

AUTOMATED SOFTWARE MAINTENANCE

USING SEARCH-BASED REFACTORING

Michael Mohan (MEng)

School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast

This dissertation is submitted for the degree of

Doctor of Philosophy

February 2018

i

Abstract

Search-based software maintenance (SBSM) is an area of research that uses

refactorings, software metrics and search-based optimisation algorithms to

automate aspects of the software maintenance process. Refactorings are used to

improve the structure of software without affecting its functionality. Search-

based optimisation algorithms can be adapted to use refactorings to modify

software, relying on metrics to deduce how successful the refactorings have been

along the way. The research conducted in this thesis aims to explore the

research area of SBSM and experiment with methods to automate software

refactoring using optimisation algorithms.

The current state of the art in the area is inspected and gaps are identified in

the current literature. In particular, the need for further investigation of multi-

objective and many-objective optimisation techniques, as well as

experimentation with the metrics used to measure the software, is present. In

order to experiment with different ways to optimise software for quality an

automated refactoring tool is developed. Using this tool, novel aspects of the

software are investigated and used as measures to assess and then improve the

quality of the software. A multi-objective optimisation algorithm is used so that

in addition to quality other, more complex properties are also improved. Using

the automated maintenance tool and the underlying approaches, a methodology

is presented to automate the refactoring process. Four different areas of

importance are investigated as objectives for automated refactoring. The main

contributions of the research work are the developed automated refactoring tool,

the 4 objectives constructed to measure different aspects of the software code

and the methodology developed to maintain the code using the 4 separate

measures with a many-objective optimisation algorithm.

ii

Contents

1. Introduction & Background ... 1

1.1 Search-Based Software Maintenance ... 3

1.2 Research Aim .. 6

1.3 Contributions .. 8

1.4 Thesis Outline ... 9

2. Literature Review .. 11

2.1 Random Search ..13

2.2 Hill Climbing ...13

2.3 Simulated Annealing ...15

2.4 Genetic Algorithms ..16

2.5 Swarm Intelligence Algorithms ...18

2.6 Multi-Objective Evolutionary Algorithms ...20

2.6.1 NSGA-II ...21

2.7 Many-Objective Evolutionary Algorithms ..24

2.7.1 NSGA-III ...25

2.8 Search-Based Software Maintenance ..31

2.8.1 General Search-Based Software Engineering33

2.8.2 Related Areas ..35

2.8.3 Refactoring to Improve Software Quality ...35

2.8.4 Refactoring for Testability ..39

2.8.5 Testing Metric Effectiveness with Refactoring40

2.8.6 Refactoring to Correct Design Defects ..42

2.8.7 Refactoring Tools ...46

2.8.8 Testing Other Aspects of the Search Process49

2.9 Gap Analysis ..51

2.10 Conclusion ..55

3. Refactoring Tool ... 58

iii

3.1 Introduction ...58

3.2 Preliminary Work ..61

3.2.1 A-CMA Tool ...62

3.2.2 Experimental Design ...64

3.2.3 Results ...66

3.3 The MultiRefactor Tool ..74

3.4 Available Search Techniques...78

3.4.1 Genetic Algorithm ...78

3.4.2 Multi-Objective Algorithm ..83

3.4.3 Many-Objective Algorithm ..84

3.5 Available Refactorings ...86

3.6 Available Metrics ...89

4. Quality Objective .. 92

4.1 Introduction ...92

4.2 Experimental Design ...94

4.3 Results ..97

4.4 Threats to Validity ... 106

4.4.1 Internal Validity .. 106

4.4.2 External Validity ... 106

4.4.3 Construct Validity ... 107

4.4.4 Conclusion Validity ... 107

4.5 Conclusion .. 107

5. Secondary Objectives ... 110

5.1 Introduction ... 110

5.1.1 Priority Objective .. 110

5.1.2 Refactoring Coverage Objective .. 112

5.1.3 Element Recentness Objective .. 114

5.2 Refactoring Tool Evolution .. 117

5.2.1 Priority Objective .. 117

5.2.2 Refactoring Coverage Objective .. 118

iv

5.2.3 Element Recentness Objective .. 120

5.3 Experimental Design ... 123

5.4 Priority Results .. 127

5.5 Priority Objective Discussion .. 130

5.6 Refactoring Coverage Results .. 132

5.7 Refactoring Coverage Objective Discussion .. 135

5.8 Element Recentness Results ... 136

5.9 Element Recentness Objective Discussion .. 139

5.10 Threats to Validity ... 140

5.10.1 Internal Validity .. 140

5.10.2 External Validity ... 141

5.10.3 Construct Validity ... 141

5.10.4 Conclusion Validity ... 141

5.11 Conclusion .. 142

6. Many-Objective Approach .. 143

6.1 Introduction ... 143

6.2 Experimental Design ... 145

6.3 Results .. 147

6.4 Discussion .. 162

6.5 Threats to Validity ... 163

6.5.1 Internal Validity .. 163

6.5.2 External Validity ... 163

6.5.3 Construct Validity ... 163

6.5.4 Conclusion Validity ... 163

6.6 Conclusion .. 164

7. Conclusions & Future Work ... 167

7.1 Summary .. 167

7.2 Experimentation .. 168

7.3 Outcomes .. 173

7.4 Comparison With Previous Literature .. 175

v

7.5 Novel Contributions ... 180

7.6 Limitations & Future Work ... 181

7.6.1 Future Adoption Steps .. 182

7.6.2 Future Research Directions .. 183

7.7 Final Comments ... 185

References .. 186

Acknowledgements ... 200

Appendix A – Literature Review Quantitative Analysis 201

Appendix B – SBSE Software Packages From Literature 210

Appendix C – Other Relevant Software Tools .. 219

Appendix D – Papers .. 222

vi

List of Tables

Table 2.1 – Multi-Objective Evolutionary Algorithms That Use Pareto

Dominance ...21

Table 2.2 – Many-Objective Evolutionary Algorithms That Use Pareto

Dominance ...25

Table 2.3 – Amount of Results in Each Repository ..32

Table 2.4 – Other Areas of Research Captured in Literature Search33

Table 3.1 - Refactorings Available in the A-CMA Tool...63

Table 3.2 – Software Metrics Used in Experiment...64

Table 3.3 – Metric Details for Each Fitness Function ..65

Table 3.4 – Java Programs Used in Experiment ..66

Table 3.5 – Java Program Execution Times ...67

Table 3.6 – Available Searches in the MultiRefactor Tool78

Table 3.7 – Available Refactorings in the MultiRefactor Tool86

Table 3.8 – Available Metrics in the MultiRefactor Tool89

Table 4.1 – Java Programs Used in Experimentation ...95

Table 4.2 – Hardware Details for Experimentation ...97

Table 4.3 – Genetic Algorithm Configuration Settings 101

Table 4.4 – Mean Metric Gains with Abbreviations and Directions of

Improvement ... 102

Table 4.5 – Individual Objectives Derived from Metric Experimentation 103

Table 4.6 – Individual Objective Mean Metric Gains for Mono-Objective and

Multi-Objective Optimisation ... 104

Table 5.1 – Metrics Used in Software Quality Objective 124

Table 5.2 – Java Programs Used in Priority Experiment and Refactoring

Coverage Experiment .. 124

Table 5.3 – Java Programs Used in Element Recentness Experiment 125

Table 5.4 – Previous Versions of Java Programs Used in Element Recentness

Experiment .. 125

Table 6.1 – Different Combinations of Objectives Tested in Experimentation . 146

Table A.1 – Number of Papers per Conference .. 204

vii

Table A.2 – Number of Papers per Journal .. 204

Table A.3 – Number of Papers per Author ... 205

Table A.4 – Analysed Papers from the Main Search-Based Software

Maintenance Papers That Are Not Quantitative ... 206

Table A.5 – Open Source Test Programs Used in the Literature 209

Table B.1 – List of Search-Based Software Engineering Tools with Brief

Description and Search-Based Software Engineering Area 210

Table C.1 – List of Open Source Refactoring Tools .. 219

Table C.2 – List of Commercial Refactoring Tools ... 220

Table C.3 – List of Open Source Search-Based Optimisation Tools 220

Table C.4 – List of Open Source Metrics Tools ... 221

Table D.1 – Papers on Search-Based Software Maintenance 222

Table D.2 – Papers on General Aspects of Search-Based Software Engineering

 ... 225

Table D.3 – Editorials and Reports .. 226

Table D.4 – Literature Reviews .. 226

viii

List of Figures

Figure 1.1 – Ratio of Research Fields Studied Involving Search-Based Software

Engineering [2] ... 2

Figure 1.2 – Number of Publications Released by Year (Up to 2012) [2] 2

Figure 1.3– Resolving a Design Defect through the Application of Refactorings . 6

Figure 2.1 – Different Classifications of Metaheuristics12

Figure 2.2 – Flow Chart of the Genetic Process ...17

Figure 2.3 – Crowding Distance Calculation Showing Solutions from Two

Different Ranks [30] ..23

Figure 2.4 – Determination of Points on a Normalised Reference Plane in a

Three Objective Case [49] ...28

Figure 2.5 – Hyperplane Formed from Extreme Points in a Three Objective Case

[49] ...29

Figure 2.6 – Association of Solutions with Reference Points in a Three Objective

Case [49] ..30

Figure 2.7 – Dispersion of Solutions on the Reference Plane and Addition of

Reference Points in a Three Objective Case [57] ..31

Figure 3.1 – Overall Mean Quality Gain for Each Fitness Function per Search

Type ...68

Figure 3.2 – Mean Quality Gain of Each Fitness Function Using Simulated

Annealing ..69

Figure 3.3 – Mean Number of Actions Applied to Each Fitness Function Using

Simulated Annealing ..70

Figure 3.4 – Overall Mean Applied Actions Using Simulated Annealing70

Figure 3.5 – Mean Quality Gain of Each Program Using Simulated Annealing 71

Figure 3.6 – Overall Mean Quality Gain for Each Fitness Function Using

Simulated Annealing ..72

Figure 3.7 – Mean Quality Gain for Each Metric of the Technical Debt Function

Using Simulated Annealing ..73

Figure 3.8 – Mean Quality Gain for Each Metric of the Coupling Function Using

Simulated Annealing ..73

Figure 3.9 – Overview of the MultiRefactor Process ..76

Figure 4.1 – Mean Metric Improvement Values with Different Crossover and

Mutation Probabilities. ...98

ix

Figure 4.2 – Mean Execution Times for Different Crossover and Mutation

Probabilities. ...99

Figure 4.3 – Metric Improvements for Different Configuration Parameters. ... 100

Figure 4.4 – Metric Improvements Mapped Against Time Taken for Different

Configuration Parameters. ... 100

Figure 4.5 – Mean Metrics Gains ... 101

Figure 4.6 – Mean Metric Gains for Each Objective in a Mono-Objective and

Multi-Objective Setup ... 103

Figure 4.7 – Mean Time Taken to Run Each Objective of the Mono-Objective

Approach and the Multi-Objective Approach ... 104

Figure 4.8 – Overall Time Taken to Run Each Objective of the Mono-Objective

Approach and to Run the Multi-Objective Approach ... 105

Figure 4.9 – Overall Time Taken for Each Approach, with Each Objective of the

Mono-Objective Approach Stacked on Top of Each Other 106

Figure 5.1 – Mean Quality Gain Values for Each Input 128

Figure 5.2 – Mean Priority Scores for Each Input ... 129

Figure 5.3 – Mean Times Taken for Each Input .. 130

Figure 5.4 – Mean Quality Gain Values for Each Input 133

Figure 5.5 – Mean Refactoring Coverage Scores for Each Input 134

Figure 5.6 – Mean Times Taken for Each Input .. 135

Figure 5.7 – Mean Quality Gain Values for Each Input 137

Figure 5.8 – Mean Element Recentness Scores for Each Input 138

Figure 5.9 – Mean Times Taken for Each Input .. 139

Figure 6.1 – Mean Quality Gain Values for Each Input 148

Figure 6.2 – Mean Priority Scores for Each Input ... 149

Figure 6.3 – Mean Refactoring Coverage Scores for Each Input 150

Figure 6.4 – Mean Element Recentness Scores for Each Input 151

Figure 6.5 – Mean Times Taken for Each Input .. 152

Figure 6.6 – Mean Quality Gain Values for Each Input Across Each Genetic

Algorithm Approach .. 153

Figure 6.7 – Mean Quality Gain Values Across Each Genetic Algorithm

Approach .. 154

Figure 6.8 – Mean Priority Scores for Each Input Across Each Relevant Genetic

Algorithm Approach .. 155

x

Figure 6.9 – Mean Priority Scores Across Each Relevant Genetic Algorithm

Approach .. 156

Figure 6.10 – Mean Refactoring Coverage Scores for Each Input Across Each

Relevant Genetic Algorithm Approach ... 157

Figure 6.11 – Mean Refactoring Coverage Scores Across Each Relevant Genetic

Algorithm Approach .. 158

Figure 6.12 – Mean Element Recentness Scores for Each Input Across Each

Relevant Genetic Algorithm Approach ... 159

Figure 6.13 – Mean Element Recentness Scores Across Each Relevant Genetic

Algorithm Approach .. 160

Figure 6.14 – Mean Times Taken for Each Input Across Each Genetic Algorithm

Approach .. 161

Figure 6.15 – Mean Times Taken Across Each Genetic Algorithm Approach ... 161

Figure A.1 – Number of the Main Search-Based Software Maintenance Papers

Published Each Year ... 202

Figure A.2 – Number of Papers Published Each Year 202

Figure A.3 – Number of the Main Search-Based Software Maintenance Papers

Using Each Type of Search Technique per Year .. 203

Figure A.4 – Types of Paper Analysed .. 203

Figure A.5 – Number of Papers per Author ... 205

Figure A.6 – Types of Search Technique Used in the Main Search-Based

Software Maintenance Papers .. 207

Figure A.7 – Dispersion of Evolutionary Algorithms from Figure A.6 (Some

Papers Contain More Than One Search Technique) .. 207

Figure A.8 – Dispersion of Swarm Intelligence Algorithms from Figure A.6 208

Figure A.9 – Number of Search Techniques Used/Analysed in Each Search-

Based Software Maintenance Paper ... 208

Figure A.10 – Types of Benchmark Program Used in Experimental Studies in

the Main Search-Based Software Maintenance Papers 209

xi

List of Algorithms

Algorithm 2.1 – Pseudocode for the Hill Climbing Algorithm14

Algorithm 2.2 – Pseudocode for the Simulated Annealing Algorithm16

Algorithm 2.3 – Pseudocode for the Genetic Algorithm18

Algorithm 2.4 – Pseudocode for NSGA-II [37] ..24

Algorithm 2.5 – Pseudocode for NSGA-III [25] ..26

xii

List of Equations

Equation 2.1...22

Equation 3.1...77

Equation 3.2...80

Equation 5.1...126

Equation 5.2...127

Equation 5.3...127

xiii

Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

CK Chidamber & Kemerer

CODe-Imp Combinatorial Optimisation for Design Improvement

CRO Chemical Reaction Optimization

DPT Design Pattern Tool

EA Evolutionary Algorithm

GA Genetic Algorithm

GEA General Evolutionary Algorithms

GP Genetic Programming

HC Hill Climbing

JSON JavaScript Object Notation

LSCC Low-level Similarity-based Class Cohesion

MOEA Multi-Objective Evolutionary Algorithm

MOGA Multi-Objective Genetic Algorithm

MOOSE Metrics for Object-Oriented Software Engineering

NSGA Nondominated Sorting Genetic Algorithm

PSO Particle Swarm Optimization

QMOOD Quality Model for Object-Oriented Design

ReCon Refactoring approach based on task Context

SA Simulated Annealing

SBSE Search-Based Software Engineering

SBSM Search-Based Software Maintenance

SIA Swarm Intelligence Algorithm

VNS Variable Neighborhood Search

WSL Wide-Spectrum Language

XOM XML Object Model

xiv

Related Publications

The following papers have been published, or are under consideration for

publication, using research from this thesis.

Journal Articles

Michael Mohan, Des Greer and Paul McMullan, “Technical debt reduction using

search based automated refactoring”, in Journal of Systems and Software (JSS),

volume 120, pp. 183-194, October 2016.

Michael Mohan and Des Greer, “A Survey of Search-Based Software

Maintenance”, in Journal of Software Engineering Research and Development

(JSERD), volume 120, issue 3, 2018.

Michael Mohan and Des Greer, “Maximising Code Coverage in an Automated

Maintenance Approach using Multi-Objective Optimisation”, in IET Software:

Special Issue on Search-based Software Engineering, August 2018 (under

revision).

Conference/Workshop Articles

Michael Mohan and Des Greer, “MultiRefactor: Automated Refactoring to

Improve Software Quality”, in Proc. 18th International Conference on Product-

Focused Software Process Improvement (PROFES), November 2017, Innsbruck,

Austria.

Michael Mohan and Des Greer, “An Approach to Prioritize Classes in a Multi-

Objective Software Maintenance Framework”, in the 13th International

Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE), March 2018, Funchal, Madeira, Portugal.

Michael Mohan and Des Greer, “Automated Refactoring of Software using

Version History and a Code Element Recentness Measure”, at the 1st

xv

International Workshop on Software Engineering Aspects of Optimizing

Systems (SEAOS), March 2018, Funchal, Madeira, Portugal (under review).

Presentations

Michael Mohan, Des Greer and Paul McMullan, “Technical Debt Reduction

using Search Based Automated Refactoring”, Journal First Presentation, at the

Symposium on Search-Based Software Engineering (SSBSE), September 2017,

Paderborn, Germany.

Michael Mohan and Des Greer, “MultiRefactor: Automated Refactoring To

Improve Software Quality”, at the 1st International Workshop on Managing

Quality in Agile and Rapid Software Development Processes (QuASD),

November 2017, Innsbruck, Austria.

1

Chapter 1

Introduction & Background

1. Introduction & Background

earch-based software engineering (SBSE) concerns itself with the resolution

of software engineering problems by restructuring them as combinatorial

optimisation problems. The topic has been addressed and researched for a

number of areas of the software development life cycle, including software code

maintenance, requirements optimisation, debugging and (most frequently) test

case optimisation. Figure 1.1 shows the dispersion of SBSE papers across the

different areas of software engineering. The specific area focused on for this PhD

project, software maintenance, only makes up a small quantity of the overall

SBSE research. While the research area has existed since the early 1990s and

the term “search-based software engineering” was originally coined by Harman

and Jones in 2001 [1], most work in this area has been recent with the number

of published papers on the topic exploding in recent years (as seen in Figure

1.2). Many of the proposed SBSE papers use an automated approach to increase

the efficiency of the area of the software process inspected.

S

2

Figure 1.1 – Ratio of Research Fields Studied Involving Search-Based Software Engineering [2]

Figure 1.2 – Number of Publications Released by Year (Up to 2012) [2]

There are 3 main aspects to take into consideration when using search-based

optimisation on a software problem:

1. Representation – To apply search-based algorithms to a search problem

and optimise the solution the problem needs to be represented as a

search space that can be explored and measured to improve its quality.

3

2. Fitness function – There needs to be a method for measuring the quality

of the problem. This concerns which aspects of the software need to be

optimised and which metrics are available to measure improvement.

3. Search technique – The optimisation technique itself needs to be chosen.

The best optimisation technique may depend on the type of problem

being addressed. Some may work better than others in certain situations.

Other factors to consider are the amount of time and resources available.

If a faster solution is more important than an optimal one, then this will

inform the choice of the most suitable algorithm.

This chapter gives an introduction to the relevant areas of SBSE and outlines

the methodology for the research in the thesis. Section 1.1 discusses how SBSE

is applied to software maintenance and gives a brief outline of how SBSM has

been used to improve the structure of software in previous research. Section 1.2

outlines the research aim and also formulates research questions to

contextualise the scope of the thesis. Section 1.3 lists the contributions of the

research within the thesis. Then, Section 1.4 gives an outline of each subsequent

chapter in the thesis, briefly detailing the content in each.

1.1 Search-Based Software Maintenance

Software code can fall victim to what is known as technical debt. For a software

project, especially large legacy systems, the structure of the software can be

degraded over time as new requirements are added or removed. This increasing

software entropy implies that over time, the quality of the software tends

towards untidiness and clutter. This degradation leads to negative consequences

such as extra coupling between objects and increased difficulty in adding new

features. As a result of this issue, the developer often has to restructure the

program before new functionality can be added or just to make the code more

understandable or easier to amend.

SBSE has been used to automate this process, thus decreasing the time taken to

restructure a program. Using a search-based algorithm, the developer starts

with the original program as a baseline from which to improve. The measure of

4

improvement for the program can be subjective and accordingly can be done in a

variety of different ways. The developer needs to devise a heuristic, or more

likely a set of heuristics to inform how the structure of the program should be

improved. Often these improvements are based on the basic tenets of object-

oriented design where the software has been written in an object-oriented

language (these tenets relate, among other things, to cohesion, coupling,

inheritance depth, use of polymorphism and adherence to encapsulation and

information hiding). Additionally, there are other sources of heuristics such as

the SOLID principles introduced by Robert C. Martin [3]. The developer then

needs to devise a set of changes that can be made to the software in order to

enforce the heuristics. Refactoring is used to restructure existing software code

without modifying the external functionality of the program. Different

refactorings can be composed to change the software structure, and provide the

changes needed to address technical debt. When the refactorings are applied to

the software they may improve or degrade the quality, but regardless, they act

as tools to modify the solution.

Using a SBSE approach, the refactorings are applied stochastically to the

original software solution and then the software is measured using a fitness

function consisting of 1 or more software metrics. There are various metric

suites available to measure characteristics like cohesion and coupling, but

different metrics measure the software in different ways and thus how they are

used will have a different effect on the outcome. The CK [4] and QMOOD [5]

metric suites have been designed to represent object-oriented properties of a

system as well as more abstract concepts such as flexibility.

Metrics can be used to measure single aspects of quality in a program or

multiple metrics can be combined to form an aggregate function. The common

approach uses metric weights to denote which heuristics are more important so

they can be combined into 1 weighted sum (although this weighting process is

often subjective). The weighting process may be appropriate since there is a

possibility of metrics conflicting with each other. For instance, one metric may

cause inheritance depth to be improved but may increase coupling between the

objects. Another method is to use Pareto fronts [6] to measure and compare

solutions and have the developer choose which solution is most desirable,

depending on the trade-offs allowed. A Pareto front will indicate a set of optimal

5

solutions among the available group and will allow the developer to compare the

different solutions in the subset according to each individual objective (i.e.

metric) used.

In the solution, refactorings are applied at random and then the program is

measured to compare the quality with the previously measured value. If the new

solution is improved according to the software metrics used, this becomes the

new solution to compare against. This approach is followed over a number of

iterations, causing the software solution to gradually increase in quality until an

end point is reached and an optimal (or near optimal) solution is generated. The

end point can be triggered by various conditions such as the number of

iterations executed or the amount of time passed. The particular approach used

by the search technique may vary depending on the type of search-based

approach chosen, but the general method consists of iteratively making changes

to the solution, measuring the quality of the new solution, and comparing the

solutions to progress towards an optimal result.

Researchers have used SBSM to modify code structure in various ways. Many

use tools to detect and list defects in the code. In other cases, the software will

be refactored automatically in order to resolve them. Other approaches attempt

to suggest sequences of refactorings for the developer to apply manually that can

resolve the design defects. As an example, Figure 1.3 gives the design

representing by 2 classes. To resolve potential issues with the design, a

researcher may have a set of constraints to identify design defects in the code.

An example of this would be if a class in the design contains more than a

threshold amount of methods (a value supplied by the researcher to define the

defect). In this case the class may be seen as too big, and this may be classified

as a defect in the code. If this was applied in a SBSM approach and Class 1 in

Figure 1.3 was determined to be too large, a refactoring could be applied to the

code to move a method from Class 1 to Class 2. If enough refactorings were

applied to move methods between classes, resulting in the second design shown

in Figure 1.3, this defect could be resolved. This could then be repeated for other

design defects to resolve as many as possible with the generated refactorings.

6

Figure 1.3– Resolving a Design Defect through the Application of Refactorings

Additionally, SBSM has been applied to different models of the software to

inform the refactorings to apply. Refactorings can then be generated that can

bridge that gap between the current model and an improved one. Another

common technique is to determine a measure for quality in the software and use

that to determine if a refactoring is good or bad. The software is refactored with

no direct concern for design defects, and aims to improve the software quality

itself. This can be used to resolve design defects in the code by improving its

structure through useful refactorings.

1.2 Research Aim

The general aim of this work is to investigate current techniques in the area of

SBSM and to improve upon the techniques available in order to make the

process of software refactoring more effective for a realistic software

development situation. The available refactoring tools as well as tools proposed

from the literature on SBSM are inspected to devise where the current

limitations lie. In response to the gaps found, an automated refactoring tool has

been created providing a platform for further research. This platform is used to

conduct experimentation for the remaining research aims of the thesis. The tool

is used to compare different automated approaches.

7

The more traditional mono-objective approach to improving software with

search-based techniques is compared against a multi-objective approach to

derive the advantages and disadvantages of applying this approach within the

context of a fully automated refactoring platform. The multi-objective approach

is then used to test various different objective functions for measuring aspects of

the software, and to derive whether the objective functions and tool

improvements are effective in improving the specified property. An overall

many-objective setup is then used to apply the research on the tool into an

approach that can maintain and improve a software input in a practical way

across various properties with minimal effort. These research objectives are

addressed via the following research questions:

RQ1: What current refactoring and search-based software engineering tools

are available?

RQ2: Can a fully automated, practical refactoring tool be developed using

techniques from previous literature to improve the maintenance of software?

RQ3: How useful is a multi-objective search-based software maintenance

approach in comparison with a mono-objective search-based approach?

RQ4: Can individual, novel objectives be measured and refactored in a

software program to maintain the code while also improving the individual

properties inspected?

RQ5: Can numerous individual objectives be combined into a fully automated,

many-objective approach in order to improve a software program across

multiple different properties in an additive fashion, without losing the

improvement effect of any individual property?

The experimentation conducted is restricted to Java programs, in order to

compare with other research that has mostly focused on this programming

language. The scope of this research thesis is restricted to looking specifically at

the maintenance process of software development with SBSE. The remainder of

this chapter details the methods used to answer the research questions defined

above.

8

1.3 Contributions

The primary contributions of the thesis that result from the research are

outlined below:

1. A comparison has been documented on different search-based

optimisation techniques used in SBSM along with an analysis of the

advantages and disadvantages of the different approaches.

2. A new tool is developed and proposed for fully automated maintenance of

Java software using mono-objective, multi-objective and many-objective

search techniques.

3. A novel objective that takes in a range of software metrics to measure

various structural aspects of the software is proposed and tested to

represent quality in a software program.

4. An objective is proposed and tested to measure the priority of the classes

refactored in a refactored solution. The objective will guide the

refactorings in the search with respect to the relevant classes.

5. An objective is proposed and tested to measure and then take into

consideration the code coverage of refactoring solutions generated.

6. An objective is proposed and tested to measure the recentness of the code

elements refactored in a refactoring solution, in relation to a set of

previous versions of the code.

7. The objectives proposed are combined into an overall framework to use

with software in conjunction with the many-objective functionality in

order to improve the software across various different properties.

8. The tasks constructed for all of the experimentation are implemented

into the tool for use by others in the research community. The data

gathered from the experimentation in the thesis is also included in an

online repository hosting the tool.

9

1.4 Thesis Outline

Chapter 2 gives an overview of the search-based optimisation techniques used in

the experimentation. The random search is discussed, as well as the local hill

climbing (HC) search and the simulated annealing (SA) metaheuristic search.

The general outline of a genetic algorithm (GA) is described, along with swarm

intelligence algorithms (SIAs). Then, multi-objective and many-objective

evolutionary algorithms (EAs) are described. In particular, the NSGA-II and

NSGA-III algorithms are discussed. After the EAs are discussed, the chapter

contains a detailed literature review that goes over the area of SBSE with

respect to refactoring for software maintenance. Patterns and trends in the

research are analysed, and gaps are outlined as well as the methods used to

address them in the thesis. Chapter 3 describes the refactoring tool developed

for the research. The components of the tool as well as the configuration and

functionality are discussed. The advantages of the tool in relation to the

alternatives are outlined and the online location of the source code is given.

Chapter 3 also gives a review of preliminary experimentation conducted using

the already existing A-CMA refactoring tool. The tool was used to explore the

effectiveness of available refactoring tools for experimentation and research.

Chapter 4 assesses the capabilities of the refactoring tool. The various

configuration settings of the GA are tested, as well as the metrics available in

the tool. The GA is compared against the multi-objective genetic algorithm

(MOGA) to inform on the success of the multi-objective approach, and the

metrics are ranked in order to construct a quality objective for future

experimentation.

Chapter 5 details the construction of a priority objective for use in the MOGA.

The objective takes as input a list of classes to favour in the refactoring solution

and, optionally, a list of classes to disfavour. This objective is used in

conjunction with the quality objective to test whether a refactoring solution can

improve the quality of the software and also prioritise the specified classes in

the solution with the refactorings. The chapter proposes another objective, to

investigate the amount of code coverage given in the refactorings of a refactoring

solution. This refactoring coverage objective is also tested by comparing a multi-

objective approach with a mono-objective one (using only the quality objective).

10

The refactoring coverage objective aims to maximise the number of code

elements in a software project that are refactored and decrease the number of

refactorings applied to each individual element. This allows the refactoring

solution to inspect as many areas of the code as possible and avoid redundant

refactorings or solutions that focus too heavily on a single area. The final

objective proposed in Chapter 5 is the element recentness objective. Like the

priority objective, this takes an external input to help maximise the accuracy of

the objective. Previous versions of the code are read in to help investigate how

long the refactored elements of a solution have been present in the software. The

objective aims to direct the search towards the more recently added areas of the

code, in order to remove issues that may be present with the newly added code.

Chapter 6 combines the outcomes of the previous research in the thesis to

construct an overall framework to address the research questions outlined. The

4 objectives are combined into a many-objective approach in order to test how

successful the objectives can be when used together. Different permutations of

the objectives are also tested to work out how well the different objectives can

work with each other. Chapter 7 inspects the outcomes of the research and

compares them with the other related work in the area of SBSM. It also goes

over the limitations of the current research and possibilities for future work in

the area.

11

Chapter 2

Optimisation Algorithms &

Literature Review

2. Literature Review

here are numerous different candidate metaheuristic algorithms applicable

in the SBSE field. These methods generally automate search-based

problems through gradual quality increases. Local search algorithms move from

solution to solution in the candidate solutions space by applying local changes,

until either an acceptable solution is found or a restriction (e.g. time limit) is

reached. In judging a solution, it is often compared against a random search.

Additionally, solutions must be assessed for validity and a fitness function is

used to evaluate whether the search should continue from that point or

backtrack. Various metaheuristic algorithms are used to modify local search

algorithms and improve their quality. Figure 2.1 displays a taxonomy of

metaheuristic techniques available and their classifications.

T

12

Figure 2.1 – Different Classifications of Metaheuristics
1

This chapter details the search algorithms used in the experimentation chapters

later in the thesis, before reviewing SBSM literature. The chapter is structured

as follows. Section 2.1 looks at the random search, Section 2.2 looks at HC and

Section 2.3 looks at SA. Section 2.4 details the GA, while Section 2.5

investigates SIAs. Section 2.6 explores multi-objective evolutionary algorithms

(MOEAs), and in particular, NSGA-II. Section 2.7 discusses many-objective EAs

and gives a description of its successor, NSGA-III. Section 2.8 covers the review

of the captured literature of SBSM, as well as discussing related SBSE papers.

The review is split into numerous subsections to capture commonly recurring

areas, although there may be some overlap between a paper in one section with

another section. Section 2.9 gives a meta-analysis of the papers reviewed, and

finally, Section 2.10 outlines the gaps in the literature that have been derived

through the analysis.

1Taken from http://nojhan.free.fr/metah/images/metaheuristics_classification.jpeg

13

2.1 Random Search

The random search is used as a benchmark for most search-based metaheuristic

algorithms to compare against. If the proposed algorithm is not better on

average than a random search, then it is not acceptable as a solution. A random

search is conducted in a similar manner to a metaheuristic search although over

each iteration the choices made are random. Although most metaheuristics also

use a nondeterministic approach to making choices, in those cases the choice

must be assessed for validity and a fitness function is used to evaluate whether

the search should continue from that point or backtrack.

2.2 Hill Climbing

HC is a type of local search algorithm. With the HC approach, a random starting

point is chosen in the solution, and the algorithm begins from that point. With

software maintenance, this is a random point in the original project. From this

point, a change is made, e.g. a refactoring is applied in the code, and the fitness

function is used to compare the 2 solutions. The one with the highest perceived

“quality” becomes the new optimum solution and the algorithm continues in this

way. Over time, the quality of the solution is improved as less optimal changes

are discarded and better solutions are chosen. Eventually, an optimal or sub-

optimal solution is reached. With software refactoring, this means a modified

program with the same functionality but a better structure.

There are 2 main types of HC search algorithm that differ in 1 aspect. First-

ascent HC is the simpler version of the algorithm and works as a greedy

algorithm. In this version, as the algorithm measures the quality of other

variations of the solution adjacent to the current point, the first variation found

with a better quality is used. This means that each time a change is made to the

solution or a different permutation is inspected and this change is measured as

an improvement, it is immediately incorporated and the algorithm is reiterated

14

with this as the current solution. The risk of being trapped into a local optimum

is increased with this version of the algorithm as the solution isn’t given as

much freedom to explore different options and areas of change.

With steepest-ascent HC, all the available changes are made to the solution first

and measured. Once all the available local changes in the current area have

been inspected, the option with the biggest improvement in quality is chosen to

move forward. Not only does this result in better quality choices in the short

term, but it increases the chances of the search being able to escape the local

optimum of the neighbourhood and explore better quality solutions globally.

This is a superior choice for quality, but it takes more time and computation

power to inspect every choice compared to first-ascent climbing which reaches

an improved solution at a quicker pace. Other variations are stochastic HC,

where neighbours are chosen at random and compared, or random-restart HC,

where the algorithm is restarted at different points to explore the search space

and improve the local optimum. The pseudocode for the HC search is shown in

Algorithm 2.1.

Hill Climbing Algorithm

currentNode = startNode;

do

 L = NEIGHBORS(currentNode);

 nextEval = -INF;

 nextNode = NULL;

 for all x in L

 if (EVAL(x) > nextEval)

 nextNode = x;

 nextEval = EVAL(x);

 if nextEval ≤ EVAL(currentNode)

 // Return current node since no better neighbours exist.

 return currentNode;

currentNode = nextNode;
Algorithm 2.1 – Pseudocode for the Hill Climbing Algorithm

2

2Taken from Wikipedia: http://en.wikipedia.org/wiki/Hill_climbing

15

2.3 Simulated Annealing

SA is a modification of the local search algorithm, used to address the problem of

being trapped with a locally optimum solution. In SA, the basic method is the

same as the HC algorithm. The metaheuristic checks stochastically between

different variations of a solution and decides between them with a fitness

function until it reaches a higher quality. The variation is that it simulates

metallurgical annealing by introducing a cooling factor to overcome the

disadvantage of local optima in the HC approach. The cooling factor adds an

extra heuristic by stating the probability that the algorithm will choose a

solution that is less optimal than the current iteration. While this may seem

unintuitive, it allows the process to explore different areas of the search space,

giving extra options for optimisation that would otherwise be unavailable. This

probability is initially high, giving the search the ability to experiment with

different options and choose the most desirable neighbourhood in which to

optimise. This is then generally decreased gradually until it is negligible. This

allows the algorithm to avoid making negative choices as it begins to reach an

optimal solution. The probability given by the cooling factor is normally linked

to a temperature value that is used to simulate the speed in which the algorithm

cools.

The effectiveness of the process relies heavily on the input parameters used. The

algorithm may need to be run numerous times to find the combination of inputs

that result in the most effective permutation of the process. Also, the cooling

process may allow the SA algorithm to search for maximum improvement within

the search space, but its volatile nature means that the process may take longer

to find the optimum solution, or may run indefinitely. To tackle this, a time limit

or other restriction may be implemented to ensure the search doesn’t take up too

much time. The pseudocode for this search is shown in Algorithm 2.2.

16

Simulated Annealing Algorithm

// Initial state, energy.

s ← s0;

e ← E(s);

 // Energy evaluation count.

 k ← 0;

// While time left not good enough:

while k < kmax and e > emax

 // Temperature calculation.

 T ← temperature(k/kmax);

 // Pick some neighbour.

 snew ← neighbour(s);

 // Compute its energy.

 enew ← E(snew);

 // Should we move it?

 if P(e, enew, T) > random() then

 // Yes, change state.

 s ← snew;

 e ← enew;

 // One more evaluation done.

 k ← k + 1;
Algorithm 2.2 – Pseudocode for the Simulated Annealing Algorithm

3

2.4 Genetic Algorithms

GAs are a subset of EAs and in common with those mimic biological processes.

GA processes imitate the combination of chromosomes in genetics via a

crossover operator that effectively mixes 2 solutions in some way. GAs also

introduce mutations to allow for inventive options (the objective of this being to

free the search from the confines of one area by allowing it to explore and

analyse different options). As shown in Figure 2.2 (adapted from an example in

Vivanco and Pizzi’s paper [7]) GAs, like other metaheuristic search techniques,

use a fitness function to measure the quality among a number of different

solutions (known here as genes) and prioritise them. At each generation (i.e.

each iteration of the search), the genes are measured to determine fitness. At

every generation, in order to introduce variation into the gene pool, a proportion

of the population is selected and used to breed the new generation of solutions.

The fitter solutions are, the more likely they are to be selected. This is done

3Taken from Wikipedia: http://en.wikipedia.org/wiki/Simulated_annealing

17

using a technique such as tournament selection. Tournament selection involves

running several tournaments to compare solutions, where the fitter solutions

will prevail.

Figure 2.2 – Flow Chart of the Genetic Process

Two steps are used to create the new generation. First, a crossover operator is

used to create the child solutions from the parents selected. The algorithm itself

determines exactly how the crossover operator works, but generally, selections

are taken from each parent and spliced together to form a child. Once the child

solutions have been created, the second step is mutation. Again, the mutation

implementation depends on the GA adaptation, but an example would be that a

bit or number of bits is inverted in the solution. The mutation is used to provide

a random change in the solutions to maintain variation in the selection of

solutions and prevent early convergence to the optimal solutions. A percentage

of child solutions are selected for mutation, and after this occurs they are

inserted back into the gene pool. At this point the algorithm calculates the

fitness of any new solutions and reorders them in relation to the overall set.

Generally, a population size is specified, and the weakest solutions are culled

18

each generation. This process is repeated until a termination condition is

reached. Algorithm 2.3 shows the GA pseudocode taken from Räihä’s survey of

search-based software design [8].

Genetic Algorithm

Input: formalization of solution, initialSolution

 chromosomes ← createPopulation(initialSolution);

 while NOT terminationCondition do

 foreach chromosome in chromosomes

 p ← randomProbability;

 if p > mutationProbability then

 mutate(chromosome) ;

 end if

 end for

 foreach chromosomePair in chromosomes

 cp ← randomProbability;

 if cp > crossoverProbability then

 crossover(chromosomePair);

 addOffspringToPopulation();

 end if

 end for

 foreach chromosome in chromosomes

 calculatefitness(chromosome) ;

 end for

 selectNextPopulation();

 end while
Algorithm 2.3 – Pseudocode for the Genetic Algorithm

2.5 Swarm Intelligence Algorithms

Ant colony optimization (ACO), particle swarm optimization (PSO) and artificial

bee colony (ABC) are similar techniques used to find the shortest path to a

solution using metaheuristic techniques and swarm intelligence. ACO simulates

the behaviour of a swarm of ants when they look for a source of food. The ants

will initially look randomly for food, and when found, exude pheromones for

other ants to follow as they return to the colony. Over time, the pheromones will

fade, meaning that longer paths will lose the pheromone trails quicker, whereas

shorter paths will maintain pheromone trails longer. This causes the ants to

follow the shorter trails and, over time, these trails will become more

19

highlighted as more ants follow them, whereas the less efficient trails will fade

away. The positive feedback will eventually cause all the ants to follow the

single, more efficient path. The algorithm simulates the behaviour of the ants in

a colony by initially exploring the solution space randomly with multiple agents.

The better a path is the higher the probability that the path will be chosen by an

agent and this is used to allow the “ants” to converge on an optimal solution.

Trails will be updated with pheromones and a pheromone evaporation coefficient

will be used to simulate the dissipation of the pheromone trails over time.

Similarly, PSO is used to simulate social behaviour in a group. The method is

based on behaviours such as how birds flock together or how fish swim together

in groups. Again, this technique uses multiple agents to explore a search space

to find a better solution. Each agent will be affected by what they know to be the

best local solution, but also by the best known global position. With PSO, these

agents are known as particles and they will explore the search space according

to their position and velocity. The entire swarm of particles will have a best

position and it will be used each iteration to guide the particles to the optimal

global position. The process is repeated until the swarm converges to the same

solution. To avoid the convergence happening too early and the swarm being

trapped in a local optimum, the information given to each particle can be limited

to the best known positions of sub-swarms around the particle. This will give the

local best position and the global solution can be found comparing these local

optimum solutions.

The ABC algorithm works by simulating the behaviour of honey bees foraging

nectar from food sources. In this algorithm, the food sources represent potential

solutions and their nectar content represents the fitness. There are 3 groups of

bees used to find the food sources. Employed bees each correspond to a food

source, and can memorise 1 food source position at a time. The employed bee

will go to its corresponding food source, evaluate its nectar amount, and go back

to the hive. Onlooker bees compare the amount of nectar in the food sources that

correspond to the employed bee in the hive. Using this information, the onlooker

will become an employed bee and choose a food source to go to. Then, it will

search for a nearby food source and evaluates its nectar amount. After

comparing the 2, if the new source has more nectar, its source will be memorised

and the other food source will be abandoned. Employed bees whose food source

20

has been abandoned become scout bees and search for a new food source to

replace those that have been abandoned. This process is iterated with scout bees

producing new random solutions, employer bees finding and comparing

neighbouring solutions and onlooker bees evaluating the best solution in the

current population.

2.6 Multi-Objective Evolutionary Algorithms

Multi-objective algorithms are used to tackle problems that have multiple

constraints or objectives, and involve more than 1 objective function to be

optimised simultaneously. EAs are a suitable choice to apply to multi-objective

problems due to their ability to generate multiple possible solutions to a problem

instead of only 1. This way multiple conflicting objectives can be addressed with

various possible solutions without the need to assign priorities to any individual

objective in order to decide on a single, globally optimal solution. Multi-objective

algorithms have been applied sparsely to SBSE problems [9]–[24] and only

recently have been used to address issues in SBSM (possibly because of the

difficulty involved in implementing a multi-objective approach for automated

software maintenance, as suggested by Mkaouer et al. [25]). Regardless, looking

at SBSM with a multi-objective perspective is fitting. When maintaining a

software project, there are likely numerous conflicting objectives. A multi-

objective algorithm can be used to consider the objectives independently instead

of having to combine them into 1 overarching property to improve. The downside

of using multi-objective algorithms for software maintenance over a mono-

objective metaheuristic algorithm is that the extra processing needed to consider

the various objectives can cause an increase in the time needed to generate a set

of solutions. Another issue is that when a MOEA generates a population of

solutions, the best solution is up to the interpretation of the user, depending on

which objective fitness functions are considered most important. On the other

hand, this gives the user multiple options depending on their desire or the

situation.

Most MOEAs use Pareto dominance [26] in order to restrict the population of

solutions generated. If, for a solution, at least 1 objective of that solution has a

21

better fitness value than in another solution and none of the objectives are

worse, that solution is said to dominate the other solution. Therefore, a solution

is nondominated if none of the other solutions in the population dominate it.

Table 2.1 lists MOEAs that use Pareto dominance to choose solutions and a

survey of MOEAs is given by Coello Coello [26]. The most popular MOEA

available and the one that has been used for SBSM is NSGA-II.

Table 2.1 – Multi-Objective Evolutionary Algorithms That Use Pareto Dominance

MOEA Full Name Developers

DMOEA Dynamic Multiobjective Evolutionary Algorithm Yen and Lu [27]

M-PAES Memetic-Pareto Archive Evolutionary Strategy Knowles and Corne [28]

NGPA Niched Pareto Genetic Algorithm Horn et al. [29]

NSGA-II Nondominated Sorting Genetic Algorithm II Deb et al. [30]

PAES Pareto Archive Evolutionary Strategy Knowles and Corne [31]

PDE Pareto-frontier Differential Evolution Abbass et al. [32]

PESA Pareto Envelope-based Selection Algorithm Corne et al. [33]

SPEA Strength Pareto Evolutionary Algorithm Zitzler and Thiele [34]

SPEA2 Strength Pareto Evolutionary Algorithm 2 Zitzler et al. [35]

2.6.1 NSGA-II

NSGA-II, proposed by Deb et al. [30], was created to improve on the original

Nondominated Sorting Genetic Algorithm (NSGA) [36]. As with GAs and their

status as a subset of EAs, MOGAs like NSGA are a particular type of MOEA.

Like other MOEAs, it uses Pareto dominance to choose the desirable population

of solutions. NSGA-II organises the possible solutions into different

nondomination levels and further discerns between them by finding the

objective distances between them in Euclidean space. The original NSGA

approach has been criticised for being computationally expensive and for not

using elitism, as other MOEAs do (elitism ensures that the best solutions are

preserved and carried into the next generation in an EA). It also uses a sharing

parameter in order to ensure diversity in the population of solutions generated,

whereas a parameter-less diversity-preservation mechanism is desirable. NSGA-

II addresses these points to propose an improved MOEA. In their proposal, Deb

et al. test the diversity levels of the algorithm against contemporary elitist

MOEAs and find that it outperforms the PAES and SPEA algorithms.

22

NSGA-II proposes a fast nondominated sorting approach (due to fewer

comparisons between solutions), improving upon the complexity of the original

approach used by NSGA. It looks at the current population of solutions to find

the set of solutions that is nondominated. For each possible solution, Pareto

dominance is used to compare it against each other solution. After inspecting

each, the set of solutions that are not dominated by any other in any of the

objectives are given a rank of 1. The remaining solutions are then re-inspected,

excluding the set of nondominated solutions. The set of solutions here that are

now nondominated within the remaining group are given a rank of 2. This

continues until all the solutions are assigned a rank, with a lower rank meaning

that fewer solutions dominate that solution.

Depending on the desired population size in the algorithm, some solutions with

a higher rank may need to be excluded from the population. In order to find the

subset of least desirable solutions within a set considered equally fit, a crowding

distance value is calculated for the solutions in that rank. This supplementary

measurement estimates the density of solutions surrounding a solution in the

objective space. To calculate this, the 2 closest solutions on either side for each

objective are taken and the distance between them is used. In order to choose

the adjacent solutions, the population is sorted for the corresponding objective in

ascending order of magnitude. The solutions with the smallest and largest

values for that objective are assigned an infinite distance value. All other

intermediate solutions are assigned a distance value equal to the absolute

normalised differences in the function values of the 2 adjacent solutions. The

overall crowding distance value is then calculated as the sum of the distances for

each objective. Equation 2.1 shows the crowding distance calculation for a single

solution, where represents the position of the solution in the sorted population

for the relevant objective, represents the current objective and represents

the fitness of the solution for the relevant objective.
 and

 are the

largest and smallest fitness values among the population of that nondominated

rank for that objective. represents the number of objectives used in the search.

 (2.1)

23

The crowding distance measurement with 2 objectives is shown in Figure 2.3

with the crowding distance calculated for one solution by comparing it with

adjacent solutions within the same rank. When the crowding distances are

calculated for each solution in the set, the solutions with the smaller crowding

distances (i.e. the solutions located in more densely crowded regions) are left out

of the population. The solutions with the higher crowding distances (i.e. the

solutions located in less crowded regions) are considered fitter as they contribute

to a more uniformly spread out Pareto front, allowing for a more diverse

population. The crowding distance values are used to replace the sharing

parameter used in the NSGA approach, allowing for a more dynamic method of

ensuring diversity. Each generation, the fitness process is repeated for the

current population along with any newly created solutions, allowing for the

highest ranked nondominated solutions to be kept and allowing elitism to be

introduced in the algorithm. By the end of the algorithm, the fittest solutions

will be included in the final population and the less fit solutions will have been

culled. Algorithm 2.4 gives the pseudocode of the NSGA-II procedure.

Figure 2.3 – Crowding Distance Calculation Showing Solutions from Two Different Ranks [30]

24

NSGA-II

Create an initial population P0

Generate an offspring population Q0

t = 0;

while stopping criteria not reached do

 Rt ← Pt ∪ Qt ;

 F ← fast-non-dominated-sort (Rt);

 Pt + 1 ← Ø;

 i ← 1;

 while |Pt + 1| + |Fi| ≤ N do

 Apply crowding-distance-assignment (Fi);

 Pt + 1 ← Pt + 1 ∪ Fi ;

 i ← i + 1;

 end while

 Sort (Fi ‹ n);

 Pt + 1 ← Pt + 1 ∪ Fi [1 : N - |Pt + 1|];

 Qt + 1 ← create-new-population (Pt + 1);

end while
Algorithm 2.4 – Pseudocode for NSGA-II [37]

2.7 Many-Objective Evolutionary Algorithms

Many-objective algorithms are multi-objective algorithms that are designed to

handle more than 3 objectives (with most practitioners agreeing to a maximum

of 10 to 15 objectives). The consensus [20], [32], [33] is that multi-objective

algorithms like NSGA-II cannot adequately handle problems involving more

than 3 objectives. There are numerous reasons that MOEAs using Pareto

dominance can have difficulty handling more than 3 objectives. When the

dimensionality of the problem increases, an increasingly larger fraction of the

population becomes nondominated. This makes it more difficult to sort the

solutions in a population in any useful way (with a decreased number of ranks to

compare), and decreases the chances of creating new solutions in a generation.

The increased number of objectives also means that the fitness calculation and

diversity measure becomes more computationally expensive. The crossover

process may also become inefficient as the parent genomes will be more likely to

be widely distant from each other. With the parents being less likely to be

among the fittest of the population, the offspring generated will also be less

likely to be useful, meaning that the genetic process will have less diversity. The

Pareto front itself will need to include more solutions to represent the increased

25

number of objectives and address higher dimensional trade-offs. This can make

it more difficult to choose a preferred solution as there will be a larger set of

solutions to choose between. Another issue is that the Pareto front is more

difficult to visualise in more than 3 dimensions, adding to the difficulty in

choosing a solution among the Pareto optimal set.

Numerous different approaches have been used to address the issues with

MOEAs and develop many-objective alternatives. Table 2.2 lists some many-

objective EAs. So far, for SBSE, the use of these algorithms has been scarce.

Salam et al. [34], [35] have explored the use of IBEA with software product lines

and Mkaouer et al. [20], [34] have used NSGA-III to optimise up to 15 objectives

for software maintenance. The following subsection details the approach used by

NSGA-III to tackle more than 3 objectives.

Table 2.2 – Many-Objective Evolutionary Algorithms That Use Pareto Dominance

Algorithm Full Name Developers

GrEA Grid-Based Evolutionary Algorithm Yang et al. [43]

HypE Hypervolume Estimation Algorithm For

Multiobjective Optimization

Bader and Zitzler [44]

IBEA General Indicator-Based Evolutionary

Algorithm

Zitzler and Künzli [45]

MOEA/D Multiobjective Evolutionary Algorithm Based

On Decomposition

Zhang and Li [46]

MSOPS Multiple Single Objective Pareto Sampling Hughes [47]

N/A Ranking Dominance-Based Algorithm Kukkonen and

Lampinen [48]

NSGA-III Nondominated Sorting Genetic Algorithm III Deb and Jain [49]

PBEA Preference-Based Evolutionary Algorithm Thiele et al. [50]

PCA-NSGA-II Principal Component Analysis NSGA-II Deb and Saxena [38]

PCSEA Pareto Corner Search Evolutionary Algorithm Singh et al. [51]

PICEA Preference-Inspired Co-Evolutionary

Algorithm

Wang et al. [52]

POGA Preference Order-Ranking Based Algorithm Di Pierro et al. [53]

r-NSGA-II Reference Solution-Based NSGA-II Said et al. [54]

R-NSGA-II Reference Point-Based NSGA-II Deb and Sundar [55]

2.7.1 NSGA-III

The approach used by NSGA-III to improve the process for many-objective

problems incorporates a combination of approaches used by other many-

objective algorithms. NSGA-III uses multiple predefined targets in the objective

space to guide the search. Using multiple different targets allows the population

26

of solutions to retain their diversity. Furthermore, in order to avoid issues with

mating solutions that are too diverse from each other, solutions from

neighbouring targets can be used to develop new offspring. NSGA-III uses

predefined reference points to improve upon the crowding distance calculations

used in NSGA-II.

Algorithm 2.5 – Pseudocode for NSGA-III [25]

NSGA-III still uses the nondominated functionality of its precursor algorithms.

Therefore, Pareto optimality is still used to choose the best solutions in a

NSGA-III

Input: H structured reference points Zs, parent population Pt

Output: Pt + 1

Begin

St ← Ø

i ← 1;

Qt ← Variation (Pt) ;

Rt ← Pt ∪ Qt ;

(F1, F2, …) ← Non-dominated_Sort (Rt);

Repeat
 St ← St ∪ Fi ;

 i ← i + 1;

Until |St| ≥ N;

// Last front to be included.

Fl ← F i ; ∪ Fi ;

If |St| = N then

 Pt + 1 ← St ;

Else

 Pt + 1 ← ∪ l - 1

 j = 1
 Fj ;

 // Number of points to be chosen from Fl.

 K ← N – |Pt + 1|;

 // Normalize objectives and create reference set Zr.

 Normalize (Fm; St; Zr; Zr);

 // Associate each member s of St with a reference point.

 // π(s): closest reference point.

 // d(s): distance between s and π(s).

 [π(s), d(s)] ← Associate (St, Zr);

 // Compute niche count of reference point j∈Zr.
 ρj, ←

 ∈ ((π(s) = j) ? 1 : 0);
 // Choose K members one at a time from Fl to construct Pt + 1.

 Niching (K, ρj, π(s), d(s), Zr, Fl, Pt + l);

End if

End

27

population from its top ranks, but the new functionality will help to choose

which solutions from the remaining applicable rank are kept, as the crowding

distance functionality did in NSGA-II. The improvements to the algorithm are

made to replace the crowding distance calculations and maintain the diversity of

the solutions generated. In place of the crowding distance calculations, the

algorithm contains a number of stages. These stages will be used to locate the

relevant reference points and choose a set of solutions that maintain a nice

overall spread of Pareto optimal solutions in each generation. Algorithm 2.5

gives the pseudocode for the main functionality of NSGA-III along with an

overview of the stages used to select the remaining solutions for a generation.

These stages are detailed below.

The reference points can either be predefined in a structured manner or

supplied preferentially by the user. In the case that no preferential information

is given, Deb and Jain advise that any structured placement of the reference

points can be used, but they adopt the systematic approach proposed by Das and

Dennis [56] by placing points on a normalised hyperplane in objective space. A

hyperplane is a subspace of 1 dimension less than its ambient space, where here

the ambient space makes up the dimensions representing each objective in a

many-objective problem. The hyperplane will be a simplex (n-dimensional

representation of a triangle/tetrahedron) that is equally inclined on all axes.

Figure 2.4 visualises this for a 3 objective problem with a 2 dimensional

hyperplane. The reference points distributed across the normalised hyperplane

will assist in choosing the solutions to keep at the end of each generation.

28

Figure 2.4 – Determination of Points on a Normalised Reference Plane in a Three Objective Case

[49]

The normalisation process allows for objective values that are differently scaled

in a Pareto optimal front. In order to normalise the hyperplane, the available

solutions need to be adaptively normalised each generation. For each objective,

the best value that has been reached for it so far is calculated. This allows for an

ideal point to be found in the objective space that is mapped from the ideal

values of each objective. This becomes a zero vector as it is used to find the

translated objective values for each solution. Translated objective values are

calculated by subtracting the corresponding objective values of the ideal point to

denote how close to the ideal point a solution is. The extreme point for each

objective is also found and these vectors are used to mark the boundaries of the

hyperplane. The hyperplane can then be normalised by finding the intercepts of

the extreme points with the axes. This also allows the solution vectors to be

further normalised using the distance between the ideal and worst points for

each objective. The construction of the hyperplane is shown in Figure 2.5. The

reference points calculated using Dan and Dennis’s approach will lie on this

normalised hyperplane. As reference points are to be widely distributed on the

hyperplane, solutions associated with the reference points are also likely to be

widely distributed on or near the Pareto optimal front.

29

Figure 2.5 – Hyperplane Formed from Extreme Points in a Three Objective Case [49]

Once the hyperplane is constructed and the reference points are chosen, each

solution needs to be associated with a reference point. In order to do this, a

reference line is defined for each reference point that connects the reference

point to the ideal point. For each solution in the population, the perpendicular

distance is calculated between the solution and the reference line of each of the

reference points. The smallest distance represents the reference point that is

closest to that solution and the solution will be associated to the corresponding

reference point. Figure 2.6 visualises the reference line calculation and

association of solutions for a 3 objective problem. Once this is complete, the

number of solutions associated with each reference point is counted. Only the

solutions that have been chosen for the next population are included in this

count. This is known as the niche count of the reference point. Using these, the

solutions to keep from the final front are chosen. In order to improve the

diversity of the solutions chosen, the reference points with the smallest niche

count are inspected. These will represent the least dense areas of the Pareto

optimal front. First the reference point with niche count of 0 will be chosen, if

available. If there is more than 1 reference point with this count, one is chosen

at random. From the remaining front, if there are any solutions associated with

this reference point, the one with the shortest perpendicular distance is chosen

30

for the next population. The niche count of the reference point is then

incremented. Otherwise, if there are no solutions from the remaining front

associated with this reference point, it is excluded from consideration. If the

niche count for the reference point chosen is more than 0 (and there are multiple

possible associated solutions to choose from), the associated solution is picked

randomly for the reference point. This process is repeated until the required

number of solutions is chosen for the next population.

Figure 2.6 – Association of Solutions with Reference Points in a Three Objective Case [49]

Deb and Jain do not employ any explicit selection operator in the algorithm (as

the use of reference points already allows for a careful elitist selection of

solutions and a way to maintain diversity among the population) and apply the

usual crossover and mutation operators from NSGA-II. As such, they have set

the population size to be almost equal to the number of reference points in order

to give equal importance to each population member. If desired, the algorithm

can be run without any additional parameters, although the location of the

reference points can be influenced by preference information and the number of

reference points can be defined. Jain and Deb later detail an adaptive approach

[57] to the algorithm that can add and remove reference points throughout the

search, in order to relocate the useless reference points. The useless points are

the ones that have no associated solutions and are thus excluded. If there is

more than 1 solution associated with a reference point, more reference points

31

are added around this point in order for each solution to be associated with a

separate point, and be more likely to be chosen. A simplex of points is added

around the initial reference point, and any that already exist as a reference

point are excluded. After this is done for all the relevant reference points the

niche counts are updated. For any of the newly added reference points that still

have a niche count of 0, they are removed. The original reference points are

kept, even if their niche count is 0. At this point there should be a number of

reference points with a niche count of 1 that corresponds with the number of

solutions. Figure 2.7 gives an example of how the solutions may be dispersed

across the reference points and shows how new reference points are added to

address this.

Figure 2.7 – Dispersion of Solutions on the Reference Plane and Addition of Reference Points in a

Three Objective Case [57]

2.8 Search-Based Software Maintenance

For the literature review, Google Scholar, IEEE Xplore, ScienceDirect, Springer

and Scopus were used to find relevant papers by using the search string “search

AND based AND software AND engineering AND maintenance AND refactoring

AND metaheuristic”. We used AND to connect the keywords as using OR or a

combination of the 2 would have been too general, giving hundreds of thousands

of results in Google Scholar. The search was conducted by looking for the words

anywhere in the article, rather than looking only within the article title or

32

elsewhere. The amount of papers found in each search repository is given in

Table 2.3. Of the 293 papers found with the search (last searched in September

2016), the results were analysed and reduced to only include papers relevant to

SBSM (specifically, using refactoring for software maintenance) and involved 1

or more of the following:

 Refactoring with search-based techniques.

 Automated refactoring.

 Investigation of maintenance metrics with search-based techniques.

 Investigation of the search-based optimisation process.

Likewise, the following papers were excluded:

 Papers that involved defect detection but not resolution.

 Papers that were written in a language other than English

Table 2.3 – Amount of Results in Each Repository

Search Repository Number Of Papers

Google Scholar 293

IEEE Xplore 21

ScienceDirect 24

Springer 27

Scopus 43

A number of other areas of research were captured in the search and removed

from the final count. Many papers were found that concerned a similar area of

research. The other recurring areas are shown in Table 2.4, and related papers

from these and other areas are mentioned below. The papers from similar areas

were analysed manually to ensure that relevant papers were not lost from the

review. More general papers related to SBSE are also briefly discussed below. Of

all the papers analysed, 52 were found to be relevant. On top of this, a number

of relevant papers were found on Google Scholar and the IEEE Xplore database

by analysing references, researcher profiles and by discussion with other

researchers, as well as conducting similar searches. Overall, the number of

papers reviewed came to 99. The tables in Appendix D give a list of the papers,

as well as the authors and year published.

33

Table 2.4 – Other Areas of Research Captured in Literature Search

Similar Areas Others

defect detection testing

modelling software product lines

software architecture class responsibility assignment

clustering

code clone detection

formal concept analysis

relational concept analysis

2.8.1 General Search-Based Software Engineering

Harman and Jones [1] wrote a paper about SBSE when the area of research was

in its infancy. They argued that the metaheuristic algorithms commonly being

used in other areas of science should be applied to computer science, and

explained how to reformulate software engineering as a search problem using a

representation, a fitness function and operators. Clarke et al. [58] explained how

metaheuristic search techniques could be used in various areas of software

engineering to solve problems that could not be attacked exhaustively. An

overview is given of the local search techniques of HC, SA and tabu search, as

well as GAs and GP. For each technique the key ingredients to define for it were

also given. Harman and Clark [59] discussed the use of metrics in SBSE and

their utility as fitness functions. They also discussed possible methods for the

representation of the fitness landscape and the difficulty of mapping the

landscape to a visual representation. Harman [60] wrote a paper to highlight the

current progress made in the area of SBSE and topics of future interest that he

thought would be important to research.

Harman also discussed the area of program comprehension [61], detailing the

work already done in the area and outlining further options for research to

improve program comprehension. Harman also discussed the virtual nature of

software [62] and explained why this gives it an advantage when it comes to

search-based optimisation. Harman [63] wrote an article about the effect that

evolutionary computation has had on software engineering research in the past

decade. In it, he gives a brief review of research in SBSE, with a focus on the

role of testing. He also highlights open problems and challenges in the area for

researchers to address in the future. Barros and Dias Neto [64] evaluated the

34

assessment of threats to validity in SBSE papers from the first 2 editions of the

International Symposium on Search-Based Software Engineering. They outlined

different possible threats to internal, external, construct and conclusion validity

in SBSE experiments. Then they applied a questionnaire to 23 different SBSE

papers to find them. DeFreitas and DeSouza [65] performed a bibliometric

analysis of SBSE papers published in the years 2001-2010. They analysed

various aspects of the papers published, across the 4 categories of publications,

sources, authorship and collaboration.

Colanzi et al. [66] gave a review of the growth of SBSE in Brazil in 2011 and

updated it in 2012 [67]. A summary was given of the work done in each area of

SBSE as well as a description of the different algorithms used and the research

impact made. Brown et al. [68] discussed technical debt as used as a metaphor

for software systems and Allman wrote an article [69] discussing technical debt

in software and how to handle it. Chatzigeorgiou et al. [70] proposed a method

for calculating when the technical debt build up in a software project has

exceeded the initial savings from ignoring maintenance. The initial savings,

referred to as the principle need to be paid back as technical debt, and

eventually as the project progresses, the technical debt will become greater than

this initial amount if it isn’t resolved. Morgenthaler et al. [71] discussed

technical debt in relation to software code at Google. They outlined the various

types of build debt that accumulate on the code and how they attempt to address

it.

Fatiregun et al. [72] wrote a short paper, which was later extended [73], on

search-based transformations. In it, they described what program

transformations are and how they can be applied using SBSE. Jiang [74] briefly

discussed the effectiveness of using GAs in SBSE. He argued that, while

experimentation has shown that GAs can improve the solutions of software

engineering problems, there is no rigorous proof that GAs can find the optimal

or sub-optimal solutions in the software engineering problem domains. This was

extended when Jiang et al. explored a theoretical description of the properties of

GAs [75]. De Souza et al. [76] investigated the human competitiveness of SBSE

techniques in 4 areas of software engineering. Across the board, the SBSE

techniques outperformed the human competitors in terms of quality, speed and

35

lack of deviation, suggesting that SBSE techniques are indeed human

competitive.

2.8.2 Related Areas

One of the areas that are closely related to SBSM is that of search-based

approaches as applied to module clustering. Module clustering has a number of

benefits including program comprehension, promotion of cohesion and reduction

of the search space for search-based algorithms [77]–[94]. Defect detection

concerns itself with finding code smells and design defects in the software code.

Although some automated refactoring research contains a step for defect

detection as part of the refactoring process, there has been work published that

is concerned only with the detection process. Several papers look specifically at

detecting design defects and code smells [95]–[101]. In particular, Dudziak and

Wloka created the J/Art tool [102] to detect structural weaknesses in Java code.

It can also perform limited restructuring capabilities for the design defects that

are found using refactorings, although this is limited in comparison.

Error detection and resolution is an area of search-based optimisation that is

closely related to maintenance. The first step of SBSM is to look for issues in the

code and then apply refactorings to resolve them while error removal follows a

similar process to find problems in the code and then try to solve them. The

following papers are concerned with fault detection and program repair [103]–

[106]. Editorials and workshop reports have been written related to SBSE and

SBSM, and introductions have been written for various tutorials and talks based

on SBSE. These are listed in Table D.3. Additionally, there has already been a

number of literature reviews relating to the field of SBSE, or a specific area in

SBSE, and they are specified in Table D.4.

2.8.3 Refactoring to Improve Software Quality

Ó Cinnéide and Nixon [107] developed a methodology to refactor software

programs in order to apply design patterns to legacy code. They created a tool to

convert the design pattern transformations into explicit refactoring techniques

that can then be automatically applied to the code. The tool, called DPT (Design

Pattern Tool), was implemented in Java and applied the transformations first to

an abstract syntax tree that was used to represent the code, before changes were

applied to the code itself. The tool would first work out the transformations

36

needed to convert the current solution to apply the desired pattern (in the

example study a plausible precursor was chosen first). It then converted the

pattern transformations into a set of minipatterns. These minipatterns would

then be further decomposed, if needed, into a set of primitive refactorings. The

minipatterns would be reused if applicable for other pattern transformations.

The authors analysed the Gamma et al. [108] patterns to determine whether a

suitable transformation could be built with the applicable minitransformations.

They found that while the tool generally worked well for the creational patterns,

applying structural patterns and behavioural patterns caused problems. In a

different paper [109], more detail was given on the tool and how it is used to

apply the Factory Method pattern, and in another subsequent paper [110], Ó

Cinnéide defined further steps of work to test the applicability of the tool.

O’Keeffe and Ó Cinnéide [111] continued to research the area of SBSM by

developing a tool called Dearthóir. They introduce Dearthóir as a prototype tool

used to refactor Java code designs automatically using SA. The tool used 2

refactorings to modify the hierarchical structure of the target program design.

Again, the refactorings must preserve the behaviour of the program in order for

them to be applicable. They must also be reversible in order to use the SA

method. To measure the quality of the solution, the authors employed a small

metric suite to analyse the object-oriented structure of the program. The metrics

were measured for each class in the program and a weighted sum was used to

give an overall fitness value for the solution. A case study was employed to test

the effectiveness of the tool. A simple 6-class hierarchy was used for the

experiment. The tool was shown to restructure the class design to improve

cohesion and minimise code duplication.

Further work [112] introduced more refactorings and different metrics to the

Dearthóir tool. Due to the possibility of the metrics conflicting with each other

they were then given dependencies and weighted according to the authors’

judgement. Another case study was used to detail the actions of the tool and the

outcome was evaluated using the value of the metrics before and after the tool

was applied. Every metric used either improved or was unchanged after the tool

had been applied, indicating that the tool had been successful in improving the

structure of the solution design.

37

O’Keeffe and Ó Cinnéide developed the Dearthóir prototype into the CODe-Imp

platform (Combinatorial Optimisation for Design Improvement). They

introduced it initially as a prototype automated design improvement tool [113]

using Java 1.4 source code as input. CODe-Imp uses abstract syntax trees to

apply refactorings to a previously designed solution, and has been given the

ability to implement first-ascent or steepest-ascent HC as well as SA. They

based the set of metrics used in the tool on the QMOOD (Quality Model for

Object-Oriented Design) model of software quality [5]. Six refactorings were

available initially, and 11 different metrics are used to capture flexibility,

reusability and understandability, in accordance to the QMOOD model. Each

evaluation function is based on a weighted sum of quotients on the set of

metrics.

The authors then conducted a case study to test how effective each function and

search technique is at refactoring software. The reusability function was found

to not be suitable to the requirements of SBSM due to the introduction of a large

number of featureless classes. The other 2 evaluation functions were found to be

suitable with the understandability function being most effective. All search

techniques were found to produce quality improvements with manageable run-

times, with steepest-ascent HC providing the most consistent improvements.

They further expanded on this work [114] to include a fourth search technique

(multiple-restart HC) and larger case studies. The functionality of the CODe-

Imp tool was also expanded to include 6 additional refactorings.

They subsequently [115] used the CODe-Imp platform to conduct an empirical

comparison of 3 methods of metaheuristic search in search-based refactoring;

multiple/steepest-ascent HC, SA and a GA. To conduct the comparison, the

mean quality change was measured for each of the 3 metaheuristic techniques.

The results were then normalised and compared. They concluded that multiple-

ascent HC was the most suitable method for search-based refactoring due to the

speed and consistency of the results compared to the other techniques. This

work was also expanded [116] with a larger set of input programs, greater

number of data points in each experiment and a more detailed discussion of

results and conclusions.

At a later point, Koc et al. [117] also compared metaheuristic search techniques

using a tool called A-CMA. They compared 5 different search techniques; HC

38

(steepest descent, multiple steepest descent and multiple first descent), SA and

ABC, as well as a random search for comparison. The results suggest that the

ABC and multiple steepest descent HC algorithms are the most effective

techniques of the group, with both techniques being competitive with each other.

O’Keeffe and Ó Cinnéide used steepest-ascent HC with CODe-Imp to attempt to

refactor software programs to have a more similar design to other programs

based on their metric values [118]. The QMOOD metrics suite was used to

compare against previous results, and an overall fitness value was derived. A

dissimilarity function was evaluated to measure the absolute differences

between the metric values of the programs tested. CODe-Imp was then used to

refactor the input programs to reduce their dissimilarity values to the target

program. This was tested with 3 open source Java programs. Two of the

programs were refactored to be more similar to the targets, but for the third, the

dissimilarity was unchanged in both cases. The authors speculated that this was

due to the limited number of refactorings available for the program as well as

the low dissimilarity to begin with. They further speculated that the reason for

the limited available refactorings was due to the flat hierarchical structure in

the program.

Moghadam and Ó Cinnéide used CODe-Imp along with JDEvAn [119] to

attempt to refactor code towards a desired design using design differencing

[120]. The JDEvAn tool is used to extract the UML models of 2 solutions of code,

and detect the differences between them. An updated version of the code is

created by a maintenance programmer to reflect the desired design in the code

and the tool uses this along with the original design to find the applicable

changes needed to refactor the code. The CODe-Imp platform then uses the

detected differences to implement refactorings to modify the solution towards

the desired model.

Seng et al. [121] introduced an EA to apply possible refactorings to a program

phenotype (an abstract code model), using mutation and crossover operators to

provide a population of options. The output of the algorithm is a list of

refactorings that the software engineer can apply to improve a set of metrics.

They used class level refactorings, noting the difficulty of providing refactorings

of this type that preserved behaviour. They tested their technique on the open

source Java program JHotDraw, using a combination of coupling and cohesion

39

metrics to measure the quality gain in the class structure of the program. For

the purposes of the case study, they focused on the move method refactoring. The

algorithm successfully used the technique to improve the metrics. They also

tested the ability of the algorithm to reorganise manually misplaced methods,

and it was successfully able to suggest that the methods are moved back to their

original position.

Harman and Tratt [6] argued how Pareto optimality can be used to improve

search-based refactoring by combining different metrics in a useful way. As an

alternative to combining different metrics using weights to create complex

fitness functions, a Pareto front can be used to visualise the effect of each

individual metric on the solution. Where the quality of one solution may have a

better effect on one metric, another solution may have an increased value for

another. This allows the developer to make an informed decision on which

solution to use, depending on what measure of quality is more important for the

project in that instant. Pareto fronts can also be used to compare different

combinations of metrics against each other. An example was given with the

metrics CBO (Coupling Between Objects) and SDMPC (Standard Deviation of

Methods Per Class) on several open source Java applications.

2.8.4 Refactoring for Testability

Harman [122] proposed a new category of testability transformation (used to

produce a version of a program more amenable to test data generation) called

testability refactoring. The aim of this subcategory is to create a program that is

both more suited to test data generation and improves program comprehension

for the programmer, combining 2 areas of SBSE (testing and maintenance). As

testability transformation uses refactorings to modify the structure of a program

the same technique can be used for program maintenance, although the 2 aims

may be conflicting. Here a testability refactoring refers to a process that satisfies

both objectives. Harman mentioned that these 2 possibly conflicting objectives

form a multi-objective scenario. He explained that the problem would be well

suited to Pareto optimal search-based refactoring.

Morales et al. [123] investigated the use of a multi-objective approach that takes

into consideration the testing effort on a system. They used their approach to

minimise the occurrence of 5 well-known anti-patterns (i.e. types of design

40

defect), while also attempting to reduce the testing effort. 3 different multi-

objective algorithms were tested and compared; NSGA-II, SPEA2 and MOCell.

MOCell was found to be the metaheuristic that provided the best performance.

Ó Cinnéide et al. [124] used the LSCC (Low-level Similarity-based Class

Cohesion) metric with the CODe-Imp platform to test whether automated

refactoring with the aid of cohesion metrics can be used to improve the

testability of a program. Ten volunteers with varying years of industrial

experience constructed test cases for the test program before and after

refactoring, and were then surveyed on certain areas of the program to discern

whether it had become easier or harder to implement test cases for them after

refactoring. The results were ambivalent but generally there was little

difference reported in the difficulty of producing test cases in the initial and

final program. The authors suggested that these unexpected results may stem

from the size of the program being used. They predicted that if a larger, more

appropriate application was being used, then the refactored program may

produce easier test cases.

2.8.5 Testing Metric Effectiveness with Refactoring

Ghaith and Ó Cinnéide [125] investigated a set of security metrics to determine

how successful they could be for improving a security sensitive application using

automated refactoring. They used the CODe-Imp platform to test the metrics by

using them separately at first. After determining that only 4 of the metrics were

affected with the refactoring selection available, the metrics were combined to

form a fitness function representing security. The function was then tested

using first-ascent HC, steepest-ascent HC and SA. The results for the searches

were mostly identical except that SA caused a higher improvement in 1 of the

metrics. Conversely, the SA solution entailed a far larger number of refactorings

than the other options. The effectiveness of these metrics was also analysed and

it was discovered that of the 27% average metric improvement in the program,

only 15.7% of that improvement indicated a real improvement in its security.

This was determined to be due to the security metrics being poorly formed.

Ó Cinnéide et al. [126] conducted an investigation to measure and compare

different cohesion metrics with the help of the CODe-Imp platform. It was found

that the 5 metrics that aimed to measure the same property disagreed with each

41

other in 55% of the applied refactorings, and in 38% of the cases metrics were in

direct conflict with each other. Two of the metrics were then studied in more

detail to determine where the contradictions were in the code that caused the

conflicts. Variations of the metrics were used to compare them in 2 different

ways. This study was extended [127] to use 2 new techniques to compare the

metrics and also to increase the number of metric pairs compared. Among the

compared metrics, LSCC was found to be the most representative, while SCOM

(Sensitive Class Cohesion) was found to be the least.

Veerappa and Harrison [128] expanded upon this work by using CODe-Imp to

inspect the differences between coupling metrics. A similar approach was used

to measure the effects of automated refactoring on the coupling metrics and to

compare them. This experiment resulted in less divergence between metrics,

with only 7.28% of changes directly conflicting. However, in 55.23% of cases the

changes were dissonant, meaning that there was a larger chance that a

refactoring that caused a change in one metric had no effect on another. They

also measured the effect of refactoring with the RFC (Response For Class)

metric on a cohesion metric and found that after a certain number of iterations,

the coupling will continue to improve as cohesion degrades, minimising the

effectiveness of the changes.

Simons et al. [129] compared metric values with professional opinions to deduce

whether metrics alone are enough to helpfully refactor a program. A survey was

conducted, asking experienced software engineers their opinion of the quality of

a set of software examples. The metric values for the solutions were

corresponded to the quality attributes specified in the survey and correlation

plots were produced to measure whether there was any correlation between the

engineer’s opinions and the metric values. There was found to be almost no

correlation between the 2, leading the authors to suggest that metrics alone are

insufficient to optimise software quality as they do not fully capture the

judgements of human engineers when refactoring software.

Vivanco and Pizzi [7] used search-based techniques to select the most suitable

maintainability metrics from a group. They presented a parallel GA to choose

between 64 different object-oriented source code metrics. Firstly, they asked an

experienced software architect to rank the components of a software system in

difficulty. The GA was then run for the set of metrics in sequential and parallel.

42

Metrics found to be more efficient included coupling metrics, understandability

metrics and complexity metrics. Furthermore, the parallel program ran

substantially faster than the sequential version.

Bakar et al. [130] attempted to outline a set of guidelines to select the best

metrics for measuring maintainability in open source software. An EA was used

to optimise and rank the metrics, which were listed in previous work [131]. An

analysis was conducted to validate the quality model using the CK (Chidamber

& Kemerer) metric suite [4] of object-oriented metrics (also known as MOOSE –

Metrics for Object-Oriented Software Engineering). The CK metric values were

then used in the EA as ranking criteria in selecting the best metrics to measure

maintainability in the software product. The proposed approach had not yet

been empirically validated, and had presented the outcome of ongoing research.

Harman et al. [132] wrote about the need for surrogate metrics that

approximate the quality of a system to speed up the search. If non-functional

properties of the system mean that there is limited time or power (e.g. if an

older device is used with a less efficient CPU), then it may be more important

for the fitness function to be calculated quickly or with little computational

effort, in which case approximate metrics will be more useful than precise ones.

The trade-off here is that the metrics will guide the search in the direction of

optimality while improving the performance of the search. This ability would be

useful in dynamic adaptive SBSE, where self-adaptive systems may take into

account functional as well as non-functional properties. Harman et al. had also

discussed dynamic adaptive SBSE elsewhere [133].

2.8.6 Refactoring to Correct Design Defects

Kessentini et al. [134] used examples of bad design to produce rules to aid in

design defect detection with genetic programming (GP), and then used these

rules in a GA to help propose sequences of refactorings to remove the detected

defects. The rules are made up of a combination of design metrics to detect

instances of 3 different design defects. Before the GA was used, a GP approach

experimented with different rules to reproduce the example set of design defects,

with the most accurate rules being returned. Once a set of rules were derived,

they could be used to detect the number of defects in the correction approach.

The GA could then be used to find sequences of refactorings to reduce the

43

number of design defects in a program. The approach was compared against a

different rules-based approach to defects detection and was found to be more

precise with the design defects found.

Further work with this approach to design smell (defect) correction was

investigated in [135]–[137]. In [135], Kessentini et al. extended the experimental

code base, with the results further supporting the approach. Ouni et al. [136]

replaced the GA used in the code smell correction approach with a MOGA

(NSGA-II). They used the previous objective function to minimise design defects

as 1 of 2 separate objectives to drive the search. The second objective used a

measure of the effort needed to apply the refactoring sequence, with each

refactoring type given an effort value by the authors. Kessentini et al. [137]

extended the original approach by using examples of good code design to help

propose refactoring sequences for improving the structure of code. Instead of

generating refactoring rules to detect design defects and then using them to

generate refactoring sequences with a GA, they used a GA directly to measure

the similarity between the subject code and the well-designed code. The fitness

function was used to increase the similarity between the 2 sets of code, allowing

the derived refactoring sequences to remove code smells.

Ouni et al. [138] created an approach to measure semantics preservation in a

software program when searching for refactoring options to improve the

structure. They used a multi-objective approach with NSGA-II to combine the

previous approach for resolving design defects with the new approach to ensure

that the resolutions retained semantic similarity between code elements in the

program. The solutions generated with the approach were analysed manually to

derive the percentage of meaningful refactorings suggested. The results were

then compared against a previous mono-objective and previous multi-objective

approach. While the number of defects resolved was moderately smaller, the

meaningful refactorings were increased.

Ouni et al. [139] then explored the potential of using development refactoring

history to aid in refactoring the current version of a software project. They used

a multi-objective approach with NSGA-II to combine 3 separate objectives in

proposing refactoring sequences to improve the product. Two of the objectives,

improving design quality and semantics preservation, were taken from previous

work. The third objective used a repository of previous refactorings to encourage

44

the use of refactorings similar to those applied to the same code fragments in the

past. The approach was tested and compared against a random search and a

mono-objective approach. The multi-objective algorithm had better quality

values and semantics preservation than the alternatives, although this

approach did not apply the proposed refactorings to the code, leaving the

refactoring sequences to be applied manually by the developer. Similarly in

another study [140], they used NSGA-II to test 6 open source projects, this time

with 4 objectives. Along with measuring refactoring similarity and the other 2

objectives, this study also aimed to minimise the number of code changes

necessary to fix the defects.

They further explored this approach using refactoring history [141] by analysing

co-change that identified how often 2 objects in a project were refactored

together at the same time and also by analysing the number of changes applied

in the past to the objects. They also explored the effect of using refactoring

history on semantics preservation. Further experimentation showed a slight

improvement in quality values and semantics preservation with these additional

considerations. Another study [37] investigated the use of past refactorings

borrowed from different software projects for when the change history of the

applicable project is not available or does not exist. The improvements made in

these cases were as good as the improvements made when previous refactorings

for the relevant project were available.

Wang et al. [142] combined the previous approach by Kessentini et al. [134] to

remove software defects with time series in a multi-objective approach using

NSGA-II. The time series was used to predict how many potential code smells

would appear in future versions of the software with the selected solution

applied. One of the objectives was then measured by minimising the number of

code smells in the current version of the software and estimated code smells in

future versions of the software. The other objective aimed to minimise the

number of refactorings necessary to improve the software. The experimental

results were compared against previous mono-objective and multi-objective

approaches and were found to have better results with fewer refactorings, but

also took longer to run.

Pérez et al. [143] presented a short position paper to propose an approach to

resolving design smells in software. They proposed using version control

45

repositories to find and use previously effective refactorings in code and apply

them to the current design as refactoring strategies. Refactoring strategies are

defined as heuristic-based, automation-suitable specifications of complex

behaviour-preserving software transformations aimed at a certain goal e.g.

removing design smells. They described an approach to build a catalogue of

executable refactoring strategies to handle design smells by combining

refactorings that have been performed previously. The authors claimed that, on

the basis of their previous work and other available tools, it would be a feasible

approach.

Mkaouer et al. experimented with combining quality measurement with

robustness [144] to yield refactored solutions that could withstand volatile

software environments where importance of code smells or areas of code may

change. They used NSGA-II to create a population of solutions that used

robustness as well as software quality in the fitness measurement. They also

used a number of multi-objective performance measurements (hypervolume,

inverse generational distance and contribution) to compare against other multi-

objective algorithms. To analyse the effectiveness of the approach and the trade-

offs involved in ensuring robustness, the NSGA-II approach was compared

against a set of other techniques. For performance, it was compared to a multi-

objective particle swarm algorithm (as well as a random search to establish a

baseline), and was found to outperform or have no significant difference in

performance in all but 1 project. It is suggested that since this was the smaller

project, the particle swarm algorithm may be more suited to smaller, more

restrictive projects. It was also compared to a mono-objective GA and 2 mono-

objective approaches that use a weighted combination of metrics. It was found

that although the technique only outperformed the mono-objective approaches in

11% of the cases, it outperformed them on the robustness metrics in every case,

showing that while it sacrificed some quality, the NSGA-II approach arrived at

more robust solutions that would be more resilient in a more unstable, realistic

environment. This study was extended [145] by testing 8 open source systems

and 1 industrial project, and by increasing the number of code smell types

analysed to 7.

They also experimented with the newly proposed evolutionary optimisation

method NSGA-III [25]. They tested the algorithm using different amounts of

46

objectives (3, 5, 8, 10 and 15) to measure the scalability of the approach to a

multi-objective and many-objective problem set These results were then

compared against other EAs to see how they scaled compared to NSGA-III. The

NSGA-III approach improved as the amount of objectives used was increased,

whereas the other algorithms did not scale as well. The other EAs were

comparable when the amount of objectives used in the search was smaller, but

as the amount of objectives used was increased, the results became less

competitive with NSGA-III. The search technique was also compared against 2

other techniques that used a weighted sum of metrics to measure the software.

These techniques performed significantly worse than the NSGA-III approach.

They extended the study [146] by also experimenting on an industrial project

and increasing the number of many-objective techniques compared against from

2 to 4. The number of objectives was reduced to 8 and changed to represent the

quality attributes of the QMOOD suite as well as other aggregate metric

functions. They also looked at many-objective refactoring with NSGA-III for re-

modularisation [42]. They compared the technique against other approaches by

looking at up to 7 objectives, using objectives from previous work to look at the

semantic coherence of the code and the development history along with

structural objectives. Again, the approach outperformed the other techniques

and more than 92% of code smells were fixed on each of the applications.

More recently, Ouni et al. [147] adapted the chemical reaction optimization

(CRO) algorithm to the SBSM perspective and explored the benefits of this

approach. They compared this search technique against more standard

optimisation techniques used in SBSE; a GA, SA and PSO. They combined 4

different prioritisation measures to make up a fitness function that aimed to

reduce 7 different types of code smells. The approach was compared against a

previous study and a variation of the approach that didn’t use prioritisation. The

approach was superior using the relevant measures to the other 2 solutions

compared against it. It was also shown to give better solutions in larger systems

than the other optimisation algorithms tested.

2.8.7 Refactoring Tools

Fatiregun et al. [73] explored program transformations by experimenting with a

GA and HC approach and comparing the results against each other as well as a

random search as a baseline. They used the FermaT transformation tool (and 20

47

transformations from the tool) to optimise the length of a program by comparing

the number of lines of code before and after. The average fitness for the GA was

shown to be consistently better than the random search and the HC search,

while the HC technique was, for the most part, significantly better than the

random search.

Trifu et al. [148] proposed an automated design flaw correction approach that

uses correction strategies to plan for the safe removal of detected design flaws,

where a correction strategy is defined as a “structured description that maps a

given flaw to a set of possible solutions”. They aimed to bridge the gap between

design flaw detection and refactoring to remove said flaws. For each stage of the

approach, they used a tool: jGoose Echidna for problem detection; Costrat for

solution analysis; and Inject/J for refactoring. The Advanced Refactoring Wizard

served as an integration platform. The tool had complete support for Java

(support for other languages was under development). A case study was

presented with a Java program to illustrate the actions of the tool.

DiPenta [149] proposed another refactoring framework, Evolution Doctor, to

handle clones and unused objects, remove circular dependencies and reorganise

source code files. Afterwards, a hybridisation of HC and GAs is used to

reorganise libraries. The fitness function of the algorithm was created to balance

4 factors; the number of inter-library dependencies, the number of objects linked

to each application, the size of the new libraries and the feedback given by

developers. The framework was applied to 3 open source applications to

demonstrate its effectiveness in each of the areas of design flaw detection and

removal.

Tsantalis et al. [150] wrote about the ability of the JDeodorant tool to resolve the

type-checking design smells by replacing them with polymorphism. Type-

checking smells attempt to deduce the type of class that will be used at run time

and 5 different variations (using 2 approaches) of the smell were outlined in the

paper. The first approach uses conditional statements to check the attribute in a

class that represents the type. The second uses run time type identification to

identify the derived subclass that relates to an abstract superclass at run time.

The JDeodorant tool contains 2 different refactorings to replace these smells

depending on which of the approaches are used. The refactorings will replace

any conditional statements with a reference to an abstract method and will

48

make sure that each subclass has a concrete instantiation of the method, with

the specific code for that class outlined in the body of the method. This way

polymorphism can be used to decide which method to use at run time instead of

simulating the behaviour in the code using conditional statements.

The Wrangler tool was introduced by Li and Thompson [151] to improve the

modularity of programs written in Erlang by suggesting refactoring steps. The

tool looks for code smells, but instead of using search-based techniques the tool

inspects a module graph and a function call graph that it generates for the

program. There are 4 modularity smells that the tool attempts to locate. As a

case study to test the effectiveness of the tool, the authors used it on their own

source code for the tool itself. They found a number of valid modularity smells in

the code of each type and used the analysis to improve the structure of the code

for an updated version of the tool.

Moghadam and Ó Cinnéide [152] rewrote the CODe-Imp platform to support

Java 6 input and to provide a more flexible platform. It now supported 14

different design-level refactorings across 3 categories; method-level, field-level

and class-level. The number of metrics had also been expanded to 24, measuring

mainly aspects of cohesion or coupling. The platform was also given the option of

choosing between using Pareto optimality or weighted sums to combine the

metrics and derive fitness values.

Griffith et al. [153] introduced the TrueRefactor tool to find and remove a set of

code smells from a program using a GA in order to increase comprehensibility.

To detect code smells in a program, each source file is parsed and then used to

create a control flow graph to represent the structure of the software. This graph

can be used to detect the code smells present. For each code smell type, a set of

metrics are used to deduce whether a section of the code is an instance of that

code smell type. The tool contains a set of 12 refactorings (at class level, method

level or field level) that are used to remove any code smells found. A set of pre

conditions and post conditions are generated for each code smell to ensure that

they can be resolved beforehand. The paper used an example program with code

smells inserted to analyse the effectiveness of the tool. The number of code

smells of each type detected over the set of iterations was measured along with

the measure of a set of quality metrics. In both cases, the values improved

initially before staying relatively stable throughout the process. Comparison of

49

initial and final code smells showed that the tool removes a proportion of them

and also metric values show that the surrogate metrics are improved. The tool is

only able to generate improved UML representations of the code and not

refactor the source code itself, and this restriction was identified as an aim for

future work.

Morales [154] aimed to compare different metaheuristic approaches and use a

metaheuristic search to detect anti-patterns in source code. The tool, an Eclipse

plugin would then use automated refactoring to help remove the anti-patterns

and improve the design of the code. Morales et al. [155] addressed this aim with

the ReCon approach (Refactoring approach based on task Context). The

approach leverages information about a developer’s task, as well as 1 of 3

metaheuristics, to suggest a set of refactorings that affect only the entities of the

project in the developer’s context. The metaheuristics supported are SA, a GA

and variable neighborhood search (VNS). They adapted the approach to look for

refactorings that can reduce 4 types of anti-pattern. They also aimed to improve

5 of the quality attributes defined in the QMOOD model. The results showed

that ReCon can successfully correct more than 50% of the anti-patterns in a

project using fewer resources than the traditional approaches from the

literature. It can also achieve a significant quality improvement in terms of

reusability, extendibility and to some extent flexibility, while effectiveness

reports a negligible increment.

2.8.8 Testing Other Aspects of the Search Process

Van Belle and Ackley [156] introduced an experiment to test the adaptability of

a genetic program to analyse the evolution of evolvability. The experiment aims

to analyse how adaptable the program is to changes in the fitness function over

time. They compared the results of a generic monolithic genetic program against

a variant known as an automatically defined function. The automatically

defined function was found to be adaptable with change as long as the function

wasn’t too volatile.

Harman et al. [157] proposed a new representation and crossover operator for

GAs in SBSM. The representation, which is used to reduce the size of the search

space to improve results, represents the solution as a set of numbered modules

consisting of components (where the components are be assumed to be a set of

50

procedures, functions and variables). The newly defined crossover technique

worked to preserve the module retention during crossover and promote the

formation of good building blocks. An experiment was performed to compare this

crossover operator with a standard single point crossover operator. When the

appropriate target granularity (the desired number of identified modules) was

used, the novel crossover technique outperformed the standard approach, but

quickly became trapped in local optima. When the target granularity was

deliberately set to a misleading value, the novel operator performed worse. It

was suggested that the results showed the novel approach as being more

sensitive to inappropriate choices of target granularity.

White et al. [158] used a multi-objective approach with a GA to find a trade-off

between the functionality of a pseudorandom number generator and the power

consumption necessary to use it. They were able to successfully generate Pareto

fronts using the GA to show a set of nondominated solutions that balanced the

functional objective against the non-functional objective.

Qayum and Heckel [159] used graph transformation techniques to identify

dependencies between refactoring steps. They expressed the problem using

ACO, where each node in a graph represents a proposed refactoring, and the

edges represent the dependencies between them (such as precedence and

conflicts). A graph was created to specify and map the available refactorings and

their dependencies and the ACO technique was used to produce an optimal

order of proposed refactorings to produce an improved structure.

Amal et al. [160] used an artificial neural network to help their approach choose

between refactoring solutions. They applied a GA with a list of 11 possible

refactorings to generate refactoring solutions consisting of lists of suggested

refactorings to restructure the program design. They then utilised the opinion of

16 different software engineers, with programming experiences ranging from 2-

15 years, to manually evaluate the refactoring solutions generated for the first

few iterations by marking each refactoring as good or bad. The artificial neural

network used these examples as a training set in order to develop a predictive

model to evaluate the refactoring solutions for the remaining iterations. Due to

this, the artificial neural network worked to replace the definition of a fitness

function. The approach was tested on 6 open source programs and compared

against existing mono-objective and multi-objective approaches, as well as a

51

manual refactoring approach. The majority of the suggested refactorings were

considered by the users to be feasible, efficient in terms of improving quality of

the design and to make sense. In comparison with the other mono-objective and

multi-objective approaches, the refactoring suggestions gave similar scores but

required less effort and less interactions with the designer to evaluate the

solutions. The approach outperformed the manual refactoring approach.

2.9 Gap Analysis

From 1999 to 2010, the largest amount of SBSM papers published in a year was

4. There was a dip in the amount published in 2009 and 2010, but from 2011

there has been an increased amount of SBSM research. From 2011 to 2016,

there were at least 4 papers published a year. The most prolific year for SBSM

research was 2012 with 8 papers published that year. Overall, from 1999 to

2016, there has been an average of 3 papers published per year. Likewise, when

inspecting all 99 of the papers, there is an increase in the amount published

after 2009, and the most prolific year was 2012 with 13 papers. The average

number of papers published per year was 6.

The majority of the papers were published in journals (28 papers) or featured in

conferences (63 papers). Of the remaining papers, 3 were included as book

sections [117], [161], [162], 3 are technical reports [8], [64], [163] and 2 were

published in magazines [63], [69]. The majority of authors have only published 1

paper. Of the remaining authors, 18 have published 2 papers and 10 have

published 3 papers. Only 13 of the 144 authors in the literature have published

more than 3 papers. Most of the studies in the main SBSM papers were

quantitative. 4 were qualitative in comparison to the 42 quantitative studies. A

further 11 were discussion based papers with no experimental portions.

Of the quantitative papers, most of the studies tested different refactoring

approaches, but a number of papers [6], [7], [130], [156]–[158], [160] investigated

other factors. Various studies examined the setup of the search approach. A few

[157], [160] investigated the fitness function or crossover technique used in a GA

to choose solutions. Van Belle and Ackley [156] tested the applicability of ADFs

52

in handling changes in the fitness function of a genetic search. White et al. [158]

used a GA to find a trade-off between the functionality of a pseudorandom

number generator and the power consumption necessary to use it. Harman and

Tratt [6] tested the Pareto optimal approach to combine software metrics in a

search. Vivanco and Pizzi [7] used a GA to test metrics and choose the most

suitable ones to use. Bakar et al. [130] also proposed a method to do this.

A number of studies were used to detect issues in the code, but not to resolve

them [95]–[101]. In these cases, no fitness function was needed in the technique

because once the issues were detected the algorithm would be finished. In many

cases [73], [112]–[118], [120], [125]–[128], [148]–[151], [153], the studies used

tools to detect issues in the code and of these tools some [148]–[151], [153] were

used to find specific issues, like god classes or data classes in the program. One

of these studies [120] was used to resolve the issues via refactoring, but used a

different method to determine the steps needed to resolve them. Two UML

models were generated; 1 to represent the current solution and 1 to represent

the desired solution. This was created with the assistance of the programmer.

Using these 2 models the refactorings needed to improve the program were then

calculated and could be applied. In this case the technique was concerned less

with code smells detected in the software and more with the desired structure of

the solutions in the eyes of the programmers themselves.

This seems to isolate 3 main methods of automated maintenance from the

analysed literature. There is the above method of working towards a desired

structure. There is the method where problems are first detected in the code and

then either refactoring options are generated in order to be applied manually

[37], [42], [134]–[139], [141], [142], [144], [145], [147], [153], [155], or the

problems are addressed automatically [148], [149], [151]. Finally, there is the

method of using quality metrics to refactor the program stochastically and work

towards a better solution [73], [112]–[117], [125]–[128] or again, using this

approach to suggest refactorings to apply [6], [25], [121], [146].

The types of search technique used in the main SBSM papers of the literature

were HC, SA, GAs, GP, general evolutionary algorithms (GEA), PSO, ABC,

ACO, CRO and VNS. Among the algorithms, the EAs (GA, GP and GEA) were

used the most, at 30 studies (with the majority of EAs being GAs). EAs became

more prominent in the research after 2010, with 3 to 4 papers per year involving

53

them, whereas there had been 9 studies involving EAs altogether between 1999

and 2010. Of the studies containing EAs, 14 used MOEAs. This indicates a

promising evolution of SBSM to generate more sophisticated solutions to the

problem area. The next most common technique, HC, was used in 14 studies,

with SA being used in 10. There has been a fairly consistent presence of HC and

SA over the years, with the largest number of studies looking at HC or SA in a

single year being 4 in 2007. In comparison, there were 4 studies involving EAs

in 2014, 2015 and 2016. The SIAs (PSO, ABC and ACO) were used in only 5

studies [117], [144], [145], [147], [159]. SIAs have been more frequently

investigated in recent years as well, with a paper involving 1 of them in 2012,

2014, 2015 and 2016. CRO and VNS were used in 1 study each. Each of these

studies [147], [155] were recent (2015 and 2016), suggesting a possibility for

CRO and VNS to be explored more in future research. Figures A.6-A.8 in

Appendix A display the dispersion of algorithms used in the research.

Of the SBSM papers, 14 didn’t inspect or use any search techniques. Of the ones

that did, the majority were only concerned with 1, at 28 papers, although 15

other papers involved more than 1. Of these, 12 papers [73], [113]–[117], [125],

[144], [145], [147], [155], [157] directly compared the different search techniques

against each other to speculate on the most applicable, with the earliest paper to

compare search techniques [113] being published in 2006. Four of the papers

[113], [115]–[117] focused mainly on comparing search techniques. These studies

compared HC with GAs, HC with SA or all 3 with each other. One [117] also

involved ABC by comparing it with HC and SA. In the studies, HC seemed to

outperform the other techniques. Although it had the possibility of being

trapped in local optima, the technique gave consistent results and was faster

than other techniques that would take time to gain traction. SA and GAs could

give high quality results in certain cases but for both techniques, the results

depended highly upon the configuration of the search beforehand.

Most of the programs used in the studies are open source, with 41 different

programs being used across 34 studies. As the vast majority of the frameworks

used dealt with Java code, the open source programs used are in Java. The

remaining programs used consist of test programs developed for the studies [73],

[111], [112], [124], [129], [153], [159], in-house programs [7], [117], [148] and

industrial programs [42], [142], [145], [146], [151]. Five of the 6 studies to use

54

industrial programs [42], [142], [145], [146] used a program by the Ford Motor

Company referred to as JDI-Ford. The project sizes are generally adequate for

the experiments as they are large enough to justify representation of a real

project. The sizes generally tend to be tens of thousands of lines of code with

hundreds of classes.

A number of maintenance tools were proposed in the literature [73], [88], [102],

[107], [111], [117], [148]–[153]. They used various different approaches to

maintaining software and some even applied to different types of code. While

most of the 12 tools were applied to Java code, a few were used with other

programming languages. Bunch [88] is a tool used for software clustering, and

has been used with C and C++ code. The Wrangler tool [151] is used to maintain

and improve the modularity of programs written in the functional programming

language Erlang. Finally, FermaT [73] is used to provide more low-level changes

using wide-spectrum language (WSL) transformations. Also of note is the

GenProg [104] tool which looks at bug fixing. It has been applied to C code in

order to repair defects in an automated manner using GP.

A number of the proposed tools identify design defects first before attempting to

resolve them. DPT [107] was proposed to apply design patterns to the code in an

automated manner. It uses minitransformations built from refactorings to apply

the patterns. The Advanced Refactoring Wizard [148] is itself an integration

platform combining 3 other tools that, together, detect problems, analyse

solutions and refactor to remove the problems. Similarly, Evolution Doctor [149]

is used to diagnose issues with the software files first, before restructuring the

source files to ameliorate those issues. Wrangler [151] finds instances of

different issues in Erlang code and removes them via refactoring. Likewise,

TrueRefactor [153] finds instances of 5 different types of code smells before

finding refactorings to resolve them, and JDeodorant [150] identifies and

removes 4 different types of design smell. The J/Art tool [102] can detect issues

in the code but can only suggest restructuring actions for a selection of the

issues. Other tools [73], [111], [117], [152] use refactorings to improve the code

according to metric functions. Instead of analysing the code for issues

beforehand, they refactor the code up front in order to resolve issues as they go

along. Of the available tools, the CODe-Imp tool was used in a myriad of studies

55

[113]–[116], [118], [120], [124]–[128], [152]. A precursor to CODe-Imp, DPT, was

also present in 3 different papers [107], [109], [110].

Of the papers, there have been a number that have investigated [7], [113], [118],

[125]–[128], [130] or discussed [129], [132], [133] the metrics used in search-

based approaches. Many of the programs analysed in the experiments and case

studies conducted have been using Java (1 used C++ [7]) and likewise, many of

the metrics investigated have been related to object-oriented behaviours. The

most commonly used metrics were ones that measured cohesion or coupling.

Numerous different metrics are available to measure these qualities and 1 study

[126] compared different cohesion metrics to determine how similar they are,

finding conflicting behaviours. Another study [128] did a different comparison

with coupling metrics. Some studies also used metrics to represent the class

structure of the program or for inheritance based observations. A study was

conducted [7] to compare 64 different metrics in an attempt to determine the

most effective ones for search-based optimisation. The metrics included in this

study measured cohesion, coupling, size (number of methods, classes, lines of

code etc.), average size, ratios, complexity, depth of inheritance, comments, code

reuse, naming properties and more. The study found the cohesion metrics to be

relevant, along with the mean number of lines per method and method name

length metrics, suggesting that method names can affect the understanding of

the code and that the size of the methods can affect the maintenance of the code.

One study [113] used the QMOOD model to represent the properties flexibility,

reusability and understandability with various weighted combinations of

metrics to analyse which ones were most useful. Appendix A gives more detailed

information about the SBSM papers analysed with a set of tables and figures.

2.10 Conclusion

Although significant work has been done to test various aspects of search-based

maintenance, there are numerous areas in which ongoing research is important

in order to uncover further innovations in the field. The analysis of the

literature conducted in the preceding section has uncovered some of these areas.

There are a number of automated refactoring tools uncovered in the literature,

56

though they have limitations. Few of the tools apply actual refactorings to the

code itself, therefore limiting how automated they are through the need for

refactoring solutions to be applied manually. Also, although the selection of tools

as a whole contains a myriad of possible options for refactoring and numerous

refactorings, metrics and search techniques to use, the options within many of

the individual tools themselves are limited. Likewise, although more recent

research has been concerned with using MOGAs to aid in refactoring, none of

the presented tools are outfitted with the option to use a MOGA.

A major component of search-based maintenance and SBSE as a whole is the

metrics used to measure the quality of a program. Due to the highly subjective

nature of the quality of a software system, the metrics can have a huge impact

on the usefulness of the metaheuristic optimisation technique, depending on

how accurately they portray quality in the eyes of the user. Explicit metrics are

needed to guide the optimisation of a solution, but one developer’s view of

quality may be different to another’s.

Most previous research has been applied to object-oriented programs and as

such most fitness functions aim to improve object-oriented behaviours like

cohesion or flexibility. Even defining these aspects has proven to be difficult.

Experimentation has been carried out to combine different software metrics

together to create more useful measures of quality, typically using either

weighted sums or Pareto fronts. There has also been some research into the

applicability of certain metrics. There is an opportunity for research into using

different combinations to improve the software in different ways, similar to how

a human assisted tool can guide the improvement of the software design to a

suitable solution for the user.

Of the different search techniques used to address software maintenance, a

large proportion of the analysed literature used EAs. Among these studies, a lot

of recent work has looked at multi-objective approaches. This indicates a

promising evolution of SBSM to generate more sophisticated solutions to the

problem area. The methods address the issue by allowing multiple aspects to be

taken into consideration. Further inspection of these techniques is required to

discover the potential of their use and derive ways to make the approach more

practical for use in a software development environment. In the following

experimental chapters, research is conducted and detailed to address the gaps

57

uncovered from the analysis and to answer the research questions outlined in

Chapter 1. The gaps to be addressed are listed below:

1. Limited options for research and experimentation with automated

refactoring tools.

2. Insufficient investigation and experimentation with different metrics to

measure software quality.

3. Insufficient investigation and experimentation with different fitness

functions to measure certain behaviours and properties of the software.

4. Insufficient investigation and experimentation with multi-objective

search techniques.

58

Chapter 3

Approach & Tool Support

3. Refactoring Tool

3.1 Introduction

n order to answer the research questions, repeated below, controlled

experiments have been designed.

RQ1: What current refactoring and search-based software engineering tools

are available?

RQ2: Can a fully automated, practical refactoring tool be developed using

techniques from previous literature to improve the maintenance of software?

RQ3: How useful is a multi-objective search-based software maintenance

approach in comparison with a mono-objective search-based approach?

RQ4: Can individual, novel objectives be measured and refactored in a

software program to maintain the code while also improving the individual

properties inspected?

RQ5: Can numerous individual objectives be combined into a fully automated,

many-objective approach in order to improve a software program across

multiple different properties in an additive fashion, without losing the

improvement effect of any individual property?

A controlled experiment is defined as “an investigation of a testable hypothesis

where 1 or more independent variables are manipulated to measure their effect

on 1 or more dependent variables” [164]. Controlled experiments are helpful as

they can outline and isolate properties to measure and compare, a task that is

I

59

essential to answer RQs 3-5. Although RQs 1 and 2 investigate the availability

of automated refactoring tools for SBSM research and whether a fully

automated refactoring tool can be developed, RQs 3-5 require experimentation.

To address RQ3, an experiment is set up comparing 2 variations of a GA using

mono-objective and multi-objective techniques to execute. Comparing the multi-

objective approach with the mono-objective approach gives us a measure of

success for the multi-objective approach. RQ4 can be addressed with the 3

different objectives being created, corresponding to new ways to measure the

software. In order to examine their effectiveness, experiments are constructed

using an automated refactoring approach. They are each paired with an

objective that provides a measure of software quality and compared against a

mono-objective approach that only measures the quality.

To test RQ5, a many-objective setup is created using the 3 novel objectives along

with the quality objective. Like before, they are compared with alternate setups

that use a smaller selection of the objectives together. The different

permutations are compared using the objective scores and the success of the

many-objective approach is considered using the measurements and

comparisons. In controlling the construction of the approaches being compared

they are similarly set up with respect to variables and environmental factors

that aren’t being measured.

In order to experiment with different techniques using SBSE a tool is needed

that can run mono-objective, multi-objective and many-objective refactoring

tasks and make different sets of measurements that can be used to compare the

approaches. To this end, a refactoring tool was constructed (named

MultiRefactor) that combines the approaches of other known automated

refactoring tools in order to overcome their individual weaknesses. The tool has

similarities to the CODe-Imp tool in terms of the underlying framework used

and the refactoring approach adopted, but MultiRefactor also contains a MOGA

with which to apply multiple different metric configurations for accumulated

fitness calculations. This tool is also open source and can be run as an

executable in order for there to be minimal confusion for users. The approach of

Ouni et al. uses multi-objective algorithms to refactor Java programs, but their

approach isn’t fully automated. They only produce a list of possible refactorings

to apply to the programs, which then need to be applied manually. Furthermore,

60

those refactorings aren’t checked for semantic conformity, resulting in analysis

being necessary to measure the number of refactorings that can actually be

applied. Not only is MultiRefactor fully automated, with the GAs giving a

population of output solutions with fully compilable code, but the refactorings

applied will preserve the semantics of the program.

In contrast to Ouni et al. as well as some other tools, MultiRefactor doesn’t use

its metric configurations to isolate and remove design flaws. It uses the

alternative approach of applying the changes and analysing the effect they will

have on the program, allowing for more novel solutions. The tool contains a wide

selection of metrics, searches and refactorings making it useful for research

purposes on top of its suitability for practical use. Although the tool doesn’t

contain all of the refactorings used across the various other tools, it does contain

more refactorings in a single tool than any of the known alternatives. Also,

MultiRefactor gives usable source code as an output of the process along with

information on the refactoring process, whereas various other tools produce less

useful artefacts. One of the more promising tools proposed in the literature, A-

CMA [117], was experimented with to decide whether it could be used for the

research. Unfortunately, the tool only uses bytecode as an input, and doesn’t

produce any program output. It also doesn’t contain any multi-objective or

many-objective capabilities. Nonetheless, as a prelude to this thesis

experimentation was conducted using A-CMA [165], producing useful results

and providing a learning aid for the work ahead.

This chapter is structured as follows. Section 3.2 details the preliminary

experimentation conducted using the A-CMA tool to construct a measure for

technical debt in the tool. Section 3.3 discusses the construction and capabilities

of the MultiRefactor tool. Section 3.4 details and discusses the relevant search

techniques available in the tool. It defines the implementation choices made as

well as configuration settings implemented when incorporating the searches into

the tool. Section 3.5 provides an overview and description of the refactorings

available in the tool as well as the choices made when implementing the more

ambiguous refactorings. Section 3.6 also provides an overview and description of

the metrics available, and outlines the metric suites used to adapt a number of

the metrics.

61

3.2 Preliminary Work

As preliminary work for this thesis technical debt was chosen as an interesting

way to combine metrics into an objective function and use this as a means to

investigate automated refactoring with the aim of increasing quality. Technical

debt as described earlier, is “a situation in which long-term code quality is

traded for short-term gain” [68]. It accumulates interest and becomes more

expensive to repay with time. Over time it becomes harder to add functionality

due to structural issues becoming more critical and the occurrence of defects

becomes more likely. To improve the long term efficiency of a project and to

lower its operational risk, the technical debt can be kept to a minimum by

making regular repayments, i.e. refactorings. The negative side of this is that

time spent on refactoring will in turn decrease the amount of time used to add

functionality to software. Therefore, any approach that makes this easier or that

can automate it is likely to be financially beneficial.

There has been little research done to investigate technical debt specifically. A

review of the impact of technical debt on software systems as well as methods to

handle it and the cost from different perspectives is given in an article by

Allman [69]. The properties of technical debt have also been discussed elsewhere

[68], where a particular connection has been noted between technical debt and

maintenance activities. Developers at Google have given their experience of

attempts to pay off technical debt in the form of build debt [71]. They use

various attempts to uncover and remove the debt in Google code, which consists

of millions of lines of code, much of which is monolithic. No previous work is

known to attempt to create a metric function to tackle technical debt. As

preparation for the main work in this thesis, an experiment to investigate the

effectiveness of using technical debt to direct automatic refactoring was

designed. The aim is to know whether technical debt can be used effectively as a

fitness function for search-based automatic refactoring.

To consider this, a technical debt measure is established and compared against

measures based on levels of abstraction, coupling and inheritance, all of which

are well established as design quality factors [5]. These properties have been

chosen to represent individual quality indicators as they can represent a range

62

of different aspects of software measurement. Inheritance will be a good

indication of whether the design is badly organised or whether the classes are

related and extended properly. Inheritance is concerned with measuring how the

objects in a project are organised hierarchically, so class level metrics are used

as a measure. The metrics used incorporate interface implementation and use of

abstract classes, and hence a high measure is considered desirable. Coupling can

be used to derive the extent of which the objects in a software system depend on

each other, generally preferred to be as low as possible. Abstraction will indicate

the number of changes needed between specific objects in order to implement

new additions to the system. Again, a high value here is considered better. As

previous work in the area has investigated abstraction [89], [111] coupling [128],

[166] and inheritance [115], there is support for the position that these are

useful properties to use for a comparative study against an approach for tackling

technical debt.

An experiment has been conducted using the refactoring tool A-CMA [117] to

assess the effectiveness of 3 sets of metrics that measure these object-oriented

properties and compare them against a proposed set of metrics to measure

technical debt. A weighted sum is used to combine the metrics into an overall

score to improve. A further question investigated is whether a SA search can

perform well compared to HC and a random search in a search-based automated

refactoring approach to address technical debt. The same measures can be used

i.e. technical debt reduction, abstraction gain, coupling reduction, inheritance

gain but also execution time.

3.2.1 A-CMA Tool

A-CMA is an automated refactoring tool developed by Koc et al. [117] that

refactors Java programs using Java bytecode as input. An advantage of this tool

over many others is that it has many options for refactoring as well as metrics

available. Additionally, A-CMA is highly configurable. The tool allows the user

to construct different metric combinations that can be used on a task. An overall

metric score is derived using a weighted sum of each enabled metric. A weighted

sum allows some metrics to be given more influence than others. The metrics

can be specified as maximised or minimised. Maximised metrics are metrics

where an increase in value causes an improvement and minimised metrics are

metrics where a decrease in value causes an improvement. The overall quality

63

gain of a task in A-CMA can be derived by finding out how much the overall

score has reduced. Before the experiment was conducted, some changes were

made to the existing tool for the purposes of the study4.

The tool has the ability to run 5 different searches with 10 different variations,

but for the purposes of the study only 3 are used. Initially a random search is

run to provide a benchmark against which the other searches can be compared.

The 2 heuristic searches, HC and SA, were chosen as they are used commonly in

the research and therefore can be compared against other work in the area (e.g.

O’Keeffe and M. Ó Cinnéide [114]), and because they are relatively easy to

implement and modify for the purposes of the experiment. The A-CMA tool

contains 20 available refactoring options to apply on the field, method and class

level of a Java program. The available refactorings are listed and described in

Table 3.1. Many of these refactorings implement refactoring options proposed by

Fowler in his book [167] and on his website [168]. There are 24 metrics available

in the A-CMA tool but in the experiment only 17 are used. The metrics used

along with descriptions for each one are given in Table 3.2.

Table 3.1 - Refactorings Available in the A-CMA Tool

Field Level Method Level Class Level

Increase Field Security Increase Method Security Introduce Factory

Decrease Field Security Decrease Method Security Make Class Abstract

Move Down Field Move Down Method Make Class Final

Move Up Field Move Up Method Make Class Non-Final

Remove Field Move Method Remove Class

 Instantiate Method Remove Interface

 Freeze Method

 Remove Method

 Inline Method

4 The original tool can be found at https://github.com/eknkc/a-cma and the updated

version at https://github.com/mmohan01/a-cma

64

Table 3.2 – Software Metrics Used in Experiment

Metric

Identifier

Description

numField Number of fields per class

numOps Number of methods per class

numCls Number of classes in a package

numInterf Number of interfaces in a package

iFImpl Number of interfaces implemented by a class

abstractness Ratio of abstract class to classes in a package

avrgField

Visibility

Average amount of field visibility per class (where field visibility is

represented by Private:0, Package:1, Protected:2, Public:3)

nesting Nesting level per class

NOC Number of children per class

numDesc Number of descendants per class

numAnc Number of ancestors per class

iC_Attr Number of attributes in a class using another class or interface as type

eC_Attr Number of external uses of a class as attribute type

iC_Par Number of parameters in class methods using another class or

interface as type

eC_Par Number of external uses of class as parameter type in method

Dep_In Number of elements that depend on a class

Dep_Out Number of elements depended on by a class

3.2.2 Experimental Design

The experiment aims to compare 4 different fitness functions that each uses a

combination of available metrics to represent some measurable property of

software design. In order to compare these fitness functions, each function is

given weights for each metric that must add to 1. This way the functions will be

normalised for comparison against each other. The direction of improvement of

each software metric must be taken into consideration (whether a metric is

maximised or minimised). Of the 17 metrics used, 10 have been determined to

be minimised metrics and the other 7 have been determined to be maximised

metrics. The positive/negative aspect of the metrics did not need to be taken into

consideration when aggregating the weights to 1. Using the A-CMA tool, the

goal is to minimise the value of the metric function being inspected in order to

improve the property being represented.

Three fitness functions are created from the metrics to represent important

quality properties of object-oriented programs (abstraction, coupling and

inheritance), and a fourth is created to represent technical debt in the system.

The technical debt score is based on the SOLID principles of object-oriented

design [3], as well as the QMOOD metrics suite [5]. All available refactoring

65

actions are enabled for the 4 fitness functions to give the maximum potential for

change. Table 3.3 gives details about each fitness function compared along with

weights used and whether the metrics are maximised or minimised (denoted by

‘+’ and ‘-’ respectively).

Table 3.3 – Metric Details for Each Fitness Function

Software

Property

Metric Components And Weights

Technical

Debt

-0.1*numFields - 0.1*avrgFieldVisibility - 0.1*numOps - 0.06*nesting +

0.1*abstractness + 0.1*numCls + 0.1*numInterf + 0.1*iFImpl +

0.06*NOC + 0.06*numDesc - 0.06*Dep_In - 0.06*Dep_Out

Coupling -0.125*iC_Attr - 0.125*eC_Attr - 0.125*iC_Par - 0.125*eC_Par -

0.25*Dep_In - 0.25*Dep_Out

Inheritance 0.25*iFImpl + 0.25*NOC + 0.25*numDesc + 0.25*numAnc

Abstraction 0.33*abstractness + 0.33*numInterf + 0.33*iFImpl

Of the available software metrics, the most applicable are chosen to represent

components of the 3 software properties. Metrics were already grouped together

as coupling and inheritance metrics in the A-CMA tool, so these are the metrics

used to represent the coupling and inheritance properties. The abstraction

property is made up of the 3 metrics determined to be related to abstraction due

to them measuring properties of the interfaces present in the software. In most

cases, the weights are kept level between the metrics used in each fitness

function. For the coupling function, the Dep_In and Dep_Out metrics are given

priority over the others as they contain aspects of the other coupling metrics

used as part of their calculations.

For the technical debt function, the 12 metrics intuitively considered to be most

relevant are chosen. Initially the metrics are prioritised into 4 different groups.

In order to normalise the weights and allow the metrics to accumulate to 1,

these are reduced to 2 different weights; 0.06 to represent the bottom 2

categories and 0.1 to represent the top 2. The nesting, NOC and numDesc

metrics are given less priority due to their more descriptive nature compared to

the other metrics. In a software system, more nesting, more descendants and

less classes in a package may not particularly be a bad thing, whereas less

classes overall may result in classes with too many responsibilities. The

Dep_In/Dep_Out metrics are deemed less important as, while dependencies

66

should be minimised between classes, they may be required in certain cases. In

all cases metrics and weights chosen are speculative and based on intuition. In

some cases directions of improvement also had to be chosen.

Each fitness function is compared using 3 different searches. The random search

is used as a benchmark with 5,000 iterations. Steepest-ascent HC is chosen for

the experiment with 30 restarts at a depth of 5 neighbours (chosen based on

published comparisons between different HC parameters [117]). The third

search used is low temperature SA (as low temperatures have been found to be

more effective by O’Keeffe and Ó Cinnéide [114]) with 5,000 iterations and with

the starting temperature set to 1.5. Each search is conducted 10 times using the

4 fitness functions with average values calculated. The input programs for the

experiment consist of 6 open source Java projects. These programs were chosen

as they have all been used in previous SBSM studies and so there is an

increased ability to compare the results and also because they promote different

software structures. Details about the programs are given in Table 3.4. The total

number of runs of the experiment comes to 10*3(searches)*4(functions)*

6(benchmarks), giving an overall amount of 720 runs.

Table 3.4 – Java Programs Used in Experiment

Name LOC Classes Initial Refactorings

Available

JSON 1.1 2,196 12 167

Mango 3,470 78 598

Apache XML-RPC 3.1.1 6,532 100 712

Beaver 0.9.8 7,851 81 801

JFlex 1.4.1 15,094 56 1,094

JHotDraw 5.3 27,824 241 3,297

3.2.3 Results

The time taken to complete the tasks for each program is given in Table 3.5.

Clearly here the JHotDraw program caused a bottleneck in execution time and

this is most likely due to its size compared to the other projects (containing more

than double the number of classes than the other projects). For instance,

JHotDraw contains 27,824 lines of code compared against 15,094 for JFlex, the

program with the next longest execution time. It is reasonable to assume that as

67

the project size increases, the search space for the refactoring process will

increase also giving a large upswing in time taken even with the metaheuristic

searches used. This can lead to an increase in time of order n2. These large

execution times for certain tasks suggest that a more efficient method is needed

to refactor larger programs.

Table 3.5 – Java Program Execution Times

Name Time Taken

JSON 0h 3m 13s

JFlex 2h 6m 38s

Apache XML-RPC 1h 23m 43s

Mango 1h 1m 29s

Beaver 1h 25m 4s

JHotDraw 49h 28m 4s

Figure 3.1 shows the average quality gain across the 6 programs for each fitness

function using each of the 3 searches. For the abstraction and inheritance

functions where the scores are more difficult to see, data labels have also been

given to display the scores (unless they are 0). For all of the following figures in

the chapter, data labels are also given where the scores are not 0 but are

difficult to see. The results show that SA gives the highest relative quality

improvement, but they also show that the random search outperforms HC. The

technical debt quality gain values for each pair of searches were compared using

a two-tailed Wilcoxon rank-sum test (for unpaired data sets) with a 95%

confidence level (α = 5%). The SA results were analysed to be statistically

different when compared against the random search and the HC search across

every technical debt result. The random search results were also found to be

significantly different to the HC search. The random search understandably has

a larger range of values but the better outcome it gives implies that the HC

search was inefficient for the set of tasks. Perhaps the input parameters were

not optimal for that search. The SA and HC searches failed to create any quality

gain using the inheritance function whereas the random search yielded a small

increase in quality. It is assumed this is due to the freedom and volatility of the

random search to find different solutions, but not necessarily to find optimal

solutions.

68

Figure 3.1 – Overall Mean Quality Gain for Each Fitness Function per Search Type

Figure 3.2 inspects the SA results, showing the average quality gain for each of

the fitness functions across each of the 6 benchmark programs (this is the initial

overall metric score minus the final score, averaged over the 10 runs). Of the 3

individual property fitness functions, coupling seems to be the only one that had

shown any significant improvement. The abstraction tasks show minimal

improvement and the inheritance tasks had no change at all. In fact, the only

case where the inheritance function had any change was in the random search

as shown in Figure 3.1. The technical debt function was more effective in

showing an improvement. The initial and final metric scores for the technical

debt function were assessed using a two-tailed Wilcoxon signed-rank test (for

paired data sets) with a 95% confidence level (α = 5%). The obtained results

were statistically significant when comparing every run of the technical debt

function, meaning that the quality gains for the technical debt function were

significant. The lack of improvement in the abstraction and inheritance

functions implies that there is a lack of volatility in the metrics used to compose

these functions.

0
.0

0
2

0
2

4

0
.0

0
3

0
1

9
8

3
3

0
.0

0
3

0
1

9
8

3
3

0
.0

0
6

1
1

2
3

3
3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Random Search Hill Climbing Simulated Annealing

Fi
tn

e
ss

 F
u

n
ct

io
n

 Im
p

ro
ve

m
e

n
t

Abstraction Coupling Inheritance Technical Debt

69

Figure 3.2 – Mean Quality Gain of Each Fitness Function Using Simulated Annealing

Figure 3.3 shows the average number of applied actions for each of the SA tasks.

These results show a similar trend to the quality gain results and the

abstraction and inheritance tasks are similarly devoid of applied refactoring

actions. This implies that the reason for the poor quality gain results for those

functions stems from the lack of available actions whereas the other metrics are

more volatile and have more refactoring actions available to improve them.

Figure 3.4 gives the overall average applied actions for each fitness function.

This continues to show a relationship between the number of actions available

for each fitness function and the quality gain values for the functions shown in

Figure 3.2. It seems that the volatility of the metrics that make up each function

is important to allowing the program to be refactored in any way. The harder

the metrics are to improve, the less chance the program will be refactored.

0
.0

0
1

9
6

4

0
.0

0
8

6
3

6

0
.0

0
9

1
6

6

0
.0

0
6

9
8

9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Abstraction Coupling Inheritance Technical Debt

Fi
tn

e
ss

 F
u

n
ct

io
n

 Im
p

ro
ve

m
e

n
t

JSON JFlex XML-RPC Mango Beaver JHotDraw

70

Figure 3.3 – Mean Number of Actions Applied to Each Fitness Function Using Simulated Annealing

Figure 3.4 – Overall Mean Applied Actions Using Simulated Annealing

Figure 3.5 gives another view of the quality gain results, this time highlighting

the results for each individual program and allowing a better comparison of the

coupling and technical debt values. Most of the results favour the technical debt

function over the others, but in 2 cases, Mango and Beaver, the coupling

function shows higher quality gains than the technical debt function by a

notable amount. This could suggest that for these 2 programs coupling was high

2
2

.5

2
 9
2

.8

6
5

.3

6

5

0

500

1000

1500

2000

2500

3000

3500

4000

Abstraction Coupling Inheritance Technical Debt

A
m

o
u

n
t

O
f

R
e

fa
ct

o
ri

n
g

A
ct

io
n

s

JSON JFlex XML-RPC Mango Beaver JHotDraw

2.166666667
0

500

1000

1500

2000

2500

Abstraction Coupling Inheritance Technical Debt

A
m

o
u

n
t

O
f

R
e

fa
ct

o
ri

n
g

A
ct

io
n

s

71

and so amenable to improvement therefore contributing less to the technical

debt calculation. The 2 programs that show the most noteworthy improvement

of the technical debt function over the coupling function are JSON and Apache

XML-RPC. JSON is the smallest program used so perhaps the minimal amount

of classes makes it harder to reduce the coupling between them as there is

minimal coupling in the first place. Likewise, Apache XML-RPC contains almost

no improvement in coupling implying it too contains little coupling between the

classes. The largest quality gain among all the programs was in Mango. Figure

3.6 gives the overall average quality gain for each fitness function. It confirms

that the technical debt function had a more significant improvement among the

programs than the other 3 fitness functions that represented specific properties.

Figure 3.3 also shows that the technical debt function involved more

refactorings than the other 3 functions.

Figure 3.5 – Mean Quality Gain of Each Program Using Simulated Annealing

0
.0

0
1

9
6

4

0
.0

0
9

1
6

6

0
.0

0
6

9
8

9

0
.0

0
8

6
3

6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

JSON JFlex XML-RPC Mango Beaver JHotDraw

Fi
tn

e
ss

 F
u

n
ct

io
n

 Im
p

ro
ve

m
e

n
t

Abstraction Coupling Inheritance Technical Debt

72

Figure 3.6 – Overall Mean Quality Gain for Each Fitness Function Using Simulated Annealing

Figures 3.7 and 3.8 show the average quality gain values for each individual

metric in the technical debt and coupling fitness functions (across all 6

benchmarks), giving an idea of the volatility of each metric and their influence

on the overall metric scores. In the technical debt function, only 5 of the 12

metrics show notable quality gain values with the most influential being the

numOps metric. The numInterf, NOC and numDesc metrics had no quality gain,

and the numCls metric decreased in quality. Amongst the other metrics in the

technical debt function, Dep_In gave a decrease in quality for the JFlex program

and avrgFieldVisibility gave a decrease for the Mango program. The quality

gain values for the coupling functions were smaller in comparison to the

technical debt function, although they were more consistent across the metrics.

While this function contained only 6 metrics, 4 out of the 6 contained notable

improvements (a larger proportion compared to the technical debt fitness

function).

0.003019833
0.0

0.1

0.2

0.3

0.4

0.5

Abstraction Coupling Inheritance Technical Debt

Fi
tn

e
ss

 F
u

n
ct

io
n

 Im
p

ro
ve

m
e

n
t

73

Figure 3.7 – Mean Quality Gain for Each Metric of the Technical Debt Function Using Simulated

Annealing

Figure 3.8 – Mean Quality Gain for Each Metric of the Coupling Function Using Simulated

Annealing

The Dep_In and Dep_Out metrics were amongst the most improved (which was

to be expected due to them containing aspects of the other coupling metrics

used), although the parameter metrics (iC_Par and eC_Par) were also

influential. The eC_Par metric showed the largest overall quality gain of the

0
.2

6
9

7
8

3
3

3
3

0
.1

1
1

5
6

6
6

6
7

0
.0

0
0

1
1

6
6

6
7

0
.0

1
2

6
6

6
6

6
7

-0
.0

0
6

2
5

0
.0

0
0

0
5

0.0

0.5

1.0

1.5

2.0

2.5

n
u

m
Fi

el
d

s

av
rg

Fi
el

d
V

is
ib

ili
ty

n
u

m
O

p
s

n
es

ti
n

g

ab
st

ra
ct

n
es

s

n
u

m
C

ls

n
u

m
In

te
rf

iF
Im

p
l

N
O

C

n
u

m
D

es
c

D
ep

_I
n

D
ep

_O
u

t

M
e

tr
ic

 Im
p

ro
ve

m
e

n
t

0.07085 0.021883333
0.0

0.5

1.0

1.5

2.0

2.5

iC_Attr eC_Attr iC_Par eC_Par Dep_In Dep_Out

M
e

tr
ic

 Im
p

ro
ve

m
e

n
t

74

coupling metrics, improving more than even the Dep_In and Dep_Out metrics.

Of the 6 metrics, the attribute metrics (iC_Attr and eC_Attr) were affected the

least, although none of the metrics showed an average decrease in quality

(where the average represents the mean across 10 runs of each task) across any

of the benchmarks as some technical debt metrics did. The inheritance function

showed no improvement with any of the metrics used across any of the

benchmark programs. The abstraction function, while only using 3 metrics,

showed quality improvements with just 1 of those metrics. The abstractness

metric showed a small increase in quality whereas the iFImpl and numInterf

metrics showed no change across any of the programs tested. The iFImpl metric

similarly showed no change when used in the inheritance function and was the

smallest of the improved metrics in the technical debt function. The numIterf

metric showed no change in the technical debt function either. The changes

shown by the individual metrics may provide a good basis to influence how the

weights should be distributed among the fitness functions. The values shown in

Figures 3.7 and 3.8 are not affected by metric weights (this is only applied when

the metrics are combined to derive the overall metric score). The results from

the experiment [165] can be found on GitHub along with the updated version of

the A-CMA tool used in the experiment.

3.3 The MultiRefactor Tool

The MultiRefactor5 tool has been developed in support of the thesis, in Java.

MultiRefactor integrates 25 different refactorings, 23 metrics and 6 different

search techniques and is a fully automated framework for improving the quality

of Java programs. The design of the tool, in common with the approaches of

Moghadam and Ó Cinnéide [152] and Trifu et al. [148] uses the RECODER

framework6 to modify source code in Java programs. RECODER was detailed in

a paper by Dirk Heuzeroth and Uwe Aßmann [169] in 2005, and has been

supported up until 2014, with the last release (version 0.86) being in June 2008.

5 https://github.com/mmohan01/MultiRefactor
6 http://sourceforge.net/projects/recoder

75

RECODER extracts a model of the code by creating an abstract syntax tree to

represent it. This model can then be used to analyse and modify the code before

the changes are applied and printed out to an output folder. Each of the search

techniques use these models to modify and update the code, and use the

available refactorings and metrics to assist with their execution. The searches

include metaheuristic searches as well as a genetic search. The tool also

contains a multi-objective genetic search adapted from NSGA-II [30], and a

many-objective genetic search adapted from NSGA-III [49]. The algorithm

applies the approach of Ouni et al. [138] in using MOGAs for automated

software maintenance, but instead of using the search to minimise design flaws,

it applies Moghadam and Ó Cinnéide’s approach to improve the code quality.

The tool has been uploaded to GitHub including any code bases used and results

generated. It can be used either as an executable Java program or from the

command line with the .bat file included in its repository. The tool can run with

numerous different configurations and search settings and they are currently

specified using the Tasks file and subsequent inheriting classes in the program.

If desired, multiple searches can be applied consecutively with this file. The tool

uses Java source code as an input and the code needs to be fully compilable. The

RECODER framework used to read the java code has not been outfitted to parse

the features introduced with Java 8 (such as Lambda expressions and default

methods), so Java 8 code is unsupported. If a new project is to be specified for

automated refactoring, the source code needs to be supplied along with any

necessary library files (as .jar files). As long as the directory of the folder

containing these files is supplied in the Tasks file, the program will be able to

read the files and generate a model of the input for modification. The refactored

program will then be output to the specified output folder and can then be run

as source code. Text files will also be output containing details of the search and

specifying the refactorings that have been applied to the program along with the

final metric values associated with that search. The input folder of the project to

be refactored can either be specified directly in the Tasks file, passed into the

command line or be included in a file that can then be read from the command

line. Figure 3.9 gives a brief overview of the process used by MultiRefactor to

generate refactored Java code.

76

Figure 3.9 – Overview of the MultiRefactor Process

Configurations can be set up with the tool. As the tool is built to be extendable,

different configurations can be created and specified for different searches, and

in the case of the MOGA, 1 or more configurations can be passed into the search.

A configuration is made of the refactorings and metrics chosen from the

available sets, as well as extra information for the metrics to specify the

weighting of a metric and whether the metric makes a negative or positive

change to the program. There are numerous different ways to create a

configuration in order to allow for various different methods of reading in the

metric details. The information can be passed in directly in the program as the

list of available refactorings is, but it can also be read in from a file. Both .txt

files and .xml files are readable. The online repository contains examples of both

with the desired formatting. The files contain a list of the desired metrics and

values to represent the desired weighting of the metrics (with 1 equating to no

weighting) and with true or false values to represent the direction of

improvement of the metric (where true equates to a metric that improves with

an increase of value and false equates to a metrics that improves with a

decrease in value). With the tools capability of setting up different

configurations, different fitness functions can be used in the tool to create

different results in the program, allowing for experimentation with different

objectives. The program also has the ability to compare different program states

using a Pareto approach [6] instead of by combining the individual metric

measurements into an overall value (with the Pareto approach the metric

weights become irrelevant), although this functionality hasn’t been used for any

of the currently implemented search techniques.

77

A third possible method available for combining metrics uses a normalisation

function to minimise any greater influence any individual metric may have. The

function finds the amount that a particular metric has changed in relation to its

initial value at the beginning of the task. These values can then be accumulated

depending on the direction of improvement of the metric and the weights given

to provide an overall value for the metric function or objective. A negative

change in the metric will be reflected by a decrease in the overall

function/objective value. In the case that an increase in the metric denotes a

negative change, the overall value will still decrease, ensuring that a larger

value represents a better metric value regardless of the direction of

improvement. In the case that the initial value of a metric is 0, the initial value

used is changed to 0.01 in order to avoid issues with dividing by 0. Equation 3.1

defines the normalisation function, where represents the selected metric, is

the current metric value and is the initial metric value. is the applied

weighting for the metric (where 1 represents no weighting) and is a binary

constant (-1 or 1) that represents the direction of improvement of the metric.

represents the number of metrics used in the function.

 (3.1)

The results output the program produces for each search contains information

about the search type and its settings, initial and final metric values for the

configuration(s) used and the list of refactorings applied in order of application

for that program. The command line on the program will also output when it is

run including the overall improvement in the metrics and the time taken to run

the search (if multiple searches are run, it will also give the overall time taken).

The metric output gives the individual values for each metric in the

configuration (without weights being applied) as well as the overall score (if the

multi/many-objective GA is begin used, it will give the value for each objective).

The refactoring outputs give the refactoring name, the name of the relevant

element(s) the refactoring is applied to as well as any relevant classes in the

program and, if applicable, the change made to the element as a result of the

refactoring. For the GAs, an output file is created for each solution in the final

population.

78

3.4 Available Search Techniques

Table 3.6 gives the search techniques available in MultiRefactor for assistance

in choosing the right refactorings to apply to improve a program. For each

search type there are a selection of configurable properties to signify how the

search will run (and in some cases, other properties that also effect the

execution of the program but are not included as configurable parameters). The

searches that have been adapted and implemented in the tool have been chosen

because of familiarity through previous related research as well as previous

experimentation and validation of the searches by other researchers in the area

of SBSM. Furthermore, the HC and SA searches have been tested and compared

in the preceding experimentation and the GA is tested against the MOGA in

Chapter 4, to further influence the searches chosen in the subsequent

experimentation. Below there is a description of how each of the GAs are

implemented in the MultiRefactor tool, focusing on the specific choices made

with these search adaptations and the influences they may have on the

behaviour of the search.

Table 3.6 – Available Searches in the MultiRefactor Tool

Search Configurable Properties

Random 2

Hill Climbing 4

Simulated Annealing 4

Genetic Algorithm 5

Multi-Objective Genetic Algorithm 5

Many-Objective Genetic Algorithm 5

3.4.1 Genetic Algorithm

In this tool, the GA is designed to be similar to the implementation used by

O’Keeffe and Ó Cinnéide [115] (which itself was adapted from the adaptation

used be Seng et al. [121]) so that it can be applied to the problem of automated

software refactoring for program maintenance. The algorithm mimics the

natural process of genetic replication by merging solutions in a population to

79

create new offspring. The adaptation considers a model representing a set of

refactorings applied to a code base to represent an individual genome in a

population. The GA contains a number of stages, with numerous decisions being

made as to how to represent and execute these stages.

First, an initial population of solutions will be created from the input by

applying numerous refactorings at random to create divergent models. In order

to avoid issues with memory storage, multiple different copies of the model are

not stored in this process. Instead, a RefactoringSequence object will store all the

information necessary to reconstruct a model from scratch with the initial

program input being used as a starting point. This way, a single model can be

used in the program, sacrificing some measure of speed (through the necessary

reconstruction of solutions in the mutation and printing stages of the search),

but saving memory. The refactoring sequence for a solution will store the

necessary information for each applied refactoring in the solution. As long as

they are reapplied successively from the same starting point, the solution can be

reconstructed at a later point in the search. In order to accommodate this, the

resetModel method will revert the model back to the initial state read in from

the input program by repeating the process (and resetting the refactoring objects

so that they don’t save a copy of the previous model instance). The fitness value

of each genome in the population will be calculated before the model is reset, to

eliminate the need to reconstruct the models during the crossover process.

Once refactoring sequences have been constructed for the initial population of

genomes in the search, the crossover and mutation processes can be applied to

create different offspring solutions and the search can begin. Crossover is

represented in the search by combining genomes in the population to create new

offspring with different sequences of applied refactorings. Each time the

crossover process is run, 2 parent genomes are passed in and 2 children are

produced from their refactoring sequences. In order to choose the parent

genomes from the population, a selection operator is necessary, and the method

used is rank-based selection. Rank-based selection gives the genomes with

better fitness a larger chance of being chosen, resulting in offspring that are

more likely to have better fitness values. As the method only uses the ranks to

select the genomes, it only needs to know the population size. However, in order

to pick the relevant solutions, the population will need to be ordered by fitness

80

with the better solutions at the beginning of the list in order for the chosen

genomes to be relevant to the rank proportions. A balanced set of proportions

are produced for the different ranks, meaning that the increase in likeliness

with selecting a rank is linearly calculated in proportion to the number of ranks.

Equation 3.2 details the calculation [170] used with rank-based selection to

generate the proportion for each rank, with a higher proportion representing a

higher likelihood of being chosen (lR is the last rank, cR is the rank being

calculated and sp is a selective pressure constant that can be in the range 1 < sp

≤ 2, with 2 being used as a default. In the search the ranks range from 0 to the

population size minus 1). Once the rank proportions are calculated for each

genome a random value is chosen within the range of the rank proportions and

the respective rank is chosen. This will be repeated to find the second parent,

making sure to choose a different rank.

 (3.2)

Once the selection operator is executed and the parent genomes are chosen for

crossover, the offspring can be generated. Like before, the process used to

generate child solutions is based off O’Keeffe and Ó Cinnéide’s approach. A cut

and splice method is used to combine the parents to generate different solutions.

A single, separate point is chosen for each parent in order to facilitate the

technique. The point is chosen at random along the refactoring sequence in each

of the parent solutions, with at least 1 refactoring present on each side. For each

child, the 2 sets of refactorings are then mixed together. The first set of

refactorings in 1 parent will be applied first and then the second set of

refactorings from the other parent will be applied. For the second set, each

refactoring needs to be checked to ensure that it is applicable in the child

sequence, due to the differing model states. If a refactoring is not applicable, it

will simply be left out of the sequence and the next refactoring will be checked.

When the refactoring sequences of the offspring are generated, they may contain

differing numbers of refactorings depending on where the cut points were chosen

and if any of the refactorings were found to be inapplicable. The fitness’s for

each child sequence will be calculated immediately after they are constructed, in

order to rank the population at the end of that generation of the search. For

each generation of the search, the crossover operator will be applied once and

81

then applied again a random number of times depending on the crossover

probability input to create a set of newly generated solutions.

Once crossover is complete, the mutation operator can be applied. It will be

applied a random number of times similarly to the crossover operator (also

depending on a probability input), except this time it isn’t guaranteed to happen

at least once. The operator will be applied to one of the newly generated

solutions, chosen at random. A solution can be chosen more than once. The

mutation process will first consist of reconstructing the model for the chosen

genome. Then, a single random refactoring is applied at the end of the

refactoring sequence for that genome, and the fitness level is measured in order

to rank the new genomes in the population at the end of the generation. This is

the same approach O’Keeffe/Ó Cinnéide and Seng et al. use. This mutated

solution will replace the pre mutated version in the set of new solutions from

that generation. If a random refactoring cannot be found for the solution, the

original solution will be returned. Ouni [171] also developed a GA adaptation in

order to implement a multi-objective refactoring approach [141]. The selection

and crossover operators used for the original GA are similar to the operators

used in MultiRefactor, although the mutation operator is different. This

approach chooses 1 or more of the refactorings at random points in a refactoring

sequence and replaces them with different refactorings. The MOGA adapted in

MultiRefactor will employ a separate selection operator, but the crossover and

mutation operators will stay the same.

Once the mutation process is complete for a generation, the new offspring is

added to the current population and the solutions are ordered according to

fitness. As the fitness values of each solution is calculated when it is

constructed/mutated, the genomes do not need to be reconstructed and

measured at this point. The list of solutions will be sorted with the fittest

solutions at the beginning of the list. During the sorting process, only the

desired number of solutions will be added to the list truncating it to the desired

population size and eliminating the weakest solutions. The updated, sorted

population will then be passed on to the next generation and the GA will

continue until the desired number of generations is executed. When the search

is complete, the final population of solutions will be generated and stored in the

output folder. When the printing process is performed to apply the model

82

refactorings to the code, the model will have to be reconstructed to represent

each genome in the population before it is printed, using the information in the

stored refactoring sequences.

The numerous available configuration parameters will determine the behaviour

of the search. The print all parameter will determine whether the program

should store the whole population of solutions resulting from the process, or only

the most fit solution. If only the top solution is desired, then the model will only

need to be constructed for this genome and printed. Also, the data output

associated with the fittest solution will be the only one needed. The number of

generations for the search to run for as well as the desired size of the population

will be specified as search parameters. The population size parameter will

determine how many solutions are generated during the initialisation process

and also how many of the genomes will survive to the next generation after

combining the population with the new offspring.

The crossover probability and mutation probability parameters determine the

likeliness of these processes being executed during the search. Each generation,

the crossover process will be executed once. After this, a random value between

0 and 1 will be generated. If this is less than the crossover probability, the

process will execute again. This will continue until the value generated is

greater. This allows the probability value to determine whether the process will

be executed more times or less in the search. The mutation method uses the

same decision, except it is not guaranteed to execute at all. These parameters

must be between 0 and 1 and the higher they are, the more likely the process

will be run. Another important value that is not included as an input parameter

is the initial refactoring range. This value will determine the initial number of

refactorings applied to the solutions during the initialisation process. For each

solution, a random number of refactorings between 1 and the preset refactoring

range will be chosen to apply. If the solution runs out of available refactorings

before the desired number, the initialisation for that solution will finish at that

point. The initial refactoring range determines the size of the genomes in the

initial population and will also influence the sizes of the offspring generated.

83

3.4.2 Multi-Objective Algorithm

The multi-objective algorithm is built using the GA and mainly differs in how

the fitness of the solutions is processed. As with the multi-objective adaptation

setup by Ouni et al. [141], the algorithm is an adaptation of the multi-objective

NSGA-II [30]. Due to the minimal number of modifications needed on the GA, it

is possible to upgrade the adaptation to represent a different multi-objective

genetic implementation at a future point. In contrast to the initial GA, the

multi-objective algorithm can use 1 or more different fitness objectives as inputs

to measure the solutions of a population. The configuration parameters used

with the multi-objective algorithm are identical to those used with the original

GA (as well as the initial refactoring number).

The fitness process uses the nondominated sorting algorithm to sort the

population into different ranks. Within the ranks, the genomes are given

crowding distance values to help the selection operator choose between possible

parent solutions and to further sort when choosing the solutions of a rank to

leave out of the population. When the fitness method is run and the population

is sorted there may only be a selection of genomes from a rank needed in the

population before the population size is reached. In this case the crowding

distance values are used to decide which solutions to keep and which to cull

from the population in that rank. The population is sorted after initialisation

and then after the crossover and mutation operators are applied each generation

and the new offspring is added, the population is sorted again. During the fast

nondominated sort, the efficiency upgrade suggested by Liu and Zeng [172] is

implemented to improve performance. The improved algorithm is able to avoid

generating unnecessary nondominated fronts, reducing the run time complexity

of the algorithm from O(N2) to O(kN + NlogN) (with k representing the number of

nondominated fronts) in bi-objective optimisation problems.

To reflect the difference in fitness calculation, a different selection operator is

used to the rank-based selection method used in the GA. Binary tournament

selection allows the better of 2 solutions to be picked based on their rank and

crowding distance values. The solution with the better rank is returned. If the

ranks are equal, the crowding distance values of the solutions will be compared

instead. If these values are equal as well, one will be selected at random. Each

time crossover is executed, 2 separate solutions are chosen from the population

84

at random and the tournament selection method is used to select the best one.

This is done twice to find the 2 parent solutions for the crossover operation.

In order to choose a solution to use from the final population, certain decisions

are made in the algorithm. First, the solutions are limited to the ones that are in

the top rank. Of these, a process is performed that is partially inspired by the

NSGA-III paper by Deb and Jain [49]. In it, an ideal solution is composed,

containing the best values across all objectives for the solutions in a population.

In order to make a choice between the top ranked solutions in the final

population, a similar technique is used. Like in the paper, the ideal point of the

set of solutions is composed, that contains the best objective values, and the

translation vector between the solutions and the ideal point is found (by finding

the distance of each solution vector from the ideal point). Then, for each

solution, the worst of the objective distances is used to represent that solution in

order to indicate the maximum distance from the ideal point. Using these

values, a solution can be chosen by selecting the one with the minimum worst

objective distance. The refactoring tool stores the top ranked solutions in a

separate sub folder and indicates the ideal solution from that rank that has been

determined using the above method. The results file for the applicable solution

will also add a note that says “This solution has the closest maximum distance

from the ideal point in the top rank of solutions”.

3.4.3 Many-Objective Algorithm

The many-objective algorithm adapts the NSGA-III upgrade of NSGA-II. As

with the multi-objective NSGA-II adaptation, the many-objective algorithm is

built off the GA and differs mainly in the fitness process. The NSGA-III

adaptation uses the same configuration parameters as the multi-objective

algorithm and the original GA, along with the initial refactoring number. The

fitness process replaces the crowding distance computations with an approach

that uses reference points to choose between solutions in the same rank and

maintain diversity in a population. Therefore, the crowding distance of each

solution in a population no longer needs to be calculated, but the reference

points on a normalised hyperplane need to be computed and the solutions

themselves need to be normalised each generation in relation to the current

population. All solutions already added to the population as well as the final

rank of solutions in which to select the remaining set is used in the

85

normalisation of the solutions (by finding the ideal point and the extreme

points).

The number of reference points used depends on the specified population size.

As shown by Deb and Jain [49], in lieu of reference points being supplied

preferentially by the user, the adaptation applied the systematic approach used

by Das and Dennis [56]. The number of reference points is decided by finding the

closest number greater than or equal to the specified population size with the

relevant number of objectives. This allows the number to be roughly equal to the

number of solutions observed each generation (where the slight remainder will

represent the other solutions from the remaining rank, making the overall

number greater than the specified population size). Once the number of axis

divisions is found, the reference points can be predefined initially and used

throughout the search.

As mentioned by Deb and Jain, the NSGA-III process performs a careful elitist

selection of solutions in an attempt to maintain diversity. For this reason, and

also because the number of reference points is almost equal to the number of

solutions, each population member is given equal importance, therefore no

selection operator is used in order to perform crossover. The parent solutions are

chosen at random and the only check is to ensure that they are distinct from one

another. Also mentioned by Deb and Jain is how, in a many-objective approach,

genetic offspring that are closer to their parent solutions are more desirable. In

order to address this Mkaouer et al. [25], in their approach, restricted the

cutting point of the crossover process to belong to either the first tier or the last

tier of the refactoring sequence. Similarly, this adaptation restricts the cutting

point of the crossover process to either be at the first refactoring or the last

refactoring of the sequence. Likewise, the cutting point for both solutions is kept

the same (both at the first refactoring or both at the last refactoring), in order to

preserve the sequence size of the parent solutions in their offspring. The many-

objective adaptation does not include functionality to generate multiple layers of

reference points [49] or to add and delete reference points to provide better niche

values [57].

86

3.5 Available Refactorings

The refactorings used in the tool are generally based on the list by Fowler [167],

and consist of field-level, method-level and class-level refactorings. Table 3.7

lists these refactorings. In the tool, each refactoring has a similar structure.

Each will relate to a specific program element type (e.g. most field level

refactorings will be concerned with global field declarations in a class). A

method is used to find the number of elements in a source code file that are

applicable for that type of refactoring. This will use another method,

mayRefactor, to deduce whether a program element can be refactored. It will

make all the relevant semantic checks and return true or false to reflect whether

the element is applicable. The checks applied in this method will depend on the

refactoring, and are important in order to exclude elements that are not

applicable for that refactoring. The search algorithm will use the method to find

the number of applicable elements in the file and will choose a number within

that size to pick the refactoring element. The semantic checks that have been

incorporated into the mayRefactor method for each refactoring are numerous.

They have been tested with the inputs used in the experimentation over the

course of the research, to ensure that the refactorings that are applied are valid

and to bypass any potential issues reading the abstract syntax trees of the

modified code with the underlying RECODER framework. Any subsequent

testing beyond this has been deemed out of scope in relation to the research

project.

Table 3.7 – Available Refactorings in the MultiRefactor Tool

Field Level Method Level Class Level

Increase Field Visibility Increase Method Visibility Make Class Final

Decrease Field Visibility Decrease Method Visibility Make Class Non Final

Make Field Final Make Method Final Make Class Abstract

Make Field Non Final Make Method Non Final Make Class Concrete

Make Field Static Make Method Static Collapse Hierarchy

Make Field Non Static Make Method Non Static Remove Class

Move Field Down Move Method Down Remove Interface

Move Field Up Move Method Up

Remove Field Remove Method

87

The analyze method is used to apply the refactoring itself. It takes as an input

an integer to represent the file being inspected and another to represent which

element among the applicable ones will be used. The program will iterate

through the elements of the applicable type in the file, using the mayRefactor

method to exclude inapplicable elements from the selection, until it finds the

relevant element. The RECODER framework allows the tool to apply the

changes to the element in the model. This may consist of a single change or, as

in the case of the more complex refactorings, may include a number of individual

changes to the model. Specific changes applied with the RECODER framework

consist of either adding an element to a parent element, removing an element

from a parent element, or replacing one element with another in the model. The

refactoring itself is constructed using these specific model changes. In some

cases new elements will be created for use in the refactoring (for instance, new

imports may need to be created when moving an element to a new class), and

where possible, these will be constructed from existing elements to minimise the

potential for issues. There is also an analyzeReverse method for each refactoring.

This allows the program to undo the changes made in the last instance of that

refactoring. This method is used with the HC and SA searches to check

neighbouring refactorings from the current state and measure their impact on

the program.

For some refactorings, choices have to be made in relation to how specifically the

refactoring is applied. The Move Field Down and Move Method Down

refactorings involve moving program elements down to a subclass. Here, the

subclass to be used needs to be chosen before the refactoring is applied. In these

refactorings, the choices are made during the mayRefactor checks. This allows

the program to find a permutation of the refactoring that is applicable if, for

instance, only 1 subclass from a set will allow the refactoring to be applied. The

alternative is to choose one permutation and only check for it, meaning

applicable refactorings may be returned as inapplicable depending on which

settings are chosen whenever it is checked. With this approach, if there are no

permutations of the refactoring with which it will be applicable, false will be

returned, but if there is, one of those permutations will be used. As the specific

choice needs to be known in order to check whether it is applicable, this will be

handled in the mayRefactor method for these refactorings and the choice will be

saved in that class for the analyze method to use later. This will require more

88

processing in the mayRefactor method for these refactorings, although it will

save processing in the analyze method when the refactoring itself is applied.

This will also allow for more available refactorings to be found during the

search. Descriptions of the available refactorings are given below.

The Increase/Decrease Visibility refactorings are used to change a global field

declaration or method declaration to public, protected, package or private

visibility. Increase Visibility moves the visibility from public down towards

private and Decrease Visibility moves the visibility from private towards public.

Each application of the refactoring will move the visibility of the element up or

down by 1 level. The Make Final/Non Final refactorings will either apply or

remove the final keyword from a local/global field declaration, method

declaration or class declaration. For each of the elements the keyword has a

different meaning. For a field it means that the field can’t be given a different

value after it has been instantiated. For a method it means the method can’t be

redefined elsewhere, which therefore forbids a final method from also being

abstract. For a class, it means the class can’t have any subclasses. Likewise, the

Make Static/Non Static refactorings are concerned with added or removing the

static keyword from a global field declaration or method declaration. In both

cases a static element will be an element that can be called outside of a class

without an instance of that class needing to be created. Also, Make Class

Abstract/Concrete will add or remove the abstract keyword from a class

declaration, allowing or forbidding it from containing abstract methods and

forbidding or allowing it to be instantiated as its own class (instead of a subclass

needing to be instantiated in its stead). The Move Down/Up refactorings are

applied to global field declarations or method declarations and will either move

the element to its superclass or to one of its available subclasses. They are based

off the Fowler refactorings. Collapse Hierarchy is applied by taking all the

elements of a class (except any existing constructors for that class) and moving

them up into the superclass. It will then remove the class from the hierarchy. It

is based off the Fowler refactoring. The Remove refactorings will remove the

element related to that type of refactoring.

89

3.6 Available Metrics

The metrics in the tool measure the current state of a program and are used to

assess whether an applied refactoring has had a positive or negative impact.

Due to the multi-objective capabilities of MultiRefactor, the metrics can be

measured as separate objectives to be more precise in measuring their effect on

a program. A number of the metrics available in the tool are adapted from the

list of metrics in the QMOOD [5] and CK/MOOSE [4] metrics suites. Table 3.8

lists the available metrics in the tool, and descriptions are given below.

Table 3.8 – Available Metrics in the MultiRefactor Tool

QMOOD Based Metrics CK Based Metrics Others

Class Design Size Weighted Methods

Per Class

Abstractness

Number Of Hierarchies Number Of Children Abstract Ratio

Average Number Of Ancestors Static Ratio

Data Access Metric Final Ratio

Direct Class Coupling Constant Ratio

Cohesion Among Methods Inner Class Ratio

Aggregation Referenced Methods

Ratio

Functional Abstraction Visibility Ratio

Number Of Polymorphic Methods Lines Of Code

Class Interface Size Number Of Files

Number Of Methods

Class Design Size counts the number of classes in a project (ordinary classes and

interfaces). Number Of Hierarchies counts the number of distinct class

hierarchies in a project (excluding interfaces and also excluding hierarchies

made up of single classes). Average Number Of Ancestors measures the average

count of each class declaration (not including interfaces) away from its root class

(where the root class is restricted to the class at the highest level within the

project). Data Access Metric measures the average ratio of non public fields to

public fields per class (only including global fields in a class). If a class has no

fields, the value isn’t calculated for that class (as it would be 0) but the class is

still included in the average calculation. Direct Class Coupling finds the distinct

number of other classes that each class depends on then calculates the average

90

number per class. The classes counted are ones used in field declarations and

included as method parameters. Of these, primitive types are not included.

Cohesion Among Methods finds the average cohesion among methods per class.

The metric is calculated for each relevant type (ordinary classes and interfaces)

by getting the accumulation of the number of distinct parameter types for each

method over the maximum possible number of distinct parameter types across

all the methods. The maximum number of distinct parameters across all the

methods of a class is calculated by multiplying the number of methods by the

number of distinct parameter types in all of the methods of the class. The

average is then found by calculating the accumulative cohesion among methods

for all the classes over the class number. If there are no methods or dependant

classes being counted in a class, the value is not calculated for that class but the

class is still included in the average calculation. A value closer to 1 relates to

better cohesion. Aggregation finds the average number of user defined attributes

(global fields) per class, where a user defined attribute is of a type defined

within the project.

Functional Abstraction finds the average functional abstraction per class. In

each class (ordinary classes and interfaces), the metric measures the number of

methods in that class and the number of methods that can be inherited in the

class from its superclasses. Functional abstraction is the number of inherited

methods over the number of methods in the class. If a class has no methods, the

value isn’t calculated for that class but the class is still included in the average

calculation. Number Of Polymorphic Methods finds the average number of

methods per class that are redefined elsewhere in the project (i.e. have inherited

methods). Class Interface Size finds the average number of public methods per

class. Number Of Methods counts the average number of methods per class.

Weighted Methods Per Class measures the average method complexity per class.

To do this, it counts the number of lines of code each method in a class contains

and accumulates them to get the value for each class. Number Of Children

measures the average number of immediate subclasses per class (excluding

interfaces). Abstractness measures the ratio of interfaces in a project over the

overall number of class declarations. Abstract Ratio gives the average ratio of

abstract methods (as well as the class itself if it is abstract) per class. If there

are no abstract elements in a class, the value isn’t calculated for that class but

91

the class is still included in the average calculation. Static Ratio and Final Ratio

give the average ratios of static and final elements per class (Static Ratio looks

at classes and methods, whereas Final Ratio looks at classes, methods and local

or global field declarations), and Constant Ratio calculates the average ratio of

elements (classes, methods and global fields) that are both static and final per

class. Inner Class Ratio calculates the ratio of the number of inner classes

(ordinary classes or interfaces) over the number of classes in a project.

Referenced Methods Ratio finds the average ratio of inherited methods

referenced per class. In each class (ordinary classes and interfaces), the metric

measures the number of distinct external methods (methods defined outside the

current class) referenced among the methods of the class. For each class, the

ratio of the number of these methods that are inherited by the class over the

number referenced is calculated. Visibility Ratio measures how secure all the

elements of a project are by calculating an average visibility ratio per class. In a

class, each method and global field declaration (as well as the class itself) is

given a visibility value, where a private member has a value of 0 and a public

member has a value of 1 (and other visibilities have values in between). The

visibility ratio for that class will calculate the accumulated visibility values over

the number of elements. The smaller this ratio, the more secure the elements of

the project are. Finally, Lines Of Code calculates the overall number of lines of

code in a project and Number Of Files counts the number of Java files in a

project.

92

Chapter 4

Quality Objective

4. Quality Objective

4.1 Introduction

n order to assess the capabilities of the MultiRefactor approach, a set of

experiments have been set up to compare different procedures available

within the tool. Experiments by others have been conducted comparing the other

metaheuristic searches [113], [115], [117], so the experimentation focuses on the

use of the GAs in the tool and aims to find out 4 things:

1. The first 2 aims of the experimentation focus on the configuration settings

for the GAs available. The first part of the experimentation tests

numerous different permutations of the crossover and mutation

probabilities in a mono-objective GA.

2. Using these results to derive desirable values for the probabilities, the

second part of the experimentation looks at the other GA settings

available. Different generation numbers are used along with different

population sizes and refactoring ranges to analyse how successful the

different permutations of these settings can be with a baseline setup.

3. Once the preferred GA configuration settings are established, the third

aim is to test the available software metrics within the tool and discover

which are more successful. Some metrics may be more useful than others

in measuring the changes made by the available refactorings. These will

be more helpful when trying to analyse the changes made to a solution

I

93

and as such, a metric function made from these metrics may assist in

creating a more prosperous solution.

4. The final aim is to compare the mono-objective approach with the multi-

objective search available and see whether using a multi-objective

algorithm to automate maintenance of a software solution is as practical

as using a mono-objective algorithm. A multi-objective algorithm involves

more processing and as such may take more time to complete. On the

other hand, a multi-objective algorithm can be used to improve multiple

objectives concurrently, and within the same solution.

The experimentation in this chapter aims to test whether, in a fully automated

solution, a multi-objective algorithm using similar settings can yield comparable

results across all the objectives used, and whether it is worth the time taken to

do so. The following research questions have been formed:

RQ4.1: Which set of software metrics are most volatile when used with a mono-

objective genetic algorithm to refactor software?

RQ4.2: Does a multi-objective refactoring approach give comparable results on

all objectives to corresponding mono-objective refactoring runs?

To answer RQ4.1, each available metric is used individually as the objective

within a mono-objective GA. Once the ideal settings for the GA are decided, each

metric is run separately with a number of open source Java programs. Then an

average improvement value is formed for each metric.

For RQ4.2, 2 factors are investigated. The first factor compared is the set of

objective improvement values yielded by the 2 approaches. Three separate

objectives are constructed, influenced by the results of the previous experiment

in the chapter. For each, a mono-objective approach is used with the same

parameters as before, and the top objective improvement values are acquired.

Then, using the same setup parameters, a multi-objective approach is run using

all 3 objectives. Hence, the top objective improvement value is derived among the

solutions for each objective, and these are compared against the mono-objective

approaches. The second factor compared is the time taken to run the different

approaches. The overall times taken to run the 3 mono-objective solutions are

compared against the overall time taken to run the multi-objective solution in

which all 3 objectives can be taken into account and solutions can be used for

94

each one. A separate set of hypotheses and alternative hypotheses have been

derived for each factor of this experiment:

H4.1: The overall objective improvements in the multi-objective search are not

significantly worse than the overall objective improvements in the mono-

objective search.

H4.1A: The overall objective improvements in the multi-objective search are

significantly worse than the overall objective improvements in the mono-

objective search.

H4.2: The overall time taken to run the multi-objective search is not

significantly higher than the time taken to run any of the 3 mono-objective

searches.

H4.2A: The overall time taken to run the multi-objective search is significantly

higher than time taken to run any of the 3 mono-objective searches.

The remainder of this chapter is organised as follows. Section 4.2 explains the

details of the experiments conducted. Section 4.3 discusses the results of the

experiments, by looking at the metric improvement values and the times taken

to run the tasks. Section 4.4 inspects the threats to validity of the experiments

and Section 4.5 discusses the outcome of the experiments and addresses the

research questions.

4.2 Experimental Design

Five open source programs are used in the experimentation. The programs range

in size from relatively small to medium sized, as shown in Table 4.1. These

programs were chosen as they have all been used in previous SBSM studies and

so comparison of results is possible (and also because they promote different

software structures and sizes). JSON (JavaScript Object Notation) is a

lightweight data interchange format. Mango is a Java library, loosely inspired by

the C++ standard template library. Beaver is a parser generator. Apache XML-

RPC is a Java implementation of XML-RPC that uses XML to implement remote

95

procedure calls. Finally, JHotDraw is a 2-dimensional graphics framework for

structured drawing editors. The source code and necessary libraries for all of the

programs are available to download in the GitHub repository for the

MultiRefactor tool.

Table 4.1 – Java Programs Used in Experimentation

Name LOC Classes

JSON 1.1 2,196 12

Mango 3,470 78

Beaver 0.9.11 6,493 70

Apache XML-RPC 2.0 11,616 79

JHotDraw 5.3 27,824 241

The experimentation is split into 4 parts. In order to choose configuration

parameters for the searches used, trial and error is used to derive the most

effective settings. The first experiment compares different combinations of

crossover probabilities and mutation probabilities to test their effect on the

search algorithm. The probability values are compared using a baseline metric

and input. The largest input, JHotDraw, is used with the Visibility Ratio metric.

This metric is assumed to be volatile since it is directly related to the

increase/decrease visibility refactorings. Nine different tasks are used to compare

crossover and mutation probabilities of 0.3, 0.5 and 0.8. Each task is run 5 times

to get an average value.

The second experiment compares the other configuration parameters available in

the GA to find the best trade-off between software improvement and time taken.

The same setup is used for the GA with the JHotDraw input and the Visibility

Ratio metric, and the ideal crossover and mutation values are used. There are 27

different tasks set up to compare different combinations of generation numbers,

refactoring ranges and population sizes. The generation numbers tested are 50,

100 and 200. The refactoring ranges used are also 50, 100 and 200 and the

population sizes used are 10, 50 and 100. For the first experiment used to

compare crossover and mutation values, these configurations are set to their

lowest value i.e. 50 generations, refactoring range of 50 and population size of 10.

96

In the third experiment, each metric is run as an individual fitness function with

the GA using the configuration parameters derived from the previous 2

experiments. The metrics are run with each of the input programs 5 times.

Average values are calculated for each metric with each input program, and then

the average value is found across the 5 inputs programs, giving an overall

average improvement value for each metric. The average values for each of the

metric are then compared to find the most volatile (i.e. the most sensitive)

metrics with the available refactorings in the tool. The final experiment

compares the more effective metrics in a mono-objective setup against a multi-

objective approach. A set of metric functions are constructed using the results

from the previous experiment by excluding the metrics that have the least effect.

The relevant metrics are split into 3 functions in order to be used as separate

objectives in a MOGA. To compare the multi-objective approach with a mono-

objective analogue, the 3 objectives are used as separate metric functions in

different runs of the mono-objective algorithm. Each objective with the mono-

objective search is run 6 times for each of the 5 inputs, giving 30 runs of the

search. Likewise, the MOGA with the 3 objectives is run 6 times for each input.

Therefore, across all 4 different search approaches, there are 120 tasks run. The

results with the mono-objective metric function are compared with the multi-

objective approach to derive insight into the practicality of a multi-objective

setup.

For each objective, the GA algorithm is run using the configuration parameters

chosen from experiments 1 and 2 for each input, and the average metric

improvement is calculated for the top solution across the different inputs. The

MOGA uses the 3 metric functions as separate objectives in a single approach.

The study aims to find out whether each separate objective is comparable.

Therefore, the top solutions for each individual objective are found and the

average improvements are calculated across the different inputs. In order to aid

in finding the top scores for each objective in the final population of the multi-

objective tasks, the multi-objective search has been modified in this experiment

to update the relevant results files to state that they contain the highest score for

the corresponding objective. This tweak circumvents the need to manually check

the scores in each solution to find the largest score for each objective.

97

The metric changes are calculated using the normalisation function described in

Chapter 3, as defined in Equation 3.1. For the experiments used in this chapter,

no weighting is applied to any of the metrics. The directions of improvement

used for each metric is defined in Table 4.4, where a plus indicates a metric that

will improve quality on increasing and a minus indicates a metric that will

improve quality on decreasing. The hardware used for the experimentation is

detailed in Table 4.2.

Table 4.2 – Hardware Details for Experimentation

Operating System Microsoft Windows 7 Enterprise Service Pack 1

System Type 64-bit

RAM 8.00GB

Processor Intel Core i7-3770 CPU @ 3.40GHz

4.3 Results

Figure 4.1 gives the metric improvement values for the Visibility Ratio metric in

a GA using different variations of the crossover probability and mutation

probability settings. In the figure, “MP” represents the mutation probability

value used. For each parameter, 3 variations were tested along the range from 0

to 1, resulting in 9 different permutations of the search altogether. It seems from

the results that lower crossover values result in greater improvements, although

there was a greater range of results apparent in most of the other permutations

of the search. The most improved configuration tested has a crossover value of

0.2 and a mutation value of 0.8. Conversely, the least improved configuration was

with a crossover value of 0.5 and a mutation value of 0.2. The results seem to

imply that the crossover setting has a larger effect on the quality of the solutions

derived from the search.

98

Figure 4.1 – Mean Metric Improvement Values with Different Crossover and Mutation

Probabilities.

Figure 4.2 displays the different times taken to run each permutation of the GA,

in minutes. As with Figure 4.1, “MP” represents the mutation probability value

used. The times ranged from 2 minutes and 22 seconds for crossover and

mutation values of 0.2, to 9 minutes and 32 seconds for a crossover value of 0.8

and a mutation value of 0.8. Larger crossover probabilities seem to affect the

execution time of the search in a negative way, an expected result given that

extra crossovers in the search means extra necessary processing. Although this

is also true for the mutation process, it is not as intensive as crossover as it only

relates the application of a single refactoring, whereas crossover demands

inspection of numerous refactorings in a solution. Alas, while the larger

mutation values do result in increased execution times for 2 of the crossover

settings, for the crossover value of 0.8, the time actually decreases between the

mutation values of 0.2 and 0.5. For the ideal settings of 0.2 for crossover and 0.8

for mutation, the execution time is relatively small at 4 minutes and 23 seconds.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.2 0.5 0.8

M
e

an
 M

e
tr

ic
 Im

p
ro

ve
m

e
n

t

Crossover Probability

MP 0.2 MP 0.5 MP 0.8

99

Figure 4.2 – Mean Execution Times for Different Crossover and Mutation Probabilities.

Figure 4.3 shows the metric improvement values for each permutation of the

generation, refactoring range and population size GA settings and Figure 4.4

compares them against the time taken to run them. Each setting was tested with

3 different values leading to 27 different permutations overall. As shown in the

scatter plot, 1 configuration stands out as having a larger increase in quality

without having a similar increase in necessary time. This configuration (using

100 generations, refactoring range of 50 and population size of 50) has an

execution time of 12 minutes and 29 seconds in comparison to the 1 other

configuration with a better improvement value (200 generations, refactoring

range of 200 and population size of 200) that took 43 minutes and 59 seconds.

0

2

4

6

8

10

12

14

0.2 0.5 0.8

Mean
Time
(m)

Crossover Probability

MP 0.2 MP 0.5 MP 0.8

100

Figure 4.3 – Metric Improvements for Different Configuration Parameters.

Figure 4.4 – Metric Improvements Mapped Against Time Taken for Different Configuration

Parameters.

The configuration settings used in experiments 3 and 4 are derived from the ones

determined to be more ideal and are listed in Table 4.3. Figure 4.5 gives the

average quality gains conceived by each individual metric across all of the inputs.

For many of the metric, where the quality gains are difficult to see, data labels

have been given. In Table 4.4, they are grouped into the metrics that have

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

50 100
RR 50

200 50 100
RR 100

200 50 100
RR 200

200

M
e

tr
ic

 Im
p

ro
ve

m
e

n
t

Generations (And Refactoring Range)

PS 10 PS 50 PS 100

0

5

10

15

20

25

30

35

40

45

50

0 0.005 0.01 0.015

Time
(m)

Metric Improvement

101

similar levels of volatility. Table 4.4 also gives abbreviations for each metric

which is used in Figure 4.5. Three of the metrics, Class Design Size, Number Of

Hierarchies and Number Of Files, showed no improvement at all. These metrics

are more abstract, relating to the project design and class measurements as

opposed to other metrics measuring more low-level attributes like methods and

fields. Although class level refactorings do exist in the MultiRefactor tool, they

will be less likely to be applied due to the conditions necessary to apply them

without modifying the program functionality. Likewise, the most volatile metrics

captured in the bottom group all relate to more low-level aspects of the code. It

seems that these types of software metric may be more useful for driving change

in an automated refactoring system due to the increased likelihood that the

structural refactorings will be able to affect them.

Table 4.3 – Genetic Algorithm Configuration Settings

Configuration Parameter Value

Crossover Probability 0.2

Mutation Probability 0.8

Generations 100

Refactoring Range 50

Population Size 50

Figure 4.5 – Mean Metrics Gains

0
.0

0
0

9
6

6
2

0
.0

7
2

6
7

7
0

8

0
.0

1
1

2
5

3

0
.0

3
3

5
9

8
2

0
.0

0
2

8
8

4
6

0
.0

0
8

7
8

7
8

8

0
.0

0
6

4
0

5
6

4

0
.0

4
7

2
2

4
8

2
4

0
.0

7
5

5
1

0
.0

0
0

9
6

6
2

0
.0

0
3

4
1

7
6

0
.0

6
0

0
6

7
4

8

0
.0

0
2

8
8

4
6

0
.0

2
4

8
7

4
4

4

0
.0

2
9

8
4

2
5

2

0
.0

0
3

4
3

8
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
D

S

N
O

H

A
N

A

D
A

M

D
C

C

C
A

M

A
gg

FA

N
P

M

C
IS

N
O

M

W
M

C

N
O

C

A
b

s

A
R

SR

FR

C
R

IC
R

R
M

R

V
R

LO
C

N
O

F

M
e

an
 Q

u
al

it
y

G
ai

n

Metric (Abbreviated)

102

Table 4.4 – Mean Metric Gains with Abbreviations and Directions of Improvement

Metric Abbreviation Direction Mean

Metric Gain

Class Design Size CDS + 0

Number Of Hierarchies NOH + 0

Number Of Files NOF + 0

Average Number Of Ancestors ANA + 0.0009662

Number Of Children NOC + 0.0009662

Aggregation Agg + 0.0028846

Functional Abstraction FA + 0.00878788

Number Of Polymorphic Methods NPM + 0.00640564

Abstractness Abs + 0.0034176

Inner Class Ratio ICR + 0.0028846

Lines Of Code LOC - 0.0034388

Data Access Metric DAM + 0.07267708

Direct Class Coupling DCC - 0.011253

Cohesion Among Methods CAM + 0.0335982

Number Of Methods NOM - 0.047224824

Weighted Methods Per Class WMC - 0.07551

Abstract Ratio AR + 0.06006748

Referenced Methods Ratio RMR + 0.02487444

Visibility Ratio VR = 0.02984252

Class Interface Size CIS + 0.10246376

Static Ratio SR - 0.17167356

Final Ratio FR + 0.60217196

Constant Ratio CR + 0.24485396

The metric functions used in experiment 4 were taken from the metric groups

derived in Table 4.4. The least volatile metrics that were from the top 2 groups

were left out and the remaining metrics were split into 3 individual objectives to

be used in a multi-objective setup by using the 3 remaining groupings of metrics

to each represent an objective. These particular groupings are informed by the

average quality gains, with similarly volatile metrics being grouped together,

although these groupings are used more as example objectives for the current

experiment. The 3 groups of metrics can (and will) be combined to represent an

overall improvement function for a generalised measure of software quality, with

the average quality gain values across numerous different input programs

informing its composition. Table 4.5 gives the list of metrics associated with each

objective.

103

Table 4.5 – Individual Objectives Derived from Metric Experimentation

Objective 1 Objective 2 Objective 3

Class Interface Size Data Access Metric Aggregation

Static Ratio Direct Class Coupling Functional Abstraction

Final Ratio Cohesion Among Methods Number Of

Polymorphic Methods

Constant Ratio Number Of Methods Abstractness

 Weighted Methods Per Class Inner Class Ratio

 Abstract Ratio Lines Of Code

 Referenced Methods Ratio

 Visibility Ratio

Figure 4.6 and Table 4.6 compare the average objective values with the separate

mono-objective runs against the values generated with the multi-objective

approach. The values for objective 1 had the largest ranges of results. The mono-

objective approach for objectives 1 and 2 yielded improvements 1.2 and 1.3 times

greater than the multi-objective approach, respectively. The other objective was

slightly better with the multi-objective approach, though both improvement

values where relatively small. The objective values for the 2 search approaches

with the first and second objective were compared using a two-tailed Wilcoxon

rank-sum test (for unpaired data sets) with a 95% confidence level. The multi-

objective values were found not to be significantly lower than the mono-objective

values in either case.

Figure 4.6 – Mean Metric Gains for Each Objective in a Mono-Objective and Multi-Objective Setup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Objective 1 Objective 2 Objective 3

Mean
Quality

Gain

Mono-Objective Multi-Objective

104

Table 4.6 – Individual Objective Mean Metric Gains for Mono-Objective and Multi-Objective

Optimisation

 Objective 1 Objective 2 Objective 3

Mono-Objective 0.8335831 0.2732774 0.028064733

Multi-Objective 0.672707033 0.210753367 0.028501433

The execution times for the 2 approaches were also compared to analyse how

much more time is needed in the multi-objective approach to handle the 3

objectives simultaneously. Figure 4.7 compares the average times taken to run

each approach, by finding the average values taken to run each input and then

averaging them together for each objective to give an overall mean time. The

multi-objective time is shorter than the mono-objective times for all 3 of the

objectives. The range of times for each approach is quite large due to the

disparate average times for each input, from 33 seconds for the JSON input to 28

minutes and 40 seconds for JHotDraw.

Figure 4.7 – Mean Time Taken to Run Each Objective of the Mono-Objective Approach and the

Multi-Objective Approach

0

5

10

15

20

25

30

Mono-Objective 1 Mono-Objective 2 Mono-Objective 3 Multi-Objective

Mean
Time
(m)

105

Figures 4.8 and 4.9 compare the overall times taken for the mono-objective and

multi-objective approaches. In Figure 4.8, the overall times taken for each

individual objective of the mono-objective search are compared with the overall

time taken to run the 3 objectives in the multi-objective approach. Figure 4.9

compares the overall time taken to run all 3 objectives in the mono-objective

approach against the multi-objective counterpart. It stacks the times for each

separate objective in the mono-objective search to show the influence of each one

on the time. In an unexpected result, the multi-objective approach took less time

than each of the mono-objective approaches, despite using the search technique

with more complex fitness calculations. The average time taken for the mono-

objective algorithm to run for each objective was 3 hours, 46 minutes and 17

seconds. For the multi-objective approach to run for all the inputs it took 3 hours,

14 minutes and 49 seconds, a reduction against the mono-objective average of 31

minutes and 28 seconds. Also, as shown in Figure 4.9, for the mono-objective

approach to run the inputs for all 3 objectives would take over 11 hours, meaning

71.3% of time is saved running 1 multi-objective search against running 3

separate mono-objective searches.

Figure 4.8 – Overall Time Taken to Run Each Objective of the Mono-Objective Approach and to Run

the Multi-Objective Approach

0

50

100

150

200

250

Mono-Objective 1 Mono-Objective 2 Mono-Objective 3 Multi-Objective

Overall
Time
(m)

106

Figure 4.9 – Overall Time Taken for Each Approach, with Each Objective of the Mono-Objective

Approach Stacked on Top of Each Other

4.4 Threats to Validity

4.4.1 Internal Validity

Internal validity focuses on the causal effect of the independent variables on the

dependent variables. The stochastic nature of the search techniques means that

each run will provide different results. This threat to validity has been

addressed by running the tasks across 5 different open source programs and for

experiment 3 each metric is run against each program 5 times. Average values

are then used to compare against each other. Likewise, for experiment 4, each

approach is run 6 times for each input and average values are used. The choice

of parameter settings used by the search techniques can also provide a threat to

validity due to the option of using poor input settings. This has been addressed

by using input parameters deemed to be most effective through trial and error in

experiments 1 and 2.

4.4.2 External Validity

External validity is concerned with how well the results and conclusions can be

generalised. In this study, the experimentation was performed on 5 different

0

100

200

300

400

500

600

700

800

Mono-Objective Multi-Objective

Overall
Time
(m)

Objective 1 Objective 2 Objective 3

107

real world open source systems belonging to different domains and with

different sizes and complexities. However, the experiments and the capabilities

of the refactoring tool used are restricted to open source Java programs.

Therefore, it cannot be asserted that the results can be generalised to other

applications or to other programming languages.

4.4.3 Construct Validity

Construct validity refers to how well the concepts and measurements are related

to the experimental design. The validity of the experimentation is limited by the

metrics used, as they are experimental approximations of software quality.

What constitutes a good metric for quality is very subjective. The cost measures

used in the experimentation can also indicate a threat to validity. Part of the

effectiveness of the 2 search approaches was measured using execution time in

order to measure and compare cost.

4.4.4 Conclusion Validity

Conclusion validity looks at the degree to which a conclusion can reasonably be

drawn from the results. A lack of a meaningful comparative baseline can provide

a threat by making it harder to produce a conclusion from the results without

the relevant context. In order to provide descriptive statistics of the results,

tasks have been repeated and average values have been used to compare

against. Another possible threat may be provided by the lack of a formal

hypothesis in the experiment. At the outset, 2 research questions have been

provided, and for RQ4.2, 2 sets of corresponding hypotheses have been

constructed in order to aid in drawing a conclusion. To accompany these, non-

parametric statistical tests have been used to test the significance of the results

generated. These tests make no assumption that the data is normally

distributed and are suitable for ordinal data.

4.5 Conclusion

Four experiments were run to test various aspects of the MultiRefactor tool. The

configuration parameters of the GA were tested to analyse the effect that they

108

can have on the refactoring process and to deduce what settings can have a

better trade-off between metric improvement and time taken. Each of the

available metrics were then tested with the GA across a number of real world,

open source Java programs to find the least volatile metrics interacting with the -

available refactorings, and address RQ4.1. It was found that the more low-level

metrics produced greater average improvements compared to the more abstract,

class level metrics. The results of this experiment were then used to construct

metric functions to compare a mono-objective refactoring approach against a

multi-objective approach. The more volatile metrics were split into 3 separate

objectives to see if the multi-objective approach could generate comparable

results to the mono-objective counterparts. The individual mono-objective

approaches gave better results for 2 out of the 3 objectives but the multi-objective

approach managed to generate suitable improvements for all of the objectives.

The multi-objective approach took less time than each mono-objective approach,

with the single multi-objective run taking 71% less time than the 3 combined

mono-objective runs.

To address RQ4.2 and to answer the hypotheses constructed, statistical tests

were used to decide whether the data sets were significantly different. While the

other objective was better with the multi-objective approach, the statistical test

was run for the first and second objectives where the multi-objective approach

was worse. The values in the multi-objective approach were not significantly

worse than in the mono-objective approach for either objective, thus rejecting

the alternative hypothesis H4.1A. The execution time taken to run the multi-

objective approach was compared against the times for each of the 3 mono-

objective approaches. In none of the 3 cases did the multi-objective approach

take longer to run than the mono-objective approach, thus rejecting the

alternative hypothesis H4.2A. No known refactoring tool currently allows the

user to use multi-objective techniques to improve the software without having to

manually apply the refactorings. The experiments conducted in this chapter

suggest that this fully automated approach may be feasible and can allow for

multiple separate objectives to be considered in a single run within an

acceptable amount of time, although the improvement of a subset of these

objectives may take a hit. The next chapter investigates 3 newly proposed

objectives; priority, refactoring coverage and element recentness. The tool is

109

outfitted to incorporate the use of the new objectives, and they are tested in a

multi-objective setup against the basic GA using just the quality objective.

110

Chapter 5

Secondary Objectives

5. Secondary Objectives

5.1 Introduction

here are 3 secondary objectives proposed and tested in this chapter. The

experiments used to test each objective are set up in a similar manner.

This chapter is organised as follows. Firstly, the properties that the objectives

relate to are detailed, and a justification is given for each. Research questions

and hypotheses are proposed for each objective. Then, Section 5.2 discusses the

modifications made to the MultiRefactor tool after the previous experiment to

incorporate each of the new objectives. Section 5.3 explains the setup of the

experimentation used to test the new objectives, as well as the new inputs used

in the priority experiment and the element recentness experiment. Section 5.4

analyses the results of the priority experiment by looking at the objective values

and the times taken to run the tasks. Section 5.5 discusses the results of the

priority experiment. Section 5.6 analyses the results of the refactoring coverage

experiment, and Section 5.7 discusses them. Likewise, Section 5.8 analyses the

results of the element recentness experiment, and Section 5.9 discusses them.

Section 5.10 inspects the threats to validity of the experimentation and Section

5.11 concludes the chapter.

5.1.1 Priority Objective

The first objective to use in conjunction with a quality function is one that

incorporates the priority of the classes in the solution. There are a few situations

in which this may be useful. Suppose a developer on a project is part of a team,

T

111

where each member of the team is concerned with certain aspects of the

functionality of the program. This will likely involve looking at a subset of

specific classes in the program. The developer may only have involvement in the

modification of their selected set of classes. They may not be aware of the

functionality of the other classes in the project. Likewise, even if the person is

the sole developer of the project, there may be certain classes which are more

risky or more recent or in some other way more worthy of attention.

Additionally, there may be certain parts of the code considered less well

structured and therefore most in need of refactoring. Given this prioritisation of

some classes for refactoring, tool support is better employed with refactoring

directed towards those classes.

Another situation is that there may be some classes considered less suitable for

refactoring. Suppose a developer has only worked on a subset of the classes and

is unsure about other areas of the code, they may prefer not to modify that

section of the code. Similarly, older established code might be considered already

very stable, possibly having been refactored extensively in the past, where

refactoring might be considered an unnecessary risk. Changing code also

necessitates redoing integration and tests and this could be another reason for

leaving certain parts of the code as they were. There may also be cases where

“poor quality” has been accepted as a necessary evil. For example, a project may

have a class for logging that is referenced by many other classes. Generally,

highly coupled classes are seen as having a negative impact, but for the

purposes of the project it may be deemed unavoidable. In cases like this where

the more unorthodox structure of the class is desired by the developer, these

classes could be specified in order to avoid refactoring them to appease the

software metrics used. However, it is not desirable to exclude less favoured

classes from the refactoring process completely, since an overall higher quality

code base may be achieved if some of those are included in the refactorings.

For these reasons, it would be helpful to classify classes into a list of priority

classes and non-priority classes in order to focus on the refactoring solutions

that have refactored the priority classes and give less attention to the non-

priority classes. The priority objective proposed takes count of the classes used

in the refactorings of a solution and uses that measurement to derive how

successful the solution is at focusing on priority classes and evading non-priority

112

classes. The refactorings themselves are not restricted so during the refactoring

process the search is free to apply any refactoring available, regardless of the

class being refactored. The priority objective measures the solutions after the

refactorings have been applied to aid in choosing between the options available.

This will then allow the objective to discern between the available refactoring

solutions. An experiment has been constructed to test a GA that uses it against

one that does not. The experiment is derived from the following research

questions:

RQ5.1: Does a multi-objective solution using a priority objective and a quality

objective give an improvement in quality?

RQ5.2: Does a multi-objective solution using a priority objective and a quality

objective prioritise classes better than a solution that does not use the priority

objective?

In order to address the research questions, the experiment runs a set of tasks to

compare a default mono-objective setup to refactor a solution towards quality

with a multi-objective approach that uses a quality objective and the newly

proposed priority objective. The following hypotheses and alternative hypotheses

have been constructed to measure success in the experiment:

H5.1: The multi-objective solution gives an improvement in the quality objective

value.

H5.1A: The multi-objective solution does not give an improvement in the quality

objective value.

H5.2: The multi-objective solution gives significantly higher priority objective

values than the corresponding mono-objective solution.

H5.2A: The multi-objective solution does not give significantly higher priority

objective values than the corresponding mono-objective solution.

5.1.2 Refactoring Coverage Objective

The second objective considered measures the amount of coverage that a

refactoring solution can give among the elements of the solution. Coverage is

important since a developer may not want the solution to focus on only a few

parts of the code or get stuck on certain areas. Ensuring good coverage also

113

avoid the possibility of a solution focusing more on specific areas of a class

performing redundant refactorings. As the MultiRefactor tool has many

complimentary refactorings available (such as Make Class Abstract/Make Class

Concrete), it is possible that a solution will have a number of refactorings that

are applied to the same elements and that reverse the effects of the refactorings

that come before it, causing the effect to be meaningless. Having an objective

measurement to increase the code coverage of the refactorings reduces the

likelihood of these redundant refactorings being performed. Another advantage

of this objective is that it could be used in conjunction with the priority objective

proposed in the previous chapter to focus a refactoring solution to a certain area

of the code by listing a certain selection of classes, but also to increase the

coverage of the refactorings within that area to look at as many elements within

the selection of classes as possible.

A refactoring coverage objective has been constructed within the tool to assess

the refactoring solutions generated as part of the genetic search, and rank their

fitness by analysing the refactorings applied and calculating a coverage score.

The coverage score will be determined by 2 factors. Firstly, the number of

elements inspected within a refactoring solution is considered, where more

elements will give a better score. These elements include classes, methods and

fields/variables. For each refactoring, a single element will be chosen to

correspond to it, where class level refactorings will choose the relevant class,

and likewise, method and field level refactorings will choose the relevant method

or field. This means that for example, in the Collapse Hierarchy refactoring,

none of the methods or fields being moved up within that refactoring will be

noted. Instead the class being collapsed will be considered to be the relevant

element corresponding to the refactoring when calculating the coverage score.

The number of distinct elements corresponding to the refactorings in a solution

can be calculated this way and therefore it can be determined which solution

looks at more elements. Secondly, the number of times each element is

refactored is considered. The smaller the average number of refactorings for

each element in a solution, the better the score will be. This way, the score will

minimise the effect of solutions with a larger number of refactorings and

encourage the solution to focus less on a specific element or group of elements.

This will also minimise the occurrence of redundant refactorings and

encouraging the dispersion of refactorings across the code.

114

Note that if a developer disagrees with the choice of how to prioritise either of

the 2 factors, it is a trivial matter to tweak the objective to change them. If it is

more desirable to minimise the number of elements refactored or to maximise

the number of times an element can be refactored, the objective calculation can

be flipped to allow that, as the tool has been designed to be configured to a

developers needs. In order to test the effectiveness of the objective a choice has

been made as to how these factors should be prioritised. To test the effectiveness

of the refactoring coverage objective, the experiment conducted tests a GA that

uses it against one that does not, like with the priority objective. In order to

judge the outcome of the experiment, the following research questions have been

derived:

RQ5.3: Does a multi-objective solution using a refactoring coverage objective

and a quality objective give an improvement in quality?

RQ5.4: Does a multi-objective solution using a refactoring coverage objective

and a quality objective diversify code coverage among refactorings better than a

solution that does not use the refactoring coverage objective?

The following hypotheses and alternative hypotheses have been constructed to

measure success in the experiment:

H5.3: The multi-objective solution gives an improvement in the quality objective

value.

H5.3A: The multi-objective solution does not give an improvement in the quality

objective value.

H5.4: The multi-objective solution gives significantly higher refactoring

coverage objective values than the corresponding mono-objective solution.

H5.4A: The multi-objective solution does not give significantly higher refactoring

coverage values than the corresponding mono-objective solution.

5.1.3 Element Recentness Objective

The final objective proposed for use in a multi-objective solution incorporates the

use of numerous previous versions of the software code. It is fairly common for a

programming team to develop successive releases of a product in order to add

new features over time. It is likely that the team will have a repository with

115

various compilable versions of the code leading up to the current release.

Therefore, it is possible to use these previous versions to gather information of

the program and to allow that information to aid in the maintenance approach

of the current version. This idea forms the basis of the element recentness

objective, by incorporating the use of multiple versions of the code as artefacts to

aid the refactoring search. The justification for including a recentness aspect is

that, whereas older elements have been given the chance to be tested more and

have likely already been updated, newer elements will not have been considered.

Additionally, newer elements may be more likely to cause issues, especially if a

software project has been established and the new functionality has had to be

fitted into the current design (as is usually the case). Generally, a programmer

may be more interested in testing the code that they have added to a project to

ensure there are no unexpected issues caused by its presence. Thus, it can be

argued intuitively that the more recent aspects of the code are more suitable

candidates for refactoring than older aspects.

The element recentness objective uses previous versions of the target software to

help discern between old and new areas of code. In order to calculate the

objective, the program is supplied with the directories of all the previous

versions of the code to use, in successive order. To calculate the element

recentness value for a refactoring solution, each element that has been involved

in the refactorings (be it a class, method or field) will be inspected individually.

For each previous version of the code, the element will be searched for using its

name. If it is not present, the search will terminate, and the element will be

given a value related to how far back it can be found among the code versions.

An element that can be found all the way back through every previous version of

code will be given a value of zero. An element that is only found in the current

version of the code will be given the maximum element recentness value, which

will be equal to the number of versions of code present. For each version the

element is present in after the current version, the element recentness value

will be decremented by 1. Once this value is calculated for one element in the

refactoring solution, the objective will move onto the next element until a value

is derived for all of them. The overall element recentness value for a refactoring

solution will be an accumulation of all the individual element values.

116

The effectiveness of the element recentness objective is tested in the same way

as the priority and refactoring coverage objectives, by testing a GA that uses it

against one that does not. It may be argued that it is more relevant to refactor

the older elements of the code. The more important aspects of the code may be

different depending on the circumstances and the developer’s opinion. As with

the refactoring coverage objective, this objective can be tweaked to focus one way

or the other (the older elements can be given higher scores and more recent

elements lower scores) depending on the developers needs if this is desired. The

choice has been made in this chapter to focus on more recent elements instead of

older elements in order to test the effectiveness of the objective itself in doing

what it aims. In order to judge the outcome of the experiment, the following

research questions have been derived:

RQ5.5: Does a multi-objective solution using an element recentness objective

and a quality objective give an improvement in quality?

RQ5.6: Does a multi-objective solution using an element recentness objective

and a quality objective refactor more recent code elements than a solution that

does not use the element recentness objective?

The following hypotheses and alterative hypotheses have been constructed to

measure success in the experiment:

H5.5: The multi-objective solution gives an improvement in the quality objective

value.

H5.5A: The multi-objective solution does not give an improvement in the quality

objective value.

H5.6: The multi-objective solution gives significantly higher element recentness

objective values than the corresponding mono-objective solution.

H5.6A: The multi-objective solution does not give significantly higher element

recentness values than the corresponding mono-objective solution.

117

5.2 Refactoring Tool Evolution

For each of the secondary objective experiments the MultiRefactor tool had to be

modified to improve the tool and to outfit it for the new objectives. These

modifications are described below.

5.2.1 Priority Objective

For the purposes of experimentation with the tool a decision needed to be made

in order for there to be a consistent way to choose solutions from the multi-

objective tasks. With the mono-objective solutions, the top solution will always

correspond to the best objective score but with the multi-objective population,

numerous solutions may be valid depending on which objective has more

importance. While this choice is useful for a developer, for experimentation, only

1 solution needs to be chosen in order to compare against the mono-objective

counterpart. The tool was updated in order to choose a suitable solution out of

the final population to inspect, using the process detailed below.

Firstly, the solutions in the population from the top rank are stored separately.

It is from this subset that the best solution will be chosen from when the task is

finished. Among these solutions, the tool inspects the individual objective values

and for each, the best objective value across the solutions is stored. This set of

objective values is the ideal point i.e. the best possible state that a solution in

the top rank could have. After this is calculated, each objective score is

compared with its corresponding ideal score. The distance of the objective score

from its ideal value is found and, for each solution, the largest objective distance

(i.e. the distance for the objective that is furthest from its ideal point) is stored.

At this point each solution in the top rank has a value to represent the furthest

distance among its objectives from the ideal point. The smallest among these is

then considered to be the most suitable solution and is marked as such when the

population is written to file. On top of this, the results file for the corresponding

solution is flagged as the solution with the closest maximum distance from the

ideal point in the top rank of solutions.

In order to implement the priority objective the tool needed to be upgraded to

keep track of the classes modified in the refactorings. This involves tracking

118

when a class (or classes) is involved in the refactoring. This way the number of

priority and non-priority classes used and the number of times they are used, as

well as the overall number of class instances affected can be derived for each

solution. In order to inform the tool of the relevant classes to use as priority and

non-priority classes, they need to be specified in a text file and used as input in

the place of a configuration file. When this happens, the tool will store the list of

class names for reference when the fitness is calculated for the objective.

With the list of priority classes and, optionally, non-priority classes and the list

of affected classes in each refactoring solution, the priority objective score can be

calculated for each solution as an ordinal value. To calculate the score, the list of

affected classes for each refactoring is inspected, and each time a priority class

is affected, the score increases by 1. This is done for every refactoring in the

solution. Then, if a list of non-priority classes is also included, the affected

classes are inspected again. This time, if a non-priority class is affected, the

score decreases by 1. The higher the overall score for a solution, the more

successful it is at refactoring priority classes and disfavouring non-priority

classes. It is important to note that non-priority classes are not necessarily

excluded completely but solutions that do not involve those classes will be given

priority. In this way the refactoring solution is still given the ability to apply

structural refactorings that have a larger effect on quality even if they are in

undesirable classes, whereas the priority objective will favour the solutions that

have applied refactorings to the more desirable classes.

5.2.2 Refactoring Coverage Objective

For the mono-objective GA we need only measure the coverage score for the top

solution in the population instead of for the whole population as in the priority

experiment. Another change made was to reduce memory use when storing

refactoring details during crossover. The methods used to check for the

applicability of the refactorings during crossover were also updated to check for

the Move Method Down and Move Field Down refactorings that, if these

refactorings are reconstructed for crossover they will be executed in an identical

way to the original refactoring.

The tool was also updated in order to reduce the necessary processing within the

GA search. Originally, the tool was set up to find available elements to refactor

119

by checking for each relevant element in the file whether it was applicable for

the chosen refactoring or not. This way, the tool can calculate the number of

available elements that can be refactored in a file and then choose one at

random for the search. Each refactoring has its own unique mayRefactor method

to find out whether an element can be refactored. This method can be expensive

as, depending on the complexity of the refactoring, a lot of work may be needed

to ensure that an element can be refactored without negatively affecting the

semantics of the program.

When the GA is run, the number of available elements in a file is first found by

applying the mayRefactor method for every applicable element in the file. Then

1 of those refactorable elements is chosen at random. Then, when the refactoring

is applied (or when it is being reapplied to reconstruct the model for mutation or

the first part of crossover or when printing out final population), the

mayRefactor method is used again a number of times to find the relevant

element. If the search wants, for instance, the third refactorable field in a file in

order to apply a field refactoring, the mayRefactor method will be applied to

every field in the class until the third refactorable field is found. This is done for

each refactoring in each solution at every iteration of the GA. In order to reduce

the use of this method, and improve the efficiency of the GA search, the

approach to finding applicable elements was modified. Now, the positions of the

relevant refactorable elements are stored in a different way, meaning that the

need for the mayRefactor method is no longer needed to find them again. It is

now used only when a new refactoring is created (during initialisation or

mutation) or, modestly, during crossover.

In order to implement the refactoring coverage objective itself, extra information

about the refactorings had to be stored in the refactoring sequence object used to

represent a refactoring solution. For each solution, a list of the affected elements

and the number of times each element has been refactored is stored in a hash

table. For each refactoring, one element, considered to be most relevant to that

refactoring, is chosen to be stored. For most refactorings this is straightforward

as there is only 1 element being considered (i.e. for Increase Field Visibility, the

field that is being refactored to increase its visibility is most relevant), but for

some refactorings there could be more than 1 element that is considered

relevant to the refactoring. For the move refactorings (Move Field Down, Move

120

Field Up, Move Method Down, Move Method Up and Move Method), the field or

method being moved is considered and not the classes they are being moved to

or from. For the Collapse Hierarchy and Extract Subclass refactorings, the class

that the element(s) are being moved from is considered and not the element(s)

being moved (after all, these are class level refactorings). After the solution has

been created, the hash table will have a list of all the elements affected and the

number of times for each. This information can then be used to construct the

coverage score for that solution. More information about the coverage score itself

is given in Section 5.3.

5.2.3 Element Recentness Objective

The refactoring output has been updated to give more information about the

code elements that the refactorings have been applied to. For methods, the

method signature (i.e. the set of parameter types in the method, if there are any)

is now given as well as the method name. For the refactorings that apply to local

fields or local parameter declarations, the method that the field is in will also be

supplied. This is a less common possibility that is only applicable for the Make

Field Final and Make Field Non Final refactorings. For these, the refactoring

can be applied to global fields, local fields or local field parameters, whereas for

any other field refactoring, the operation is only applicable for global fields. The

output has also been updated to give more information about nested classes.

Instead of just displaying the nested class name, the names for the full set of

outer classes within the file will be supplied as well. Whereas before, these extra

details were not given for the refactoring output, now they can be used to

discern between code elements in cases where there are multiple methods or

fields with the same name in a class or whether a class is nested or not.

The priority and refactoring coverage objectives were also updated to use these

details to discern between possible duplicate elements. Whereas the priority

objective was outfitted to be able to discern between classes with the same name

by supplying the packages that the classes are within, it was not equipped to

deal with nested classes. Now, nested classes can be included and read in by

discerning them the same way packages are supplied. The refactoring coverage

objective can now discern better between elements in order to ensure that they

are distinct, and that identically named items aren’t mistaken for being the

same. The extra information supplied in the refactoring output (method

121

signatures, methods that local fields/parameters are in and nested class

information) is now used to check that the refactoring coverage objective is more

accurate when counting how many distinct elements are being refactored in a

refactoring solution. The objective still can’t discern, though, between duplicate

elements that have the same name (and, if it’s a method, the same signature or

if it’s a local field/parameter, are within a method with the same name and

signature) within a different class. If 2 (non class) elements with the same

details from different classes are come across within a refactoring solution, they

will be treated as a single element instead of 2 distinct elements. Fortunately,

these outlier cases will be less likely as, beyond being present in different

classes, the details of the elements would have to be identical for them to be

treated as the same element.

Another change to the refactoring output is that the visibility refactoring

(Increase Method Visibility, Decrease Method Visibility, Increase Field Visibility,

Decrease Field Visibility) outputs have been updated to reflect their name,

whereas previously the outputs would note the refactorings as security

refactorings instead of visibility refactorings (i.e. Increase Method Security

applied...). The set of available refactorings have also been updated to include

the Extract Subclass refactoring to complement the Collapse Hierarchy

refactoring. Extract Subclass is, like many of the other available refactorings,

based off the Fowler refactorings. Extract Subclass will choose a selection of

local field declarations and/or method declarations from a class that are related

to each other as a distinct unit, and will move them to a newly created subclass.

In order to inform the tool of the previous versions of the software to use in the

element recentness objective, they need to be specified in a text file and used to

replace the configuration file normally used as input. Each version of the

software is to be supplied with a specification of where the code is in relation to

the home directory. Each version needs to be ordered from oldest to most recent,

although the versions used can be picked out non-successively among a set of

available versions in a repository as long as they are ordered. The projects

themselves, like the current version, need to include the java code, any

necessary jar files and be compilable in order to be read into the tool

successfully. When this configuration is read in, the tool will store the list of

projects to inspect when the fitness is calculated for the objective.

122

The element recentness objective uses the same list that had been added for the

refactoring coverage objective to store the code elements used in a refactoring

solution. The recentness scores are calculated and stored as the objective is

calculated, for each element it comes across. If the element has already been

encountered in the search, its score will not need to be recalculated. This

eliminates the need to calculate redundant element recentness values for

elements that aren’t refactored in the search, or that have already been

refactored. The objective has some weaknesses in the accuracy of its

measurements. One condition that isn’t accommodated is the case where a code

element exists in one version of the software, is removed and then is added back

again. The element recentness objective will look back from the most recent

version of the code and see that the element is not present. It will not continue

to look through the older versions to see if the element had been removed and

added back in. Instead it will count that as a sign that the element was not

present before the applicable version. Also, as the element names are used to

check their presence in previous versions, the objective will not be able to

accommodate for elements that were present but had different names. As far as

the objective is concerned, an element with a different name is a different

element and it will not count.

For elements that have the same name in different classes, or classes that have

the same name but are in different packages or are nested, the objective will not

be able to tell the difference. It will look for that name and, if it is present in

that version of the code, it will be counted. This introduces the possibility that

code elements are noted as being older than they are, because another element

with the same name was present when the relevant element wasn’t. The issue

with providing the class or package that the element is in to discern it from a

possible duplicate is that the element may have been moved between classes

from version to version. This would introduce the more likely possibility that an

element that is older is not found with the element recentness objective. If the

element is in a different class or the class is in a different package to the

location in the current version of the code read in, it will be thought of as a

distinct element with the same name and the element will be noted as being

more recent than it is. The refactoring coverage objective has the same problem.

For this reason, the extra information isn’t included when calculating the

element recentness.

123

5.3 Experimental Design

The experimental design was common across all 3 objectives. A set of tasks were

set up in each experiment that used the objective to be compared against

another set of tasks that didn’t. The control group is made up of a mono-

objective approach that uses a function to represent quality in the software. The

corresponding tasks use the multi-objective algorithm and have 2 objectives. The

first objective is the same function for software quality as used for the mono-

objective tasks. The second objective is the secondary objective being tested, be it

the priority, refactoring coverage or element recentness objective. The metrics

used to construct the quality function and the configuration parameters used in

the GAs are taken from the previous experiment on software quality. The

software quality function used combines the metrics of the 3 objectives tested in

the previous chapter (outlined in Table 4.5). No weighting is applied for any of

the metrics. The metrics used in the quality function are given in Table 5.1. The

configuration parameters used for the mono-objective and multi-objective tasks

were derived through trial and error in the previous chapter, and were outlined

in Table 4.3. Likewise, the hardware used to run the experiment was outlined in

Table 4.2.

For the tasks, 6 different open source programs are used as inputs. Each one is

run 5 times for the mono-objective approach and 5 times for the multi-objective

approach, resulting in 60 different tasks for each objective experiment, and 180

tasks overall. For the priority experiment, 4 of the inputs used are the same as

the inputs used in the previous experiment. The JSON program contains only 12

classes, and so was discarded for these experiments, being considered too small.

In order to increase the external validity of the experiment, 2 larger Java

programs, GanttProject and XOM, were used. GanttProject is a tool for project

scheduling and management, whereas XOM (XML Object Model) is a tree based

API for processing XML. The inputs used in the experiment as well as the

number of classes and lines of code they contain are given in Table 5.2.

124

Table 5.1 – Metrics Used in Software Quality Objective

Metrics Direction

Data Access Metric +

Direct Class Coupling -

Cohesion Among Methods +

Aggregation +

Functional Abstraction +

Number Of Polymorphic Methods +

Class Interface Size +

Number Of Methods -

Weighted Methods Per Class -

Abstractness +

Abstract Ratio +

Static Ratio +

Final Ratio +

Constant Ratio +

Inner Class Ratio +

Referenced Methods Ratio +

Visibility Ratio -

Lines Of Code -

Table 5.2 – Java Programs Used in Priority Experiment and Refactoring Coverage Experiment

Name LOC Classes

Mango 3,470 78

Beaver 0.9.11 6,493 70

Apache XML-RPC 2.0 11,616 79

JHotDraw 5.3 27,824 241

GanttProject 1.11.1 39,527 437

XOM 1.2.1 45,136 224

For the refactoring coverage experiment, the same inputs are used, but in the

element recentness experiment, they are changed again. Three of the inputs

used are the same as the inputs used in the priority and refactoring coverage

experiments. In order to ensure that there were a suitable number of previous

versions of the project available for the element recentness objective to use, 3 of

the inputs were updated. For 2 of the inputs, Apache XML-RPC and JHotDraw,

later versions of the projects were used. As the Mango input doesn’t have any

different versions, it has been replaced. JRDF was chosen to replace Mango as

it, like the others, has been used in previous studies related to SBSE and it is of

a similar size to the other projects being used. JRDF is a Java library for

parsing, storing and manipulating RDF (Resource Description Framework). The

inputs used in the experiment as well as the number of classes and lines of code

they contain are given in Table 5.3.

125

Table 5.3 – Java Programs Used in Element Recentness Experiment

Name LOC Classes

Beaver 0.9.11 6,493 70

Apache XML-RPC 3.1.1 14,241 185

JRDF 0.3.4.3 18,786 116

GanttProject 1.11.1 39,527 437

JHotDraw 6.0b1 41,278 349

XOM 1.2.1 45,136 224

Table 5.4 gives the previous versions of code used for each input, in order from

the earliest version to the latest version used (excluding the current version

being read in for maintenance). For each input, 5 different versions of code were

used overall. The limit of 5 was set for pragmatic reasons in that the Beaver

input had only 5 versions. For both the Apache XML-RPC and JHotDraw inputs,

the versions previously used in experimentation are now included as part of the

list of previous versions for the corresponding input. Not all sets of previous

versions contain all the releases between the first and last version.

Table 5.4 – Previous Versions of Java Programs Used in Element Recentness Experiment

Beaver Apache XML-RPC JRDF GanttProject JHotDraw XOM

0.9.8 2.0 0.3.3 1.7 5.2 1.1

0.9.9 2.0.1 0.3.4 1.8 5.3 1.2b1

0.9.10 3.0 0.3.4.1 1.9 5.4b1 1.2b2

pre1.0demo 3.1 0.3.4.2 1.10 5.4b2 1.2

In order to find the relevant secondary objective score for the mono-objective

approach to compare against the multi-objective approach, the mono-objective

GA has been modified to output the objective score after the task finishes in that

experiment. For the quality function the metric changes are calculated using the

normalisation function detailed in Chapter 3. The function was defined in

Equation 3.1. This function causes any greater influence of an individual metric

in the objective to be minimised, as the impact of a change in the metric is

assessed by how far it is from its initial value. For metrics that start with a

value of zero, the initial value used to compare against is changed to 0.01. This

way, the normalisation function can still be used on the metric and its value still

126

starts off as low. For the secondary objectives, this normalisation function is not

needed. These objective scores depend on the refactorings applied in a

refactoring solution and will reflect the properties being measured.

For the multi-objective tasks used in the priority experiment, both priority

classes and non-priority classes are specified for the relevant inputs. The

number of classes in the input program is used to identify the number of priority

and non-priority classes to specify. In order to choose which classes to specify,

the number of methods in each class of the input is found and ranked. The top

5% of classes that contain the most methods are the priority classes and the

bottom 5% that contain the least methods are the non-priority classes for that

input. Using the top and bottom 5% of classes means that the same proportion of

classes will be used in the priority objective for each input program, minimising

the effect of the number of classes chosen in the experiment. In lieu of a way to

determine the priority of the classes, their complexity as derived from the

number of methods present, is taken to represent priority. Using this process,

the configurations of the priority objective for each input were constructed and

used in the experiment.

For the refactoring coverage objective, the number of elements refactored is

counted and then divided by the average number of times each element is

refactored in order to get an overall score. This allows the refactoring coverage

objective to take into account both the number of elements refactored, and the

number of times an element is refactored. The score will prioritise solutions that

have maximum code coverage among their refactorings, and that have

refactored as many elements as possible. The calculation of the refactoring

coverage score has been streamlined in the tool to improve its efficiency.

Equation 5.1 gives the formula used to calculate the coverage score in a

refactoring solution using the hash table structure. represents the current

element and represents the number of times the element has been refactored

in the solution. represents the number of elements refactored in the

refactoring solution. Equation 5.2 gives the simplified version of the equation

used in the tool.

(5.1)

127

 (5.2)

For the element recentness objective, the recentness value of each element

refactoring is calculated and then added together to get an overall score.

Accumulating the score instead of getting an average recentness value avoids

the solution applying a minimal number of refactorings in order to keep a low

average and thus possibly yielding inferior quality improvements. Accumulating

the individual values will encourage the solution to refactor as many recent

elements as possible, and it will prioritise these elements, but it will also allow

for older elements to be used if they improve the quality of the solution.

Equation 5.3 gives the formula used to calculate the element recentness score in

a refactoring solution using the hash table structure. represents the current

element, represents the number of times the element has been refactored in

the solution and represents the recentness value for the element.

represents the number of elements refactored in the refactoring solution.

 (5.3)

5.4 Priority Results

Figure 5.1 gives the average quality gain values for each input program used in

the experiment with the mono-objective and multi-objective approaches. For

most of the inputs, the mono-objective approach gives a better quality

improvement than the multi-objective approach, although for Mango the multi-

objective approach was better. For the multi-objective approach all the runs of

each input were able to give an improvement for the quality objective as well as

look at the priority objective. For both approaches, the smallest improvement

was given with GanttProject. The inputs with the largest improvements were

different for each approach. For the mono-objective approach it was Beaver

whereas, for the multi-objective approach, it was Apache XML-RPC.

128

Figure 5.1 – Mean Quality Gain Values for Each Input

Figure 5.2 shows the average priority scores for each input with the mono-

objective and multi-objective approaches. For all of the inputs, the multi-

objective approach was able to yield better scores coupled with the priority

objective. The values were compared for significance using a one-tailed Wilcoxon

rank-sum test (for unpaired data sets) with a 95% confidence level (α = 5%). The

priority scores for the multi-objective approach were found to be significantly

higher than the mono-objective approach. For 2 of the inputs, Beaver and

Apache XML-RPC, the mono-objective approach had priority scores that were

less than 0. With the Beaver input, 1 of the runs gave a score of -6 and another

gave a score of -10. Likewise, 1 run of the Apache XML-RPC input gave a

priority score of -37. This implies that, without the priority objective to direct

them, the mono-objective runs are less likely to focus on the more important

classes (i.e. the classes with more methods), and may significantly alter the

classes that should be disfavoured (leading to the minus values for the 3 mono-

objective runs across the 2 input programs).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mango Beaver Apache
XML-RPC

JHotDraw GanttProject XOM

Mean
Quality

Gain

Mono-Objective Multi-Objective

129

Figure 5.2 – Mean Priority Scores for Each Input

Figure 5.3 gives the average execution times for each input with the mono-

objective and multi-objective searches. For most of the input programs, the

multi-objective approach took less time than the mono-objective but, for

GanttProject, the multi-objective approach took longer. To check that the

execution times weren’t significantly different, the Wilcoxon rank-sum test (two-

tailed) was used again and the values were found to not be significantly

different. The times for both approaches understandably increase as the input

program sizes get bigger and the GanttProject input stands out as taking longer

than the rest, although the largest input, XOM, is unexpectedly quicker. The

execution times for the XOM input are smaller than both JHotDraw and

GanttProject, despite it having more lines of code. However, both of these inputs

do contain more classes. Considering the relevance of the list of classes in an

input program to the calculation of the priority score, it makes sense that this

would have an effect on the execution times. Indeed, GanttProject has by far the

largest number of classes, at 437, which is almost double the amount that XOM

contains. Likewise, the execution times for GanttProject are similarly around

twice as large as those of XOM for the 2 approaches. The longest task run was

for the multi-objective run of the GanttProject input, at over an hour. The

average time taken for the multi-objective GanttProject tasks was 53 minutes

and 6 seconds.

-50

-40

-30

-20

-10

0

10

20

30

40

50

Mango Beaver Apache
XML-RPC

JHotDraw GanttProject XOM

Mean
Priority
Score

Mono-Objective Multi-Objective

130

Figure 5.3 – Mean Times Taken for Each Input

5.5 Priority Objective Discussion

The average quality improvement scores were compared across 6 different open

source inputs and, for the most part, the mono-objective approach gave better

improvements. The likely reason for the better quality score in the mono-

objective approach is due to the opportunity for the mono-objective GA to focus

on that single objective without having to balance the possibly conflicting aim of

favouring priority classes and disfavouring non-priority classes. The multi-

objective approach was able to yield improvements in quality across all the

inputs. In one case, with the Beaver input, the multi-objective was able to not

only yield an improvement in quality, but also generate a better improvement on

average than the mono-objective approach. This may be due to the smaller size

of the Beaver input, which could mean a restricted number of potential

refactorings in the mono-objective approach. It could also be influenced by the

larger range of results gained the multi-objective approach for that input. The

average priority scores were compared across the 6 inputs and, for the mono-

objective approach, were able to give some improvement. However, in some

specific runs, the priority scores were negative. This would relate to there being

0

10

20

30

40

50

60

70

Mango Beaver Apache
XML-RPC

JHotDraw GanttProject XOM

Mean
Time
(m)

Mono-Objective Multi-Objective

131

more non-priority classes being refactored in a solution than priority classes,

which, for the mono-objective approach, is unsurprising. The average priority

scores for the multi-objective approach were better in each case. It is presumed

that, as the mono-objective approach has no measures in place to improve the

priority score of its refactorings, the solutions are more likely to contain non-

priority classes and less likely to contain priority classes than the solutions

generated with the multi-objective approach.

The average execution times for each input were inspected and compared for

each approach. For most inputs, the multi-objective approach was slightly

quicker than the mono-objective counterpart. The times for each input program

increased depending on the size of the program and the number of classes

available. The average times ranged from 2 minutes and 2 seconds for the

Mango program, to 53 minutes and 6 seconds for GanttProject. While the

increased times to complete the tasks for larger programs make sense due to the

larger amount of computation required to inspect them, XOM took less time

than GanttProject and JHotDraw. Although XOM has more lines of code than

these inputs, the reason for this is likely due to the number of classes available

in each program, which is more reflective of the time taken to run the tasks for

them. Therefore, it seems to be implied that the number of classes available in a

project will have a more negative effect on the time taken to execute the

refactoring tasks on that project than the amount of code. It was expected that,

due to the higher complexity of the MOGA in comparison to the basic GA, the

execution times for the multi-objective tasks would be higher also. Although the

times taken were similar for each approach, and were more affected by the

project used, this wasn’t the case for all of the inputs. This may have been due to

the stochastic nature of the search. Depending on the iteration of the task run,

there may be any number of refactorings applied in a solution. If one solution

applied a large number of refactorings, this could likely have a noticeable effect

on the time taken to run the task. The counterintuitive execution times between

the mono-objective and multi-objective tasks may be a result of this property of

the GA.

In order to test the aims of the experiment and derive conclusions from the

results a set of research questions were constructed. Each research question and

their corresponding set of hypotheses looked at 1 of 2 aspects of the experiment.

132

RQ5.1 was concerned with the effectiveness of the quality objective in the multi-

objective setup. To address it, the quality improvement results were inspected to

ensure that each run of the search yielded an improvement in quality. In all 30

of the different runs of the multi-objective approach, there was an improvement

in the quality objective score, therefore rejecting the alterative hypothesis H5.1A

and supporting H5.1. RQ5.2 looked at the effectiveness of the priority objective

in comparison with a setup that did not use a function to measure priority. To

address this, a non-parametric statistical test was used to decide whether the

mono-objective and multi-objective data sets were significantly different. The

priority scores were compared for the multi-objective priority approach against

the basic approach and the multi-objective priority scores were found to be

significantly higher than the mono-objective scores, supporting the hypothesis

H5.2 and rejecting the alterative hypothesis H5.2A. Thus, the research

questions addressed for this experiment help to support the validity of the

priority objective in helping to improve the focus of a refactoring solution in the

MultiRefactor tool while in conjunction with another objective.

5.6 Refactoring Coverage Results

Figure 5.4 gives the average quality gain values for each input program used in

the experiment with the mono-objective and multi-objective approaches. In all of

the inputs, the mono-objective approach gives a better quality improvement

than the multi-objective approach. For the multi-objective approach all the runs

of each input were able to give an improvement for the quality objective as well

as look at the refactoring coverage objective. For both approaches, the smallest

improvement was given with GanttProject. The inputs with the largest

improvements were different for each approach. For the mono-objective

approach it was Beaver, whereas, for the multi-objective approach, it was XOM.

Many observations about the quality gain values mirror those of the values

derived from the priority experiment, as expected, although the mono-objective

results for Beaver were less disparate and the average was smaller.

133

Figure 5.4 – Mean Quality Gain Values for Each Input

Figure 5.5 shows the average coverage scores for each input with the mono-

objective and multi-objective approaches. For all of the inputs, the multi-

objective approach was able to yield better scores coupled with the refactoring

coverage objective. The values were compared for significance using a one-tailed

Wilcoxon rank-sum test (for unpaired data sets) with a 95% confidence level.

The coverage scores for the multi-objective approach were found to be

significantly higher than the mono-objective approach. With the multi-objective

approach, the average scores mostly increased as the input program sizes

increased. This makes sense as the larger programs will contain more

refactorable elements and classes in which to apply the refactorings in a

solution. The notable exception to this is XOM, which had an average coverage

score that is smaller than JHotDraw. This is likely due to the number of classes

in the project being smaller than the GanttProject and JHotDraw class sizes.

While the number of lines of code in XOM is greater, it may be that the number

of code elements in the program is smaller. The scores seemed to vary slightly

less with the multi-objective approach compared to the mono-objective

counterparts. Again, this is understandable as the refactoring coverage objective

used in the multi-objective approach to improve the program will drive the

solutions towards more diverse sets of refactorings, pushing the coverage scores

towards a higher peak. On the other hand, the mono-objective coverage scores

0

0.2

0.4

0.6

0.8

1

1.2

Mango Beaver Apache
XML-RPC

JHotDraw GanttProject XOM

Mean
Quality

Gain

Mono-Objective Multi-Objective

134

are more likely to be achieved as a by-product of the other objective, leading to

more fluctuating sets of scores among the tasks.

Figure 5.5 – Mean Refactoring Coverage Scores for Each Input

Figure 5.6 gives the average execution times for each input with the mono-

objective and multi-objective searches. The times for the mono-objective and

multi-objective tasks mirrored each other. For most input programs, the mono-

objective approach was faster on average, with the exception to this being

Apache XML-RPC. To ensure that the execution times weren’t significantly

different, the Wilcoxon rank-sum test (two-tailed) was used again and the values

were found to not be significantly different. Again, the times generally increased

as the project sizes increased, except for XOM, where the times where smaller

than both JHotDraw and GanttProject. Once again these programs, while

smaller, contain more classes than XOM, which may have contributed to their

increased execution times. The GanttProject program stands out as taking the

longest, with the longest tasks taking over 45 minutes to run, whereas the

longest tasks among the other input programs took little over 30 minutes.

Again, the execution times for GanttProject are around twice as large as those of

XOM for the 2 approaches, which mirrors GanttProject having almost double

the amount of classes as XOM.

0

10

20

30

40

50

60

70

80

90

Mango Beaver Apache
XML-RPC

JHotDraw GanttProject XOM

Mean
Refactoring

Coverage
Score

Mono-Objective Multi-Objective

135

Figure 5.6 – Mean Times Taken for Each Input

When comparing the average execution times of the tasks in this experiment

against those in the priority experiment, they have similar trends. What does

stand out, though, is that the mono-objective times in the refactoring coverage

experiment seem to have improved somewhat for many of the inputs against the

priority times. This has caused the most of programs to take less time than their

multi-objective counterparts whereas this wasn’t the case before. The multi-

objective times, on the other hand haven’t changed much except for

GanttProject, where the average time was 12 minutes shorter. There is a

possibility that these slight improvements in the mono-objective times were

caused by the modifications made to the MultiRefactor tool in order to reduce

the use of the mayRefactor method.

5.7 Refactoring Coverage Objective Discussion

The average quality improvement scores were compared across 6 different open

source inputs and, for all input programs, the mono-objective approach gave

better improvements. The multi-objective approach gave improvements in

0

5

10

15

20

25

30

35

40

45

50

Mango Beaver Apache
XML-RPC

JHotDraw GanttProject XOM

Mean
Time
(m)

Mono-Objective Multi-Objective

136

quality across all the inputs. The average coverage scores were compared across

the 6 inputs. The scores for the multi-objective approach were better in each

case. Finally, the average execution times for each input were inspected and

compared for each approach. The times for each approach were similar but, for

most inputs, the mono-objective approach was quicker than the multi-objective

counterpart. The times for each input program increased depending on the

number of classes available in the program. The average times ranged from 1

minute and 56 seconds for the Mango program, to 41 minutes and 7 seconds for

GanttProject.

In order to test the aims of the experiment and derive conclusions from the

results a set of research questions were constructed. RQ5.3 was concerned with

the effectiveness of the quality objective in the multi-objective setup. To address

it, the quality improvement results were inspected to ensure that each run of

the search yielded an improvement in quality. In all 30 of the different runs of

the multi-objective approach, there was an improvement in the quality objective

score, therefore rejecting the alternative hypothesis H5.3A and supporting H5.3.

RQ5.4 looked at the effectiveness of the refactoring coverage objective in

comparison with a setup that did not use a function to measure refactoring

coverage. To address this, a non-parametric statistical test was used to decide

whether the mono-objective and multi-objective data sets were significantly

different. The coverage scores were compared and the multi-objective coverage

scores were found to be significantly higher than the mono-objective scores,

supporting the hypothesis H5.4 and rejecting the alternative hypothesis H5.4A.

Thus, the research questions addressed for this experiment help to support the

validity of the refactoring coverage objective in helping to improve the code

coverage of a refactoring solution in the MultiRefactor tool while in conjunction

with another objective.

5.8 Element Recentness Results

Figure 5.7 gives the average quality gain values for each input program used in

the experiment with the mono-objective and multi-objective approaches. In all of

the inputs, the mono-objective approach gives a better quality improvement

137

than the multi-objective approach. For the multi-objective approach all the runs

of each input were able to give an improvement for the quality objective as well

as look at the element recentness objective. For the mono-objective approach,

the smallest improvement was given with GanttProject, and for the multi-

objective approach, it was Apache XML-RPC. For both approaches, XOM was

the input with the largest improvement. The mono-objective Beaver results were

noticeable for having the most disparate range in comparison to the rest, which

is somewhat similar to in the priority experiment. The results are similar to

those captured in the previous 2 experiments for the 3 inputs that were used

across all 3.

Figure 5.7 – Mean Quality Gain Values for Each Input

Figure 5.8 shows the average element recentness scores for each input with the

mono-objective and multi-objective approaches. For all of the inputs, the multi-

objective approach was able to yield better scores coupled with the recentness

objective. The values were compared for significance using a one-tailed Wilcoxon

rank-sum test (for unpaired data sets) with a 95% confidence level. The element

recentness scores for the multi-objective approach were found to be significantly

higher than the mono-objective approach. The scores tended to vary with both

the mono-objective and multi-objective approaches. The exception to this in the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Quality

Gain

Mono-Objective Multi-Objective

138

XOM input which had a more refined set of results for both approaches. Also, for

this input, in comparison to the others, the multi-objective approach didn’t give

as much of an improvement in the element recentness score in relation to its

mono-objective counterpart. For the mono-objective GanttProject scores, 1 of the

tasks gave an anomalous result of 784 (the other values were between 212 and

400) that was greater than even the average multi-objective score for the input,

at 764.8.

Figure 5.8 – Mean Element Recentness Scores for Each Input

Figure 5.9 gives the average execution times for each input with the mono-

objective and multi-objective searches. The times for the mono-objective and

multi-objective tasks mostly mirrored each other. For most input programs, the

mono-objective approach was faster on average, with the exception being Beaver

which is slightly longer. To ensure that the execution times weren’t significantly

different, the Wilcoxon rank-sum test (two-tailed) was used again and the values

were found to not be significantly different. The times seemed to increase in

relation to the number of classes in the project, although the mono-objective

GanttProject time was slightly smaller than JHotDraw, an input with fewer

classes. The multi-objective GanttProject times stand out as taking the longest,

with the longest task taking almost 71 minutes to run. The average time for the

multi-objective GanttProject tasks was just under 64 minutes, whereas the

0

100

200

300

400

500

600

700

800

900

1000

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Element

Recentness
Score

Mono-Objective Multi-Objective

139

average time for the next largest input, JHotDraw, was only 41 minutes and 6

seconds. Whereas the inputs had similar times for the mono-objective and multi-

objective approaches, for GanttProject the multi-objective tasks took quite a bit

longer (over 28 minutes longer on average).

Figure 5.9 – Mean Times Taken for Each Input

5.9 Element Recentness Objective Discussion

The average quality improvement scores were compared across 6 different open

source inputs and, for all input programs, the mono-objective approach gave

better improvements. The multi-objective approach gave improvements in

quality across all the inputs. The average element recentness scores were

compared across the 6 inputs. The scores for the multi-objective approach were

better in each case. Finally, the average execution times for each input were

inspected and compared for each approach. The times for each approach were

similar but, for most inputs, the mono-objective approach was quicker than the

multi-objective counterpart. The average times ranged from 3 minutes and 57

seconds for Beaver, to 63 minutes and 54 seconds for GanttProject.

0

10

20

30

40

50

60

70

80

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Time
(m)

Mono-Objective Multi-Objective

140

In order to test the aims of the experiment and derive conclusions from the

results a set of research questions were constructed. RQ5.5 was concerned with

the effectiveness of the quality objective in the multi-objective setup. To address

it, the quality improvement results were inspected to ensure that each run of

the search yielded an improvement in quality. In all 30 of the different runs of

the multi-objective approach, there was an improvement in the quality objective

score, therefore rejecting the alternative hypothesis H5.5A and supporting H5.5.

RQ5.6 looked at the effectiveness of the element recentness objective in

comparison with a setup that did not use a function to measure element

recentness. To address this, a non-parametric statistical test was used to decide

whether the mono-objective and multi-objective data sets were significantly

different. The recentness scores were compared for the multi-objective approach

against the basic approach and the multi-objective element recentness scores

were found to be significantly higher than the mono-objective scores, supporting

the hypothesis H5.6 and rejecting the alternative hypothesis H5.6A. Thus, the

research questions addressed for this experiment help to support the validity of

the element recentness objective in helping to focus refactorings on recent

elements in a software program with the MultiRefactor tool, while in

conjunction with another objective.

5.10 Threats to Validity

5.10.1 Internal Validity

The stochastic nature of the search techniques means that each run will provide

different results. This threat to validity has been addressed by running each of

the tasks across 6 different open source programs and running against each

program 5 times. Average values are then used to compare against each other.

The choice of parameter settings used by the search techniques can also provide

a threat to validity due to the option of using poor input settings. This has been

addressed by using input parameters deemed to be most effective through trial

and error via previous experimentation. In the priority experiment, the classes

chosen as priority and non-priority classes for each input may affect the results

gained. This has been addressed by selecting the top 5% of classes that have the

141

most methods as priority classes and the bottom 5% with the least methods as

non-priority classes for each input.

5.10.2 External Validity

In this study, the experiment was performed on 6 different real world open

source systems belonging to different domains and with different sizes and

complexities. However, the experiment and the capabilities of the refactoring

tool used are restricted to open source Java programs. Therefore, it cannot be

asserted that the results can be generalised to other applications or to other

programming languages.

5.10.3 Construct Validity

The validity of the experiment is limited by the metrics used, as they are

experimental approximations of software quality, as well as the priority

objective used to measure the importance of the classes modified, the refactoring

coverage objective used to measure the number of elements refactored, and the

element recentness objective used to measure the recentness of the elements

refactored. What constitutes a good metric for quality is very subjective. The

cost measures used in the experiment can also indicate a threat to validity. Part

of the effectiveness of the mono-objective and multi-objective search approaches

was measured using execution time in order to measure and compare cost.

5.10.4 Conclusion Validity

A lack of a meaningful comparative baseline can provide a threat by making it

harder to produce a conclusion from the results without the relevant context. In

order to provide descriptive statistics of the results, tasks have been repeated

and average values have been used to compare against. Another possible threat

may be provided by the lack of formal hypotheses in the experimentation. At the

outset of each experiment, 2 research questions have been provided and for

each, a set of corresponding hypotheses have been constructed in order to aid in

drawing a conclusion. To accompany these, non-parametric statistical tests have

been used to test the significance of the results gained. These tests make no

assumption that the data is normally distributed and are suitable for ordinal

data.

142

5.11 Conclusion

In this chapter a set of experiments were conducted to test 3 new fitness

objectives in the MultiRefactor tool. Each one of the objectives was detailed and

modifications made to the MultiRefactor tool to incorporate them were

discussed. Each newly proposed objective was tested in conjunction with the

quality objective tested in Chapter 4 in a multi-objective setup. To measure the

effectiveness of the secondary objective, the multi-objective approach was

compared with a mono-objective approach using just the quality objective. The

quality objective values were inspected to deduce whether improvements in

quality can still be derived in this multi-objective approach. Then, the secondary

objective scores for that experiment were compared.

The priority scores were compared to measure whether the developed priority

function can be successful in improving the focus of the refactoring approach.

The coverage scores were compared to measure whether the developed

refactoring coverage function can be successful in improving the coverage of the

refactoring approach and reducing redundant refactorings. Finally, the element

recentness scores were compared to measure whether the developed element

recentness function can be successful in focusing refactorings on more recently

added elements in a software program. The next chapter tests a many-objective

setup that uses all 4 objectives combined together using the many-objective GA.

It also tests different variations of the objectives together to find out which

objectives work well together and which don’t.

143

Chapter 6

Many-Objective Approach

6. Many-Objective Approach

6.1 Introduction

n the previous chapters, a quality objective was constructed to measure

quality in a software program as well as 3 supplementary objectives to assist

the quality objective in improving other aspects of the software. In this chapter

an experiment is set up to run all 4 objectives together and measure how

successful they are as an overall framework for maintaining software. The

objectives are also compared by using different permutations of them. In order

to run the 4 objectives in a single many-objective solution, an adaptation of the

many-objective algorithm NSGA-III is used in place of the NSGA-II adaptation.

It has been suggested that the Pareto dominance approach to handling multiple

objectives becomes less effective with more than 3 objectives. For example, Deb

and Saxena [38] demonstrated that the NSGA-II approach is vulnerable to a

large number of objectives. Mkaouer et al. [25], [146] also investigated this claim

in respect to the area of SBSE. They compared their approach on up to 15

objectives with numerous different EAs, including NSGA-II and NSGA-III. The

performance with the NSGA-II approach degraded as the number of objectives

increased, whereas the NSGA-III approach continued to be effective and

outperformed the other algorithms. They concluded that NSGA-II is not

adequate for problems involving more than 3 objectives, whereas NSGA-III is a

very good candidate for tackling many-objective SBSE problems. NSGA-III

replaces the crowding distance functionality with an alternative approach to

I

144

maintain the diversity in the chosen solutions. The algorithm was described in

detail in Chapter 2 Section 2.7 along with other many-objective EAs, and the

adaptation of the algorithm used in the MultiRefactor tool was discussed in

Chapter 3 Section 3.4.3.

The experimentation is split into 2 parts. The first part is concerned with

running the many-objective search with all 4 objectives and the mono-objective

counterpart with just the quality objective to compare against. For the second

part, different permutations of the 3 supplemental objectives are combined with

the quality objective to see how they interact with each other. Each individual

objective is tested with the quality objective in a multi-objective solution, similar

to that for the previous experimental chapters. Then, the different permutations

of the objectives are tested with each other and the quality objective in a 3-

objective search. Overall, there are 6 different permutations to test along with

the mono-objective and many-objective variations inspected in part 1 of the

experimentation. In all cases the quality objective is present as part of the

process, in order to improve the state of the code itself while allowing the other

objective(s) to work in conjunction with it. In order to judge the outcome of the

experimentation, the following research questions have been derived:

RQ6.1: Does a many-objective solution using the priority, refactoring coverage

and element recentness objectives with the quality objective give an

improvement in quality?

RQ6.2: Does a many-objective solution using the priority, refactoring coverage

and element recentness objectives with the quality objective have a better effect

on the 3 objectives than a mono-objective solution that only uses the quality

objective?

RQ6.3: Which combination of objectives in conjunction with the quality objective

work best together?

The following hypotheses and alternative hypotheses have also been constructed

to measure success in the first part of the experimentation (for part 2, the

objective scores in the different permutations will be compared to see which

combinations are most successful for each supplementary objective):

145

H6.1: The many-objective solution gives an improvement in the quality objective

value.

H6.1A: The many-objective solution does not give an improvement in the quality

objective value.

H6.2: The many-objective solution gives higher values for the priority,

refactoring coverage and element recentness objectives than the corresponding

mono-objective solution.

H6.2A: The many-objective solution does not give higher values for the priority,

refactoring coverage and element recentness objectives than the corresponding

mono-objective solution.

The remainder of this chapter is organised as follows. Section 6.2 explains the

setup of the experimentation. Section 6.3 analyses the results of the

experimentation, looking at the objective values and the times taken to run the

tasks. Section 6.4 discusses these results, analysing the most successful ways to

use each of the objectives. Section 6.5 inspects the threats to validity of the

experimentation and Section 6.6 concludes the chapter.

6.2 Experimental Design

In part 1 of the experimentation, the mono-objective approach is compared with

the many-objective search using all 4 objectives. Part 2 tests each different

combination of objectives with the quality objective. Table 6.1 shows the 6

different permutations that are tested (along with the mono-objective and many-

objective approaches), with abbreviations given for each permutation for

reference. The metrics used to construct the quality function and the

configuration parameters used in the GAs are taken from the experiment on

software quality. The metrics used in the quality function were given in Table

5.1 and no weighting is applied. The configuration parameters used for the

mono-objective and multi-objective tasks were derived through trial and error in

the quality experiment, and were outlined in Table 4.3. Likewise, the hardware

used to run the experiment was outlined in Table 4.2. For the tasks, 6 different

146

open source programs are used as inputs. The inputs used in the

experimentation are the same as those used in the previous experiment and

details of each were given in Table 5.3. For part 1 of the experimentation each of

the 6 inputs is run 10 times for the mono-objective approach and 10 times for

the many-objective approach. In part 2, the tasks are run 5 times for each input

in each of the 6 approaches. This results in there being 120 tasks for part 1 and

180 tasks for part 2, meaning 300 tasks overall.

Table 6.1 – Different Combinations of Objectives Tested in Experimentation

Mono-

Objective

Quality

Q-P Quality Priority

Q-C Quality Refactoring Coverage

Q-R Quality Element Recentness

Q-P-C Quality Priority Refactoring Coverage

Q-P-R Quality Priority Element Recentness

Q-C-R Quality Refactoring Coverage Element Recentness

Many-

Objective

Quality Priority Refactoring Coverage Element

Recentness

As in the previous experiments, in order to find the other objective scores with

the mono-objective approach to compare it against the other approaches, the

mono-objective GA has been modified to output the other scores after the task

finishes. This time, the scores for all 3 of the other objectives will be given, to see

how those objectives fare when they are not being used in the search. This way

the scores don’t need to be calculated manually for the mono-objective approach.

Again, the score will only be output for the top GA solution in the final

population. For the quality function the metric changes are calculated using the

normalisation function detailed in Chapter 3. The function was defined in

Equation 3.1. This function causes any greater influence of an individual metric

in the objective to be minimised, as the impact of a change in the metric is

influenced by how far it is from its initial value. For metrics that start with a

value of zero, the initial value used to compare against is changed to 0.01. This

way, the normalisation function can still be used on the metric and its value still

starts off as low.

147

In order to give a better balance between the supplemental objectives, each of

them have been normalised as well. Whereas before, the scores given for these

objectives were ordinal (or in the case of the element recentness objective,

constrained by the number of versions of code available to use), in this case they

are changed to be between 0 and 1. The priority objective, if using non-priority

classes (which in this experimentation it is), will give a score between -1 and 1.

The original priority score becomes a ratio over the number of classes refactored

in a solution i.e. that maximum possible priority score for that refactoring

solution. Similarly, the coverage score is given as a ratio over the maximum

score it could be for the respective refactoring solution. In this case, the

maximum value is the number of distinct refactored elements divided by 1 (if

each element was refactored only once). Like with the original coverage

calculation, the calculation of this ratio is streamlined to be more efficient. For

the element recentness objective, the average recentness value per element is

calculated by dividing the original score by the number of elements refactored.

This is then divided by the maximum possible element recentness value for an

element to give a ratio between 0 and 1.

In order to avoid the possibility that the search will minimise the number of

refactorings to increase the ratio values for these objectives, to the detriment of

the actual software quality improvement, the top solutions in the multi and

many-objective approaches are chosen differently as well. The solution is still

chosen from the top rank of solutions in the final population. Now, the solution

used to compare against the other approaches is the one with the highest quality

improvement value among those in the top rank. In order to compare the

different permutations of objectives using the different input programs and

newly normalised objective scores, the mono-objective and 3 bi-objective

approaches have been repeated as part of the experimentation.

6.3 Results

Figure 6.1 gives the average quality gain values for each input program used in

the experimentation with the mono-objective and many-objective approaches. In

all of the inputs, the mono-objective approach gives a better quality

148

improvement than the many-objective approach. For the many-objective

approach all the runs of each input were able to give an improvement for the

quality objective as well as address the other 3 objectives. For both approaches,

the smallest improvement was given with Apache XML-RPC, closely followed by

GanttProject. The input with the largest improvement in both cases was XOM.

The quality gain scores were similar to those derived from the element

recentness experiment for each input program.

Figure 6.1 – Mean Quality Gain Values for Each Input

Figure 6.2 shows the average priority scores for each input with the mono-

objective and many-objective approaches. For the JRDF input, where the scores

are difficult to see, data labels have been provided. For all but 1 of the inputs,

the many-objective approach was able to yield better scores coupled with priority

objective. For JRDF though, the mono-objective approach was better. A few of

the inputs had scores below 0. The mono-objective scores for JRDF, GanttProject

and JHotDraw went below 0 as well as the many-objective scores for JRDF.

Here, the lowest scores for both approaches were found in JRDF, whereas the

highest were yielded with XOM. Although most of the inputs yielded improved

scores for the many-objective approach, it seems the priority scores are

restricted for each input.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Quality

Gain

Mono-Objective Many-Objective

149

Figure 6.2 – Mean Priority Scores for Each Input

Figure 6.3 shows the average coverage scores for each input with the mono-

objective and many-objective approaches. For all of the inputs, the many-

objective approach was able to yield better scores coupled with the refactoring

coverage objective. As seen in the refactoring coverage experiment, the scores

seemed to vary slightly less with the multi-objective approach compared to the

mono-objective counterparts. Again, this is likely due to the mono-objective

coverage scores being more likely to be achieved as a by-product of the quality

objective, leading to more fluctuating sets of scores among the tasks. On the

other hand, the refactoring coverage objective used in the multi-objective

approach will drive the solutions towards more diverse sets of refactorings,

pushing the coverage scores towards the maximum possible value. When in

comparison with the coverage scores given in the many-objective approach,

there was also a lot more variability among the mono-objective scores. For the

mono-objective approach, the lowest score was with JRDF whereas the highest

was with JHotDraw. With the many-objective approach, Apache XML-RPC was

lowest and GanttProject was highest, although 4 of the input programs

contained runs where the score was the maximum value of 1.

0
.0

1
1

5
3

3
5

0
.0

0
3

0
2

4
4

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Priority
Score

Mono-Objective Many-Objective

150

Figure 6.3 – Mean Refactoring Coverage Scores for Each Input

Figure 6.4 shows the average element recentness scores for each input with the

mono-objective and many-objective approaches. For each input program, the

scores between each approach were closely tied. For all but 1 of the inputs, the

many-objective approach was able to yield better scores coupled with the

recentness objective, although for JRDF, it did not. For both approaches, the

highest values were given with the Beaver input and the lowest were given with

XOM. There was generally a higher range of values with the mono-objective

approach, particularly with Beaver, GanttProject and JHotDraw.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Refactoring

Coverage
Score

Mono-Objective Many-Objective

151

Figure 6.4 – Mean Element Recentness Scores for Each Input

Figure 6.5 gives the average execution times for each input with the mono-

objective and many-objective searches. The times for the mono-objective and

many-objective tasks are similar, but in all cases, the many-objective approach

was faster on average. As observed before, the times generally increased as the

number of classes in the project increased, with the trend here being mirrored

by the times in the element recentness experiment. Therefore, the times for

GanttProject were longest and the tasks for JHotDraw took longer than XOM

despite XOM being the largest program in terms of lines of code. The input

program with the smallest number of classes, Beaver, took the shortest amount

of time to run the tasks for both approaches. The longest time taken by a task

was 44 minutes and 53 seconds by the mono-objective approach with

GanttProject. On the other hand, the shortest task, with the many-objective

approach using the Beaver input, was 2 minutes and 29 seconds. The larger

programs had a greater variability in times than the smaller ones. In

comparison with the times taken during in the element recentness experiment,

the times here, especially with the many-objective runs, seem to show an

improvement. The many-objective times for the GanttProject input in particular

were a lot shorter, with the average time being cut in half. Perhaps the many-

objective search is more efficient than the MOGA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Element

Recentness
Score

Mono-Objective Many-Objective

152

Figure 6.5 – Mean Times Taken for Each Input

Figure 6.6 gives the average quality gain values for each input program used

across every approach. All of the scores across every input gave an improvement

in the quality objective. For all but 1 of the inputs, the mono-objective approach

gives a better quality improvement than the multi/many-objective approaches.

With the GanttProject input, the Q-C permutation gave a higher average score

than the mono-objective approach. This can likely be attributed to the run that

generated a score of 0.422141. None of the other tasks in any of the

permutations yielded that high of a score with GanttProject. The smallest

improvement was given with the many-objective approach, with Apache XML-

RPC whereas the largest was found with the mono-objective approach with

XOM. For all of the inputs, the many-objective approach gave the smallest

improvement scores, with each of the multi-objective approaches giving a better

improvement. Of the scores, the ones found with the Beaver input seemed to

have a larger range than the other projects for all of the approaches.

0

5

10

15

20

25

30

35

40

45

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Time
(m)

Mono-Objective Many-Objective

153

Figure 6.6 – Mean Quality Gain Values for Each Input Across Each Genetic Algorithm Approach

Figure 6.7 gives the averages of the quality gain values from Figure 6.6 across

all the inputs. The error bars give the highest and lowest of the average values

in Figure 6.6. As observed, the many-objective approach gave the smallest

improvements. The Q-C permutation gave the closest score to the mono-

objective approach. The Q-R, Q-P-C and Q-C-R permutations all generated

similar scores. The 2 objective solutions that used the refactoring coverage

objective along with 1 of either priority or element recentness gave better scores

than those that used priority and element recentness together.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Quality

Gain

Mono Q-P Q-C Q-R Q-P-C Q-P-R Q-C-R Many

154

Figure 6.7 – Mean Quality Gain Values Across Each Genetic Algorithm Approach

Figure 6.8 shows the average priority scores for each input program used across

every relevant approach. For 2 of the JRDF scores, where they are difficult to

see, data labels have been provided. Although the many-objective approach was

not able to give better priority scores in all cases, each of the 3 multi-objective

permutations to use the priority objective were able to outperform the mono-

objective approach for all inputs. Likewise, they outperformed the many-

objective approach in all cases. Although there were negative scores given

(indicating that non-priority classes were among the list of classes refactored in

the solution) for some inputs with the mono-objective approach and with 1 input

using the many-objective approach, no such score was generated for any of the

multi-objective approaches. The largest score was given with the Q-P

permutation of the multi-objective approach, with the XOM input, whereas the

smallest was for JRDF with the many-objective approach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mono Q-P Q-C Q-R Q-P-C Q-P-R Q-C-R Many

Mean
Quality

Gain

155

Figure 6.8 – Mean Priority Scores for Each Input Across Each Relevant Genetic Algorithm Approach

Figure 6.9 gives the averages of the priority scores from Figure 6.8 across all the

inputs. The error bars give the highest and lowest of the average values in

Figure 6.8. The mono-objective score was the lowest, while the Q-P permutation

gave the highest score. The 2 permutations where the priority objective was

used in conjunction with the element-recentness objective gave lower

improvements among the multi-objective approaches, whereas when the priority

objective was used on its own with the quality objective or in conjunction with

the refactoring coverage objective, there was a greater improvement in the

priority score.

0
.0

1
1

5
3

3
5

0
.0

0
3

0
2

4
4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Priority
Score

Mono-Objective Q-P Q-P-C Q-P-R Many-Objective

156

Figure 6.9 – Mean Priority Scores Across Each Relevant Genetic Algorithm Approach

Figure 6.10 shows the average coverage scores for each input program used

across every relevant approach. For all of the inputs, all of the multi/many-

objective approaches were able to yield better scores coupled with the

refactoring coverage objective. The multi/many-objective scores seemed to be

similar for each input, with the many-objective approach generally yielding the

highest coverage scores among each approach. The exception to this is with the

Apache XML-RPC input, where the Q-P-C permutation had the highest coverage

score. The input that gave the highest average score was GanttProject input,

although maximum coverage scores of 1 were given across almost all of the

inputs. The mono-objective scores had a far larger amount of variation than any

of the other approaches, with scores as low as 0.059364, whereas the lowest

coverage score among any of the other approaches was 0.647059.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mono Q-P Q-P-C Q-P-R Many

Mean
Priority
Score

157

Figure 6.10 – Mean Refactoring Coverage Scores for Each Input Across Each Relevant Genetic

Algorithm Approach

Figure 6.11 gives the averages of the quality gain values from Figure 6.10 across

all the inputs. The error bars give the highest and lowest of the average values

in Figure 6.10. As observed, the mono-objective approach gave the smallest

score. The highest score was given with the many-objective approach. The

refactoring coverage objective actually works better along with either priority or

element recentness than it does alone, giving better scores. Likewise, the

objective works successfully when it is part of a many-objective approach with

both priority and element recentness.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Refactoring

Coverage
Score

Mono-Objective Q-C Q-P-C Q-C-R Many-Objective

158

Figure 6.11 – Mean Refactoring Coverage Scores Across Each Relevant Genetic Algorithm Approach

Figure 6.12 shows the average element recentness scores for each input program

used across every relevant approach. Of the different input programs, Beaver

generated the highest scores. The approach with the top score varied across each

input, but the highest average score is given with the Q-C-R permutation and

the Beaver input. Although the many-objective approach was, in one case, worse

than the mono-objective approach, all the other approaches gave better element

recentness scores across every input program.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mono Q-C Q-P-C Q-C-R Many

Mean
Refactoring

Coverage
Score

159

Figure 6.12 – Mean Element Recentness Scores for Each Input Across Each Relevant Genetic

Algorithm Approach

Figure 6.13 gives the averages of the quality gain values from Figure 6.12 across

all the inputs. The error bars give the highest and lowest of the average values

in Figure 6.12. The mono-objective approach gave the lowest score, while the Q-

R permutation gave the highest. With this objective, all the relevant multi-

objective approaches, along with the many-objective approach, had very similar

scores. Therefore, although their average scores ranged from 0.1682482 to

0.8878646, they all managed to average out between 0.51 and 0.56. This

objective supports the observations made with the priority objective results in

that the 2 approaches used that pair element recentness with priority gave

lower results, whereas when the objective is used only in conjunction with the

quality objective or if it is used with the refactoring coverage objective, the

scores were slightly better.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Element

Recentness
Score

Mono-Objective Q-R Q-P-R Q-C-R Many-Objective

160

Figure 6.13 – Mean Element Recentness Scores Across Each Relevant Genetic Algorithm Approach

Figure 6.14 gives the average execution times for each input program used

across every approach. For most approaches, the times were faster than the

mono-objective approach. There were 3 exceptions. The Q-C permutation took

longer with the GanttProject input and the Q-P permutation took longer with

JHotDraw and XOM. As discussed when inspecting the mono and many-

objective times, the tasks took longer depending on how many classes were

present in the input project. The longest average time was the aforementioned

time given with the Q-C permutation using GanttProject. The shortest time was

with the Q-P-R permutation with Beaver.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mono Q-R Q-P-R Q-C-R Many

Mean
Element

Recentness
Score

161

Figure 6.14 – Mean Times Taken for Each Input Across Each Genetic Algorithm Approach

Figure 6.15 gives the averages of the execution times from Figure 6.14 across all

the inputs. The error bars give the highest and lowest of the average values in

Figure 6.14. The mono-objective approach took the longest while the shortest

was the Q-P-R permutation. All of the multi/many-objective approaches gave

similar times, ranging from 13 minutes and 19 seconds to 16 minutes and 18

seconds.

Figure 6.15 – Mean Times Taken Across Each Genetic Algorithm Approach

0

5

10

15

20

25

30

35

40

45

Beaver Apache
XML-RPC

JRDF GanttProject JHotDraw XOM

Mean
Time
(m)

Mono Q-P Q-C Q-R Q-P-C Q-P-R Q-C-R Many

0

5

10

15

20

25

30

35

40

45

Mono Q-P Q-C Q-R Q-P-C Q-P-R Q-C-R Many

Mean
Time
(m)

162

6.4 Discussion

Whereas the refactoring coverage objective gave better scores when combined

with all of the other objectives in a many-objective approach, the priority and

element recentness objectives were both found to be less successful in

multi/many-objective setups when they were used together. Although the

solutions still gave better results in most cases (the notable exceptions being

those mentioned above) in comparison with a basic mono-objective approach, the

objectives weren’t able to generate scores as high as those generated in the other

permutations. As such, the conclusions derived from experiment 2 are that the

objectives don’t work as well together and that they may be conflicting with each

other when generating refactoring solutions. Another factor to take into

consideration is the input in question that produced the less desirable results. It

may be the case that for the JRDF input, many of the priority classes listed were

also among the oldest classes in relation to the set of program versions available

to the search. Therefore, it may have been more difficult to find possible

refactorings to apply to the solution that focus on the priority classes and are

also able to focus on the more recent elements of the project.

Therefore, if a developer has more interest in a refactored solution using the

classes specified, or in focusing on the most recent elements of code, it is

recommended to use them with only the quality objective or in conjunction with

the refactoring coverage objective, and to avoid using them together. On the

other hand, the refactoring coverage objective gave better results the more

objectives it was used with. So, if the code coverage of the refactorings in the

solution is more important, it is recommended that the refactoring coverage

objective is used in the many-objective solution with all of the other objectives to

get better scores.

163

6.5 Threats to Validity

6.5.1 Internal Validity

The stochastic nature of the search techniques means that each run will provide

different results. This threat to validity has been addressed by running each of

the tasks across 6 different open source programs and running against each

program 5 times for experiment 2 and 10 times for experiment 1. Average values

are then used to compare against each other. The choice of parameter settings

used by the search techniques can also provide a threat to validity due to the

option of using poor input settings. This has been addressed by using input

parameters deemed to be most effective through trial and error via previous

experimentation.

6.5.2 External Validity

In this study, the experimentation was performed on 6 different real world open

source systems belonging to different domains and with different sizes and

complexities. However, the experimentation and the capabilities of the

refactoring tool used are restricted to open source Java programs. Therefore, it

cannot be asserted that the results can be generalised to other applications or to

other programming languages.

6.5.3 Construct Validity

The validity of the experimentation is limited by the metrics used, as they are

experimental approximations of software quality, as well as the objectives used

to measure various aspects of the refactorings applied. What constitutes a good

metric for quality is very subjective. The cost measures used in the

experimentation can also indicate a threat to validity. Part of the effectiveness

of the search approaches was measured using execution time in order to

measure and compare cost.

6.5.4 Conclusion Validity

A lack of a meaningful comparative baseline can provide a threat by making it

harder to produce a conclusion from the results without the relevant context. In

order to provide descriptive statistics of the results, tasks have been repeated

164

and average values have been used to compare against. Another possible threat

may be provided by the lack of a formal hypothesis in the experimentation. At

the outset, 3 research questions have been provided and for the first 2 (relating

to experiment 1), a set of corresponding hypotheses have been constructed in

order to aid in drawing a conclusion. For RQ6.3, the objective values across the

different permutations of the search tested in experiment 2 are compared to

deduce the most suitable permutation for each secondary objective.

6.6 Conclusion

In this chapter an experiment was conducted to test the 4 objectives previously

constructed with the MultiRefactor tool. They were combined together in a

many-objective setup to improve the state of a set of open source Java programs.

To conduct this search, an adaptation of the many-objective GA, NSGA-III, was

used. The GA used the same configuration parameters as the NSGA-II

adaptation used in previous experimentation. The NSGA-III search was used to

improve the target projects in correspondence to the objectives measuring

quality, priority of refactored classes, code coverage of refactored elements and

recentness of refactored elements. To measure success in the many-objective

approach, a mono-objective search was conducted using the quality objective,

with each of the 3 supplementary objective scores output at the end of the search

for the top solution in each task. The mono-objective and many-objective scores

were then compared for each objective, as well as the times taken to run the

tasks.

A second experiment was conducted to investigate different combinations of the

3 supplementary objectives, in conjunction with the quality objective. Along with

the previous tasks in the mono-objective and many-objective approaches, 6

multi-objective setups were tested to use each permutation of the 3

supplementary objectives, along with the quality objective. Due to the different

input projects used over the course of the experiments in the previous chapters

and the normalisations applied to the supplementary objectives in this chapter,

each bi-objective setup was tested again. The scores were compared across all 8

different approaches for each of the objectives along with the time taken.

165

The average many-objective quality improvement scores were compared against

the mono-objective scores across 6 different programs and, for all inputs, the

mono-objective approach gave better improvements. The many-objective

approach gave improvements in quality across all the inputs. When the priority

objective was compared, 5 of the inputs gave better scores with the many-

objective approach, whereas the JRDF program gave better improvements with

the mono-objective approach. Likewise, for the element recentness objective, the

mono-objective approach gave a better score for the JRDF input but with the

refactoring coverage objective all inputs gave better scores with the many-

objective approach in comparison to the mono-objective approach. For every

input, the many-objective approach took less time. The tasks took longer

depending on the class size of the input program in question.

When the average quality improvement scores were compared for each of the 7

multi/many-objective approaches against the mono-objective approach, 1

approach yielded a better score for the GanttProject program than the mono-

objective approach. Each approach gave improvements in quality across all

inputs. When the priority scores were compared across all the approaches, each

of the multi-objective setups gave better values than the mono-objective

approach across all the inputs. Similarly, when the scores for the other 2

objectives, refactoring coverage and element recentness, were compared, the

multi-objective scores were higher than their mono-objective counterparts.

When the execution times were compared, all 7 of the multi and many-objective

approaches gave faster times than the mono-objective approach being compared

against. There was only 1 case where the average execution time was shorter for

the mono-objective approach, and that was with the same approach and input

that generated the better quality improvement score, the GanttProject program

with the refactoring coverage and quality objectives.

In order to test the aims of the experimentation and derive conclusions from the

results a set of research questions were constructed. RQ6.1 and RQ6.2 were

proposed to address experiment 1 and each had corresponding hypotheses.

RQ6.1 was concerned with the effectiveness of the quality objective in the many-

objective setup. To address it, the quality improvement results were inspected to

ensure that each run of the search yielded an improvement in quality. In all 60

of the different runs of the many-objective approach (as well as the 180 runs of

166

the 6 multi-objective approaches), there was an improvement in the quality

objective score, therefore rejecting the alternative hypothesis H6.1A and

implying support H6.1.

RQ6.2 looked at how effective the other 3 objectives were in a many-objective

setup in comparison with the mono-objective approach. With the refactoring

coverage objective, each input gave a better score with the many-objective

approach compared with the mono-objective approach although, for the other 2

objectives this wasn’t the case for all inputs. For the JRDF input, both the

priority and element recentness scores were smaller with the many-objective

approach. Therefore, for these 2 objectives, the alternative hypothesis H6.2A

cannot be fully rejected. The results generated in experiment 2 and analysis of

those results were able to address this observation, and helped provide an

explanation for why the JRDF input didn’t yield results that were as successful

with the applicable objectives.

To address RQ6.3 and derive the most successful combination of objectives to

use for each of the 3 supplemental objectives, the scores have been averaged

together for each input program to give overall scores for each permutation with

each objective. The priority objective and element recentness objectives are both

more successful in a bi-objective setup with the quality objective. This could go

some way towards explaining why they were unable to yield better scores in the

many-objective setup with the JRDF input. The refactoring coverage objective is

more successful in a 4-objective setup with the quality, priority and element

recentness objectives. The next chapter concludes the research by investigating

the contributions and outcomes, and outlining limitations and possible areas for

future work.

167

Chapter 7

Conclusions & Future Work

7. Conclusions & Future Work

7.1 Summary

hapter 1 outlined the research area of SBSE, with focus given to the area

examined within the thesis, software maintenance. The methodology of the

research conducted throughout the thesis was outlined by cataloguing the

research questions used to contextualise the scope of the research, as well as the

outcomes of the research itself. Chapter 2 examined in detail the different

search algorithms used in the experimentation. First, random search was

discussed along with HC and SA. Then, the basic GA was described, and SIAs

were investigated. Then multi-objective and many-objective EAs were explained,

in particular the NSGA-II and NSGA-III algorithms. Chapter 2 also analysed

and summarised the literature relating to SBSM. Trends in the literature were

isolated and discussed, along with gaps in the research area. Other, more

general SBSE papers were also discussed. Chapter 3 detailed the refactoring

tool used to conduct the research experimentation, MultiRefactor. The

framework of the tool was described and its capabilities were discussed along

with the search techniques, refactorings and metrics available to use.

Preliminary examinations tested an existing refactoring tool by comparing

metaheuristic search approaches and developing and testing a configuration to

measure and improve technical debt in software programs.

The experimentation began with Chapter 4. The metrics in the tool were tested

to derive the most relevant options to use. They were tested in isolation with the

C

168

GA. The configuration settings of the GA were also tested in order to find,

through trial and error, the most successful parameter configurations to use.

Once the metrics were tested to indicate the ones that are more useful with the

setup of the tool, they were used to compare the MOGA with the mono-objective

GA. Using the conclusions gained from this experimentation, Chapter 5

experimented with new objectives to use in a multi-objective approach. First, it

inspected and tested a priority objective, which used as input a list of classes to

focus the search on as well as a list of classes to disfavour. Then, it detailed a

refactoring coverage objective, to measure the amount of code coverage of the

refactorings applied, and tested that too. Finally, software version history was

used to gather information about how recently the code elements that had been

refactored were added to the software. This was used to construct a recentness

objective which was then tested in the same way as the others.

In order to verify the efficacy of these newly constructed objectives, they were

used with the MOGA in a bi-objective setup. The target objective was combined

with a quality objective constructed from the experimentation in Chapter 4. This

was then compared with a mono-objective search using just the quality objective

and then finding a measure of the secondary objective for the top solution. A

heuristic was used to define the top solution in the multi-objective search and

they were compared using the scores for the 2 objectives and the execution

times. Chapter 6 concluded the research by testing all of the constructed

objectives together in many-objective approach. The approach was tested to

gauge its validity and other permutations were also tested and compared to

derive how well the objectives work together in a refactoring approach.

7.2 Experimentation

The experimentation began with Chapter 4. This chapter inspected the

capabilities of the MultiRefactor tool and informed the decisions on how to go

forward with the options of the tool to further test new objectives. The

experimentation in Chapter 4 is split into 4 parts. First, the configuration

options of the available GA are inspected to deduce the choice of settings to use

in the later experimentation. To test these configurations, a set of tasks are set

169

up with the JHotDraw input (at the time, this was the largest program available

among the set of JSON, Mango, Beaver, Apache XML-RPC and JHotDraw used)

and using the Visibility Ratio metric. For these example tasks, the crossover and

mutation probabilities parameters were tested by having different values in

each of the tasks. Nine different permutations were used to test

crossover/mutation values of 0.3, 0.5 and 0.8. Among the tasks run, the

permutation with a crossover value of 0.2 and a mutation value of 0.8 was most

successful and took a relatively small amount of time in comparison with the

other options.

The second experiment then used the same setup, with crossover and mutation

values of 0.2 and 0.8 respectively, to test the other configuration options. The

number of generations, initial refactoring range and population size were tested

using trial and error. There were 27 different tasks set up, using different

permutations of the 3 parameters. Generation numbers of 50, 100 and 200 were

tested along with population sizes of 10, 50 and 100. The refactoring ranges

tested were the same as the generations. The metric improvement values were

compared against the time taken for each of the options, and the permutation

found to have the best trade-off was with 100 generations, a refactoring range of

50 and a population size of 50.

With the configuration parameters tested, experiment 3 then tested the

available metrics in the tool. Tasks were set up to test each of the 23 metrics

individually. This time, they were run for each of the 5 input programs 5 times

for every metric, in order to give a more well-rounded review of the performance

of the metrics. The metrics were ranked according to their average performance

across the input programs, with the ranking able to answer RQ4.1 in finding

the most volatile metrics used with the GA. In the final experiment, these ranks

were used to split the top 18 metrics into 3 separate groups to act as fitness

functions. Now that the configuration parameters had been tested for the GA,

and the metrics had been inspected to derive the ones that are more useful

within the scope of the refactoring tool, experiment 4 tested the effectiveness of

the MOGA against the GA.

The GA was tested with 3 different objectives, 1 for each group of metrics

derived. For each objective, there were 30 tasks run, 6 tasks for each of the 5

inputs. The MOGA was then set up with the 3 objectives combined into a multi-

170

objective approach. This, likewise, was run 6 times for each input. The average

objective values were compared, along with the time taken to run each

approach. To answer RQ4.2 and deduce whether the MOGA gave comparable

results to the GA runs, statistical tests were used to compare the metric function

improvement values. For 2 of the 3 objectives, the mono-objective approach gave

better improvement values, but they were not significantly better. The times

taken to run the single MOGA run were less than the times taken for each of the

GA runs for the single objectives. As a result of the experimentation in Chapter

4, an overall quality objective was derived using the set of metrics that made up

the 3 objectives in the final experiment. This, along with the configuration

parameters derived from the earlier trial and error experiments, was used in the

experimentation in the next chapters.

The 3 secondary objectives were tested in Chapter 5. The priority objective took

as input a list of classes to favour in the refactoring solution and optionally, a

list of classes to disfavour. For this experiment, the smallest input program,

JSON, was removed and 2 other programs (GanttProject and XOM) were added

to test. Using the quality objective made up of the metrics derived from the

previous experimentation in Chapter 4, the mono-objective GA was run 5 times

for each of the 6 programs. The search was modified to also output, in the final

population of results, the priority objective for those solutions. The MOGA was

then run, using both the quality objective and the newly proposed priority

objective. In order to choose classes to specify for each input, the number of

methods in each class was used. The top 5% of classes for the project with the

highest number of methods were used as the priority classes, and the bottom 5%

were used as the non-priority classes. After the GA and MOGA runs were

completed, using the configuration parameters derived from the previous

experimentation, the approaches were then compared.

To answer RQ5.1, the multi-objective quality scores were inspected to see

whether an improvement in quality can be given. For all the input programs,

the quality objective yielded improvements and, for the Mango input, the

improvement score was higher than with the mono-objective approach. RQ5.2

addressed the priority scores in the 2 approaches. The scores were found to be

significantly better for the multi-objective approach against the mono-objective

approach, using the Wilcoxon rank-sum statistical test. The average times for

171

each input were then compared. Again, the Wilcoxon rank-sum test was used to

derive that the times were not significantly different for each approach and, for

5 of the 6 inputs, the multi-objective approach took less time on average.

The refactoring coverage objective was tested next. Unlike the priority objective,

it didn’t take any external inputs to function. It captured information about the

refactored code elements in a solution to gain a measure of how often the specific

code elements were refactored. Like before, each approach was run 5 times for

each of the 6 input programs, in order to compare them. This time the multi-

objective approach used the quality objective and the new refactoring coverage

objective. The same configuration parameters were used for both approaches as

before. The multi-objective quality scores were inspected to answer RQ5.3, and

for all the input programs, the quality objective gave improvements. RQ5.4

addressed the coverage scores in the 2 approaches. The scores were found to be

significantly better for the multi-objective approach against the mono-objective

approach, using the Wilcoxon rank-sum statistical test. The average times for

each input were compared, and for 5 of the 6 inputs, the mono-objective

approach took less time on average. The Wilcoxon rank-sum test was used to

confirm that the mono-objective times were not significantly different.

The element recentness objective was proposed as well and was tested last. This

objective, like the priority objective before, depended on external input of

information into the tool in order to construct the objective measurement. It took

as input a set of previous versions of the target software to read in. Also like

with the priority experiment, the inputs that were tested were changed. Mango

was replaced with JRDF as it didn’t have multiple versions to use. Also, the

Apache XML-RPC and JHotDraw inputs used different versions of the code, in

order to use the other versions as part of the set of previous inputs to inform the

element recentness objective. Each approach was run 5 times for each of the 6

input programs, with the same configuration parameters as before. This time

the multi-objective approach used the quality objective with the element

recentness objective. The multi-objective quality scores were inspected to answer

RQ5.5, and for all of the input programs, the quality objective gave

improvements. RQ5.6 addressed the coverage scores in the 2 approaches. The

scores were found to be significantly better for the multi-objective approach

against the mono-objective approach, using the Wilcoxon rank-sum statistical

172

test. The average times for each input were compared, and for 5 of the 6 inputs,

the mono-objective approach took less time on average. The Wilcoxon rank-sum

test was used to confirm that the mono-objective times were not significantly

different.

The many-objective algorithm was used in Chapter 6 to set up a refactoring

approach that combines all 4 objectives proposed in the previous chapters. Like

the GA and MOGA before it, the many-objective algorithm used the same

configuration parameters. The measurement of the 3 secondary objectives was

updated in order to normalise their scores between 0 and 1 (or, in the case of the

priority objective, -1 and 1). The mono-objective GA tasks were repeated 10

times for each input program, with the values of all 3 secondary objectives given

for the top solution in the final population. The many-objective approach was

then run 10 times for each input as well, in order to compare the scores. To

address RQ6.1, the quality scores were inspected for the many-objective

approach. For all the inputs, the many-objective approach generated improved

quality scores. To answer RQ6.2, the many-objective scores for the priority,

refactoring coverage and element recentness objectives were compared against

the corresponding mono-objective scores. For the refactoring coverage objective,

the many-objective approach yielded better scores for all inputs. However, for

both the priority and element recentness objectives, there was 1 input (JRDF)

where the mono-objective approach gave a better average score. The many-

objective approach took less time for all of the inputs.

To address the behaviour observed for the JRDF input with the priority and

element recentness objectives, different permutations of the objectives were

tested together will the multi-objective algorithm to analyse whether any of the

pairs of objectives were incompatible. In order to address RQ6.3 and find out

which combination of objectives worked best together, there were 6 different

permutations of the objectives to test, as well as the mono-objective and many-

objective approaches tested already. Each permutation used the quality

objective along with 1 or 2 of the other objectives, and was run 5 times for each

of the 6 inputs. It was found that the priority and element recentness objectives

were less successful when they were used together, which may address why they

were less useful when compared with the refactoring coverage objective in the

many-objective approach. For both of these objectives, they gave better scores

173

when used in a bi-objective setup along with the quality objective. On the other

hand, the refactoring coverage objective was most successful with the many-

objective approach in comparison to the other options, and was less successful

when it wasn’t used along with the other secondary objectives. For all of the

multi-objective approaches, they took less time to run than the mono-objective

approach on average.

7.3 Outcomes

Five research questions were laid out in Chapter 1 that drove the research

within the thesis. Each question is outlined below along with the outcomes of

the research conducted to address them.

RQ1: What current refactoring and search-based software engineering tools

are available?

In Chapter 2, the tools proposed in the SBSM literature are discussed,

particularly in Section 2.8.7. Appendix B goes into more details about the SBSE

tools available by listing them and discussing each one. Appendix C also details

other useful tools for the research area. Tables are given to list open source

refactoring tools, commercial refactoring tools, open source search-based

optimisation tools and open source metrics tools. The A-CMA tool was tested

and used in Chapter 3, but wasn’t sufficient to experiment with multi-objective

and many-objective refactoring techniques.

RQ2: Can a fully automated, practical refactoring tool be developed using

techniques from previous literature to improve the maintenance of software?

Chapter 3 outlines the details of the MultiRefactor tool developed to refactor

software and improve the maintenance process of software development for Java

programs. The tool has been developed to include as many options for

refactoring as possible. It is highly configurable and contains 26 different

refactorings (with the Extract Subclass refactoring being added during the

course of the experimentation), 23 metrics and 6 different search techniques.

The tool is fully automated and produces information about the search

174

conducted as well as refactored, fully compilable Java source code. It can be used

for both research purposes (as it has within this thesis) or for practical purposes

to maintain Java software. Tasks can be set up to run multiple searches in 1 go,

so if you want to test different configurations or refactor multiple different Java

programs, the tool can be set up to do so without needing to continually rerun

the program.

RQ3: How useful is a multi-objective search-based software maintenance

approach in comparison with a mono-objective search-based approach?

In Chapter 4, the MultiRefactor tool is used to test and compare the multi-

objective and mono-objective optimisation approaches against each other. The

multi-objective approach gives comparable results for the objectives tested to

each of the mono-objective runs. It is also able to complete the 3-objective

approach in less time than any of the mono-objective approaches. Further

experimentation in Chapter 5 also compares results from multi-objective runs

with the mono-objective GA. The disadvantages are the following. Sometimes,

the multi-objective approach can take longer to run than the mono-objective

approach, although never significantly longer. Likewise, although the multi-

objective approach will give improvements in the objectives, the mono-objective

approach will generally give better results for the single objective that it focuses

on. For instance, in Chapter 5 when the quality objective is used in both

approaches, the mono-objective approach yields better improvements for that

single objective while the multi-objective approach works to improve that

objective as well as another. Therefore, if there is a single objective that needs to

be focused on, it seems the multi-objective approach is no substitute for the

simple GA in improving that objective on its own. On the other hand, if there are

multiple properties to keep in mind in a refactoring solution, the MOGA will be

able to generate suitable improvements for all of them.

RQ4: Can individual, novel objectives be measured and refactored in a

software program to maintain the code while also improving the individual

properties inspected?

Chapter 5 addresses this research question by proposing and testing 3 new

novel objectives in the MultiRefactor tool. The new objectives look at different,

more non-functional properties based around the applied refactorings

themselves (priority of classes refactored, code coverage of refactorings and

175

recentness of code elements refactored). These objectives are each tested

individually by using them in a multi-objective search along with the quality

objective tested in Chapter 4. The experiments conducted confirm that, for each

of these objectives, the objective can be used to improve the inspected property

while also maintaining the code to improve quality.

RQ5: Can numerous individual objectives be combined into a fully automated,

many-objective approach in order to improve a software program across

multiple different properties in an additive fashion, without losing the

improvement effect of any individual property?

In Chapter 6, a many-objective approach is set up to combine the 4 objectives

tested previously (quality, priority, refactoring coverage and element recentness)

into an overall framework. The approach is mostly successful in generating

refactoring solutions to improve all 4 objectives. However, the priority and

element recentness objectives do not seem to be as successful when combined

together. Further experimentation compares different permutations of the

objectives to see what the best combinations are. This experimentation confirms

that the priority and element recentness objectives are less successful when

combined together, although the refactoring coverage objective gives better

results the more objectives it is combined with. Therefore, although the many-

objective approach is effective in improving the 4 objectives, the priority and

element recentness objectives can yield better results when kept separate from

each other.

7.4 Comparison With Previous Literature

Twelve other approaches with associated tools for software maintenance can be

found in the literature. J/Art [102] detects design smells in the code and

JDeodorant [150] and TrueRefactor [153] also detect certain design smells and

remove them. Evolution Doctor [149] and the Advanced Refactoring Wizard

[148] work in a similar manner by finding certain types of issue in the structure

of the code and reorganising or refactoring the program to remove them.

Wrangler [151] applies elemental structural refactorings to Erlang programs to

176

resolve different types of modularity smells. Other tools provide modifications to

a software system in order to improve it, without finding specific defects to

resolve. Bunch [88] applies module clustering to a software system by looking at

the different modules and dependencies in the system. FermaT applies low-level

WSL-to-WSL transformations to reduce the size of programs. The A-CMA [117]

tool uses refactorings to improve the bytecode of a software program, according

to various software metrics. Similarly CODe-Imp [152], which was built from

the prototype tool Dearthóir [112], uses refactorings to improve the structure of

the software with the help of different software metrics. Before the Dearthóir

prototype was developed by O’Keeffe and Ó Cinnéide, Ó Cinnéide and Nixon had

developed a similar tool, DPT [107], to apply design patterns to code by

modifying the structure using different refactorings.

MultiRefactor was developed to address some of the weaknesses present among

these maintenance tools in order to be used for research and also to improve the

maintenance of actual software programs. Many of the tools modify some

artefact of the software in place of the code itself, and so the actual refactorings

to apply to improve the code still need to be done manually. Bunch generates

clustering solutions using module dependency graphs. J/Art only provides

limited refactoring suggestions for the design smells detected, and likewise,

Wrangler gives refactoring suggestions for the Erlang code. FermaT, although it

applies transformations to the code during the search, generates lists of

transformation sequences to be applied as the output. TrueRefactor generates

UML diagrams as an output and Dearthóir also applies transformations to a

design of the program. JDeodorant resolves the detected design smells in the

code itself, but to do so they need to be manually selected through a plugin.

Similarly, DPT is used by manually selecting the design patterns to be applied

to the code. A-CMA does apply the actual refactorings, but they are applied to

Java bytecode instead of to the source code. This leaves 3 tools. Evolution Doctor

reorganises the source files of a program library to resolve issues with their

organisation. The Advanced Refactoring Wizard and CODe-Imp are the 2 tools

that actually produce refactored code as the output of the process.

With MultiRefactor, Java code can be read in (as long as it compiles) and at the

end of the refactoring process, Java code will be given as an output, allowing the

process to be fully automated and eliminating the need to apply any further

177

changes to the code afterwards. It is also highly configurable, giving the user the

ability to use different combinations of refactorings and metrics to improve the

structure of the software depending on their specific needs. The tool has 25

refactorings and 23 metrics to use as well as a number of different search

options. For comparison, Wrangler and JDeodorant can each resolve 4 different

design smells and TrueRefactor can resolve 5. J/Art can detect 15 types of design

smell and the Advanced Refactoring Wizard can detect 19, but can only resolve 4

of them. Evolution Doctor looks at 4 different factors to resolve. Dearthóir has 8

different refactorings and 5 metrics, while FermaT has 20 different low-level

refactorings. A-CMA also has 20 different refactorings but also has 24 metrics

available. Finally, CODe-Imp has 14 refactorings and 24 metrics (although 20 of

these are related to either cohesion or coupling). This means MultiRefactor has

more available refactorings than any of the other tools and has only 1 less

metric available than the tools containing the top number of metrics, A-CMA

and CODe-Imp.

The searches available include metaheuristic search techniques as well as GAs.

There are adaptations of the multi-objective NSGA-II algorithm and the many-

objective NSGA-III algorithm, meaning that this tool can be used to apply multi-

objective and many-objective approaches. This allows the user to select various

different properties that they want to improve in the software structure and

allow the tool to generate code that satisfies those aims. Although the CODe-

Imp tool has been outfitted to include a basic GA, none of the tools have the

capability of using multi-objective or many-objective techniques to refactor the

software.

A number of studies have used some form of a quality measure to aid with

improving the software. O’Keeffe and Ó Cinnéide [115], [116] used the

understandability function of the QMOOD suite to measure quality when

comparing different search algorithms and input parameters for refactoring. Koc

et al. [117] implemented a measure of quality that incorporates a normalised

sum of 17 of the 24 metrics available in the A-CMA tool to give an overall

normalised metric score. Likewise, Seng et al. [121] used a weighted sum of 7

normalised metrics to create a fitness function to capture coupling, cohesion,

complexity and stability in the software. In numerous studies, Ouni et al.[139],

[140] and Mkaouer et al. [144], [145] defined a measure of quality as one

178

objective in a multi-objective approach. In each of the studies, quality was

defined by measuring the number of code smells resolved in a software system,

as a ratio of the number of smells corrected over the number detected.

The quality function that was developed from the metric experimentation in

Chapter 4 and defined in Table 5.1 is made up of a normalised sum of the

available metrics in the tool, similar to how Koc et al. and Seng et al. developed

their quality measures. The quality measure used by O’Keeffe and Ó Cinnéide

was less a measure of general quality and more a measure of a specific property

of the software (this was one of 6 properties – reusability, flexibility,

understandability, functionality, extendibility and effectiveness – defined by

Bansiya and Davis with their QMOOD suite [5]). For Ouni et al. and Mkaouer et

al., the quality was defined by the number of code smells corrected in a system,

so its generality is restricted by the number of code smells supported, and the

ability to find code smells in the solution. On the other hand, Seng et al. selected

a set of metrics to combine coupling, cohesion, complexity and stability into an

overall quality measure. Likewise, Koc et al. combined most of the metrics they

had available in their tool, A-CMA, to create an overall measure of quality,

although how these metrics were selected is unclear. The difference between

those 2 approaches and the quality objective used in this thesis for

experimentation is that the metrics used in the objective were selected based on

preliminary experimentation. Eighteen of the 23 metrics available in the tool

were used in the quality function based on the volatility of each of the individual

metrics, removing the 5 least effective metrics from the measure and using the

metrics that worked better with the MultiRefactor tool at refactoring a range of

different software systems.

One other study proposed a priority measure to use in a fitness function for

software refactoring. Ouni et al. [147] used a priority measure as one of 4

measures in a multi-objective approach using CRO. For this measure, they

ranked the 7 code smells they were aiming to resolve, to give some more

importance than others. This is completely different to the priority objective

proposed in Chapter 5 of this thesis, which instead gives some of the classes in

the software more importance, influencing which classes the refactorings are

applied in. Also, the priority objective gives the user of the tool the control to

indicate which classes are more important depending on the program being

179

refactored, to further contrast with the priority measure of Ouni et al. where

they provide the ranking the code smells based on their own experience. The

objective from Chapter 5 also gives the option to indicate classes that should be

avoided in the search.

Although the refactoring coverage objective was entirely novel and unlike other

objectives used for SBSM studies, a few other studies relating to SBSM have

used version history of the target software to aid in refactoring. Pérez et al. [143]

proposed an approach that involved reusing complex refactorings that had

previously been used. Ouni et al. [139], [140] used previous versions of code to

find a set of refactorings applied in those previous versions. They also [141]

analysed co-change, an attribute that identifies how often 2 objects in a project

are refactored together at the same time, as well as the number of refactorings

applied in the past to the code elements. An extended study [37] investigated the

use of past refactorings from other projects to calculate an objective value when

the change history for the applicable project is not available.

These studies investigating software history to aid with maintenance are

concerned with the refactorings applied in the past. The difference with these

studies and the element recentness objective proposed in Chapter 5 is that the

element recentness objective investigates the presence of the code elements that

have been refactored in the current solution and not the refactorings that have

been applied in the past. The MultiRefactor tool also implements the element

recentness objective as a fully automated solution, whereas the studies of Ouni

et al. (and likely of Pérez et al. also if their approach was implemented) do not

actually apply the proposed refactorings as part of the solution. Instead, they

return a list of refactorings to be attempted.

While a number of recent studies in SBSM have used multi-objective techniques,

not a lot of studies have progressed to using many-objective techniques. In 2014

and 2015, Mkaouer et al. experimented with many-objective techniques using

NSGA-III (which itself had been introduced in 2013 [49]). They tested the

algorithm with different numbers of objectives and compared it against other

EAs to see how effective it is at handling multiple objectives in comparison [25],

[146]. Mkaouer et al. also used the algorithm to combine objectives from

previous work (number of classes per package, number of packages, cohesion,

coupling, number of code changes, refactoring history [139] and semantic

180

similarity [138]) together into an approach to re-modularise software [42]. The

many-objective experimentation conducted in this thesis with the MultiRefactor

tool similarly combines the 4 objectives developed in the previous experiments.

The objectives used, though, are different to the ones used by Mkaouer et al. The

approach used is also different. An adaptation of the NSGA-III algorithm is also

used but instead of generating refactoring suggestions for a software system, it

actually applies the refactorings to the code. Thus, the solutions generated will

be refactored versions of the software code.

7.5 Novel Contributions

The primary contributions of the thesis that result from the research are

outlined below:

1. A systematic analysis of current opportunities with SBSM. The various

tools currently available are analysed and inspected. The different

search-based optimisation techniques are also inspected and the different

searches are compared against each other to analyse the advantages and

disadvantages of different approaches. The limitations of the current

approaches are analysed and are either outlined or addressed.

2. A new tool is developed and proposed for fully automated maintenance of

Java software using mono-objective, multi-objective and many-objective

search techniques. The tool is equipped with numerous refactorings and

metrics and is fully configurable. It is available online for use and can be

used for research purposes or as a maintenance tool to assist with the

improvement and maintenance of Java software.

3. An objective is proposed and tested to measure quality in a software

program. It can be used to maintain the software and improve its quality

in respect to various software metrics available in the refactoring tool.

4. An objective has been proposed and tested to measure the priority of the

classes refactored in a refactored solution. Using as input a list of classes

to favour and, optionally, a list of classes to disfavour, the objective will

guide the refactorings in the search with respect to the relevant classes.

181

5. An objective is proposed and tested to measure the code coverage of the

refactoring solutions generated in the refactoring tool. The objective will

investigate and measure the amount of code coverage given by the

refactorings in a refactoring solution by inspecting the code elements that

are refactored.

6. An objective is proposed and tested to measure the recentness of the code

elements refactored in a refactoring solution, in relation to a set of

previous versions of the code. The previous versions of the code are read

in as inputs and used to indicate the age of the code elements refactored

by tracing back how far among the versions the elements are present.

The more previous versions of the code that are read in, the more

accurate the objective measurement will be.

7. The objectives proposed are combined into an overall framework to use

with software in conjunction with the many-objective functionality in

order to improve the software across various different properties. They

have also been normalised along with the quality objective in order to be

more suitable to use together. The objectives have been tested together in

different permutations to suggest the best combinations to use for overall

success.

8. The tasks constructed for all of the experimentation are implemented

into the tool for other users to take advantage of and the data gathered

from the experimentation in the thesis is also included in the online

repository hosting the tool. This allows developers to make use of the

tasks constructed in the tool and researchers to inspect and build upon

the research conducted.

7.6 Limitations & Future Work

There are various limitations in the scope of the research in the thesis and in

the experimentation conducted. The following subsections discuss these

limitations and possibilities for future research as well as potential extensions

and additions to be made to the MultiRefactor tool.

182

7.6.1 Future Adoption Steps

The refactoring tool constructed for the research only works with Java

programs. Therefore if the software program being maintained has been written

in another programming language, it cannot be refactored using the tool. A

possible extension for the tool is therefore to be able to read in and refactor

programs written in other common programming languages, such as C++. The

capability of the refactoring tool is also restricted by the number of refactorings

available. There are currently 26 refactorings available, although there are

dozens of others that could be added to the tool. Likewise, there could be more

metrics added in order to improve the customisation possibilities in the

refactoring process. There are many potential search techniques to adapt into

the tool and experiment with, beyond those that have been used. Swarm

algorithms have been used scarcely in the previous literature, but with

promising results. Likewise, other multi-objective and many-objective EAs could

be used to improve the efficiency of the search process, such as those listed in

Section 2.6 and Section 2.7.

One way to use the artefacts of a software project could be to incorporate other

techniques to detect refactorings applied by developers in the industrial code (or

use change logs to store changes made. This information could then be used to

influence in certain ways the refactorings applied in the automated approach,

such as in the approaches used by Pérez et al. [143] and Ouni et al. [37], [139]–

[141]. Another option is to incorporate the use of unit tests with the automated

refactoring approach to improve the solutions returned. The unit tests could be

run to check whether the refactoring solutions generated break any tests, and

this could be used to validate the refactorings applied. If the unit tests can be

run automatically, during the search the results could be used to influence the

population returned at the end, with the top solutions passing all of the tests.

Another possibility is to integrate the MultiRefactor approach used to refactor

software with other aspects of maintenance to make the process as efficient and

automated as possible. As an example, the GenProg tool [104] is used to

automated software repair and error resolutions. Further work could be done to

incorporate an automated software repair tool such as GenProg with the

MultiRefactor to cover more aspects of the maintenance process.

183

7.6.2 Future Research Directions

The experiments conducted in the thesis, although they have been applied to

different software projects and repeated numerous times, are still limited in the

scale of the tasks conducted. In order to support the conclusions drawn from the

experimentation, the experiments would need to be repeated on a larger scale

and under different conditions. The experimentation is also limited by the

example programs used. All of the target programs tested were open source. The

sizes of the programs ranged from small to medium size (from 2,196 lines of code

to 45,136). To support the testing conducted in the research, further

experimentation should be conducted with larger programs and programs of

different types. It would be useful to gain access to proprietary software to see

what information can be gleaned from testing programs that are being actively

developed by a company. Further experimentation with industrial code and

other aspects of the software project could potentially yield more generalisable

results than testing open source programs, and the code would likely be of a

more realistic size.

Furthermore, it would be helpful to gain the insight of experienced developers

by asking for their opinion of the capabilities of the tool and of the output code

produced by the refactoring process. This could be achieved through surveys to

provide a qualitative study of the effectiveness of the tool. The opinions gained

may help to highlight any practical issues that may be present in using an

automated refactoring tool such as MultiRefactor to maintain the code as part of

the development process. Such an insight may be valuable in suggesting

improvements and additions to make to the tool to help equip the user with

options. Moreover, if an experienced developer was to use the tool and

experiment with its capabilities, as well as the proposed objectives, they could

convey valuable opinions on how helpful these capabilities can be, and which

capabilities would prove most useful for them. Case studies could be set up

using the tasks and capabilities currently available within the tool allow the

developers to experiment with it. Also, if the tool could be used to experiment

using the software that the developers use, then the combined insight of

developer opinion and an industrial target program could be used to gained a

more realistic insight into how effective the MultiRefactor tool and the

184

multi/many-objective search-based approach could be in tackling the software

maintenance issue.

There is also room to investigate and build upon the approaches proposed in

other SBSM papers. For example, Amal et al. [160], introduced an artificial

neural network to choose between solutions in the final population of the search.

This could be used with the MultiRefactor tool to replace the more basic

heuristics used with the multi-objective and many-objective tasks to choose

solutions. Another study by White et al. [158] investigated a multi-objective

approach which balanced a functional objective with a non-functional objective.

Further experimentation with the MultiRefactor tool could be conducted to

incorporate other non-functional measures of aspects like security and

performance.

All of the possibilities for future work with the research discussed in the

preceding sections are summarised and listed below:

1. Extension of the MultiRefactor tool to be able to refactor other

programming languages beyond Java.

2. Further experimentation with larger programs and programs of different

types.

3. Qualitative analysis of the practicality of the MultiRefactor tool by using

surveys and case studies to gain the opinions of software developers.

4. Experimentation with proprietary software to yield more generalisable

results.

5. Use of other aspects of a software project such as change logs or unit

tests to further influence how the refactorings are chosen or how the

fitness for each refactoring solution is calculated.

6. Further insight into the applicability of the MultiRefactor approach using

the opinions and insights of experienced developers.

7. Further additions to the capabilities of the MultiRefactor tool through

the implementation of other refactorings, metrics and secondary

objectives.

8. Further experimentation with other types of search techniques such as

SIAs, as well as other multi-objective and many-objective EAs.

9. Incorporation of other techniques introduced in previous SBSM research

such as the use of artificial neural networks to choose between solutions,

185

or the use of non-functional measures such as security and performance

to influence the search.

10. Incorporation of other techniques used to automate other aspects of the

maintenance process such as software repair.

11. Further replication of the experimentation conducted with more input

programs and in more realistic conditions.

7.7 Final Comments

This work has built on a growing body of research into how to automatically

refactor software to aid in software maintenance. There is still plenty of scope

for research in this field and the experimentation and analysis performed within

this thesis allows for further advancement in the directions taken within.

Furthermore, the automated tool that has been developed for the research gives

an opportunity for further analysis of the experimental data and replications of

the experimentation carried out. The capabilities of the tool provide the freedom

to continue investigating this research area with other options and techniques,

and build upon the research conducted.

Technical debt can cause the structure of a software project to be degraded over

time, making it necessary to restructure the program before new functionality

can be added. This costs the developer time as the overall development time for

functionality is offset by this obligatory cleaning up of code. It is estimated that

the maintenance process takes 70-75% of development effort [173], [174].

Automated refactoring of the software can make the software easier to maintain,

and therefore has the potential to drastically reduce this cost. Using search-

based refactoring may also make the process of changing the code itself less

tedious and allow the developer to concentrate on what aspects of the software

need to be improved instead of how to go about improving them. Therefore, the

research conducted within this thesis has value to software developers and

software companies with its potential to help reduce the cost of development and

optimise the developer’s skills.

186

References

References

[1] M. Harman and B. F. Jones, “Search-Based Software Engineering,” Inf. Softw.

Technol., vol. 43, no. 14, pp. 833–839, Dec. 2001.

[2] Y. Zhang, “CREST SBSE Repository,” 2017. [Online]. Available:

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/. [Accessed: 27-Sep-2017].

[3] R. C. Martin, Agile Software Development, Principles, Patterns, And Practices.

2003.

[4] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite For Object Oriented

Design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[5] J. Bansiya and C. G. Davis, “A Hierarchical Model For Object-Oriented Design

Quality Assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp. 4–17, 2002.

[6] M. Harman and L. Tratt, “Pareto Optimal Search Based Refactoring At The

Design Level,” in 9th Annual Conference on Genetic and Evolutionary

Computation, GECCO 2007., 2007, pp. 1106–1113.

[7] R. Vivanco and N. Pizzi, “Finding Effective Software Metrics To Classify

Maintainability Using A Parallel Genetic Algorithm,” in 6th Annual Conference

on Genetic and Evolutionary Computation, GECCO 2004., 2004, pp. 1388–1399.

[8] O. Räihä, “An Updated Survey On Search-Based Software Design,” 2009.

[9] C. L. Simons and I. C. Parmee, “Single And Multi-Objective Genetic Operators In

Object-Oriented Conceptual Software Design,” in 8th Annual Conference on

Genetic and Evolutionary Computation, GECCO 2006., 2006, pp. 1957–1958.

[10] S. Yoo and M. Harman, “Pareto Efficient Multi-Objective Test Case Selection,” in

International Symposium On Software Testing And Analysis, ISSTA 2007., 2007.

[11] Y. Zhang, M. Harman, and S. A. Mansouri, “The Multi-Objective Next Release

Problem,” in 9th Annual Conference on Genetic and Evolutionary Computation,

GECCO 2007., 2007.

[12] C. L. Simons and I. C. Parmee, “A Cross-Disciplinary Technology Transfer For

Search-Based Evolutionary Computing: From Engineering Design To Software

Engineering Design,” Eng. Optim., vol. 39, no. 5, pp. 631–648, 2007.

[13] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang, “‘Fairness

Analysis’ In Requirements Assignments,” in 16th IEEE International

Requirements Engineering Conference., 2008.

[14] C. L. Simons and I. C. Parmee, “Agent-Based Support For Interactive Search In

Conceptual Software Engineering Design,” in Genetic And Evolutionary

Computation Conference, GECCO 2008, 2008, pp. 1785–1786.

[15] Z. Wang, K. Tang, and X. Yao, “A Multi-Objective Approach To Testing Resource

Allocation In Modular Software Systems,” in IEEE Congress on Evolutionary

Computation, CEC 2008., 2008, pp. 1148–1153.

[16] J. J. Durillo, Y. Zhang, E. Alba, and A. J. Nebro, “A Study Of The Multi-Objective

Next Release Problem,” in 1st International Symposium On Search-Based

187

Software Engineering, SSBSE 2009., 2009, pp. 49–58.

[17] C. L. B. Maia, R. A. F. Do Carmo, F. G. De Freitas, G. A. L. De Campos, and J. T.

De Souza, “A Multi-Objective Approach For The Regression Test Case Selection

Problem,” in XLI Brazilian Symposium of Operational Research, XLI SBPO

2009., 2009, pp. 1824–1835.

[18] C. L. B. Maia, F. G. De Freitas, and J. T. De Souza, “Applying Search-Based

Techniques For Requirements- Based Test Case Prioritization,” in Proceedings of

the Brazilian Workshop on Optimization in Software Engineering, WOES 2010.,

2010, pp. 24–31.

[19] M. Bowman, L. C. Briand, and Y. Labiche, “Solving The Class Responsibility

Assignment Problem In Object-Oriented Analysis With Multi-Objective Genetic

Algorithms,” IEEE Trans. Softw. Eng., vol. 36, no. 6, pp. 817–837, 2010.

[20] J. J. Durillo, Y. Zhang, E. Alba, M. Harman, and A. J. Nebro, “A Study Of The Bi-

Objective Next Release Problem,” Empir. Softw. Eng., vol. 16, no. 1, pp. 29–60,

2011.

[21] M. M. A. Brasil, T. G. N. Da Silva, F. G. De Freitas, J. T. De Souza, and M. I.

Cortés, “Multiobjective Software Release Planning With Dependent

Requirements And Undefined Number Of Releases,” in 13th International

Conference on Enterprise Information Systems, ICEIS 2011., 2011, pp. 97–107.

[22] T. E. Colanzi, W. K. G. Assunção, S. R. Vergilio, and A. T. R. Pozo, “Generating

Integration Test Orders For Aspect-Oriented Software With Multi-Objective

Algorithms,” in Latin-American Workshop on Aspect-Oriented Software

Development, LA-WASP 2011., 2011.

[23] W. K. G. Assunção, T. E. Colanzi, A. T. R. Pozo, and S. R. Vergilio, “Establishing

Integration Test Orders Of Classes With Several Coupling Measures,” in 13th

Annual Genetic and Evolutionary Computation Conference, GECCO 2011., 2011,

pp. 1867–1874.

[24] S. Yoo, M. Harman, and S. Ur, “GPGPU Test Suite Minimisation: Search Based

Software Engineering Performance Improvement Using Graphics Cards,” Empir.

Softw. Eng., vol. 18, no. 3, Mar. 2013.

[25] W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “High

Dimensional Search-Based Software Engineering: Finding Tradeoffs Among 15

Objectives For Automating Software Refactoring Using NSGA-III,” in Genetic

and Evolutionary Computation Conference, GECCO 2014., 2014.

[26] C. A. Coello Coello, “A Comprehensive Survey Of Evolutionary-Based

Multiobjective Optimization Techniques,” Knowl. Inf. Syst. ., vol. 1, no. 3, 1999.

[27] G. G. Yen and H. Lu, “Dynamic Multiobjective Evolutionary Algorithm: Adaptive

Cell-Based Rank And Density Estimation,” IEEE Trans. Evol. Comput., vol. 7, no.

3, pp. 253–274, 2003.

[28] J. D. Knowles and D. W. Corne, “M-PAES: A Memetic Algorithm For

Multiobjective Optimization,” in IEEE Congress on Evolutionary Computation,

CEC 2000., 2000, pp. 325–332.

[29] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm

For Multiobjective Optimization,” in IEEE World Conference On Computational

Intelligence., 1994.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast And Elitist

188

Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6,

no. 2, pp. 182–197, 2002.

[31] J. D. Knowles and D. W. Corne, “Approximating The Nondominated Front Using

The Pareto Archived Evolution Strategy,” J. Evol. Comput., vol. 8, no. 2, pp. 149–

172, 2000.

[32] H. A. Abbass, R. Sarker, and C. Newton, “PDE: A Pareto–Frontier Differential

Evolution Approach For Multi-Objective Optimization Problems,” in IEEE

Congress on Evolutionary Computation, CEC 2001., 2001.

[33] D. W. Corne, J. D. Knowles, and M. J. Oates, “The Pareto Envelope-Based

Selection Algorithm For Multiobjective Optimization,” in 6th International

Conference on Parallel Problem Solving from Nature., 2000.

[34] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative

Case Study And The Strength Pareto Approach,” IEEE Trans. Evol. Comput., vol.

3, no. 4, pp. 257–271, 1999.

[35] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving The Strength Pareto

Evolutionary Algorithm,” in Evolutionary Methods for Design Optimization and

Control with Applications to Industrial Problems, EUROGENS 2001., 2001.

[36] N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated

Sorting In Genetic Algorithms,” J. Evol. Comput., vol. 2, no. 3, 1994.

[37] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and M. S. Hamdi, “Improving

Multi-Objective Code-Smells Correction Using Development History,” J. Syst.

Software., vol. 105, pp. 18–39, 2015.

[38] K. Deb and D. K. Saxena, “Searching For Pareto-Optimal Solutions Through

Dimensionality Reduction For Certain Large-Dimensional Multi-Objective

Optimization Problems,” in IEEE Congress On Evolutionary Computation, CEC

2006., 2006.

[39] M. Garza-Fabre, G. T. Pulido, and C. A. Coello Coello, “Ranking Methods For

Many-Objective Optimization,” in Mexican International Conference On Artificial

Intelligence, MICAI 2009., 2009, pp. 633–645.

[40] A. S. Sayyad, T. Menzies, and H. Ammar, “On The Value Of User Preferences In

Search-Based Software Engineering: A Case Study In Software Product Lines,” in

35th International Conference on Software Engineering, ICSE 2013., 2013, pp.

492–501.

[41] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable Product Line

Configuration: A Straw To Break The Camel’s Back,” in 28th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2013., 2013.

[42] W. Mkaouer, M. Kessentini, P. Kontchou, K. Deb, S. Bechikh, and A. Ouni,

“Many-Objective Software Remodularization Using NSGA-III,” ACM Trans.

Softw. Eng. Methodol., vol. 24, no. 3, 2015.

[43] S. Yang, M. Li, L. Xiaohui, and J. Zheng, “A Grid-Based Evolutionary Algorithm

For Many-Objective Optimization,” IEEE Trans. Evol. Comput., vol. 17, no. 5, pp.

1–16, 2013.

[44] J. Bader and E. Zitzler, “HypE  : An Algorithm For Fast Hypervolume-Based

Many-Objective Optimisation,” Evol. Comput., vol. 19, no. 1, pp. 1–25, 2011.

[45] E. Zitzler and S. Künzli, “Indicator-Based Selection In Multiobjective Search,” 8th

189

Int. Conf. Parallel Probl. Solving from Nat. (PPSN VIII), pp. 1–11, 2004.

[46] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based

On Decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, 2007.

[47] E. J. Hughes, “Multiple Single Objective Pareto Sampling,” in Congress on

Evolutionary Computation, CEC 2003., 2003.

[48] S. Kukkonen and J. Lampinen, “Ranking-Dominance And Many-Objective

Optimization,” in IEEE Congress on Evolutionary Computation, CEC 2007., 2007,

pp. 3983–3990.

[49] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimization Algorithm

Using Reference-Point Based Non-Dominated Sorting Approach, Part I: Solving

Problems With Box Constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp.

1–23, 2013.

[50] L. Thiele, K. Miettinen, P. J. Korhonen, and J. Molina, “A Preference-Based

Evolutionary Algorithm For Multi-Objective Optimization,” Evol. Comput., vol.

17, no. 3, pp. 411–436, 2009.

[51] H. K. Singh, A. Isaacs, and T. Ray, “A Pareto Corner Search Evolutionary

Algorithm And Dimensionality Reduction In Many-Objective Optimization

Problems,” IEEE Trans. Evol. Comput., vol. 15, no. 4, pp. 539–556, 2011.

[52] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-Inspired

Coevolutionary Algorithms For Many-Objective Optimization,” IEEE Trans. Evol.

Comput., vol. 17, no. 4, pp. 474–494, 2013.

[53] F. Di Pierro, S.-T. Khu, and D. A. Savić, “An Investigation On Preference Order -

Ranking Scheme For Multi Objective Evolutionary Optimization,” IEEE Trans.

Evol. Comput., vol. 11, no. 1, pp. 1–33, 2007.

[54] L. Ben Said, S. Bechikh, and K. Ghédira, “The r-Dominance: A New Dominance

Relation For Interactive Evolutionary Multicriteria Decision Making,” IEEE

Trans. Evol. Comput., vol. 14, no. 5, pp. 801–818, 2010.

[55] K. Deb and J. Sundar, “Reference Point Based Multi-Objective Optimization

Using Evolutionary Algorithms,” in Genetic and Evolutionary Computation

Conference, GECCO 2006., 2006, pp. 635–642.

[56] I. Das and J. E. Dennis, “Normal-Boundary Intersection: A New Method For

Generating The Pareto Surface In Nonlinear Multicriteria Optimization

Problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–657, 1998.

[57] H. Jain and K. Deb, “An Evolutionary Many-Objective Optimization Algorithm

Using Reference-Point-Based Nondominated Sorting Approach, Part II: Handling

Constraints And Extending To An Adaptive Approach,” IEEE Trans. Evol.

Comput., vol. 18, no. 4, pp. 602–622, 2014.

[58] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,

S. Mancoridis, K. Rees, M. Roper, and M. Shepperd, “Reformulating Software

Engineering As A Search Problem,” IEE Proc. - Software., vol. 150, no. 3, pp. 1–

25, 2003.

[59] M. Harman and J. Clark, “Metrics Are Fitness Functions Too,” in 10th

International Symposium on Software Metrics, METRICS 2004., 2004, pp. 1–12.

[60] M. Harman, “The Current State And Future Of Search Based Software

Engineering,” in Future Of Software Engineering, FOSE 2007., 2007, pp. 342–

190

357.

[61] M. Harman, “Search Based Software Engineering For Program Comprehension,”

in 15th IEEE International Conference on Program Comprehension, ICPC 2007.,

2007, pp. 3–13.

[62] M. Harman, “Why The Virtual Nature Of Software Makes It Ideal For Search

Based Optimization,” in 13th International Conference on Fundamental

Approaches to Software Engineering, FASE 2010., 2010, pp. 1–13.

[63] M. Harman, “Software Engineering Meets Evolutionary Computation,”

Computer., vol. 44, no. 10, pp. 31–39, 2011.

[64] M. D. O. Barros and A. C. Dias Neto, “Threats To Validity In Search-Based

Software Engineering Empirical Studies,” Rio de Janeiro, Brazil, 2011.

[65] F. G. De Freitas and J. T. De Souza, “Ten Years Of Search Based Software

Engineering: A Bibliometric Analysis,” in 3rd International Symposium On

Search-Based Software Engineering, SSBSE 2011., 2011, pp. 18–32.

[66] S. R. Vergilio, T. E. Colanzi, A. T. R. Pozo, and W. K. G. Assunção, “Search Based

Software Engineering: A Review From The Brazilian Symposium On Software

Engineering,” in 25th Brazilian Symposium on Software Engineering, SBES

2011., 2011, pp. 50–55.

[67] T. E. Colanzi, S. R. Vergilio, W. K. G. Assunção, and A. Pozo, “Search Based

Software Engineering: Review And Analysis Of The Field In Brazil,” J. Syst.

Software., vol. 86, no. 4, pp. 970–984, 2013.

[68] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.

MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N.

Zazworka, “Managing Technical Debt In Software-Reliant Systems,” in FSE/SDP

Workshop on Future of Software Engineering Research, FoSER 2010., 2010, pp.

47--52.

[69] E. Allman, “Managing Technical Debt,” Queue., vol. 10, no. 3, pp. 50–55, 01-Mar-

2012.

[70] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amanatidis,

“Estimating The Breaking Point For Technical Debt,” in 7th International

Workshop on Managing Technical Debt, MTD 2015., 2015, pp. 53–56.

[71] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching For

Build Debt: Experiences Managing Technical Debt At Google,” in 3rd

International Workshop on Managing Technical Debt, MTD 2012., 2012.

[72] D. Fatiregun, M. Harman, and R. Hierons, “Search Based Transformations,” in

Genetic and Evolutionary Computation Conference, GECCO 2003., 2003, pp.

2511–2512.

[73] D. Fatiregun, M. Harman, and R. M. Hierons, “Evolving Transformation

Sequences Using Genetic Algorithms,” in 4th IEEE International Workshop on

Source Code Analysis and Manipulation, SCAM 2004., 2004, pp. 65–74.

[74] H. Jiang, “Can The Genetic Algorithm Be A Good Tool For Software Engineering

Searching Problems?,” in 30th Annual International Computer Software and

Applications Conference, COMPSAC 2006., 2006, pp. 362–366.

[75] H. Jiang, C. K. Chang, D. Zhu, and C. Shuxing, “A Foundational Study On The

Applicability Of Genetic Algorithm To Software Engineering Problems,” in IEEE

191

Congress on Evolutionary Computation, CEC 2007., 2007, pp. 2210–2219.

[76] J. T. De Souza, C. L. Maia, F. G. De Freitas, and D. P. Coutinho, “The Human

Competitiveness Of Search Based Software Engineering,” in 2nd International

Symposium On Search-Based Software Engineering, SSBSE 2010., 2010, pp.

143–152.

[77] D. Doval, S. Mancoridis, and B. S. Mitchell, “Automatic Clustering Of Software

Systems Using A Genetic Algorithm,” in 9th International Workshop on Software

Technology and Engineering Practice, STEP 1999., 1999, pp. 1–9.

[78] H. A. Sahraoui, P. Valtchev, I. Konkobo, and S. Shen, “Object Identification In

Legacy Code As A Grouping Problem,” in Computer Software and Applications

Conference, COMPSAC 2002., 2002, pp. 1–14.

[79] K. Mahdavi, M. Harman, and R. M. Hierons, “A Multiple Hill Climbing Approach

To Software Module Clustering,” in International Conference on Software

Maintenance, ICSM 2003., 2003, pp. 1–10.

[80] G. Antoniol, M. Di Penta, and M. Neteler, “Moving To Smaller Libraries Via

Clustering And Genetic Algorithms,” in 7th European Conference on Software

Maintenance and Reengineering, CSMR 2003., 2003, pp. 307–316.

[81] M. Di Penta, M. Neteler, G. Antoniol, and E. Merlo, “A Language-Independent

Software Renovation Framework,” J. Syst. Software., vol. 77, no. 3, pp. 225–240,

Sep. 2004.

[82] O. Seng, M. Bauer, M. Biehl, and G. Pache, “Search-Based Improvement Of

Subsystem Decompositions,” in Conference on Genetic and Evolutionary

Computation, GECCO 2005., 2005, pp. 1045–1051.

[83] N. Gold, M. Harman, and Z. Li, “Allowing Overlapping Boundaries In Source

Code Using A Search Based Approach To Concept Binding,” in 22nd IEEE

International Conference on Software Maintenance, ICSM 2006., 2006, pp. 310–

319.

[84] S. Huynh and Y. Cai, “An Evolutionary Approach To Software Modularity

Analysis,” in 1st International Workshop on Assessment of Contemporary

Modularization Techniques, ACoM 2007., 2007.

[85] Amarjeet and J. K. Chhabra, “Improving Package Structure Of Object-Oriented

Software Using Multi-Objective Optimization And Weighted Class Connections,”

J. King Saud Univ. - Comput. Inf. Sci., 2015.

[86] B. S. Mitchell, “A Heuristic Search Approach To Solving The Software Clustering

Problem,” 2002.

[87] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, “Using

Automatic Clustering To Produce High-Level System Organizations Of Source

Code,” in 6th International Workshop on Program Comprehension, IWPC 1998.,

1998, pp. 45–52.

[88] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch: A Clustering

Tool For The Recovery And Maintenance Of Software System Structures,” in

IEEE International Conference on Software Engineering, ICSM 1999., 1999, pp.

50–59.

[89] B. S. Mitchell and S. Mancoridis, “Using Heuristic Search Techniques To Extract

Design Abstractions From Source Code,” in Genetic and Evolutionary

Computation Conference, GECCO 2002., 2002, pp. 1375–1382.

192

[90] B. S. Mitchell, S. Mancoridis, and M. Traverso, “Search Based Reverse

Engineering,” in 14th International Conference On Software Engineering And

Knowledge Engineering, SEKE 2002., 2002, pp. 431–438.

[91] B. S. Mitchell and S. Mancoridis, “Modeling The Search Landscape Of

Metaheuristic Software Clustering Algorithms,” in Genetic and Evolutionary

Computation Conference, GECCO 2003., 2003, pp. 2499–2510.

[92] B. S. Mitchell, S. Mancoridis, and M. Traverso, “Using Interconnection Style

Rules To Infer Software Architecture Relations,” in Genetic and Evolutionary

Computation Conference, GECCO 2004., 2004.

[93] B. S. Mitchell and S. Mancoridis, “On the Automatic Modularization Of Software

Systems Using The Bunch Tool,” IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 193–

208, 2006.

[94] B. S. Mitchell and S. Mancoridis, “On The Evaluation Of The Bunch Search-

Based Software Modularization Algorithm,” Soft Comput. - A Fusion Found.

Methodol. Appl., vol. 12, no. 1, pp. 77–93, Jun. 2007.

[95] R. Marinescu, “Detecting Design Flaws Via Metrics In Object-Oriented Systems,”

in 39th International Conference and Exhibition on Technology of Object-Oriented

Languages and Systems, TOOLS 2001., 2001, pp. 173–182.

[96] D. Kirk, M. Roper, and M. Wood, “A Heuristic-Based Approach To Code-Smell

Detection,” in 1st Workshop On Refactoring Tools, WRT 2007., 2007, pp. 54–55.

[97] M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance From Perfection Is A

Better Criterion Than Closeness To Evil When Identifying Risky Code,” in

IEEE/ACM International Conference on Automated Software Engineering, ASM

2010., 2010, pp. 113–122.

[98] M. Kessentini, H. Sahraoui, M. Boukadoum, and M. Wimmer, “Search-Based

Design Defects Detection By Example,” in 14th International Conference on

Fundamental Approaches to Software Engineering, FASE 2011., 2011, pp. 401–

415.

[99] U. Mansoor, M. Kessentini, S. Bechikh, and K. Deb, “Code-Smells Detection

Using Good And Bad Software Design Examples,” 2013.

[100] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, “A

Cooperative Parallel Search-Based Software Engineering Approach For Code-

Smells Detection,” IEEE Trans. Softw. Eng., vol. 40, no. 9, pp. 841–861, 2014.

[101] U. Mansoor, M. Kessentini, B. R. Maxim, and K. Deb, “Multi-Objective Code-

Smells Detection Using Good And Bad Design Examples,” Softw. Qual. Journal.,

pp. 1–24, 2016.

[102] T. Dudziak and J. Wloka, “Tool-Supported Discovery And Refactoring Of

Structural Weaknesses In Code,” 2002.

[103] T. Nguyen, W. Weimer, C. Le Goues, and S. Forrest, “Using Execution Paths To

Evolve Software Patches,” in International Conference on Software Testing,

Verification, and Validation., 2009, pp. 152–153.

[104] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A Generic Method

For Automatic Software Repair,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 54–

72, 2012.

[105] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A Systematic Study Of

193

Automated Program Repair: Fixing 55 Out Of 105 Bugs For $8 Each,” in 34th

International Conference on Software Engineering, ICSE 2012., 2012, pp. 3–13.

[106] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably Optimal And

Human-Competitive Results In SBSE For Spectrum Based Fault Localisation,” in

5th International Symposium On Search-Based Software Engineering, SSBSE

2013., 2013.

[107] M. Ó Cinnéide and P. Nixon, “Automated Application Of Design Patterns To

Legacy Code,” in Workshop on Object-Oriented Technology., 1999, pp. 1–5.

[108] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements Of

Reusable Object-Oriented Software. 1994.

[109] M. Ó Cinnéide and P. Nixon, “A Methodology For The Automated Introduction Of

Design Patterns,” in IEEE International Conference on Software Maintenance,

ICSM 1999., 1999, pp. 1–10.

[110] M. Ó Cinnéide, “Automated Refactoring To Introduce Design Patterns,” in

International Conference on Software Engineering, ICSE 2000., 2000, pp. 722–

724.

[111] M. O’Keeffe and M. Ó Cinnéide, “A Stochastic Approach To Automated Design

Improvement,” in 2nd International Conference on Principles and Practice of

Programming in Java, PPPJ 2003., 2003, pp. 59–62.

[112] M. O’Keeffe and M. Ó Cinnéide, “Towards Automated Design Improvement

Through Combinatorial Optimisation,” in Workshop on Directions in Software

Engineering Environments, WoDiSEE 2004., 2004.

[113] M. O’Keeffe and M. Ó Cinnéide, “Search-Based Software Maintenance,” in 10th

European Conference on Software Maintenance and Reengineering, CSMR 2006.,

2006, pp. 251–260.

[114] M. O’Keeffe and M. Ó Cinnéide, “Search-Based Refactoring For Software

Maintenance,” J. Syst. Software., vol. 81, no. 4, pp. 502–516, Apr. 2008.

[115] M. O’Keeffe and M. Ó Cinnéide, “Getting The Most From Search-Based

Refactoring,” in 9th Annual Conference on Genetic and Evolutionary

Computation, GECCO 2007., 2007, pp. 1114–1120.

[116] M. O’Keeffe and M. Ó Cinnéide, “Search-Based Refactoring: An Empirical Study,”

J. Softw. Maint. Evol. Res. Pract., vol. 20, no. 5, pp. 1–23, 2008.

[117] E. Koc, N. Ersoy, A. Andac, Z. S. Camlidere, I. Cereci, and H. Kilic, “An Empirical

Study About Search-Based Refactoring Using Alternative Multiple And

Population-Based Search Techniques,” in Computer and Information Sciences II.,

E. Gelenbe, R. Lent, and G. Sakellari, Eds. London: Springer London, 2012, pp.

59–66.

[118] M. O’Keeffe and M. Ó Cinnéide, “Automated Design Improvement By Example,”

in 6th Conference on New Trends in Software Methodologies, Tools and

Techniques, SoMeT 2007., 2007, pp. 315–329.

[119] Z. Xing and E. Stroulia, “The JDEvAn Tool Suite In Support Of Object-Oriented

Evolutionary Development,” in 13th International Conference on Software

Engineering, ICSE 2008., 2008, pp. 951–952.

[120] I. H. Moghadam and M. Ó. Cinnéide, “Automated Refactoring Using Design

Differencing,” in 16th Conference on Software Maintenance and Reengineering,

194

CSMR 2012., 2012, pp. 43–52.

[121] O. Seng, J. Stammel, and D. Burkhart, “Search-Based Determination Of

Refactorings For Improving The Class Structure Of Object-Oriented Systems,” in

Genetic and Evolutionary Computation Conference, GECCO 2006., 2006, pp.

1909–1916.

[122] M. Harman, “Refactoring As Testability Transformation,” in 4th IEEE

International Conference on Software Testing, Verification, and Validation

Workshops, ICSTVV 2011., 2011, pp. 1–8.

[123] R. Morales, A. Sabané, P. Musavi, F. Khomh, F. Chicano, and G. Antoniol,

“Finding The Best Compromise Between Design Quality And Testing Effort

During Refactoring,” in 23rd International Conference on Software Analysis,

Evolution, and Reengineering, SANER 2016., 2016, pp. 24–35.

[124] M. Ó Cinnéide, D. Boyle, and I. H. Moghadam, “Automated Refactoring For

Testability,” in 4th IEEE International Conference on Software Testing,

Verification and Validation Workshops, ICSTVV 2011., 2011, pp. 437–443.

[125] S. Ghaith and M. Ó Cinnéide, “Improving Software Security Using Search-Based

Refactoring,” in 4th International Symposium On Search-Based Software

Engineering, SSBSE 2012., 2012, pp. 121–135.

[126] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. H. Moghadam,

“Experimental Assessment Of Software Metrics Using Automated Refactoring,”

in ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement, ESEM 2012., 2012, pp. 49–58.

[127] M. Ó Cinnéide, I. H. Moghadam, M. Harman, S. Counsell, and L. Tratt, “An

Experimental Search-Based Approach To Cohesion Metric Evaluation,” Empir.

Softw. Eng., 2016.

[128] V. Veerappa and R. Harrison, “An Empirical Validation Of Coupling Metrics

Using Automated Refactoring,” in ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, ESEM 2013., 2013, pp. 271–

274.

[129] C. Simons, J. Singer, and D. R. White, “Search-Based Refactoring: Metrics Are

Not Enough,” in 7th International Symposium On Search-Based Software

Engineering, SSBSE 2015., 2015, pp. 1–14.

[130] A. D. Bakar, A. B. Sultan, H. Zulzalil, and J. Din, “Applying Evolution

Programming Search Based Software Engineering (SBSE) In Selecting The Best

Open Source Software Maintainability Metrics,” in International Symposium on

Computer Applications and Industrial Electronics, ISCAIE 2012., 2012, no.

Iscaie, pp. 70–73.

[131] A. D. Bakar, A. B. M. Sultan, H. Zulzalil, and J. Din, “Review On

‘Maintainability’ Metrics In Open Source Software,” Int. Rev. Comput. Software.,

vol. 7, no. 3, pp. 903–908, 2012.

[132] M. Harman, J. Clark, and M. Ó Cinnéide, “Dynamic Adaptive Search Based

Software Engineering Needs Fast Approximate Metrics,” in 4th International

Workshop on Emerging Trends in Software Metrics, WETSoM 2013., 2013, pp. 1–

6.

[133] M. Harman, E. Burke, J. A. Clark, and X. Yao, “Dynamic Adaptive Search Based

Software Engineering,” in ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, ESEM 2012., 2012, pp. 1–8.

195

[134] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design

Defects Detection And Correction By Example,” in IEEE International Conference

on Software Engineering, ICSM 2011., 2011, pp. 81–90.

[135] M. Kessentini, W. Kessentini, and A. Erradi, “Example-Based Design Defects

Detection And Correction,” in 19th International Conference On Program

Comprehension, ICPC 2011., 2011, pp. 1–32.

[136] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, “Maintainability

Defects Detection And Correction: A Multi-Objective Approach,” Autom. Softw.

Eng., vol. 20, no. 1, pp. 47–79, 2013.

[137] M. Kessentini, R. Mahaouachi, and K. Ghedira, “What You Like In Design Use To

Correct Bad-Smells,” Softw. Qual. Journal., vol. 21, no. 4, pp. 551–571, Oct. 2012.

[138] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “Search-Based

Refactoring: Towards Semantics Preservation,” in 28th IEEE International

Conference on Software Maintenance, ICSM 2012., 2012, pp. 347–356.

[139] A. Ouni, M. Kessentini, and H. Sahraoui, “Search-Based Refactoring Using

Recorded Code Changes,” in European Conference on Software Maintenance and

Reengineering, CSMR 2013., 2013, pp. 221–230.

[140] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-Criteria Code

Refactoring Using Search-Based Software Engineering: An Industrial Case

Study,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, 2016.

[141] A. Ouni, M. Kessentini, H. Sahraoui, and M. S. Hamdi, “The Use Of Development

History In Software Refactoring Using A Multi-Objective Evolutionary

Algorithm,” in Genetic and Evolutionary Computation Conference, GECCO 2013.,

2013, pp. 1461–1468.

[142] H. Wang, M. Kessentini, W. Grosky, and H. Meddeb, “On The Use Of Time Series

And Search Based Software Engineering For Refactoring Recommendation,” in

7th International Conference on Management of computational and collective

intElligence in Digital EcoSystems, MEDES 2015., 2015, no. October, pp. 35–42.

[143] J. Pérez, A. Murgia, and S. Demeyer, “A Proposal For Fixing Design Smells Using

Software Refactoring History,” in International Workshop On Refactoring &

Testing, RefTest 2013., 2013, pp. 1–4.

[144] W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó Cinnéide, and K. Deb, “Software

Refactoring Under Uncertainty: A Robust Multi-Objective Approach,” in Genetic

and Evolutionary Computation Conference, GECCO 2014., 2014.

[145] M. W. Mkaouer, M. Kessentini, M. Ó Cinnéide, S. Hayashi, and K. Deb, “A

Robust Multi-Objective Approach To Balance Severity And Importance Of

Refactoring Opportunities,” Empir. Softw. Eng., 2016.

[146] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó Cinnéide, and K. Deb, “On The

Use Of Many Quality Attributes For Software Refactoring: A Many-Objective

Search-Based Software Engineering Approach,” Empir. Softw. Eng., 2015.

[147] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing Code-Smells

Correction Tasks Using Chemical Reaction Optimization,” Softw. Qual. Journal.,

vol. 23, no. 2, 2015.

[148] A. Trifu, O. Seng, and T. Genssler, “Automated Design Flaw Correction In Object-

Oriented Systems,” in 8th European Conference on Software Maintenance and

Reengineering, CSMR 2004., 2004, pp. 174–183.

196

[149] M. Di Penta, “Evolution Doctor: A Framework To Control Software System

Evolution,” in 9th European Conference on Software Maintenance and

Reengineering, CSMR 2005., 2005, pp. 280–283.

[150] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant: Identification

And Removal Of Type-Checking Bad Smells,” in 12th European Conference on

Software Maintenance and Reengineering, CSMR 2008., 2008, pp. 329–331.

[151] H. Li and S. Thompson, “Refactoring Support For Modularity Maintenance In

Erlang,” in 10th IEEE Working Conference on Source Code Analysis and

Manipulation, SCAM 2010., 2010, pp. 157–166.

[152] I. H. Moghadam and M. Ó Cinnéide, “Code-Imp: A Tool For Automated Search-

Based Refactoring,” in 4th Workshop on Refactoring Tools, WRT 2011., 2011, pp.

41–44.

[153] I. Griffith, S. Wahl, and C. Izurieta, “TrueRefactor: An Automated Refactoring

Tool To Improve Legacy System And Application Comprehensibility,” in 24th

International Conference on Computer Applications in Industry and Engineering,

ISCA 2011., 2011.

[154] R. Morales, “Towards A Framework For Automatic Correction Of Anti-Patterns,”

in 22nd International Conference on Software Analysis, Evolution, and

Reengineering, SANER 2015., 2015, pp. 603–604.

[155] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, “On The Use Of

Developers’ Context For Automatic Refactoring Of Software Anti-Patterns,” J.

Syst. Software., pp. 2–58, 2016.

[156] T. Van Belle and D. H. Ackley, “Code Factoring And The Evolution Of

Evolvability,” in Genetic and Evolutionary Computation Conference, GECCO

2002., 2002, pp. 1383–1390.

[157] M. Harman, R. Hierons, and M. Proctor, “A New Representation And Crossover

Operator For Search-Based Optimization Of Software Modularization,” in Genetic

and Evolutionary Computation Conference, GECCO 2002., 2002, pp. 1–8.

[158] D. R. White, J. Clark, J. Jacob, and S. Poulding, “Searching for Resource-Efficient

Programs: Low-Power Pseudorandom Number Generators,” in Genetic and

Evolutionary Computation Conference, GECCO 2008., 2008, pp. 1775–1782.

[159] F. Qayum and R. Heckel, “Local Search-Based Refactoring As Graph

Transformation,” in 1st International Symposium On Search-Based Software

Engineering, SSBSE 2009., 2009, pp. 43–46.

[160] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. Ben Said, “On The Use Of

Machine Learning And Search-Based Software Engineering For Ill-Defined

Fitness Function: A Case Study On Software Refactoring,” in 6th International

Symposium On Search-Based Software Engineering, SSBSE 2014., 2014, pp. 31–

45.

[161] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search Based Software

Engineering: Techniques, Taxonomy, Tutorial,” in Empirical Software

Engineering and Verification., 2012, pp. 1–59.

[162] F. Ferrucci, M. Harman, and F. Sarro, “Search-Based Software Project

Management,” in Software Project Management in a Changing World., no. 1994,

2014, pp. 373–399.

[163] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based Software Engineering:

197

A Comprehensive Analysis And Review Of Trends Techniques And Applications,”

2009.

[164] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting Empirical

Methods For Software Engineering Research,” in Guide to Advanced Empirical

Software Engineering., 2008, pp. 285–311.

[165] M. Mohan, D. Greer, and P. McMullan, “Technical Debt Reduction Using Search

Based Automated Refactoring,” J. Syst. Software., vol. 120, pp. 183–194, 2016.

[166] A. Murgia, R. Tonelli, G. Concas, M. Marchesi, and S. Counsell, “Parameter-

Based Refactoring And The Relationship With Fan-In/Fan-Out Coupling,” J.

Object Technol., vol. 11, no. 2, pp. 1–24, 2012.

[167] M. Fowler, Refactoring: Improving The Design Of Existing Code. 1999.

[168] M. Fowler, “Refactoring Catalog,” 2015. [Online]. Available:

http://refactoring.com/catalog/. [Accessed: 22-Apr-2015].

[169] D. Heuzeroth and U. Aßmann, “The COMPOST, COMPASS, InjectJ And

RECODER Tool Suite For Invasive Software Composition - Invasive Composition

With COMPASS Aspect-Oriented Connectors,” in International Summer School

on Generative and Transformational Techniques in Software Engineering,

GTTSE 2005., 2005.

[170] N. Mohd Razali and J. Geraghty, “Genetic Algorithm Performance With Different

Selection Strategies In Solving TSP,” in World Congress on Engineering, WCE

2011., 2011.

[171] A. Ouni, “A Mono- And Multi-Objective Approach For Recommending Software

Refactoring,” 2014.

[172] M. Liu and W. Zeng, “Reducing The Run-Time Complexity Of NSGA-II For Bi-

Objective Optimization Problem,” in International Conference on Intelligent

Computing and Intelligent Systems, ICIS 2010., 2010, pp. 546–549.

[173] D. Bell, Software Engineering: A Programming Approach. Prentice Hall, 2000.

[174] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner’s

Approach. McGraw-Hill Higher Education, 2000.

[175] M. Bozkurt and M. Harman, “Optimised Realistic Test Input Generation,” 4th

Int. Symp. Search-Based Softw. Eng. SSBSE 2012., vol. 7515, pp. 1–6, 2012.

[176] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: A Tool For Search Based

Software Testing For The C Language And Its Evaluation On Deployed

Automotive Systems,” in 2nd International Symposium On Search-Based

Software Engineering, SSBSE 2010., 2010, pp. 101–110.

[177] B. Korel, “Automated Software Test Data Generation,” IEEE Trans. Softw. Eng.,

vol. 16, no. 8, pp. 870–879, 1990.

[178] K. Sen and G. Agha, “CUTE And jCUTE : Concolic Unit Testing And Explicit

Path Model-Checking Tools (Tools Paper),” in 18th International Conference on

Computer Aided Verification, CAV 2006., 2006, pp. 419–423.

[179] K. Lakhotia, M. Harman, and P. McMinn, “Handling Dynamic Data Structures In

Search Based Testing,” in Genetic and Evolutionary Computation Conference,

GECCO 2008., 2008, pp. 1759–1766.

[180] D. Greer and G. Ruhe, “Software Release Planning: An Evolutionary And

198

Iterative Approach,” Inf. Softw. Technol., vol. 46, no. 4, pp. 243–253, Mar. 2004.

[181] A. Ngo-The and G. Ruhe, “A Systematic Approach For Solving The Wicked

Problem Of Software Release Planning,” Soft Comput., vol. 12, no. 1, pp. 95–108,

Jun. 2007.

[182] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation For Object-

Oriented Software,” in 13th European Software Engineering Conference and 19th

ACM SIGSOFT Symposium on Foundations of Software Engineering, ESEC/FSE

2011., 2011, pp. 416–419.

[183] K. Lakhotia, N. Tillmann, M. Harman, and J. De Halleux, “FloPSy - Search-

Based Floating Point Constraint Solving For Symbolic Execution,” in 22nd IFIP

WG 6.1 International Conference on Testing Software and Systems, ICTSS 2010.,

2010, pp. 1–16.

[184] G. Ganea, I. Verebi, and R. Marinescu, “Continuous Quality Assessment With

inCode,” in 14th European Conference on Software Maintenance and

Reengineering, CSMR 2010., 2013, pp. 1–10.

[185] J. Yue and M. Harman, “MiLu : A Customizable, Runtime-Optimized Higher

Order Mutation Testing Tool For The Full C Language,” in Testing: Academic &

Industrial Conference - Practice and Research Techniques, TIAC PART 2008.,

2008, pp. 94–98.

[186] N. Alshahwan and M. Harman, “Automated Web Application Testing Using

Search Based Software Engineering,” in 26th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2011., 2011, pp. 3–12.

[187] R. Feldt, “An Interactive Software Development Workbench Based On

Biomimetic Algorithms,” 2002.

[188] M. Di Penta and S. Poulding, “Introduction To The Special Issue On Search

Based Software Engineering,” Empir. Softw. Eng., vol. 16, no. 1, pp. 1–4, Jan.

2011.

[189] M. Di Penta, G. Antoniol, and M. Harman, “Special Issue On Search-Based

Software Maintenance,” J. Softw. Maint. Evol. Res. Pract., vol. 20, no. 5, pp. 317–

319, Sep. 2008.

[190] W. J. Gutjahr and M. Harman, “Search-Based Software Engineering,” Comput.

Oper. Res., vol. 35, no. 10, pp. 3049–3051, Oct. 2008.

[191] M. Harman and B. F. Jones, “The SEMINAL Workshop: Reformulating Software

Engineering As A Metaheuristic Search Problem,” Softw. Eng. Notes., vol. 26, no.

6, pp. 62–66, 2001.

[192] M. Harman and B. F. Jones, “Software Engineering Using Metaheuristic

Innovative Algorithms: Workshop Report,” Inf. Softw. Technol., vol. 43, no. 14, pp.

905–907, Dec. 2001.

[193] M. Harman and A. Mansouri, “Search Based Software Engineering: Introduction

To The Special Issue Of The IEEE Transactions On Software Engineering,” IEEE

Trans. Softw. Eng., vol. 36, no. 6, pp. 737–741, 2010.

[194] M. Harman and J. Wegener, “Getting Results From Search-Based Approaches To

Software Engineering,” in 26th International Conference On Software

Engineering, ICSE 2004., 2004, pp. 728–729.

[195] M. Harman, B. Korel, and P. K. Linos, “Guest Editorial: Special Issue On

199

Software Maintenance And Evolution,” IEEE Trans. Softw. Eng., vol. 31, no. 10,

pp. 801–803, 2005.

[196] M. Harman, “Search-Based Software Engineering For Maintenance And

Reengineering,” in Conference On Software Maintenance And Reengineering,

CSMR 2006., 2006, p. 311.

[197] M. Harman, “The Importance Of Metrics In Search Based Software Engineering,”

in International Conference on Software Process And Product Measurement,

MENSURA 2006., 2006, pp. 15–20.

[198] M. Harman, “Overview Of TASE 2012 Talk On Search Based Software

Engineering,” in 6th International Symposium on Theoretical Aspects of Software

Engineering, TASE 2012., 2012, pp. 3–4.

[199] M. Harman, “Software Engineering: An Ideal Set Of Challenges For Evolutionary

Computation,” in 15th International Conference on Genetic and Evolutionary

Computation, GECCO 2013., 2013, pp. 1759–1760.

[200] M. Ó Cinnéide and M. B. Cohen, “Introduction To The Special Issue On Search

Based Software Engineering,” Empir. Softw. Eng., vol. 18, no. 3, pp. 547–549,

May 2013.

[201] M. Harman and P. McMinn, “A Theoretical And Empirical Study Of Search-

Based Testing: Local, Global, And Hybrid Search,” IEEE Trans. Softw. Eng., vol.

36, no. 2, pp. 226–247, Mar. 2010.

[202] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based Software Engineering:

Trends, Techniques And Applications,” ACM Comput. Surv., vol. 45, no. 1, pp. 1–

64, 2012.

[203] P. McMinn, “Search-Based Software Test Data Generation: A Survey,” Softw.

Testing, Verif. Reliab., vol. 14, no. 2, pp. 1–58, 2004.

[204] A. M. Pitangueira, R. S. P. Maciel, M. Barros, and A. S. Andrade, “A Systematic

Review Of Software Requirements Selection And Prioritization Using SBSE

Approaches,” in 5th International Symposium On Search-Based Software

Engineering, SSBSE 2013., 2013, pp. 188–208.

[205] O. Räihä, “A Survey On Search-Based Software Design,” Comput. Sci. Rev., vol. 4,

no. 4, pp. 203–249, 2010.

[206] A. S. Sayyad and H. Ammar, “Pareto-Optimal Search-Based Software

Engineering (POSBSE): A Literature Survey,” in 2nd International Workshop on

Realizing Artificial Intelligence Synergies in Software Engineering, RAISE 2013.,

2013, pp. 21–27.

200

Acknowledgements

Acknowledgements

The author would like to thank his supervisors, Dr. Des Greer and Dr. Paul

McMullan for giving valuable advice and reviewing his work to date. In

particular, Dr. Greer has been consistently helpful throughout the course of the

PhD and has remained open and inquisitive during the many meetings held.

The author would also like to thank Queen’s University Belfast for the facilities

they allowed him to have at his disposal and especially for providing the funding

to attend a workshop in University College London that allowed him to discuss

the research area with other researchers at an early stage. Acknowledgements

must also go out to the other attendees at said workshop as well as the

organisers. Gratitude goes out to Ekin Koc, who gave the author permission to

use the A-CMA refactoring tool for experimentation, and even updated the

developer licence in order for the author to modify the tool for use. The author

thanks the benefactors of the Emily Sarah Montgomery travel scholarship for

the award which allowed him to attend a conference in Germany and gain

greater exposure to the research conducted as part of the PhD. The work

undertaken for this review was funded by an EPSRC PhD studentship (the

duration of which was 2014-2018).

201

Appendix A – Literature Review Quantitative Analysis

Appendix A – Literature Review Quantitative Analysis

Various aspects of the analysed SBSM literature were measured and are

outlined in more detail below. Figure A.1 shows the number of papers published

per year among the main SBSM papers and Figure A.3 shows the number of

search techniques analysed per year among them. Figure A.2 also shows the

number of papers published per year among all 99 of the papers analysed.

Figure A.4 shows the different ways the papers have been published, with the

majority being published in journals or featured in conferences. Table A.1 lists

the more popular conferences that have featured 2 or more of the papers and

Table A.2 list the different journals that the papers have been published in.

Figure A.5 outlines the number of authors that have a certain number of papers

published, with the majority of authors only having 1. Table A.3 lists the

authors that have 4 or more papers published. Table A.4 list the qualitative or

discussion papers among the main SBSE papers analysed. Figures A.6-A.8

display visualisations of the number of SBSM papers each type of search

technique was present in. Figure A.9 shows the number of papers that involve a

certain number of search techniques among the main SBSM papers (there are

anywhere from none to 4 different search techniques in any 1 paper). Figure

A.10 shows the different types of program used to test the approaches in the

main SBSM papers, with the majority being open source Java programs. Table

A.5 lists the different open source programs used across the analysed studies, as

well as the studies that each program has been used in.

202

Figure A.1 – Number of the Main Search-Based Software Maintenance Papers Published Each Year

Figure A.2 – Number of Papers Published Each Year

0

2

4

6

8

10

12

14

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

Number
Of

Papers

Year

0

2

4

6

8

10

12

14

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

Number
Of

Papers

Year

203

Figure A.3 – Number of the Main Search-Based Software Maintenance Papers Using Each Type of

Search Technique per Year

Figure A.4 – Types of Paper Analysed

0

1

2

3

4

5

6

7

8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

Number
Of

Papers

Year

EA SIA Other

63

28

3 3 2

Conference

Journal

Book Section

Report

Magazine Article

204

Table A.1 – Number of Papers per Conference

Conference Number Of

Papers

Genetic and Evolutionary Computation Conference (GECCO) 12

European Conference on Software Maintenance and Reengineering

(CSMR)

7

Symposium on Search-Based Software Engineering (SSBSE) 7

International Conference on Software Maintenance (ISCM) 3

International Symposium on Empirical Software Engineering and

Measurement (ESEM)

2

International Conference on Program Comprehension (ICPC) 2

International Conference on Software Engineering (ICSE) 2

International Conference on Software Testing, Verification and

Validation (ICST/ICSTVV)

2

International Workshop on Managing Technical Debt (MTD) 2

International Conference on Software Analysis, Evolution, and

Reengineering (SANER)

2

International Working Conference on Source Code Analysis and

Manipulation (SCAM)

2

Table A.2 – Number of Papers per Journal

Journals Number Of

Papers

Empirical Software Engineering 6

Journal of Systems and Software 4

IEEE Transactions on Software Engineering 3

ACM Transactions on Software Engineering and Methodology 2

Information and Software Technology 2

Journal of Software Maintenance and Evolution: Research and

Practice

2

Software Quality Journal 2

ACM Computing Surveys 1

Automated Software Engineering 1

Computer Science Review 1

Computers & Operations Research 1

IEE Proceedings – Software 1

Software Engineering Notes 1

Software Testing, Verification and Reliability 1

205

Figure A.5 – Number of Papers per Author

Table A.3 – Number of Papers per Author

Authors Number Of Papers

Mark Harman 32

Mel Ó Cinnéide 22

Marouane Kessentini 17

Ali Ouni 9

Houari Sahraoui 8

Mark O' Keeffe 7

Kalyanmoy Deb 6

Slim Bechikh 6

Iman Hemati Moghadam 5

John A. Clark 5

Wiem Mkaouer 5

Bryan Jones 4

Robert M. Hierons 4

103

18

10

13

One

Two

Three

More Than Three

206

Table A.4 – Analysed Papers from the Main Search-Based Software Maintenance Papers That Are

Not Quantitative

Authors [Ref] Year Type Title

Bakar et al.

[130]

2012 Discussion Applying Evolution Programming Search

Based Software Engineering (SBSE) In

Selecting The Best Open Source Software

Maintainability Metrics

Harman [122] 2011 Discussion Refactoring As Testability Transformation

Harman et al.

[133]

2012 Discussion Dynamic Adaptive Search Based Software

Engineering

Harman et al.

[132]

2013 Discussion Dynamic Adaptive Search Based Software

Engineering Needs Fast Approximate Metrics

Moghadam and

Ó Cinnéide

[152]

2011 Discussion Code-Imp - A Tool For Automated Search-

Based Refactoring

Morales [154] 2015 Discussion Towards A Framework For Automatic

Correction Of Anti-Patterns

Ó Cinnéide

[110]

2000 Discussion Automated Refactoring To Introduce Design

Patterns

Ó Cinnéide and

Nixon [109]

1999 Discussion A Methodology For The Automated

Introduction Of Design Patterns

Ó Cinnéide and

Nixon [107]

1999 Discussion Automated Application Of Design Patterns

To Legacy Code

Pérez et al.

[143]

2013 Discussion A Proposal For Fixing Design Smells Using

Software Refactoring History

Tsantalis et al.

[150]

2008 Discussion JDeodorant: Identification And Removal Of

Type-Checking Bad Smells

Ó Cinnéide

et al. [124]

2011 Qualitative Automated Refactoring For Testability

O’Keeffe and Ó

Cinnéide [111]

2003 Qualitative A Stochastic Approach To Automated Design

Improvement

Qayum and

Heckel [159]

2009 Qualitative Local Search-Based Refactoring As Graph

Transformation

Simons et al.

[129]

2015 Qualitative Search-Based Refactoring - Metrics Are Not

Enough

207

Figure A.6 – Types of Search Technique Used in the Main Search-Based Software Maintenance

Papers

Figure A.7 – Dispersion of Evolutionary Algorithms from Figure A.6 (Some Papers Contain More

Than One Search Technique)

0

5

10

15

20

25

30

HC SA EA SIA CRO VNS

Number
Of

Papers

Search Technique

0

5

10

15

20

25

30

GA GP GEA

Number
Of

Papers

Search Technique

208

Figure A.8 – Dispersion of Swarm Intelligence Algorithms from Figure A.6

Figure A.9 – Number of Search Techniques Used/Analysed in Each Search-Based Software

Maintenance Paper

0

5

10

15

20

25

30

PSO ABC ACO

Number
Of

Papers

Search Technique

14

28

10

4 1

None

One

Two

Three

Four

209

Figure A.10 – Types of Benchmark Program Used in Experimental Studies in the Main Search-Based

Software Maintenance Papers

Table A.5 – Open Source Test Programs Used in the Literature

Apache Ant [25],

[144]–[146], [160]

Apache XML-RPC

[117]

ArgoUML [25], [123], [134]–[136],

[146]

Art of Illusion [37],

[126]–[128], [147]

Azureus [25], [135],

[136], [146]

Beaver [114]–[118]

EAOP [115], [116] FindBugs [142] GanttProject [25], [37], [42], [120],

[123], [126]–[128], [134]–[139], [144]–

[147], [160]

Grammatica [116] GRASS [149] Hibernate [142]

HTMLUnit [120],

[127]

JabRef [126]–[128] JFlex [117]

JFreeChart [37], [42],

[128], [141], [142],

[144], [145], [147],

[160]

JGraphX [120],

[126]–[128]

JHotDraw [6], [37], [42], [120], [121],

[123], [126]–[128], [137], [139], [144],

[145], [147], [160]

JRDF [126]–[128] jSMPP [127] JSON [117]

JTar [120], [126],

[127]

KDE [149] Log4j [135], [136], [145]

Mango [115]–[118] Maven [6] Mylyn [123], [155]

MySQL [149] Nutch [145] PDE [155]

Pixelitor [142] Platform [155] QuickUML [134]–[137]

Rhino [144], [145],

[160]

Samba [149] Spec-Check [113]–[116], [118]

Spec-Raytrace [113] Wife [125] Wrangler [151]

Xerces-J [25], [37],

[42], [134]–[139],

[141], [144]–[147],

[160]

XOM [6], [120],

[126]–[128]

34

7

6

3

Open Source

Test

Industrial

In-House

210

Appendix B – SBSE Software Packages From Literature

Appendix B – SBSE Software Packages From Literature

Various software packages have been created and proposed in the literature to

assist with the SBSE research done, as listed in Table B.1. Descriptions are

given for the identified tools below.

Table B.1 – List of Search-Based Software Engineering Tools with Brief Description and

Search-Based Software Engineering Area

Software

Package

Area Of Software

Engineering

Purpose

WISE Design Interactive software development workbench.

GenProg Error Resolution Generic tool for automated software repair.

A-CMA Maintenance Refactors Java bytecode using a selection of

refactorings and metrics.

Advanced

Refactoring

Wizard

Maintenance Integration platform for problem detection and

refactoring using jGoose Echidna, Costrat and

Inject/J.

Bunch Maintenance Optimises software programs with module

clustering.

CODe-Imp Maintenance Automated refactoring tool containing

numerous metrics and refactorings.

Dearthóir Maintenance Improves the design of an object-oriented

program.

DPT Maintenance Applies design pattern transformations to Java

programs.

Evolution

Doctor

Maintenance Used to diagnose reorganisation opportunities

and perform reengineering actions.

FermaT Maintenance Transformation tool for migration of legacy

systems from assembly code to higher level

languages.

J/Art Maintenance Detects structural weaknesses in code.

JDeodorant Maintenance Identifies and removes 4 different types of

design smell.

TrueRefactor Maintenance Identifies and removes 5 different design smells

in Java.

Wrangler Maintenance Provides general purpose refactorings in

Erlang.

EVOLVE Requirements Offers decision support for software release

planning.

ATAM Testing Provides realistic test data to test other

services.

AUSTIN Testing Helps to achieve branch coverage with testing.

CUTE/jCUTE Testing Concolic unit testing engine.

eTOC Testing Evolutionary test data generation tool.

EvoSUITE Testing Automatic test suite generation for object-

oriented software.

FLoPSy Testing Search-based floating point constraint solver.

211

Software

Package

Area Of Software

Engineering

Purpose

inCode Testing Continuously assesses the quality of Java

systems and identifies design flaws as they

appear.

MiLu Testing Customisable higher order mutation testing

tool.

SWAT Testing Automated web application testing tool.

The A-CMA tool was developed by Koc et al. [117] to analyse and improve Java

bytecode. It contains 24 different software metrics and uses 20 refactoring

actions in order to carry out its function. It can choose between 5 different

search techniques (random search, multiple variations of a HC search, SA, ABC

and beam search) in order to find improved solutions from the input. The tool

uses the ASM framework to get access to the bytecode and form a virtual

representation of the code. From here the search technique can be chosen to

analyse and modify the virtual design in order to find an improved version of the

code. It has a GUI interface to use for structuring optimisation tasks or

analysing the metric results.

The Advanced Refactoring Wizard is actually a combination of tools used by

Trifu et al. [148] in order to use to detect and correct design flaws in object-

oriented systems. The tool chain contains 3 tools for each separate phase of the

process. Problem detection and analysis is done with jGoose Echidna, solution

analysis is handled with Costrat and the reorganisation itself is executed with

Inject/J. The Advanced Refactoring Wizard serves as an integration platform for

the process. The problem detection phase is able to look for 19 different design

flaws and the solution analysis phase has developed correction strategies for 4

design problems. The tool chain supports Java code although there is potential

for other languages to be supported.

ATAM is a tool developed by Bozkurt and Harman [175] to help collect realistic

test input data. The tool uses existing semantic web services online like Google,

Bing and Yahoo to extract realistic data like ZIP codes or IP addresses. ATAM

requires the ability to select and use services with higher reliability and with

low price. This allows the services to be used with lower cost and increased

efficiency. ATAM is used to minimise the manual input required by discovering

services automatically and invoking them dynamically. It is also able to discover

relations between service inputs and outputs using ontological descriptions.

212

The AUSTIN tool, developed by Lakhotia et al. [176] uses search-based software

testing on C programs to help achieve branch coverage. AUSTIN (AUgmented

Search-based TestINg) is a publicly available tool that uses a variation of Korel’s

Alternating Variable Method [177]. The tool is used to generate a set of input

data for a given function to achieve some level of branch coverage for that

function. It uses a HC algorithm (combined with a set of constraint solving rules

for pointer type inputs) to work as a unit testing tool for C programs. The search

is guided by an objective function that uses 2 metrics to evaluate an input

against a target branch; approach level and branch distance. The tool is not able

to generate meaningful inputs for strings, void and function pointers or union

constructs but despite this, it has been applied to open source programs as well

as real industrial code successfully.

Bunch was created by Mitchell and Gansner [88] to cluster the source level

modules and dependencies of a software system into sub systems. It creates a

system composition automatically by treating clustering as an optimisation

problem. It has been used with C, C++ and Turing programs. To cluster the

system into cohesive sub systems, the tool maps the modules and dependencies

of the system to a Module Dependency Graph. Algorithms based on HC and GAs

are then used to find the optimal partitions of the Module Dependency Graph

that minimise coupling and increase cohesion. The algorithms determine the

quality of the partitions found by measuring the interconnectivity between

modules and intra connectivity of the dependencies and combining them into a

Modularization Quality value. This is then used to find the optimal solutions

where the partitions contain a trade-off between the 2 aspects. As it is not

feasible to search through every available partition, more efficient search

algorithms are used to find acceptable sub-optimal results in a more acceptable

time frame.

CODe-Imp, developed by Moghadam and Ó Cinnéide [152], is an automated

refactoring platform developed for Java. This platform uses abstract syntax

trees to apply refactorings to Java programs. This, along with the ability to

reverse the refactorings (SA demands that any refactoring can be reversed),

allows the developers to use a variety of different search-based optimisation

techniques with the platform (HC – both first-ascent and steepest-ascent, SA

and GAs). There are a number of design level refactorings built as part of the

213

platform, used mainly to modify the object-oriented properties of the program.

Examples of refactorings would be moving methods or attributes between

classes, changing privacy settings in a class, or changing the heirarchy of the

classes themselves. These refactorings can then be applied randomly and the

program can be measured to determine whether its quality has been increased

or decreased. Then the search-based algorithm used will find the optimal

solution, based on the software metric(s) used. There are various metrics

implemented in CODe-Imp to measure cohesion, coupling and other object-

oriented properties.

CUTE and jCUTE are developed by Sen and Agha [178] and are concolic unit

testing engines that use explicit path model-checking. There are 2 variations;

CUTE is used for sequential C programs and jCUTE is used to test concurrent

Java programs. The tools can be used to automatically generate test cases to

improve test coverage while also avoiding redundant test cases as well as false

warnings. The algorithm will be complete only if given an oracle that can solve

the constraints in a program, and the length and number of paths is finite.

Dearthóir (Irish for Designer) was created by Ó Cinnéide along with O’Keefe

[112] and serves a similar purpose to CODe-Imp. It is a prototype software

engineering tool capable of improving a design with respect to a conflicting set of

goals. Dearthóir uses SA to apply refactorings to Java code in a similar way to

CODe-Imp. A lot of similar refactorings are used in the program (move methods

between classes, make classes abstract or concrete etc.). Dearthóir can use a

number of metrics to measure fitness by applying weights to the metrics related

to their desired influence and combine them into a weighted sum. Refactorings

can then be applied that preserve the behaviour of the program but modify the

structure. Each time a refactoring is applied the quality of the program is

measured and will determine the behaviour of the algorithm.

DPT, developed by Ó Cinnéide and Nixon [107], is used to apply design patterns

to a Java program in an automated manner without changing the behaviours of

the program. The tool uses a 4-tier design architecture to apply the desired

pattern(s) to the program. The design patterns are composed of a number of

minitransformations (minipatterns) which themselves are made up of various

refactorings. The design patterns can then be applied using these

minitransformations along with possibly some extra refactorings and/or helper

214

functions. The actual refactorings are applied to the program using an abstract

syntax tree. Minitransformations will be reused in the program if they have

already been composed to save time. DPT mostly implements creational

patterns along with some structural and behavioural patterns. These have been

taken from the Gang Of Four patterns proposed by Gamma et al.

Paolo Tonella [179] developed eToc (Evolutionary Testing Of Classes) for test

data generation with a GA. The tool is developed for Java programs and the

fitness function is used to prioritise test cases for selection. Fitness is

determined in the algorithm by calculating how many new targets are covered

by the test case. Superfluous test cases will be de-prioritised for the more useful

ones. The GA can then evolve the method sequences along with their

parameters as a means to achieve unit testing. A drawback of the tool is that

new parameter values are only introduced into the population via the mutation

operator, which randomly changes a parameter value within given bounds.

The Evolution Doctor framework was developed by Di Penta [149] to “cure”

various maintenance problems in software. The framework improves a software

system by detecting potential reorganisation opportunities and then performing

reengineering actions to implement them. To monitor and analyse the system

the framework looks for the presence of clones, unused objects and circular

dependencies, as well as measuring various metrics along with library size,

cohesion and coupling (static and dynamic). In order to improve the system, the

framework will aim to remove or handle the detected clones, objects and

dependencies. It will also reorganise the source files using Formal Concept

Analysis.

EVOLVE is a tool proposed by Greer and Ruhe [180] to help prioritise software

requirements for continuous planning with incremental software development.

The tool uses a GA style approach to order the proposed requirements using the

cost and priority for each requirement. These attributes along with certain

precedents are used to assist the algorithm. The tool can order the requirements

into numerous different releases with a certain cost limit. It can then be told if

certain requirements must be grouped in the same release or if certain

requirements need to be developed before certain other requirements. The cost

and priority can be given in multiple different values to represent different

stakeholders. These can then be given a weighting to correspond with their

215

influence, and an overall cost and priority can be calculated and normalised

from these values. These 2 values for each requirement, along with the

precedent attributes and coupling constraints will be used to determine the

optimal ordering of requirements composed in the algorithm. Then the GA will

use crossover and mutation to come up with a set of orderings for the

requirements of the given number of releases that provide optimal balances

between benefits. The tool has since been enhanced by Ruhe and Ngo-The into

the EVOLVE+ tool [181].

EvoSUITE, developed by Fraser and Arcuri [182], is a tool that automatically

generates test cases with assertions for classes written in Java code. EvoSUITE

can be used as a command line tool or as an Eclipse plugin, producing test suites

that achieve high code coverage and are as small as possible. It uses an EA and

works to address the issue of the oracle (i.e. whether the results shown by the

test cases capture the desired behaviour of the system). After the search a JUnit

test suite will be produced for a given class (EvoSUITE will consider 1 class at a

time for a given package).

FermaT was developed by Ward and was used by Fatiregun et al. [73] to

automate the problem of finding good transformation sequences by using search

techniques to improve a source code level metric. It can use random search, HC

or GAs. The tool has the ability to use over 20 different source code

transformations. The majority of these transformations are WSL-to-WSL

transformations and are more explicit than traditional refactorings (e.g. else-if-

to-elseif).

FLoPSy (search-based Floating Point constraint solving for Symbolic execution),

developed by Lakhotia et al. [183], is an open source Pex extension that allows

constraint solving with floating point operations. The extension has been

implemented with a combination of evolutionary strategies and the Alternating

Variable Method. Pex is a test input generator for .NET code, where test inputs

are generated for parameterised unit tests, or for arbitrary methods of the code

under test. If a constraint refers to a floating point operation, Pex performs a 2-

phase solving approach. First, all floating point values are approximated by

rational numbers, and it is checked whether the resulting constraint system is

satisfiable. Second, 1 or more custom arithmetic solvers are invoked in order to

216

correct a previously computed model at all positions which depend on floating

point constraints.

GenProg, developed by Goues et al. [104], is used to provide automated program

repair for large software programs with reproducible software defects and with

implemented version control. The tool uses GP (hence the name) to repair off-

the-shelf C programs and can be used in parallel with cloud computing

resources. The source code used must contain sufficient C source code and must

have a reasonably sized test suite of viable test cases in order for GenProg to be

able to use it. The program can then compare the modified program with a set of

the positive test cases and all of the negative test cases (where “negative” relates

to test cases that are failing due to the software defect) to measure if the

solution is optimal and has kept the program functionality intact elsewhere. It

can use previous versions of the software and code from elsewhere in the

program to make these modifications. If the program passes all the negative test

cases, then it will terminate. Otherwise, further restrictions of time or number

of iterations can cause the tool to cease execution.

The inCode tool was developed by Ganea et al. [184] as an Eclipse plugin aimed

to transform quality assessment and code inspections from a standalone

activity, into a continuous, agile process, fully integrated in the development

life-cycle. inCode identifies and locates specific design flaws as they appear.

Dudziak and Wloka [102] created the J/Art tool to detect structural weaknesses

in Java code and for certain problems it can suggest the most beneficial

restructuring required. Static analysis is used, along with the representation of

abstract syntax trees, to detect numerous code smells with the tool, developed as

an add-in for NetBeans7. It can perform limited restructuring capabilities for the

design defects that are found using refactorings, although this is limited in

comparison.

JDeodorant is an Eclipse plugin developed by Tsantalis et al. [150] to

automatically identify and resolve type checking bad smells in Java source code.

The plugin initially identified 2 different types of type checking bad smell and

employs a different refactoring for each. The refactorings are “Replace

7 https://netbeans.org/

217

Conditional with Polymorphism” and “Replace Type Code with State/Strategy”.

The tool has since implemented the ability to further identify instances of

feature envy, duplicated code, long methods and god classes. The tool also has

corresponding refactorings in order to resolve these smells (“Move Method”,

“Extract Clone”, “Extract Method” and “Extract Class” respectively).

MiLu, developed by Jia and Harman [185], is a mutation testing tool designed

for both first order and higher order testing in the C language. MiLu is a

Chinese term named after a deer composed of 4 other animals. This name

represents the rare but valuable nature of the program. It also relates to the

mutation operators of nature that the program applies 4 times, as an example of

a Higher Order Mutant. Mutation testing is used to measure the quality of a

test set and design new software tests. It works by generating a set of faulty

programs by making small changes to the original program via the mutation

operator. Each faulty program or mutant will be run against a test set and

depending on the result may survive or be killed. The adequacy level of the test

set can then be measured by a mutation score that is computed in terms of the

number of mutants killed by the test set.

SWAT (Search based Web Application Tester), created by Alshahwan and

Harman [186], is a web application testing tool written in the PHP scripting

language. The algorithm is based on HC using the Alternating Variable Method,

but also uses constant seeding and Dynamically Mined Values. When a target

branch is selected, the Alternating Variable Method is used to mutate each

input in turn while other inputs remain fixed. When the selected mutation is

found to improve fitness, the change in the same direction is accelerated. The

tool is used to achieve branch coverage when testing web applications.

TrueRefactor was created by Griffith et al. [153] with the goal of improving the

understandability, maintainability and reusability aspects of legacy software. It

uses a GA on Java programs to detect lazy classes, large classes, long methods,

temporary fields or instances of shotgun surgery. It contains a set of 12

refactorings (at class level, method level or field level) that are used to remove

any code smells found. A set of pre conditions and post conditions are generated

for each code smell to ensure that they can be resolved beforehand.

218

WISE was created by Feldt [187] as an interactive tool to help with software

development and design. WISE uses biomemetic algorithms to support the

development process. A prototype of the tool, WiseR, has been implemented in

Ruby to focus on searching for tests. It is used to evolve test templates and

generate tests that add interesting information to the system. It uses this to

increase flexibility in the program.

Wrangler was developed by Li and Thompson [151] to support interactive

refactorings in Erlang programs. Erlang is a functional language supporting

modular programming and the Wrangler refactorings allow the improvement of

modularity smells without dramatically changing the existing modular

structure. Wrangler supports a variety of elementary structural refactorings,

process refactorings and code smell inspection operations, as well as the ability

to detect and eliminate duplicated code.

219

Appendix C – Other Relevant Software Tools

Appendix C – Other Relevant Software Tools

Along with the tools proposed from the literature, there are numerous open

source tools available that can assist with automating refactoring, metrics

calculations or providing search-based optimisation algorithms. Tables C.1-C.4

list the available tools for each of the 3 main components of SBSE. Commercial

refactoring tools are listed as well as open source tools.

Table C.1 – List of Open Source Refactoring Tools

Software

Package

Programming

Language

Purpose

AutoRefactor Java Implements a set of common refactorings to

Java code.

Coccinelle C Program matching and transformation engine.

Design Pattern

Transformer

Java Tool for implementing automated program

transformations in Java.

Eclipse Java IDE containing a selection of manual

refactorings.

EMF-Refactor Java Tool environment for metrics reporting, smell

detection and refactoring.

JavaRefactor Java Plugin for jEdit to automatically refactor Java

code.

JRefactory Java Applies manual refactorings to Java code.

PHP Refactoring

Browser

PHP Command line refactoring tool for PHP.

RefactorIT Java Provides automated refactorings, metrics, audits

and corrective actions.

Tane Eclipse

Refactorings

Java Eclipse plugin designed to complement the

refactorings supplied by Eclipse.

Transmogrify Java Java code analysis and manipulation

architecture.

Xrefactory Java Plugin for jEdit providing code completion,

source understanding tools and a refactoring

browser.

220

Table C.2 – List of Commercial Refactoring Tools

Software

Package

Programming

Language

Purpose

CodeRush .NET, C++,

JavaScript

Refactoring and productivity plugin for Visual

Studio.

Visual Assist C/C++, C# Productivity tool consisting of a number of

refactorings.

Klocwork C/C++ Source code analysis tool containing refactoring

support.

JustCode .NET Visual Studio extension containing refactoring

capability.

ReSharper .NET, C++ Productivity tool for Visual Studio with refactoring

support.

IntelliJ IDEA Java Commercial version of IDE with refactoring

support.

Table C.3 – List of Open Source Search-Based Optimisation Tools

Name Language

AntClique C

AntMiner+ MATLAB

AntSolver C

Beaver C++

CPLEX C/C++, C#, VB, Java, MATLAB,

Python

Distributed Genetic Programming Framework Java

ECJ Java

Epsilon-MOEA C++

EVA2 Java

Evolving Objects C++

Example Genetic Algorithm C++

Example MOPSO C++

General Simulated Annealing Algorithm MATLAB

Genetic Algorithm Library C++

GUI Ant-Miner Java

GUI-MOO C++

HeuristicLab Any

JAnnealer Java

Java Ant Colony Systems Framework Java

JCLEC Java

Jenes Java

Jenetics Java

JGAP Java

JMetal Java

JNSGA-II Java

JSwarm-PSO Java

MAX-MIN Ant System C++

Micro-GA For MOO C++

MOEA Framework Java

MOEA Library C++

MOEA-D C++

MOGA With Elitism C++

mPOEMS Java

221

Name Language

Myra Java

NSGA C++

NSGA-II C++

NSGA-III C++

OpenTS Java

Table C.4 – List of Open Source Metrics Tools

Name Language

CKJM Java

Eclipse Metrics Java

inFusion C/C++/Java

iPlasma C++/Java

JCosmo Java

Metrics Java

Metrics (Extension) Java

Sonar Qube C/C++/Objective-C, C#/VB.NET, Java/JavaScript, Python,

PHP, Flex/ActionScript, Erlang, Android, SQL, COBOL, XML,

CSS

222

Appendix D – Papers

Appendix D – Papers

Tables D.1-D.4 list the papers reviewed in Chapter 2, with the title of each

paper given along with the authors and year it was published (along with the

citation it relates to for quick referencing). Table D.1 lists the papers related to

SBSM that were the main subject of the literature review. Table D.2 lists the

other relevant papers in the area of SBSE. Table D.3 lists the editorials for

journals containing papers relating to SBSE and reports introducing tutorials

and talks given on the research area. Table D.4 gives the other literature

reviews that have been published in relation to SBSE or 1 of its sub areas.

Table D.1 – Papers on Search-Based Software Maintenance

Authors [Ref] Year Title

Amal et al. [160] 2014 On The Use Of Machine Learning And Search-Based

Software Engineering For Ill-Defined Fitness Function:

A Case Study On Software Refactoring

Bakar et al. [130] 2012 Applying Evolution Programming Search Based

Software Engineering (SBSE) In Selecting The Best

Open Source Software Maintainability Metrics

Di Penta [149] 2005 Evolution Doctor: A Framework To Control Software

System Evolution

Fatiregun et al. [73] 2004 Evolving Transformation Sequences Using Genetic

Algorithms

Ghaith and

Ó Cinnéide [125]

2012 Improving Software Security Using Search-Based

Refactoring

Griffith et al. [153] 2011 TrueRefactor: An Automated Refactoring Tool To

Improve Legacy System And Application

Comprehensibility

Harman [122] 2011 Refactoring As Testability Transformation

Harman and Tratt

[6]

2007 Pareto Optimal Search Based Refactoring At The

Design Level

Harman et al. [157] 2002 A New Representation And Crossover Operator For

Search-Based Optimization Of Software

Modularization

Harman et al. [133] 2012 Dynamic Adaptive Search Based Software Engineering

Harman et al. [132] 2013 Dynamic Adaptive Search Based Software Engineering

Needs Fast Approximate Metrics

Kessentini et al.

[134]

2011 Design Defects Detection And Correction By Example

Kessentini et al.

[135]

2011 Example-Based Design Defects Detection And

Correction

Kessentini et al.

[137]

2012 What You Like In Design Use To Correct Bad-Smells

223

Authors [Ref] Year Title

Koc et al. [117] 2012 An Empirical Study About Search-Based Refactoring

Using Alternative Multiple And Population-Based

Search Techniques

Li and Thompson

[151]

2010 Refactoring Support For Modularity Maintenance In

Erlang

Mkaouer et al. [25] 2014 High Dimensional Search-Based Software Engineering:

Finding Tradeoffs Among 15 Objectives For

Automating Software Refactoring Using NSGA-III

Mkaouer et al. [42] 2014 Many-Objective Software Remodularization Using

NSGA-III

Mkaouer et al. [144] 2014 Software Refactoring Under Uncertainty: A Robust

Multi-Objective Approach

Mkaouer et al. [146] 2015 On The Use Of Many Quality Attributes For Software

Refactoring: A Many Objective Search-Based Software

Engineering Approach

Mkaouer et al. [145] 2016 A Robust Multi-Objective Approach To Balance

Severity And Importance Of Refactoring Opportunities

Moghadam and

Ó Cinnéide [152]

2011 Code-Imp: A Tool For Automated Search-Based

Refactoring

Moghadam and

Ó Cinnéide [120]

2012 Automated Refactoring Using Design Differencing

Morales [154] 2015 Towards A Framework For Automatic Correction Of

Anti-Patterns

Morales et al. [123] 2016 Finding The Best Compromise Between Design Quality

And Testing Effort During Refactoring

Morales et al. [155] 2016 On The Use Of Developers’ Context For Automatic

Refactoring Of Software Anti-Patterns

Ó Cinnéide and

Nixon [109]

1999 A Methodology For The Automated Introduction Of

Design Patterns

Ó Cinnéide and

Nixon [107]

1999 Automated Application Of Design Patterns To Legacy

Code

Ó Cinnéide et al.

[124]

2011 Automated Refactoring For Testability

Ó Cinnéide et al.

[126]

2012 Experimental Assessment Of Software Metrics Using

Automated Refactoring

Ó Cinnéide et al.

[127]

2016 An Experimental Search-Based Approach To Cohesion

Metric Evaluation

Ó Cinnéide [110] 2000 Automated Refactoring To Introduce Design Patterns

O’Keeffe and

Ó Cinnéide [111]

2003 A Stochastic Approach To Automated Design

Improvement

O’Keeffe and

Ó Cinnéide [112]

2004 Towards Automated Design Improvement Through

Combinatorial Optimisation

O’Keeffe and

Ó Cinnéide [113]

2006 Search-Based Software Maintenance

O’Keeffe and

Ó Cinnéide [118]

2007 Automated Design Improvement By Example

O’Keeffe and

Ó Cinnéide [115]

2007 Getting The Most From Search-Based Refactoring

O’Keeffe and

Ó Cinnéide [116]

2007 Search-Based Refactoring: An Empirical Study

O’Keeffe and

Ó Cinnéide [114]

2008 Search-Based Refactoring For Software Maintenance

Ouni et al. [138] 2012 Search-Based Refactoring: Towards Semantics

Preservation

Ouni et al. [136] 2013 Maintainability Defects Detection And Correction: A

Multi-Objective Approach

224

Authors [Ref] Year Title

Ouni et al. [139] 2013 Search-Based Refactoring Using Recorded Code

Changes

Ouni et al. [141] 2013 The Use Of Development History In Software

Refactoring Using A Multi-Objective Evolutionary

Algorithm

Ouni et al. [37] 2015 Improving Multi-Objective Code-Smells Correction

Using Development History

Ouni et al. [147] 2015 Prioritizing Code-Smells Correction Tasks Using

Chemical Reaction Optimization

Ouni et al. [140] 2016 Multi-Criteria Code Refactoring Using Search-Based

Software Engineering: An Industrial Case Study

Pérez et al. [143] 2013 A Proposal For Fixing Design Smells Using Software

Refactoring History

Qayum and Heckel

[159]

2009 Local Search-Based Refactoring As Graph

Transformation

Seng et al. [121] 2006 Search-Based Determination Of Refactorings For

Improving The Class Structure Of Object-Oriented

Systems

Simons et al. [129] 2015 Search-Based Refactoring: Metrics Are Not Enough

Trifu et al. [148] 2004 Automated Design Flaw Correction In Object-Oriented

Systems

Tsantalis et al.

[150]

2008 JDeodorant: Identification And Removal Of Type-

Checking Bad Smells

Van Belle and

Ackley [156]

2002 Code Factoring And The Evolution Of Evolvability

Veerappa and

Harrison [128]

2013 An Empirical Validation Of Coupling Metrics Using

Automated Refactoring

Vivanco and Pizzi

[7]

2004 Finding Effective Software Metrics To Classify

Maintainability Using A Parallel Genetic Algorithm

Wang et al. [142] 2015 On The Use Of Time Series And Search Based Software

Engineering For Refactoring Recommendation

White et al. [158] 2008 Searching for Resource-Efficient Programs: Low-Power

Pseudorandom Number Generators

225

Table D.2 – Papers on General Aspects of Search-Based Software Engineering

Authors [Ref] Year Title

Allman [69] 2012 Managing Technical Debt

Barros and Dias

Neto [64]

2011 Threats To Validity In Search-Based Software

Engineering Empirical Studies

Brown et al.[68] 2010 Managing Technical Debt In Software-Reliant Systems

Chatzigeorgiou

et al. [70]

2015 Estimating The Breaking Point For Technical Debt

Clarke et al. [58] 2003 Reformulating Software Engineering As A Search

Problem

De Freitas and

De Souza [65]

2011 Ten Years Of Search Based Software Engineering: A

Bibliometric Analysis

De Souza et al.

[76]

2010 The Human Competitiveness Of Search Based Software

Engineering

Fatiregun et al.

[72]

2003 Search Based Transformations

Harman and

Clark [59]

2004 Metrics Are Fitness Functions Too

Harman and

Jones [1]

2001 Search-Based Software Engineering

Harman [61] 2007 Search Based Software Engineering For Program

Comprehension

Harman [60] 2007 The Current State And Future Of Search Based Software

Engineering

Harman [62] 2010 Why The Virtual Nature Of Software Makes It Ideal For

Search Based Optimization

Harman [63] 2011 Software Engineering Meets Evolutionary Computation

Jiang et al. [75] 2007 A Foundational Study On The Applicability Of Genetic

Algorithms To Software Engineering Programs

Jiang [74] 2006 Can The Genetic Algorithm Be A Good Tool For Software

Engineering Searching Problems

Morgenthaler

et al. [71]

2012 Searching For Build Debt: Experiences Managing

Technical Debt At Google

Vergilio et al.

[66], Colanzi

et al. [67]

2011/

2013

Search Based Software Engineering: A Review From The

Brazilian Symposium On Software Engineering/Search

Based Software Engineering: Review And Analysis Of

The Field In Brazil

226

Table D.3 – Editorials and Reports

Authors [Ref] Year Title

Di Penta and
Poulding [188]

2011 Introduction To The Special Issue On Search Based
Software Engineering

Di Penta et al.
[189]

2008 Special Issue On Search-Based Software Maintenance

Gutjahr and
Harman [190]

2008 Search-Based Software Engineering

Harman and
Jones [97], [98]

2001 The SEMINAL Workshop: Reformulating Software
Engineering As A Metaheuristic Search Problem/Software
Engineering Using Metaheuristic Innovative Algorithms:
Workshop Report

Harman and
Mansouri [193]

2010 Search Based Software Engineering: Introduction To The
Special Issue Of The IEEE Transactions On Software
Engineering

Harman and
Wegener [194]

2004 Getting Results From Search-Based Approaches To
Software Engineering

Harman et al.
[195]

2005 Guest Editorial: Special Issue On Software Maintenance
And Evolution

Harman [196] 2006 Search-Based Software Engineering For Maintenance And
Reengineering

Harman [197] 2006 The Importance Of Metrics In Search Based Software
Engineering

Harman [198] 2012 Overview Of TASE 2012 Talk On Search Based Software
Engineering

Harman [199] 2013 Software Engineering: An Ideal Set Of Challenges For
Evolutionary Computation

Ó Cinnéide and
Cohen [200]

2013 Introduction To The Special Issue On Search Based
Software Engineering

Table D.4 – Literature Reviews

Authors [Ref] Year Title

Ferrucci et al.

[162]

2014 Search-Based Software Project Management

Harman and

McMinn [201]

2010 A Theoretical And Empirical Study Of Search-Based

Testing: Local, Global And Hybrid Search

Harman et al.

[163], [202]

2009/

2012

Search Based Software Engineering: A Comprehensive

Analysis And Review Of Trends Techniques And

Applications/Search Based Software Engineering: Trends,

Techniques And Applications

Harman et al.

[161]

2012 Search Based Software Engineering: Techniques,

Taxonomy, Tutorial

McMinn [203] 2004 Search-Based Software Test Data Generation: A Survey

Pitangueira
et al. [204]

2013 A Systematic Review Of Software Requirements Selection
And Prioritization Using SBSE Approaches

Räihä [8], [205] 2009/

2010

An Updated Survey On Search Based Software

Engineering/A Survey On Search Based Software

Engineering

Sayyad and
Ammar [206]

2013 Pareto-Optimal Search-Based Software Engineering
(POSBSE): A Literature Survey

