last-level non-shared

caches of cores. This unpredictable behaviour cannot be modelled accurately by our

framework. Thus, we underestimate the execution time of the application and often

select configurations that do not satisfy the energy constraints.

The K-means approach reveals the limitations of our approach. It cannot be

modelled effectively, as it is iterative, with the number of iterations being heavily

dependent on the characteristics of the input set (and not just the size of the input

set). Moreover, wrong decisions in the approximate tasks (point classification) tend

to increase point movement between clusters, and thus, the workload of accurate

tasks (cluster centre calculation). In addition, even when we approximate 100% of

the point classification tasks, we can only reduce the energy footprint by at most

60% because our approximation disregards half of the coordinates of each point. For

such applications, a blind approach, such as loop perforation, proves to be a viable

solution for medium-to-large energy budgets, as it produces solutions that are as

good as our framework using less energy.

To summarise the results of our experimental campaign, we note that there are

scenarios in which it simply impossible to arbitrarily decrease the energy footprint of

an application because even the approximate versions of tasks come with computa-

tional cost. However, we do observe that, in the bulk of the test cases, our framework

succeeds in gracefully trading quality to reduce the cost of executing an application.

4.7 Conclusion

This Chapter introduced a directive-based programming model that allows developers

to specify computational significance at the granularity of tasks. This information

is used to achieve energy-constrained execution with graceful quality degradation.

An offline, profile-based, training process produces a model that predicts the energy

footprint of a given application as a function of its input size, the number of cores
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used, the processor frequency, and the ratio of accurate tasks to the total number

of tasks. This model is exploited by the runtime system of an energy-constrained

multi-core platform to steer execution towards a configuration that maximises quality

of output while complying with energy constraints.

The experimental evaluation across several benchmark codes shows that the

exploitation of programmer wisdom on the significance of computations is necessary

to achieve energy constrained execution without excessive quality loss. This is par-

ticularly evident when comparing our approach against loop perforation [79], a blind

approximation technique applied at the compiler level. In this work, we consider

programmer wisdom to be the cornerstone of significance-driven computing. How-

ever, our intuition indicates that an automatic or at least semi-automatic significance

analysis of computations may be realistic and would extend the applicability of the

proposed framework.

In the future, we plan to investigate automatic significance analysis methods. We

also intend to explore alternative optimisation scenarios by combining profile-based

methodologies with dynamic heuristics in the runtime system. Moreover, we will

investigate effective domain-specific ways to express quality constraints and use the

framework to achieve automated energy-efficient execution within quality limitations.

Finally, we plan to work on cost-effective ways to evaluate the intermediate quality

of results at runtime.



Chapter 5

DARE: Data-Access Aware Refresh

via Spatial-Temporal

Application-Resilience on

Commodity Servers

5.1 Introduction

Power consumption and system resilience are two of the most important challenges

towards exascale computing. Projections ([7, 23]) show that the memory subsys-

tem will contribute up to 30% of the power budget in exascale systems because

of technology scaling of DRAM devices. Besides increasing power, scaling the

memory capacity will increase the likelihood of errors, challenging the reliability of

system operation. Clearly, solutions must address both the need for reduced power

consumption and system resilient operation to be acceptable.

The ever-increasing need for memory capacity is driving the aggressive scaling of

DRAM, which will continue to play a key role by offering higher density than SRAM

and lower latency than non-volatile memory. However, aggressive DRAM scaling

is hampered by the need for periodic refresh cycles to retain the stored data, the

frequency of which is conventionally being determined by the worst-case retention

time of the leakiest cell. Such an approach might guarantee error free storage, but its

viability as the parametric variations worsen and resultant spreads in retention time
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increase are in doubt for future designs. In fact, it is becoming apparent that most of

the cells do not require frequent refresh, and designing for the worst case leads to a

large waste of power and throughput that may reach up to 25 to 50% and 30 to 50%,

respectively, in future 32 Gb to 64 Gb densities ([48]).

Recent approaches ([48, 91]) have exploited the spatial characteristics of non-

uniform retention of DRAM cells to relax DRAM refresh rates. These methods aim

at enabling error-free DRAM storage by grouping rows into different retention bins

and applying a high refresh rate only for rows of low retention times. However, such

multi-rate-refresh techniques require intrusive hardware modifications, which are

costly and hence hinder their use. Equally important is that error-free storage by

these approaches may be impossible to achieve in practice since the retention time

of cells changes over time ([65]). Therefore, methods that relax the refresh rates of

DRAM should be aware that errors are unavoidable and must be mitigated.

While it is possible to deal with errors in DRAM with error correcting schemes ([65]),

these may incur significant power consumption, negating the gains from using re-

laxed refresh rates. A more viable alternative is to mask errors, acknowledging

the inherent error-resilient properties of many real-world applications. Recent stud-

ies ([14, 75]) have revealed numerous error-resilience properties of applications,

such as probabilistic input data processing, iterative execution patterns that resolve

or mitigate errors, algorithmic smoothing of the effect of errors, or user tolerance to

small deviations in output quality. These error-resilience properties provide opportu-

nities to relax the DRAM refresh cycles without concern about the resulting faults,

at least on some application data.

A limited number of studies ([49, 66]) have attempted to leverage application

error-resilience to relax DRAM refresh rates. Invariably, these studies build on

the concept of data criticality to allocate them on either of two different memory

domains: one being refreshed at the conventional worst-case rate and the other at a

relaxed one. Such methods, referred to as CADA, have exhibited that application

resilience can relax refresh rates, but they are still limited in three key aspects:

(i) They fail to identify and make use of the inherent ability of applications to

refresh memory by accessing their own data, a property that we call refresh-by-access.

(ii) They have not employed systematic ways to modulate the classification of data
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into criticality domains. (iii) They were implemented and evaluated in simulation,

thus ignoring the implications of the full system stack, the time-dependencies that

exist between data accesses, and cell retention.

All those limitations result in missing additional opportunities for aggressive

refresh relaxation while reducing the effect of potential errors.

Interestingly, [22] predicted that integrating DRAMs in 3D die stacks will exacer-

bate the refresh-related overheads and propose a hardware solution that accounts for

the implicit refreshes due to regular memory accesses. By tracking memory accesses,

refresh skips those memory rows that have been recently accessed. Nevertheless,

this approach requires intrusive and costly modifications to the DRAM memory

controller, with space overhead increasing linearly with the size of DRAM memory.

In this thesis, we overcome the limitations of CADA by elevating refresh-by-

access as a first-class property of application resilience to develop non-intrusive

software methods for data-access aware refresh (DARE), which facilitates refresh

relaxation on commodity servers and software stacks without intervention in existing

hardware.

We present an experimental prototype where we quantify for the first time the

potential benefits of DARE standalone or in combination with other schemes, while

comparing it to conventional approaches on a real server-grade system stack. Our

contributions are summarised as follows:

• We identify and systematically exploit refresh-by-access to improve appli-

cation resilience and enable aggressive relaxation of the DRAM refresh rate

beyond what is achievable by existing techniques that rely on spatial access

properties. Importantly, such an approach helps us reduce errors and enable

applications that frequently access memory to operate with acceptable output

quality, even when they allocate their data in memory domains without refresh.

• We introduce DARE, a novel and non-intrusive technique that facilitates im-

plicit refresh-by-access, thus improving application resilience. Furthermore,

DARE minimises the number of errors under aggressively relaxed refresh rates.

It does so by reordering the execution of application tasks, based on their data

read and write access patterns, while considering the retention characteristics

of the underlying variably reliable memory domains. In addition, the task
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reordering of DARE improves upon existing CADA-only methods by system-

atically moderating and increasing the amount of data that can be stored in

memory domains with relaxed refresh rates.

• We realise a non-intrusive and complete system stack that integrates DARE

and captures for the first time the time-dependent system and application data

interactions in a system with relaxed DRAM refresh. We present a system that

achieves non-disruptive operation of the whole system. The stack achieves

non-disruptive operation of the whole system under relaxed DRAM refresh

rates, enabling to compare and combine application-resilience techniques,

including CADA, DARE, and application-level error mitigation, to evaluate

their efficacy for the first time on a complete system.

• We evaluate the proposed method using a variety of multimedia, signal process-

ing, and graph applications on a commodity system with server-grade DDR3

DRAM chips. Our findings demonstrate that it is possible to extend refresh

cycles by orders of magnitudes compared to the DDRx standard specifications

of auto refresh or completely disable refresh, while achieving better output

quality compared to existing CADA schemes. Moreover, DARE achieves this

without hardware modifications and with imperceptible performance effects.

The rest of the Chapter is organised as follows. Section 5.2 presents the proposed

approach, while Section 5.3 presents an implementation of a DARE system using

off-the-shelf hardware. Section 5.4 describes the executed benchmarks and presents

the evaluation results. Finally, conclusions are drawn in Section 5.5.

5.2 The DARE Approach

In this section, we present the DARE approach by formalising the refresh-by-access

property and developing the access-aware scheduling scheme. The objective of

the proposed method is to facilitate the refresh-by-access effect, thus minimising

the number of manifested errors by reordering the execution of application tasks

and hence memory access patterns. This way, DARE improves the resilience of

applications even under aggressively relaxed refresh rates.
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5.2.1 Refresh-by-access Memory Model

The probability of error of a program variable is analogous to the time data in its

memory location staying non-refreshed and the type of access to that variable: a

read or a write. Reading a variable consumes its data and hence obsoletes that

memory location, while writing a variable updates the data in the memory location

to be consumed later, either in the program or as the output. Consuming the data

propagates the error to the application, and this is the key distinction between a read

and a write access. Reading a variable means its memory location is vulnerable

to errors due to non-refresh periods before it is accessed. By contrast, writing a

variable means it is vulnerable to errors after its memory location is updated, when

this variable is actually consumed. We illustrate the time-dependent manifestation of

errors and type of access interactions through a simple example.

Figure 5.1 shows timelines of memory access events of program variables. Rx

denotes a read access to variable x and Wx denotes a write access. Time is quantised

as an ordered set of access intervals for illustration. In this example, an application

accesses two variables, namely, a and b, and those variables are stored in variably

reliable memory within the time interval Tstart to Tend . During this time, errors

may appear due to lack of refresh. However, reordering memory accesses, while

respecting data dependencies, reduces the probability of error. We show this by

presenting two different, but both valid, schedules of memory accesses.

In Schedule A, the application accesses and implicitly refreshes variables a and

b, at times T3, T5, and T8. The vulnerability to errors for read accesses is determined

by the duration between the start of non-refreshed operation up to the time the

read operation happens. By contrast, for write accesses, the vulnerability to errors

is determined by the time the write occurs and up to the time the non-refreshed

operations end. For modelling vulnerability, we calculate the error-prone time

interval for each read and write memory access. For read access, this interval is equal

to the time in which data are consumed, that is, Tread −T<start>, whereas for write

accesses, it is equal to T<end>−Twrite, which is the non-refresh interval after which

written data may be consumed. These vulnerability intervals by memory access

characterise Schedule A in terms of how likely it is for an error to propagate to the

application.
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However, the vulnerability to errors can be reduced by scheduling the operations

of the program differently, reordering memory accesses at different times. Schedule

B shows such a reordering, by swapping Rb with Wa so that reading variable b

occurs earlier, whereas writing variable a is pushed later in time. Comparing the

vulnerability intervals between those schedules, shows that Schedule B reduces

the time that data stay non-refreshed before they are consumed, thus it reduces the

probability an error propagates to the application.

Notably, rescheduling the operations in the program must observe data dependen-

cies and program semantics. Instruction-level parallelism and task-level parallelism

are well-known ([27]) mechanisms for reordering operations. However, they have

been so far used for increasing performance by improving memory locality. In addi-

tion, DARE proposes reordering at the level of tasks and, although optimising for

memory locality may appear contradictory to reordering for minimising errors, we

describe further in the Chapter how we address this issue and demonstrate minimal

performance effects.

Schedule A

Tstart Tend

Ra RbWa

T8T5T3

Schedule B

Tstart Tend

Ra Rb Wa

T8T5T3

T3 - Tstart = 3

Tend - T5 = 6 

T8 - Tstart = 8

T3 - Tstart = 3

T5 - Tstart = 5 

Tend - T8 = 3

Fig. 5.1 Example of harnessing refresh-by-access in order to reduce the expected
number of errors.
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5.2.2 Access-aware Scheduling

We formulate an optimisation criterion and an associated scheduling policy to min-

imise the time that data remain in memory without refresh. We purposely derive a

scheduling policy that has low complexity, rather than one that exhaustively covers

all possible scenarios, to demonstrate the key contribution of this work, namely, that

refresh-by-access can be tuned on a relevant set of applications.

We assume a bag-of-tasks model to describe task-level parallelism in applications.

Note that the model is general enough to capture both, parallel DO-ALL loops and

data-level parallelism. Moreover, an application can potentially contain multiple

consecutive regions, each one matching the bag-of-tasks model independently.

Going into more detail, let an application consists of n tasks t1, . . . , tn. Each task

reads a set of memory locations denoted by Ri for task ti. It writes to a set of memory

locations denoted by Wi. Note that the bag-of-tasks model implies that there are

no overlaps between any two write sets and between a pair of read and write sets.

Otherwise, the tasks would incur data races. For this work, we consider only the

read and write sets stored in variably reliable memory. Accesses to data stored in

maximum-reliable memory have no effect on the scheduling problem.

Furthermore, we assume that the average retention time is higher than the execu-

tion time of a task, such that all the read and write sets remain valid by the end of

the task. Such a minimum retention time is realistic, typically even for the nominal

refresh rate. We now formulate the scheduling criterion:

min
T1,...,Tn

(
∑

i:Ri ̸={}
E(Ti −Tstart)+ ∑

i:Wi ̸={}
E(Tend −Ti)

)
(5.1)

where Ti is the time when task ti executes, {} is the empty set and E(T ) is the

probability of bit errors when data is residing in variably reliable memory for a

period T . The E(·) function is characterised in Figure 2.5b. For the purposes of

the scheduling algorithm, it suffices to know that it is a monotonically increasing

function, which implies that E(T ) is minimised by minimising T .

We propose a scheduling policy that optimises Eq. 5.1 by distinguishing three

classes of tasks, depending on whether the read or write sets are empty or non-

empty. Tasks that only read data in variably reliable memory (Wi = {}) should be
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executed as soon possible to minimise Ti −Tstart . Likewise, tasks that only write

data in variably reliable memory (Ri = {}) should be executed as late as possible

to minimise Tend −Ti. The remaining tasks either read and write variably-reliable

memory, or do not access it all. These tasks are executed after the read-only tasks

and before the write-only tasks.

It is common that all tasks are similar in applications matching the bag of tasks

model, as they correspond to iterations of the same loop. This is also the case

in our applications, including the data-dependent graph analytics case. ‘In’ tasks

have similar execution times and equally large read and write sets. Under these

assumptions, interchanging tasks within each of the three groups does not further

improve the optimisation criterion. For example, Figure 5.2 shows how DARE will

reorder tasks to minimise errors of Sobel, based on the optimisation criterion. Sobel

tasks transform an image to emphasise its edges. With default schedule Ti−Tstart = 2

for the read set of the third task, and Tend −Ti = 1 for the write set of the second task,

DARE scheduling reduces both those values to zero time units, minimising the T .

Sobel

Sobel

Sobel

T1

T2

T3

Variably-
Reliable 
Domain

Maximum 
Reliability 
Domain

0 1 2 3

T1 T2 T3

Default Schedule

T3 T1 T2

DARE Schedule

Ri

Ri

Wi

Wi

Fig. 5.2 Default and DARE scheduling

Note that an access to a single bit in memory refreshes the whole row of the

DRAM bank where that bit is located. As such, accesses to one bit, word, or variable
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may cause others to be refreshed as well. It is possible to model these effects.

All interactions between variables can be captured given precise knowledge of the

memory locations of variables and knowledge of the mapping of virtual addresses

to ranks, banks, and rows in DRAM. However, we need not model the memory

system in this level of detail, as it is irrelevant for our applications, and we believe

for many others as well. The reason is that tasks typically access data that are laid

out sequentially. Moreover, those data are sufficiently voluminous to span multiple

DRAM rows. Under these conditions, accidental refresh of DRAM through ‘false

sharing’has negligible potential.

The access-aware schedule can be extended to parallel execution by prioritising

the execution order of tasks following the three groups of tasks. Whether those tasks

are executed sequentially, as explained above, or in parallel has no effect. Note,

however, that parallel execution reduces execution time. This way, it reduces the

probability of errors even further.

5.3 Realizing DARE on a Commodity Server

As we discussed, to capture the time-dependent interactions between memory ac-

cesses and retention time, which have been neglected by existing approaches, and to

evaluate DARE, it is essential to implement it on a real, complete system stack. This

section discusses the proposed implementation of DARE on a commodity server

with the required modifications on the Linux OS, for ensuring seamless operation

under relaxed refresh, while enabling the allocation of data on variably reliable

memory domains. Note that the detailed modifications that we present depend on

the available hardware (e.g., the granularity at which memory refresh is controlled).

However, in any case, all steps and especially the changes on the software stack can

be followed to realise DARE on any commercial system.

5.3.1 Hardware Platform

Our platform is based on a dual-socket commodity server. Each socket hosts an

Intel® Xeon E5-2650 (Sandy Bridge) processor, featuring an integrated memory

controller (iMC) to control the DRAM device attached to the socket. The iMC



100
DARE: Data-Access Aware Refresh via Spatial-Temporal Application-Resilience on

Commodity Servers

exposes a set of configuration registers ([31]) to control DRAM refresh to: (i) Define

the period TREFI for sending refresh commands per DRAM channel and (ii) Enable

or disable refresh for the entire DRAM.

1 software_refresh(refresh_period)
2 {
3 while (true) {
4 enable_refresh ()
5 // wait 64ms to refresh once the whole memory
6 msleep (64ms)
7 disable_refresh ()
8 // sleep for the remaining target refresh period
9 msleep(refresh_period - 64ms)

10 }
11 }

Fig. 5.3 Software refresh controller

The register controlling TREFI has a 15-bit field for setting the period. This limits

the maximum period to 336 ms up from the nominal value of 64 ms. Even though

this is a 5.2× increase, it is still conservative, considering that memory cells have

retention times of several seconds. Instead, we opt for a software refresh mechanism

that we devise and implement to set the refresh-rate at any arbitrary value. The

software refresh controller, shown in pseudocode in Figure 5.3, uses the iMC register

interface to enable or disable refresh periodically for emulating a hardware refresh.

The software refresh runs as a kernel thread with high priority, independently for

each memory domain in the system.

In our hardware configuration, each iMC controls a single memory domain

attached to the CPU socket, thus reliability domains are aligned to sockets and

non-uniform memory access (NUMA) domains (Figure 5.4). The DRAMs attached

to different CPU sockets may have different refresh periods to implement memory

domains with a variable degree of reliability. In our dual-socket system, the first

memory domain is deemed reliable with the nominal refresh applied, while the

second one is the variably reliable one with a configurable refresh. We elaborate

in the next section on this organisation, driven by the fact that critical data must be

stored and accessed reliably.

Hardware error detection and correction codes (ECC) are a common mechanism

employed in DRAMs to improve the bit error probability of the memory. In our
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Fig. 5.4 Hardware and software setup for variably-reliable memory.

testing platform, it is necessary to disable ECC, since detection of an uncorrectable

error triggers the system management mode (SMM) of the CPU and interferes with

our experimentation. The SMM is a special, privileged CPU mode that suspends

execution of other modes, including the operating system, to execute firmware code

that typically reboots the machine to avoid catastrophic failures.

However, disabling ECC has the advantage of enabling us to study the worst-

case scenario effects of reduced refresh rate operation. Using ECC would capture

and correct most of the errors that occur when relaxing the refresh requirements.

Evaluating the potential power and performance overhead of the ECC is out of the

scope of this thesis and it is left for future work.

Before going into the details of the changes on the software stack, we would like

also to propose some useful extensions to the hardware interfaces, motivated by our

implementation. Although, memory controllers already have an interface to control

refresh per-channel, the range of values of TREFI is very conservative, up to 336

ms. As we have shown experimentally, most memory cells have retention times of

seconds. A straightforward extension is to allow larger values for refresh, which in the

case of the iMC, translate to larger bit-width for the configuration register, possibly
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with no other extensions in hardware logic. Furthermore, providing an interface

to control refresh per-DIMM or even per-rank can unlock more opportunities for

fine-grain, selective refreshing.

5.3.2 Software Stack

In this section, we discuss the software platform architecture for enabling variably

reliable memory operation. This includes modifications to the Linux operating

system to ensure crash-free system operation, and a system API to control refresh

and data allocation on variably reliable memory. The hardware view of the OS is

the one shown in Figure 5.4. In this setup, the physical address space is divided into

two reliability domains. The reliable memory domain contains memory locations

that are always refreshed with the nominal refresh period. On the other hand, the

variably reliable memory domain contains memory locations for which the refresh

rate can be relaxed at runtime.

In a similar fashion as reliability domains, software characterises data as critical

or non-critical. Operating system kernel data are critical since even a single error in

them may result in a catastrophic failure at the system level.

At the application level, data pertaining to the code and stack sections of appli-

cations are extremely vulnerable to errors too (i.e., errors in them can lead to an

illegal instruction exception or a segmentation fault, which is catastrophic for the

application). Thus, those data are critical too. Moreover, static data, allocated at

load time, are also deemed critical. This is to avoid changing the system loader

and to simplify programming abstractions for allocating data on the variably reli-

able memory. Our software platform design provides an API to the programmer

for selecting the criticality of dynamic memory allocations on the heap, similar to

other approaches ([49]). Critical data are always allocated from the reliable mem-

ory domain, whereas non-critical data allocate from the variably reliable memory.

Figure 5.4 also depicts our software platform architecture.

Linux Kernel Modifications and Interface to Variably Reliable Memory

We modify the Linux kernel to create the software abstractions for the two reliability

domains. This means rendering the kernel reliability aware for the memory domains
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and exporting a user-space interface to applications for allocating memory either

from the reliable or the variably reliable domain.

For our implementation, we build on the pre-existing concept of memory zones ([51])

that the Linux kernel uses to group pages of physical memory for different allocation

purposes. Existing Linux systems typically include a DMA zone for data operations

of DMA devices, a Normal zone for virtual addresses directly mapped to physical

ones, and in 32-bit systems, a High memory zone for pages that go through memory

translation to map to physical pages. At the kernel level, the page allocation interface

includes zone modifier flags to indicate the zone from which the kernel allocates

pages. For example, when a kernel component needs memory from the DMA zone,

it requests an allocation using the GFP_DMA flag.

Moreover, allocation from memory zones follows some priority orderings. For

example, when pages from the Normal zone are requested and the request cannot

be satisfied by the free pages of the Normal zone, the allocator can fall back to free

pages of the DMA zone. However, allocations from the DMA zone cannot fall back

to the Normal zone.

We define a new zone, namely, the Variably reliable zone, additionally to the

DMA and Normal zones used on our platform. The size of the Variably reliable

zone is defined at boot time, by kernel boot arguments denoting the start and end

address of the physical address space of variably reliable memory. In our testing

platform, the Variably reliable zone pools pages from the second NUMA domain,

which has a relaxed refresh rate to be the variably reliable memory. Nonetheless,

the zone extension we propose is generic enough to allow any subset of the physical

address space to be part of the Variably reliable zone. Moreover, allocations from

the Variably reliable zone may fall back to the reliable zone in case variably reliable

memory is depleted, but not vice versa. The in-kernel page allocator requests a page

from the Variably reliable zone using the GFP_VREL modifier flag, and any other

allocation will be exclusively served by the rest of the reliable memory zones.

For the user-space interface, we extend the mmap system call for dynamic

memory allocation with a new flag, namely, VM_VREL, which instructs the kernel that

the requested memory can be allocated to physical pages of the Variably reliable

zone. For the actual allocation, we extend the kernel page fault handler, so that virtual
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pages flagged as VM_VREL map to physical page frames of the Variably reliable zone.

Note that the VM_VREL is valid only for heap allocations and is otherwise ignored to

ensure that code, stack, and static data during application loading are always stored

reliably.

Lastly, we expose a system interface to set the refresh period on the variably reli-

able memory domain. For our setup, we extend the sysfs kernel interface to have a

refresh_period entry in milliseconds for each NUMA domain under its respective

/sys/devices/system/node/nodeX device tree. Setting the refresh_period

entry of a NUMA domain changes the refresh period of the software refresher kernel

thread for this domain – the special value 0 means no refresh at all. A similar

interface is usable even if reliability domains are decoupled from the NUMA archi-

tecture, by adding memory domain proxies in the device tree. Notably, the sysfs

interface is at the system level; thus, it needs administrator privileges to be set. We

do not envision this interface to be used by application programmers but rather by

system administrators. The presented modifications allow plugging in DARE on any

Linux-based system.

5.4 Evaluation

In this Section, we evaluate the efficacy of the DARE approach on minimizing the

manifestation of errors and compare it with CADA only techniques. For performing

the evaluation, we use the hardware and software platform presented previously

and carefully select a range of applications from various domains with different

error-resilient properties. Note that both DARE and CADA are evaluated for the first

time on a real system. Therefore, our evaluation campaign reveals interesting results

and shows how the time dependencies affect application error-resilience and the true

performance of DARE and CADA schemes. For each benchmark, we use CADA

as the baseline technique to customize data allocation and augment it with DARE,

amenable to the specific characteristics of each application. For experimentation,

we vary the percentage (PR) of data stored in reliable memory, using conventional

refresh, to create different vulnerability scenarios. Moreover, the variably-reliable

memory domain operates with no refresh at all, to test the efficacy of error-resilience
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techniques at the extreme. For each experiment configuration we quantify the output

quality in terms of the related metric for each benchmark and measure the time

overhead of the applied technique. Each experiment is repeated 10 times and present

the average of the results across runs. The compiler used is GCC version 4.8.5.

Finally, we discuss the impact of our approach on power and performance for current

and future DRAM densities and to compare the gains between approaches under

fixed, iso-quality comparisons.

5.4.1 JPEG and Discrete Cosine Transform (DCT)

JPEG is a widely used application for image compression based on DCT, composed

of two parts: (i) compression, during which DCT is applied on the input image

and its output is then quantized and stored on memory, and (ii) decompression,

during which the stored compressed image in the form of quantized coefficients is

dequantized and reconstructed using inverse DCT (IDCT). In the experiments, the

input of DCT is a grid of 64×64 image tiles, while each image is 512×512 pixels.

The memory consumption of the DCT output, to which we focus, amounts to 8GB.

low
freq

high 
freq

8x8 DCT
more
critical

less
critical

Fig. 5.5 Data criticality within an 8×8 DCT block

CADA It was shown ([38]) that in DCT some coefficients, i.e., low-frequency

ones, are more significant for determining the output quality than the rest, high-

frequency ones. This means DCT is resilient when errors manifest in high-frequency

coefficients, since their impact on output quality is limited. The application of CADA

to DCT is straightforward in this case. The input image is set as critical data, thus

stored in the reliable memory, together with the low-frequency coefficients of each
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Fig. 5.6 Comparison of application resilience techniques for DCT using variably-
reliable memory without refresh.

of the 8×8 DCT computation blocks that constitute our kernel. Figure 5.5 shows

the location of the critical coefficients within a DCT block. The lowest frequency,

top left coefficient is the most critical and criticality reduces significantly, moving

towards the bottom right part of the block. Each task in our experiments reads a

8×8 block of the reliable stored input image, computes the DCT coefficients for a

row and stores them to an output array. There is not an exact threshold to how many

of the top rows need to be stored reliably to decisively affect output quality. For

experimentation, we vary this threshold, translated as the percentage of the output

data stored reliably, to investigate its impact on quality. For a given output quality,

the more data stored in the variably-reliable memory, the less the power consumption

due to relaxing refresh on larger parts of memory.

DARE Following our task model, all tasks read from the reliable memory but

depending on the threshold for storing rows reliably, some of them write their output

on the variably-reliable memory. Note that DARE reorders the execution of tasks
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schedule to ensure that tasks writing on variably-reliable memory execute as late as

possible, to minimize manifested errors from relaxed refresh execution.

Quality Metric The quality metric for DCT is the Peak Signal-to-Noise Ratio

(PSNR), calculated by comparing the original to the reconstructed image. For the

tiled images input, we take the minimum PSNR among all tiles in the grid to perform

a worst-case analysis.

Results Figure 5.6 shows results on the number of errors and output quality,

varying PR ratios to 25%, 50% and 75% of the data store in the variably-reliable

memory. Note that a PR of 0%, meaning all data are stored in the reliable memory,

does not utilize the inherent error resilient properties; whereas a PR of 100%,

meaning all data are stored in the variably-reliable memory, cannot clearly show

the effects of DARE since all tasks read and write variably-reliable data, hence no

reordering is meaningful.

Figure 5.6a shows the number of manifested errors in case CADA-only applies

versus augmenting CADA with DARE. DARE reduces the number of errors, up

to an order of magnitude when 25% of the data are stored in the variably-reliable

memory. Figure 5.6b depicts the quality as a percentage of the maximum PSNR

achievable when refresh is enabled. Notably, the combination of CADA and DARE

improves quality consistently, up to 8% in case of PR=25%. From another point of

view, CADA+DARE achieves the same quality as CADA, but by storing a larger

portion of data in variably-reliable memory, hence enabling relaxed refresh operation

on a larger part of memory. An iso-quality comparison fixing the target PSNR to

90% of the best possible shows that CADA achieves this target by having at most

25% of the data versus 50% of the data for CADA+DARE stored in variably-reliable

memory. Importantly, CADA+DARE saves more power compared to CADA-only, by

enabling to store more data to the variably-reliable domain. Indicatively, Figure 5.6c

shows power savings for the PSNR 90% iso-quality target for current, 1Gb, memory

technology and future, 128Gb, technology. Power savings project to be up to 28%

by combining CADA+DARE techniques compared to about 14% of CADA-only.
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5.4.2 Sobel filter

Sobel is an image processing filter that is used frequently in edge detection appli-

cations. Similar to DCT, the input consists of a grid of 200× 200 images, each

512×512 pixels, while the output is a grid of the same dimensions, resulting in a

total memory consumption of 20GB.
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Fig. 5.7 Comparison of application resilience techniques for Sobel using variably-
reliable memory without refresh

CADA For Sobel, we relax criticality for both the input and the output data,

allocating parts from both data sets to variably-reliable memory. In contrast to

DCT, there is no a priori algorithmic property to indicate which parts of the input

or output are more significant in determining the output quality. For this reason,

we randomly select data to store in the variably-reliable domain using a uniform

distribution. Moreover, experiments vary the amount of data stored in the variably-

reliable memory, to show the impact on output quality in relation to the application

resilience techniques.
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DARE In order to compute one pixel (i, j) of the output image, a task reads the

(i, j) and all the neighboring pixels of the input image. As a result, to compute and

write out the i-th row of the output image, a task reads rows i−1, i and i+1 from

the input. Depending on the randomly selected data allocation, a task may only read

or only write or both read and write data in the variably-reliable domain. Following

the principle of DARE scheduling, tasks that read from variably-reliable memory

execute first, followed by tasks that both read and write on it, while write-only tasks

execute last, to minimize the expected number of manifested errors.

Quality Metric The output quality is quantified in terms of the PSNR between

the output image from relaxed refresh operation and the reference output produced

with full reliability enabled. In our evaluation we report the minimum PSNR across

image tiles for performing a worst-case analysis.

Results Figure 5.7 shows the results for Sobel. The PR ratios allocated on the

variably-reliable memory are 25%, 50% and 75% of the aggregated input and output

data. Applying CADA+DARE reduces consistently errors and improves the PSNR

of the output compare to CADA-only. Under an iso-quality comparison, setting

the target PSNR to 35dB, CADA achieves this target by having at most 25% of the

data stored in the variably-reliable memory, whereas CADA+DARE achieves that

even when 75% of the data stored in the variably-reliable memory. As with DCT,

CADA+DARE significantly improves application resilience, enabling to relax data

criticality to a greater extent than CADA alone, thus allowing to minimize the data

that need to be stored reliably. Figure 5.7c shows the power savings for the existing

and future memory technologies under an iso-quality comparison of CADA versus

CADA+DARE, setting PSNR equal to a minimum 35dB target. Savings reach up to

35% in future DIMMs, leveraging the ability of CADA+DARE to place more data

on the variably-reliable domain, thus requiring less reliable memory, compared to

18% of CADA-only techniques.
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5.4.3 Pochoir Stencil Algorithms

We demonstrate DARE resilience techniques on stencil algorithms extending the

Pochoir stencil compiler ([85]). Pochoir optimizes the computation of stencil itera-

tions using a cache-oblivious divide-and-conquer strategy. The algorithm decom-

poses the space-time iteration domains using trapezoidal shapes, to improve memory

locality. In terms of memory consumption, Pochoir allocates two large array data

structures to store the previous and current values of physical quantities to compute

each grid point.

For experimentation, Pochoir simulates a 2-dimensional heat dissipation prob-

lem with mirroring boundary conditions. Moreover, we vary the grid size (spatial

dimensions) from 14K to 30K.

CADA In stencil algorithms no errors are tolerable. This is because errors propa-

gate to neighboring grid points, violating the algorithm’s correctness and convergence

criteria. Thus, criticality-aware data allocation techniques are unable to enable error

resilience from data placement. However, refresh-by-access resilience techniques

can relax data criticality, as we discuss next.

Refresh-by-Access The data values stored at the grid points are refreshed regularly

due to the iterative execution of the algorithm, reading and writing those points. In

case the problem size is small, less than the retention time of memory, this iterative

read and write refresh is sufficient to execute error-free.

However, for larger problem sizes, the effectiveness of the refresh-by-data access

diminishes because the default Pochoir decomposition favors memory locality, up-

dating the same set of grid points at later time steps before computing another set.

This computation strategy delays accessing grid points in the space domain, hence

reduces the implicit refresh-by-access. Next, we discuss how the DARE technique

applies to Pochoir to facilitate refresh-by-access.

DARE Our modified version of Pochoir performs time-cuts crossing the full spatial

domain at regular intervals to enable refresh-by-access. Figure 5.8 shows this com-

putation strategy. All trapezoids below ∆ti are visited before the algorithm proceeds
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to later time steps to trade cache locality for error-resilient operation. Nevertheless,

the time-cut interval ∆ti is tunable to incur the least possible performance loss while

ensuring correctness, we demonstrate this in our results.

Quality Metric Due to the fact that stencil algorithms are not resilient to errors,

the quality metric is measured as the percentage of correct runs over the total number

of runs of the program.
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Fig. 5.8 DARE trapezoidal decomposition applied in the Pochoir compiler

Results Figure 5.9 shows the results by contrasting the original to DARE com-

putation decompositions for various problem sizes. The original version of the

Pochoir stencil compiler is intolerable to errors. Scaling the problem size to more

than 18K results in almost none correct runs. By contrast, the DARE version of

Pochoir tolerates more errors and has a smooth degradation as the problem size

grows. Notably, the overhead in execution time for the DARE decomposition is less

than 4%, averaged across grid sizes.

5.5 Conclusions

The work presented in this Chapter exposed and systematically exploited refresh-

by-access as another key property of application resilience to enable aggressive

relaxation of DRAM refresh. We proposed DARE, a novel non-intrusive method

that facilitates refresh-by-access to reduce the number of manifested errors under
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Fig. 5.9 Comparison of DARE Pochoir versus the original

aggressively relaxed or even completely turned-off refresh. We realised DARE

on a complete system stack of an off-the-shelf server to capture for the first time

the time-dependent system and data interactions, which is infeasible on existing

simulators. The developed system stack is a key instrument to compare and combine

multiple techniques for DRAM refresh relaxation, including DARE and CADA

techniques. Experimentation results, for a variety of applications with different

resilience characteristics, show that is possible to eliminate refresh completely while

avoiding avoid catastrophic failures and having acceptable output quality because of

our DARE techniques. Such benefits come with imperceptible performance overhead

and with minor output quality degradation that ranges from 2% to 18%, which is, in

all cases, much less than CADA-only schemes.



Chapter 6

Conclusions and Future Work

In this thesis, we have studied approximate computing from the perspective of the

system design. We strongly believe that, for approximate computing to become

a useful system and programming paradigm, all layers of the computing system

need to be aware and cooperate in the context of approximation, whether this is

materialized through hardware unreliability or is software defined. As a result, our

study extends from the application-level, to the system software and the hardware.

We started by investigating algorithmic properties for iterative solvers that enable the

application of approximate computing to this class of algorithms and a methodology

that allow us to evaluate its efficacy in terms of power consumption and performance.

Next, we focused on the design and implementation of an approximate computing

programming model which builds on top of pre-existing models for parallel execution

and enhances them with semantics for approximate computing. Finally, we focused

on memory unreliability and the design of a full system stack which enables the

adoption of unreliable memory within a robust computing environment, which

utilizes programmer domain-specific knowledge from the application field and the

programming model which developed for approximate computing. Additionally, we

explore the potential to minimize at the system software level the adverse effects of

memory unreliability to the application in a transparent fashion.
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6.1 Summary of Contributions

6.1.1 Evaluating Approximate Computing Using iso-metrics

We began our work investigating whether approximate computing can prove to be

a way to overcome the power wall. A large body of previous research has adopted

that claim without, in reality, considering the effects of unreliability to applications.

In order to keep those effects in control, several techniques (e.g., checkpoint and

restart, increased number of iterations to convergence, in the case of iterative solvers,

etc.) need to be applied. These techniques often incur performance penalties that

we need to consider when designing approximate computing systems. In Chapter 3,

we proposed a method based on iso-metrics to evaluate the real efficiency of such

systems showing case studies for three algorithms where approximation is indeed a

viable method to reduce energy consumption.

Our methodology provides a systematic way to evaluate the performance and

energy benefits of applying approximate computing as a programming and system

design paradigm. We consider the effects of approximation on application as well

as the hardware. Approximation on iterative solvers can potentially increase the

execution time of the application by slowing down the convergence of the algorithm.

At the same time, operating a hardware platform at NTV significantly reduces its

power consumption, however at the same time deteriorates its performance. The

performance penalty induced from NTV operation is expected to be recovered

through parallelism. As a result we consider the NTV configuration of our platform

that achieves the same performance (iso-performance), or power (iso-power) as

the nominal configuration and evaluate the potential benefits in terms of power

consumption, performance and Energy-to-Solution for the evaluated benchmarks.

It is important to mention that our methodology neglects overheads related to

migrating from a single-socket ARM platform operating at nominal voltage to a multi-

socket NTV ARM platform. Such a transition will incur additional communication

overheads that our approach fails to capture. However, our methodology can easily

be adapted to reflect the changes once we have access to a real platform that will

allow us to measure these overheads. In that sense our current setup provides a
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best-case scenario estimation for approximating the benchmarks of our evaluation

in the platform we experimented with. We expect that applications which can take

advantage of parallelism the additional cost will be minimal, whereas applications

which are harder to parallelize e.g., applications with irregular access patterns and

inter-thread communication will benefit less.

Finally, we focused on the use-case of iterative solvers, however our methodology

does not restrict itself to such computations. We can apply our method to any

application-domain if we have an estimation of the cost of approximation, e.g., cost

of checkpoint and restart recovery time, etc.

6.1.2 Programming Models for Approximate Computing

The second contribution of this thesis is the design and implementation of a pro-

gramming model and runtime system for approximate computing. The goal of this

endeavor is to give the mechanisms to programmers to define what part of the code

and data is suitable for approximation and manage the degree of approximation. Our

intuition is that what can be approximated is tightly coupled with the algorithm and,

hence, should be delegated to the developer. Our programming model provides these

mechanisms to the developers, while at the same time under the hood the runtime

system implements approximation, respecting the requirements, e.g. power/energy

consumption, quality of result, of users as defined at runtime. As a result, we in-

troduced the concept of significance for computation, which is meant to express

a high-level algorithmic property that expresses the contribution of a computation

to the quality of the final result. The more significant a computation is, errors or

approximations during its execution will lead to higher quality degradation.

For example, in Chapter 4 we show that using domain-specific knowledge about

the application we approximate, we can achieve quality results that degrade smoothly

when the level of approximation increases. In contrast, system level techniques, such

as loop perforation, which disregard such knowledge can hurt quality abruptly, even

when mild approximation is applied.

The main conclusion of this part of the thesis is the importance of approximation-

related knowledge for the application. For example, the loop perforation technique

is not to be disregarded as an approximation technique. Rather, it should be coupled
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with domain-specific knowledge regarding the application it is being applied. How-

ever, in order to allow programmers to focus in the challenging task of understanding

and harnessing approximation for their applications, it is important to have available

the programming tools necessary to express approximation, rather than using ad-hoc

techniques. Our programming model is an effort in doing that for task-parallel

applications.

6.1.3 Memory Reliability and System Level Management of Ap-

proximate Computing

In the final part of the thesis we deal with memory approximation and a full-stack

design and implementation of an approximate platform, based on an off-the-shelf

hardware platform. We study memory approximation that originates from relaxing

the refresh rate of DRAM memory chips. We profile the behavior of DRAM chips

when operating with relaxed refresh rate, i.e., and temporal distribution of errors

of the DRAM, as well as the behavior of applications when they are executed on

top of unreliable memory. In order to test applications, we expanded our task-based

parallel programming model with semantics for applying significance properties to

memory allocation.

Of course, a system with unreliable memory is not useful unless we avoid

errors occurring in critical system data, e.g., kernel data structures. As a result, we

worked and implemented a design which a) ensures the non-disruptive execution of

the platform, avoiding errors to crash the system b) configure the reliability of the

memory and c) expose to the user-level an API which selectively allows programmers

to allocate unreliable memory when this is suitable for their applications. Having

this platform in place, we were able to extend our programming model to use the

memory allocation API and experiment with a number of computational kernels.

This helped us to get insight about the behavior of an application when executing on

top of unreliable memory, using an off-the-shelf server. As a result, we were able to

identify a system-wide DRAM property, Refresh-by-access, i.e., applications refresh

DRAM data solely by accessing them.

We used this property to build a system-level scheduling technique, DARE, which

is able to reduce the amount of DRAM errors an application experiences. Despite the
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fact that this is a system-level approximation technique, DARE is an optimization

technique, since it does require input from the application designer, since it cannot

shield the applications from errors happening in critical data structures.

6.2 Future Work

In conclusion, we believe that approximate computing, being in its infancy, requires

a significant amount of research to be conducted towards establishing it as a robust

and reliable computing paradigm. In our opinion, the future work should focus on

two broad areas: a) algorithm-focused research to identify application properties that

make the application a suitable target of approximation and b) research around the

system-level issues of approximate computing to design systems that are robust to

approximation and platforms that allow expressing approximation in a systematic

rather than ad-hoc manner, through programming models and APIs that expose

approximation-related information from the hardware to the application developer.

In our experience, research on the former region is rather restricted, particularly

due to the lack of significant research of the latter area. Algorithm designers are

reluctant to invest time in yet another design point during the development cycle

of their applications. This is largely due to the lack of support for approximation

from mainstream programming models and frameworks. Researchers need to apply

ad-hoc tricks to develop and test approximate applications, which is, naturally,

counter-intuitive. Moreover, the unavailability of approximate hardware or system

software that supports such hardware is an additional roadblock.

In this thesis, we took a step forward towards designing systematic ways of

expressing and applying approximate computing, and we hope that more research in

the same direction will emerge in the future.
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