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Abstract

Massive multiple-input multiple-output is a promising technique for the

next generation of wireless communication systems which addresses most

of the critical challenges associated with concurrent relaying systems, such

as digital signal processing complexity, long processing delay, and low-

latency wireless communications. However, the deployment of conven-

tional fully digital beamforming methods, dedicates one radio frequency

(RF) chain to each antenna, is not viable enough due to the high fabrica-

tion/implementation cost and power consumption. In this thesis, we envi-

sion to address this critical issue by reducing the number of RF chains in

a viable analog/digital configuration paradigm which is usually referred to

hybrid structure.

From another viewpoint, the development of fifth generation enabling tech-

nologies brings new challenges to the design of power amplifiers (PAs).

In particular, there is a strong demand for low-cost, nonlinear PAs which,

however, introduce nonlinear distortions. On the other hand, contemporary

expensive PAs show great power efficiency in their nonlinear region. In-

spired by this trade-off between nonlinearity distortions and efficiency,

finding an optimal operating point is highly desirable, and this is the second

key contribution of this thesis.
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Chapter 1

Introduction

The widespread use of wireless communications has become an integral part of

modern life. Wireless connectivity has become nearly ubiquitous due to the portable

devices which are connected to the Internet all the time, almost anywhere. In the

present days, the wireless communication technology offers a variety of new exciting

applications such as voice, multimedia teleconferencing, online games, file transfer,

and navigation. Moreover, the proliferation of such devices, of course, accelerates the

process and consequently creates new traffic demands for the mobile operators and

vendors. To handle the explosive demand for data transmission, a host of spectrally

efficient transmission technologies should be developed for the next generations of

cellular networks which at the same time have to be low-cost and power-efficient.

1.1 Cooperative Communications

The exponential growth of modern technologies and data traffic, along with the de-

velopment of high speed vehicles and transportation, introduce new challenges for

communication engineers to ensure ultra high-speed services with unprecedented reli-

ability for the costumers. Indeed, the lack of sufficient bandwidth, power limitations,

and high complexity of resource management should be treated in a cost-efficient way

for the next generation of mobile networks.

In this sense, cooperative communication was first proposed for wireless appli-

1



1.1 Cooperative Communications

cations in the seminal papers [2, 3]. After that, this technique has received a huge

amount of research interest in Third Generation Partnership Project Long Term Evolu-

tion (3GPP LTE) and has been employed in LTE-Advanced (LTE-A) systems. Indeed,

relay systems offer many benefits over conventional point-to-point networks [4]. This

technique can combat the long-term path loss by effectively reducing the long dis-

tance between geographically separated user nodes. From this viewpoint, relaying is

an energy efficient technique in wireless communication networks which can save a

considerable amount of power by reducing the distance among the nodes. Moreover,

relay nodes can circumvent intermediate obstacles, and consequently resolve the shad-

owing and blockage problem in an efficient way and ensure a reliable communication

even in very high frequencies [5]. In addition, utilizing the wired backhaul for future

ultra-dense networks has been recognized as a costly method which can be resolved by

deploying relay nodes in future networks [6]. All in all, these properties render coop-

erative communication as a promising solution to overcome the data rate degradation

and radio link outages in wireless communication networks. In the literature, there

exist three prevalent relaying strategies, namely decode-and-forward (DF), compress-

and-forward (CF), and amplify-and-forward (AF).

• DF relaying: In this wireless communication protocol, the relay receives the

coded signals from sources, and decodes the message of each user all in one

block. In the next block, the relay re-encodes the messages and forwards them

toward the designated destinations. DF relaying is a hard decision protocol,

as the forwarded signal does not include any additional information regarding

the channel reliability of the source-relay link. Also, DF relaying is a resilient

scheme against white noise, since it first cancels out the noise at the relay station,

and then, sends the noise-free signal to the destinations [7].

• CF relaying: In this scheme, the relay station cannot decode the received sig-

nals from sources. However, it compresses and quantizes the observed signals

in one block, and then forwards them toward the destination nodes in the fol-

lowing block. This type of relaying scheme can be further classified based on

2



1.2 MIMO Development

compressing methods [8–10].

• AF relaying: This is the simplest relaying technique, where the relay station

receives the signals from the sources in one time-slot, and then boosts what-

ever it receives including messages, noise and interference up to a certain level

of power. Then, the relay station forwards the aggregated signal toward the

destinations in the next time-slot. AF relaying requires less time, power, and

computational complexity compared to the two other schemes as no decoding

or compressing operation is applied. Since AF relaying works on a time-slot

by time-slot basis, it exhibits less processing delay, and is most suitable to the

high speed wireless communications. In this light, we consider the AF relaying

protocol throughout of this thesis.

It is worth pointing out that by deploying more antennas at the relay station, the

performance of relay networks can be further improved to enhance the area spectral

efficiency and transmission reliability even more [11, 12]. This is due to the fact that

multiple-input multiple-output (MIMO) techniques can offer a generous array and mul-

tiplexing gain by leveraging the spatial selectivity. However, we note that the great

performance of MIMO relaying systems comes at the price of signaling and circuit

complexity as multiple radio frequency (RF) chains are required at the relay stations.

1.2 MIMO Development

MIMO technology utilizes multiple antennas at both ends of a radio link to simul-

taneously transmit multiple data streams in wireless communication systems. This

technology can support a high-speed and reliable link by exploiting the spatial degrees

of freedom of the propagation channel. Today, MIMO is a relatively mature technique

with a wide range of applications, such as digital television (DTV), wireless local area

networks (WLANs), metropolitan area networks (MANs), and mobile communica-

tions. The great potential of MIMO systems has been recognized, for the first time, in

the seminal papers [13–15]. The development of MIMO systems can be further clas-
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sified in three symbiotic pillars: single-user MIMO (SU-MIMO), multi-user MIMO

(MU-MIMO), and massive MIMO.

1.2.1 SU-MIMO

The development of MIMO appeared in the late 1990s [13–19]. SU-MIMO commu-

nication is the initial form of MIMO communications in which both the base station

(BS) and a single user equipment are equipped with an array antenna. In this scheme,

multiple antennas at the transmitter and receiver offer spatial selectivity, resulting in

a great improvement in capacity, reliability, and resistance to interference. Although

SU-MIMO can offer a generous multiplexing and beamforming power gain, however,

its performance might be seriously limited by some practical considerations. First,

dedicating many antennas to each user equipment significantly increases the burden of

signal processing and implementation cost. Second, the advantage of multiplexing gain

is deteriorated in the low power regime, hence, this kind of MIMO systems struggles to

provide a descent throughput to cell-edge users which are more prone to interference

from neighboring cells. Finally, when the propagation channel is ill-conditioned, the

SU-MIMO performance is substantially degraded [20].

1.2.2 MU-MIMO

As a generalization of SU-MIMO, MU-MIMO techniques emerged and provided sev-

eral key advantages over SU-MIMO communication systems. In MU-MIMO, the BS

can simultaneously communicate with multiple single-antenna users in the same time-

frequency blocks. From this viewpoint, the deployment of small and cheap user ter-

minals is quite simpler than SU-MIMO communications in terms of signal processing

and implementation cost. More fundamentally, MU-MIMO communication is more

immune to the ill-conditioned propagation environments which are highly restrictive

for the SU-MIMO ecosystem. Thanks to these great abilities, MU-MIMO has been

employed into the 3GPP LTE, and evolving wireless broadband standards like forth

generation (4G) Long Term Evolution (LTE) and LTE-A [21, 22]. Nevertheless, it is

4



1.2 MIMO Development

notable that the advantages of MU-MIMO come at the cost of channel state informa-

tion (CSI) acquisition, which requires substantial time or frequency resources to be

set aside for pilot training and feedback signaling [23]. Hence, MU-MIMO is not a

scalable technique with respect to the number of service antennas at the BS.

1.2.3 Massive MIMO

Massive MIMO is an enabling technique for the development of future wireless com-

munications which can reap all the benefits of MU-MIMO, but on a much greater

scale. Massive MIMO can handle orders of magnitude more data traffic by deploying

the dozens or hundreds of antennas at the BS. Assuming that CSI is only required at the

BS, and simple linear processing is used on both uplink and downlink, this technique

is scalable with respect to the number of service antennas at the BS [24, 25]. Besides

scalability, massive MIMO in cellular networks brings improvements in the following

aspects [26–28]:

• Spectral efficiency: Deploying BSs with very large number of antennas can ef-

fectively amplify the both beamforming power gain and diversity gain, which

consequently, can increase the capacity by 10 times or more.

• Signal processing: Massive MIMO avails of favorable propagation channel due

to the channel hardening property [29]. Hence, very simple and linear signal pro-

cessing like maximum ratio combining (MRC), zero-forcing (ZF), and minimum

mean-squared error (MMSE) achieve the same performance of complicated non-

linear signal processing methods, e.g, dirty paper coding.

• Robustness: Massive MIMO is a resilient technique against the small-scale fad-

ing and intentional jamming, by offering huge degrees of freedom and diversity

gain.

• Energy efficiency: Due to the large number of service antennas in massive

MIMO, the BSs can concentrate their radiated energy on particular destinations

by forming very narrow beams. The more service antennas that are utilized,
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the finer the spatial focusing can be. From this point, massive MIMO can en-

hance the energy-efficiency in the order of 100 times compared to conventional

MU-MIMO systems.

• Latency: Latency on the air interface is one of the key challenges of concurrent

wireless communication systems. It usually occurs when strong destructive in-

terference happens in multipath environments, and the channel experiences deep

fading. This phenomenon is more prohibitive in slow fading channels, when the

channel may experience a deep fading and the receiver has to wait for a long-

time for the channel to recover its good condition and provide a reasonable gain

again. However, thanks to the law of large numbers, massive MIMO avails of the

channel hardening with less gain fluctuation compared to conventional MIMO

channels. Thus, it is unlikely that a destination terminal is trapped in a fading

dip. Therefore, massive MIMO can naturally contribute to design of low-latency

wireless links.

1.3 Massive MIMO Relaying

A considerable amount of attention has been paid to wireless network latency in recent

years. The user plane latency achieved in LTE is approximately two times less than the

corresponding latency in prevalent third generation (3G) technologies. This provides

a direct service advantage for online and highly interactive application environments,

such as sporting events, video conferencing, and multiplayer gaming. The effect of

delay and latency is more pronounced in cooperative communications, where the re-

lay node carries on the burden of complicated signal processing and power allocation

algorithms. Therefore, cooperative relaying combined with massive MIMO, as a key

enabling technology for future energy-efficient and low-latency communications, has

received a great deal of research interest very recently.

In [30], the asymptotic performance of one-way massive relaying under perfect

CSI was analyzed in three different power-scaling schemes. It was shown that the ra-
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diated power of user and relay nodes can be scaled down inversely proportional to the

number of relay antennas. Two-way massive relaying with the similar power strategy

has been investigated in [31] evaluating the system performance in terms of both spec-

tral efficiency and energy efficiency. In [32], the authors considered multipair two-way

massive relaying, where perfect CSI is not available at the relay station. Then, they de-

rived a closed-form expression for the achievable ergodic rate under MRC and ZF pro-

cessing which provides an insightful scheme for simple power allocation. The energy

efficiency of two-way relaying with unlimited relay nodes was also studied in [33].

Massive MIMO in the context of full-duplex relaying was investigated for the first

time in [34], where the authors suppressed the interference loop in the spatial domain

and optimized the energy efficiency. Also, some other efforts in this area can be found

in [35–37].

Altogether, massive MIMO has the potential to address the challenges of relay-

ing systems through channel hardening that averages out small-scale fading, and then

reduce the latency considerably with a simple linear signal processing at the relay

station. However, the extension of MIMO to massive MIMO relaying is not straight-

forward due to a plethora of practical constraints that are articulated in the following

section.

1.4 Challenges and Motivations

1.4.1 Cost and Complexity

Although massive MIMO is a secure and robust technology which can address the

high connectivity, growing capacity requirements, and low-latency communication in

future fifth generation (5G) cellular networks, the practical implementation of mas-

sive MIMO induces some formidable challenges. In particular, having one RF chain

per antenna element will boost to unprecedented levels the circuit complexity, fabrica-

tion/implementation cost and power consumption. In addition, wireless communica-

tion systems are continuously approaching higher carrier frequencies, and larger band-
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widths. This technological shift involves much more complicated digital-to-analog

converters (DACs), mixers, oscillators, and non-efficient power amplifiers (PAs) in

each RF front-end. These critical issues were originally identified and addressed

in [38, 39] by a cascade structure of an analog RF beamformer followed by digital

baseband processor, which is normally referred to hybrid structure. The main idea

stems from the fact that the multiplexing gain is restricted by the number of RF chains

in MIMO systems, but, the array gain and diversity order can still be leveraged if suit-

able beamforming can be performed in the RF domain.

The emerging hybrid massive MIMO technology has recently attracted wide atten-

tion due to its potential benefits in cellular networks [40–43,43–45]. Hybrid structures

deployed in different fields of wireless communication systems can be found in Fig.

1.1. In these structures, the overall beamformer consists of a low dimensional digital

baseband processor FBB and an analog RF beamformer FRF implemented by means

of either switches or phase shifters. There are essentially three prevalent hybrid struc-

tures. A fully connected structure is illustrated in Fig. 1.1 (see subfigure A), where each

RF chain is connected to all the antennas. In this model, the performance of the system

may deteriorate due to the mutual coupling and interference among users, however

this topology can provide the highest spectral efficiency and more accurate channel

estimates [44]. In the partially connected structure, subfigure B, each RF chain is con-

nected to a subset of array antennas. This topology is best suitable for the case that

system suffers from high statistic and dynamic insertion loss. Different from fully and

partially connected structure, topology C deploys many digital beamformers which is

a generalization of the spatial sectorization in contemporary wireless communication

systems. Note that we assume a fully connected structure throughout this thesis as we

ignore the mutual coupling and insertion loss in our system model.

Although hybrid massive MIMO has already been introduced in different areas of

wireless communications [39–45], to the best of our knowledge, there are few prior

works that considered the hybrid massive MIMO structure in combination with coop-

erative communications [46, 47]. In [46], the authors developed an iterative sparse or-
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Figure 1.1: Typical block diagrams of hybrid beamforming structure at BS for a downlink
transmission, where structure A, B, and C denote the fully connected, partially connected, and
the virtual-sectorization structures, respectively [1].

thogonal matching pursuit algorithm to maximize the average rate for millimeter-wave

MIMO systems. However, they did not consider a multiuser scenario, and also, they

did not derive any closed-form expression for their achievable rate. In addition, the

results are obtained under the assumptions of perfect CSI and accurate phase shifters

which are too idealistic in reality. In [47], the authors evaluated the spectral and en-

ergy efficiency of a hybrid massive MIMO relaying for Rayleigh fading channels. They

showed that the source and relay transmit power can respectively scale down by fac-

tors 1
N

and 2K
N

assuming that the pilot power is a constant parameter, where N and

K denote the number of relay antennas and user pairs, respectively. Also, this paper

reveals that the source and relay transmit power can scale down by 1√
N

and 2K√
N

if the

pilot and payload data power are reduced in the same scale. We note that these results

are under the assumptions that the propagation channels are uncorrelated, the number

of RF chains (L) are exactly two times the number of user pairs, i.e. L = 2K, and also

N >
⌊

4L2

π

⌋
.
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1.4.2 Power Amplifier Nonlinearities

There are increasing requirements for modern wireless communications systems to

enhance the data rate. On the other hand, energy consumption becomes a crucial con-

cern since wireless communication systems contribute significantly towards the global

carbon footprint. To satisfy these ever conflicting requirements, emerging wireless

communication systems are continuously using larger bandwidth, higher carrier fre-

quencies, and energy efficient methods. This results in an ever increasing demand on

the performance of RF chains, which at the same time should be power-efficient and

low-cost. We recall that PAs consume about 57% of the operation energy in macro

BSs [48]. Furthermore, it has been estimated that BSs dedicate 10% of their energy

consumption just to cool the PAs. Hence, there is a great tendency to push the operat-

ing point of PAs closer to their nonlinear region, where the efficiency of PAs is much

higher compared to the linear regime. From the other perspective, the number of PAs

can be, and in many applications like massive MIMO must be, very high. Therefore,

the design of extremely low-cost, low-complexity, and consequently, nonlinear PAs is

of paramount importance.

Although there is a strong demand for low-cost PAs in future communication sys-

tems, the performance of MIMO systems can be severely degraded by the nonlineari-

ties introduced by these inexpensive PAs. This issue has been recently studied in a few

related papers. For instance, the impact of PAs nonlinearity was considered in [49],

where the authors evaluated the channel estimation under nonlinearity distortions, and

then proposed a novel quantized approach to minimize the bit-error-rate, and conse-

quently, improve the spectral efficiency. A constellation-based compensation method

is also proposed in [50] to reduce the in-band distortion for high-power amplifiers.

There are also some other research efforts like [51–56], which have dealt with the

PA nonlinearities in different wireless applications, but there is a dearth of literature

considering the PAs nonlinearity in the context of MIMO systems.
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1.5 Contributions

Inspired by the above discussion, in this thesis, we first consider a multipair AF relay-

ing with hybrid structure at the relay station. Then, we investigate the performance as-

sessment of the system under perfect CSI in three different power regimes. Moreover,

we develop closed-form expressions for the asymptotic spectral efficiency, and provide

some insightful tradeoffs between the number of service antennas and the transmitted

power either in user nodes or at the relay station. In order to have a low-cost im-

plementation of analog beamformers, we also relax the accuracy constraints of phase

shifters to an arbitrary number of quantization bits. Then, we mathematically evalu-

ate the impact of this relaxation which is a case of practical interest. In this scenario,

analog beamformers should be able to adapt to the quick variations of instantaneous

channels over time. This adaptation, not only requires perfect CSI at the relay station,

but also is a challenging task due to less flexibility of analog beamformers compared

to the digital beamformers. To have a better understanding of the performance of the

proposed system with imperfect CSI, we assume a hybrid beamforming where the

analog beamformer is a bank of phased shifters with the simplest possible phases, i.e.

±π. Finally, we take the channel correlation into account and design our hybrid beam-

former contains of a statistical-based analog beamformer followed by simple digital

beamformers, i.e. either MRC or ZF processor. Our analytical results reveal that al-

though multiplexing gain and power gain are restricted due to the limited number of

RF chains and perfect CSI is not available at the relay station, the proposed scheme

can still exploit the diversity gain and improve the spectral efficiency.

In addition, we consider a new system model that incorporates a general case by

taking the PAs nonlinearities into account. We expand our analytical derivations to

find how the desired signal and distortion interact together under a nonlinearity PAs.

In order to optimize the spectral efficiency, we will go through the power allocation

optimization, and then reduce it to a simple power control optimization problem. We

finally derive simple lower and upper bounds on the original optimization problem

which are quite useful for further research in this field. This thesis makes the following
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specific contributions which are cited by our recent papers in these scopes:

1. We consider a multipair massive MIMO relaying, and propose a hybrid struc-

ture includes an online RF analog beamformer and a baseband digital processor.

Then, we study the system performance in three different power regimes under

the assumption that perfect CSI is available at the relay station [57].

2. We expand our analytical results for a practical case with an arbitrary quantiza-

tion bit. Our numerical results reveal that our system is robust to coarse quan-

tization and even with 2-bit resolution, the proposed configuration can capture

more than 90% of the achievable rate offered by an unrealistic system with ideal

phase shifters [57].

3. We assume a worst case scenario, where only imperfect CSI is available at the

relay station, and analog beamformers are invariant over time with only two

phases ±π. Our analytical results show that with only half of the RF chains the

system can achieve 75% of the achievable rate of fully digital structure [58].

4. Since analog beamforming restricts the performance of relay systems with chan-

nel correlation, we develop a correlation-based analog beamformer followed by

linear digital processors. Then, we find a new lower bound and approximation

bound on the achievable rate and evaluate the performance of the system for

different correlation setups [59].

5. We assume a point-to-point MIMO communication link, and then evaluate the

impact of nonlinear PAs on the ergodic achievable rate. We analyze how the

desired signal and distortion affect the system performance and provide some

insightful bounds and asymptotic results [60].

1.6 Organization of the Thesis

The thesis consists of six chapters which are outlined as follows. In Chapter 3, we

consider a multipair AF relay system with a hybrid topology at the relay station. We
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assume that perfect CSI is available only at the relay station while this information is

not available at the user nodes. After that, we adjust the analog beamformers to cancel

out the phase of channels at the relay station, and then we complete the processing

at the digital signal processing (DSP) unit which utilizes the maximum ratio combin-

ing/maximum ratio transmission (MRC/MRT) scheme. To have a case of practical

interest, we assume that the phase shifters have a limited resolution, and then figure

out the achievable rate of the proposed system under this assumption.

Since the analog beamformer is implemented in the RF domain with less flexibility

than the baseband processing, we assume the worst case in Chapter 4, where the ana-

log beamformer is constant over time, and consists of phase shifters with phases ±π.

This assumption reduces the channel size to the number of RF chains and restricts the

impact of array gain. However, it avails of a very simple structure which describes the

basic relation between the spectral efficiency, number of RF chains, and active users,

particularly in cases that only imperfect CSI is available at the relay station.

In Chapter 5, we consider a correlated channel, and adjust the analog beamformers

to the variations of channel statistics rather than the instantaneous CSI. In this scenario,

we estimate the propagation channels with uplink orthogonal pilots, and then design

the analog beamformers to minimize the estimation error, and consequently improve

the achievable rate. We develop new bounds on the achievable rate for both MRC/MRT

and ZF schemes.

In Chapter 6, we evaluate the impact of low-cost PAs in the context of point-to-

point MIMO communication links, where the modeling and analysis of PAs nonlinear-

ities is extremely appealing. Indeed, PAs may operate within their nonlinear region,

particularly when they are working in the high-power signal regimes to achieve higher

efficiency. In this chapter, we simplify the nonlinear behavior of PAs by invoking the

Bussgang’s theorem. Next, we evaluate the achievable rate of the system, where we

reduce our power allocation optimization to a simple power control problem, and then

derive a closed-form expression on the achievable rate. As the closed-form expression

is not very insightful, we derive lower and upper bounds on the achievable rate and
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also analyze the performance of system in the low and high power regime.

Chapter 7 summarizes some important conclusions obtained from this thesis, and

also gives some possible avenues for future work.
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Chapter 2

Background

In this chapter, we provide a brief overview of the fundamental concepts of wireless

communication systems which will be often used in the subsequent chapters. First, we

briefly introduce the propagation manifestations which will be frequently encountered

in our system model. Then, we explicitly discuss the main concepts of diversity or-

der and multiplexing gain which are the key features of MIMO systems. Finally, we

explain the linear MIMO receivers which are very popular due to their easy implemen-

tation.

2.1 Path Loss

The path loss is the main factor of signal power reduction, when the signal propa-

gates through space. This natural phenomenon is commonly expressed by invoking

the classical power law in dB

PL(dB) = 10 log10

(
Pt
PR

)
, (2.1)

where Pt and PR denote the signal power at transmitter and receiver, respectively. A

simplified version of this formula can be expressed as

Pr = PtK

(
d

d0

)−ν
for d > d0. (2.2)
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In this equation, K is a unitless constant which depends on the average channel

attenuation and antenna properties, d is the distance between transmitter and receiver

antennas while d0 is a reference distance which normally takes a value in the range of

10−100 m for outdoor communications and between 1−10 m for indoor communica-

tions. The symbol ν represents the path loss exponent which is typically between 2−6,

where the 2 describes free space propagation. In general, a more cluttered environment

leads to a higher path loss exponent [61].

2.2 Multipath Fading Channel

The wireless channel is highly unstable due to the scatterers, reflectors, and obstacles

in the physical environment. Each scatterer has the potential to create a new copy of

the transmitted signal and this phenomenon is well-known as multipath in wireless

communications. Hence, multiple copies of a transmitted signal are received at the

destination. Each signal travels through a different path, hence, they experience dif-

ferent attenuation, phase shifting, and delay. Hence, these signals may constructively

or destructively add together and this intrinsically leads to a variation of the phase and

amplitude of the aggregated signal. This property is referred as channel fading which

can be divided into large-scale fading and small-scale fading.

Large-scale fading is a consequence of path loss and shadow fading which will be

explained in following section. Small-scale fading can be classified from two different

viewpoints: frequency and time domain. In frequency domain, the channel fading is

flat if the signal bandwidth is less than the channel coherence bandwidth. Otherwise,

the channel exhibits frequency selective fading. In the time domain, the channel is

slow fading if the channel coherence time is larger relative to the delay requirement

of the application. At the other extreme, a fast fading channel can appear if the trans-

mitter, obstacles or receivers are moving very fast with respect to each other so that

the Doppler phenomenon is more pronounced. However, we note that in a fast fading

channel, the communication system avails of the variations in the channel conditions,

i.e., time selectivity, to enhance the communication reliability using suitable equaliza-
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tion schemes [62].

2.3 Shadow Fading Channel

Shadowing is often introduced by topographical elements and big objects, such as a hill

or large buildings that interact with propagation paths over relatively large distances.

In fact, an obstacle with depth of d can exponentially attenuate the transmitted signal

so that

s(d) = α exp (−βd) (2.3)

where α is an adjusting coefficient and β is an attenuation constant, which depends

on the obstacle material. Now, let us assume that there exist M obstacles so the total

attenuation can be expressed as

s(dt) = α exp
(
−

M∑
i=1

βidi

)
, (2.4)

where the index i refers to the i-th object, and dt represents the sum of the obstacles

depths through which the signal travels. In a propagation channel with many obsta-

cles between transceivers we can utilize the law of large numbers and conclude that∑M
i=1 βidi can be treated as a Gaussian random variable. From this viewpoint, we can

claim that the logarithm function of shadow fading follows a Gaussian distribution, and

consequently, shadow fading can be commonly modeled by a log-normal distribution

as

fΨ(ψ) =
ξ√

2πσψdB
ψ

exp

(
−

(
ψdB − µψdB

)2

2σ2
ψdB

)
, for ψ ≥ 0, (2.5)

where ξ = 10
ln (10)

and ψdB = 10 log10 (ψ). Also, µψdB
and σψdB

represent the mean

value and standard deviation of ψdB, respectively [63].
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2.4 Rayleigh Fading Channel

In the case that there is no dominant line-of-sight between the transmitter and receiver,

and the environment is rich enough to provide many propagation paths, the Rayleigh

distribution can well describe the small-scale fading of transmitted signal. This model

relies on the fact that there exist many reflectors and consequently paths in the channel.

Hence, the real and imaginary part of the signal can be accurately modeled via a Gaus-

sian distribution according to the law of large numbers. Hence, the wireless channel

can be described by h = hR + jhI where hR and hI are Gaussian random variables

with distribution N(0, σ2). In this model, the envelope of the aforementioned channel

R =
√
h2
R + h2

I is a Rayleigh random variable with the following probability density

function (PDF):

fR(r) =
r

σ2
exp (− r

2σ2
). (2.6)

2.5 Spatial Channel Correlation

MIMO systems avail of spatial diversity to ensure a reliable connection among the

transceivers by sending copies of the same data stream through independent channels.

In addition, MIMO systems can greatly improve the capacity of wireless communi-

cation systems by proper beamforming methods that steer the radiated energy into the

intended directions. However, both diversity gain and capacity achievement are signifi-

cantly influenced by the channel spatial correlation [64,65]. Spatial channel correlation

in MIMO systems is mostly due to the short antenna separations and lack of reflectors

and scatterers around the array antennas [65, 66]. Precisely speaking, space limitation

either in mobile devices or BSs leads to the channel correlation as adjacent antennas

receive approximately similar data streams. Furthermore, the BSs are usually located

on rooftops to have a line-of-sight channel with the users. However, due to the lack of

reflectors in such heights, MIMO systems may exhibit high spatial correlation. Con-

sidering a Rayleigh fading channel, one can decompose the propagation channel based
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on the Kronecker model

G = R
1
2
r H
(
R

1
2
t

)H
, (2.7)

where H is a random matrix with i.i.d. CN (0, 1) elements. Also, Rr and Rt charac-

terize the spatial correlation at the receiver and transmitter side, respectively. Under

this channel model, the propagation channel can be rewritten as

H ∼ CN (0,Rt ⊗Rr) . (2.8)

It is worth pointing out that the Kronecker model is not the most accurate model, but it

can provide a tractable analytical expression and insightful observation of the channel

spatial correlation [67,68]. There are many different models to characterize the spatial

correlation matrices, Rr and Rt, depending on the application scenario. In general,

the classical models focus on the distribution of signal power and Doppler shift effects.

However, there are more elaborated correlation models, build on the principles of the

classical channels, which take other factors, such as angle of arrival (AoA), angle of

departure (AoD), and time delay into account. In Chapter 5, we utilize the Gaussian

AoA and AoD models, which involve matrices with a spread inversely proportional to

the product of the antenna spacing and angle spread. A detailed discussion of these

models has already been provided in [64].

2.6 Diversity Gain

Wireless communication channels often experience a very large power penalty due to

the large-scale (path-loss and shadowing) and small-scale (Rayleigh) fading. Hence,

the error probability decays badly with the signal-to-noise ratio (SNR) due to the fact

that the propagation channel can be in a deep fade in slow fading channels. One promi-

nent solution is to increase the number of independent paths that information symbols

pass through. Thus, the reliable communication can be ensured as long as there exists
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at least one strong path between the transmitter and receiver. This technique is called

diversity which can be achieved in many different domains such as time, frequency,

macro-cell, and space. Regardless of the chosen diversity technique, the diversity gain

(d) is defined as

d = lim
SNR→∞

− log2 Pe(SNR)

log2(SNR)
, (2.9)

where Pe(·) denotes the error probability function [69].

Diversity over time domain can be obtained by spreading the information symbols

over different symbols or coherence blocks. In a similar spirit, frequency diversity

is best suitable for frequency-selective channels where symbols can be sent through

independent channels in frequency domain. Also, diversity can be achieved in cellular

networks when users have this opportunity to choose a BS with the better channel

conditions. This kind of diversity is called macro-diversity. Finally, spatial diversity

can be achieved by deploying more than one antenna at transceivers. It has been shown

that by having Nt service antennas at the transmitter and NR service antennas at the

receiver side, a MIMO system can extract up to NtNr diversity gain in independent

and identically distributed (i.i.d.) Rayleigh fading channels [70].

2.7 Spatial Multiplexing Gain

It has been recognized that MIMO systems under suitable channel fading conditions

can simultaneously transfer multiple orthogonal data streams by utilizing separate spa-

tial dimensions. This results in a substantial capacity gain at no additional power

or bandwidth. Spatial multiplexing gain had a significant impact on introducing the

MIMO systems in wireless technology. Based on the definition, a MIMO system

achieves a spatial multiplexing gain r if

r = lim
SNR→∞

R(SNR)

log2(SNR)
, (2.10)
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where R(·) is the data rate function [69]. It can be shown that, in i.i.d. Rayleigh

fast fading channels, the capacity of MIMO system with Nt transmit antennas and Nr

receive antennas linearly scales with minimum number of antennas in high SNR, i.e.

R(SNR) = nmin log2(SNR), where nmin = min{Nt, Nr}. This result implies that

this system model can be decomposed to nmin parallel spatial channels which have the

potential to simultaneously transfer nmin independent data streams.

2.8 Diversity-Multiplexing Tradeoff

The outage probability evaluates the performance of wireless communication system

under slow fading channels. In this sense, diversity gain is the most important bench-

mark that explains how fast the error probability decays at high SNR. On the other

hand, multiplexing gain demonstrates the performance of any MIMO system under

fast fading channels. It is shown that there exists a trade off between diversity gain and

multiplexing gain [69]. Fig. 2.1 showcases the optimal diversity gain d∗ as a function

of the multiplexing gain r in an i.i.d. Rayleigh fading channel. It has been proved that

for a block code of length L, the function d∗(r) is a pairwise linear function which

connects the following points:

(
k,
(
Nt − k

)(
Nr − k

))
, for k = 0, 1, . . . , nmin, (2.11)

where it is assumed that L ≥ Nt +Nr − 1 [69].

This theoretical result sheds light on how diversity and spatial multiplexing gain

contribute to the performance of MIMO systems. On the one hand, MIMO system

avails of maximum possible diversity gain NtNr at the price of very limited multi-

plexing gain (r → 0). This strategy works well in slow fading channels where outage

events, and consequently, diversity gain is much of a concern. However, it falls short

to address the high data rate requirements in fast fading environments. On the other

hand, MIMO system can capture full multiplexing gain
(
r → min{Nt, Nr}

)
when the

propagation channel varies very fast, but this system is not resilient against the deep
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Figure 2.1: Diversity-multiplexing gain tradeoff for MIMO systems with Nt transmit antennas
and Nr receive antennas.

fades of slow fading channels anymore. This analytical result provides other insightful

results as well. For instance, adding one extra antennas at both the transmit and re-

ceive side enhances the multiplexing gain by 1, while the system still enjoys the same

diversity gain as before.

2.9 MIMO Receiver Architectures

It is well recognized that Vertical Bell Labs Space-Time (V-BLAST) architecture can

exploit the maximum diversity gain of a point-to-point MIMO system. By perform-

ing a singular value decomposition (SVD) of the MIMO channel, the transmitter pre-

rotates the data streams and sends them trough the eigenmodes of the propagation

channel toward the destination. Then, the receiver can recover the data streams with-

out interference by utilizing the right singular vector matrix of the channel matrix.

Although, V-BLAST is an optimal structure, perfect CSI is required at both transmitter

and receiver side which is not a case of practical interest in terms of cost, complexity,
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2.9 MIMO Receiver Architectures

feedback and overhead signaling. Hence, various techniques have been already devel-

oped which only require the CSI at the receiver side. These so-called combiners can

be divided in two general groups: linear and nonlinear receivers. Due to the low-cost

nature of linear receivers, hereafter, we just focus on this group of receivers and briefly

introduce the main linear receivers in the context of MIMO systems.

2.9.1 Maximum Ratio Combiner

Let us assume that H =
[
h1,h2, . . . ,hNt

]
denotes the flat fading MIMO channel and

vector x =
[
x1, x2, . . . , xNt

]T is the information symbol. Then, the received signal at

the receiver of a point-to-point MIMO system is given by

y = Hx + w, (2.12)

or equivalently,

y =
Nt∑
i=1

hixi + w, (2.13)

where w is a Gaussian random vector with i.i.d. CN (0, N0) entries which represents

the additive noise. It is clear that the k-th symbol can be extracted as follows

y = hkxk +
Nt∑
i 6=k

hixi + w. (2.14)

The MRC technique weighs the received signal in each branch proportional to

the channel gain and coherently adds them together to maximize the desired signal

power. It can be shown that the maximum SNR can be achieved if each antenna branch

multiplies its received signal by the conjugate transpose of its channel vector. Then,

the k-th output of MRC combiner is given by

hHk
‖hK‖

y = ‖hK‖xk +
Nt∑
i 6=k

hHk hi
‖hK‖

xi +
hHk
‖hK‖

w, (2.15)
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where we note that hHk
‖hK‖

w has the same distribution as the noise vector w. This is due

this fact that w has a symmetric distribution and is invariant to the rotational operator.

It is noteworthy that the MRC scheme is an optimal receiver in terms of achievable data

rate if the unwanted signal, including noise and interference, is a vector of uncorrelated

random variables. Hence, in the low SNR regime, where the interference signal is

negligible compared to the noise power, the MRC receiver approaches the optimal

linear MMSE.

2.9.2 Zero-Forcing

The ZF or decorrelator is a linear algorithm which removes the interference from the

received signal. To this end, the receiver projects all the received signal including de-

sired signal, noise and interference, into a subspace which is orthogonal to the interfer-

ence subspace. This method can be easily done by pre-multiplying the pseudo-inverse

of propagation channel on equation (2.12)

(
HHH

)−1

HHy = x +
(
HHH

)−1

HHw. (2.16)

This result implies that the ZF receiver is a powerful technique to remove the inter-

ference. Nevertheless, the ZF scheme will boost the noise power, and induce a high

error probability into the system. Therefore, this scheme should be utilized in high

SNR regime to ensure a reliable performance. Also, we note that, in a special case that

the propagation channel matrix is square and full rank, i.e., number of transmit and

receive antennas are equal, the ZF receiver simply reduces to the channel inversion

receiver H−1.

2.9.3 Minimum Mean-Squared Error

It has been proved that the MRC receiver is the optimal linear receiver for single-

input multiple-output (SIMO) systems with additive white noise. Motivated by this

observation, MMSE receiver generalizes this idea to the MIMO channels with inter-
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stream interference, where the aggregated noise and interference are not necessarily

uncorrelated (white) with the desired signal. In fact, the MMSE receiver first utilizes a

whitening strategy to transform the correlated noise and interference into a white ad-

ditive vector. Then, by invoking the MRC scheme it follows the same optimal strategy

of MISO receivers. Let us recall the original signal model of the k-th data stream

y = hkxk +
Nt∑
i 6=k

hixi + w︸ ︷︷ ︸
unwanted zk

, (2.17)

where the correlation matrix of the unwanted signal can be described as

RZk = N0I +
∑
i 6=k

Pihih
H
i . (2.18)

In this equation, we define Pi as the power of the i-th data stream. Then, we multiply

the received signal vector in k-th branch by
(
RZk

)− 1
2 to get the uncorrelated unwanted

signal

(
N0I +

∑
i 6=k

Pihih
H
i

)− 1
2
y =

(
N0I +

∑
i 6=k

Pihih
H
i

)− 1
2
hkxk +

(
N0I +

∑
i 6=k

Pihih
H
i

)− 1
2
zk.

(2.19)

Now, we apply the MRC strategy and scale up the desired signal according to its weight

hHk

(
N0I +

∑
i 6=k

Pihih
H
i

)−1

y = hHk

(
N0I +

∑
i 6=k

Pihih
H
i

)−1

hkxk

+ hHk

(
N0I +

∑
i 6=k

Pihih
H
i

)−1

z. (2.20)

Altogether, the MMSE receiver applies the following linear transformation

hHk

(
N0I +

∑
i 6=k

Pihih
H
i

)−1

, (2.21)
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and offers the following corresponding signal-to-interference-noise ratio (SINR) in the

k-th receive antenna

SINRk = Pkh
H
k

(
N0I +

∑
i 6=k

Pihih
H
i

)−1

hk. (2.22)

2.10 Linear MMSE estimator

Linear MMSE estimator has been recognized as a simple and accurate estimator which

is widely used in wireless communication systems [71]. In this section, we introduce

the fundamentals of this estimator in MIMO systems. Assume that G ∈ CN×K is a

propagation channel so that G = R
1
2 H, where H ∈ CN×K denotes the small-scale

fading, and R ∈ CN×N represents a known correlation matrix. Then, we define the

observation matrix Y

Y =
√
pFG + N, (2.23)

where F ∈ CM×N is a given beamforming matrix, N ∈ CM×K is an AWGN matrix

including i.i.d. CN (0, 1) entries, and p is a known constant which controls the SNR

in this model. Hereafter, we estimate the l-th column of G by a linear transformation

ĝl = Xlyl to minimize the quadratic error function εl = E
[
‖gl − ĝl‖2

]

min
Xl

E
[
‖gl − ĝl‖2

]
, for = 1, 2, . . . , K. (2.24)

The error function εl can be extended in the following manner:

E
[
‖gl − ĝl‖2

]
= E

[
‖gl −Xlyl‖2

]
= E

[
Tr
(
gl −Xlyl

)(
gl −Xlyl

)H]
= Tr

(
E
[
glg

H
l

])
− Tr

(
E
[
gly

H
l

]
XH
l

)
− Tr

(
XlE

[
ylg

H
l

])
+ Tr

(
XlE

[
yly

H
l

]
XH
l

)
. (2.25)
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Next, we find the minimum point of the aforementioned error function by finding the

roots of its first derivative, i.e., ∂εl
∂Xl

= 0 which yields

−2E
[
gly

H
l

]
+ 2XlE

[
yly

H
l

]
= 0, (2.26)

and consequently, we find the linear MMSE estimate of the channel as follows

Xl =

(
E
[
gly

H
l

])(
E
[
yly

H
l

])−1

, (2.27)

which can be further simplified by leveraging the properties of Gaussian matrices

Xl =
√
pRFH

(
pFRFH + IM

)−1

, (2.28)

which results in

ĝl =
√
pRFH

(
pFRFH + IM

)−1

yl. (2.29)

It is notable that ∂εl
∂Xl

= 2E
[
yly

H
l

]
is a positive definite matrix. Therefore, the quadratic

error function is a convex function which is minimized by the calculated Xl. Finally,

we can represent all the estimations into the following equation

Ĝ =
[
ĝ1, ĝ2, . . . , ĝK

]
=
√
pRFH

(
pFRFH + IM

)−1

Y, (2.30)

which after some straightforward manipulations minimizes the total error as follows

ε =
K∑
l=1

εl = KTr
((

R−1 + pFHF
)−1
)
. (2.31)
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Chapter 3

Achievable Rate of Multipair Massive

Relaying with Hybrid Processing and

Perfect CSI

Massive MIMO is a fairly new research paradigm that offers orders of magnitude more

spectral efficiency and the simplicity of transceiver design compared to today’s exam-

ples. Moreover, this technique can tackle many of the drawbacks of multipair relaying

topologies, namely complicated signal processing, delay, and noise/interference ampli-

fication. Yet, the practical implementation of massive MIMO induces some formidable

challenges. In particular, having one RF chain dedicated to each antenna will boost

to unprecedented levels the circuit complexity, fabrication/implementation cost and

power consumption. In this chapter, we envision that these critical issues can be ad-

dressed by a cascade structure of an analog RF beamformer and digital baseband pro-

cessor, namely hybrid structure. In particular, we consider a multipair AF relay system

with MRC/MRT and we determine the asymptotic achievable rate for this hybrid ana-

log/digital architecture. After that, we extend our analytical results to account for

coarsely quantized analog phase shifters and show that the performance loss with 2

quantization bits is only 10%.
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3.1 Introduction

Cooperative communications have been intensively investigated over the past decade

due to their ability to extend the cellular coverage and enhance the communication

reliability, especially at the cell edges [72–75]. However, the complexity of relaying

has always been a major concern since even a small processing delay results in a loss

of valuable physical resource, i.e. time, which should be available for other purposes

like backhaul and access link operations [6]. Moreover, relays are typically supported

by small power supply units, due to their physical limitations. So, energy efficiency

plays an important role in this sense.

Recently, massive MIMO has come at the forefront of wireless communications’

research [25]. Massive MIMO avails of favorable propagation conditions, where chan-

nels between different users and the BS become pairwise orthogonal. Most impor-

tantly, with massive MIMO, simple linear processing schemes such as MRC, ZF, and

MMSE can achieve the same performance as other nonlinear methods, like dirty paper

coding [27, 29, 76]. Moreover, massive MIMO with its array gain and also its great

ability to suppress the noise and interference, delivers the required SINR to reduce

the power consumption at the relay station [25, 77, 78]. The later property also offers

a big advantage for AF relays, where the relay station amplifies whatever it receives

including noise and interference.

Not surprisingly, massive MIMO relaying has very recently received a great deal

of research interest from different viewpoints. In [30], the asymptotic performance

of one-way massive relaying was analyzed in three different cases to scale down the

power by the number of active antennas at the relay station. The energy efficiency of

two-way relaying with unlimited relay nodes was derived in [33], while some other

works in this context can be found in [31, 72, 79]. The potential of massive relay-

ing to mitigate the self-interference in full-duplex relaying was originally developed

in [34]. However, the practical deployment of massive MIMO relaying faces many

critical challenges. More specifically, deploying one RF chain behind every single an-

tenna, in all above cases, will scale badly the implementation/maintenance cost, DSP
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complexity, power consumption and circuit complexity. This important issue has been

addressed in other fields like [1,39,42–44] by a hybrid architecture including an analog

RF precoder/combiner and a fully digital baseband processor, where all antennas are

connected to a limited number of RF chains through a bank of phase shifters. However,

there is a dearth of literature considering the hybrid solution for relaying schemes [46].

The authors in [46] proposed an algorithm based on SVD to maximize the average

rate for millimeter-wave MIMO systems. However, they did not derive any closed-

form expression for the achievable rate, and also these results are obtained under the

assumption of accurate phase shifters which is too idealistic in practice. In [47], the

authors evaluated the spectral and energy efficiency of a hybrid massive MIMO relay-

ing for i.i.d. Rayleigh fading channels under the following assumptions: (a) L = 2K,

and (b) N >
⌊

4L2

π

⌋
. Where K, L, and N denote the number of users, RF chains, and

antennas, respectively.

Motivated by the above discussion, this chapter investigates the performance of a

multipair massive relaying where part of the DSP on the relay station is performed in

the analog domain, using simple analog phase shifters. In particular, we analytically

determine the asymptotic end-to-end achievable rate by considering MRC/MRT pro-

cessing at the relay station, where the number of antennas grows up without bound.

Then, we apply our analytical results on three power saving strategies and deduce their

asymptotic power scaling laws. These laws reveal important physical insights and

tradeoffs between the transmit power of user nodes and the relay station. Finally, we

consider the case of quantized phase shifters and work out the performance degradation

for small number of quantization bits. Our numerical results indicate that (a) hybrid

processing can obtain the required data rate with lower number of RF chains compared

to the conventional fully digital structures; and (b) 2 bits of quantization cause a minor

performance degradation of about 10%.
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Figure 3.1: Simplified block diagram of a multipair relay system with a baseband digital pro-
cessor combined with two analog RF beamformers implemented by means of quantized phase
shifters. Channels are uncorrelated Rayleigh fading and perfect CSI is available at the relay
station.

3.2 System Model

Consider a cooperative system model as illustrated in Fig. 3.1 where K pairs of single

antenna users, one-to-one pairing Sk–Dk with k = 1, . . . , K, intend to communicate

with each other via the help of a relay withN service antennas on each side, whereN is

an unconventionally large number. Furthermore, we assume that the direct link among

theK pairs does not exist due to large path loss and heavy shadowing; to keep our anal-

ysis simple, perfect CSI is available and we ignore hardware imperfections [80]. Users

send their data stream through a narrow band flat-fading propagation channel in the

same time-frequency block. To keep the implementation cost of this massive MIMO

relaying topology at low levels, we consider Ka receive and Kb transmit RF chains

at the relay station, with K ≤ Ka, Kb � N . As mentioned earlier, by reducing the

number of RF paths, we can avail of reduced power consumption (reduced numbers of

mixers, PAs and analog-to-digital converters (ADCs) and reduced circuitry. Moreover,

to reduce the power dissipation of DSP, we deploy an analog combiner F1 ∈ CKa×N

and precoder F2 ∈ CKb×N at the relay station which perform phase matching at a much

lower dimension compared to full DSP. Since analog processing alone is not flexible

enough, the remaining portion of signal processing is performed in the digital domain

through the matrix W ∈ CKb×Ka . Under this model, the received signal at the relay

and destinations can be mathematically expressed, respectively, as
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yR =
√
PuG1x + nR, (3.1)

yD =
√
PuG

H
2 FH

2 WF1G1x + GH
2 FH

2 WF1nR + nD, (3.2)

where Pu represents the transmitted power of each source, and x = [x1, x2, · · · , xK ]T

is the symbol vector so that E
[
xxH

]
= IK . Also, the received signal at the destinations

is included in yD ∈ CK×1, while the N -dimensional vector nR and K-dimensional

vector nD model the additive circularly symmetric complex Gaussian noise so that

nR ∼ CN(0, σ2
nR

IN) and nD ∼ CN(0, σ2
nD

IK). Moreover, G1, G2 ∈ CN×K express

the propagation channels between sources and relay, and between relay and desti-

nations, respectively. More precisely, G1 = H1D
1
2
1 and G2 = H2D

1
2
2 , where H1,

H2 ∈ CN×K refer to small scale fading channels with i.i.d. entries, each of them

following CN(0, 1). Besides, the diagonal matrices D1 and D2 ∈ CK×K include the

large-scale fading parameters, where we define β1,k
∆
=
[
D1

]
k,k

and β2,k
∆
=
[
D2

]
k,k

.

From (3.2) the received signal at the k-th destination with additive white Gaussian

noise (AWGN) nDk is given by

yDk =
√
Pug

H
2k

FH
2 WF1g1kxk+

√
Pu

K∑
i 6=k

gH2kF
H
2 WF1g1ixi+gH2kF

H
2 WF1nR+nDk ,

(3.3)

where g1k , and g2k denote the k-th column of the matrices G1 and G2, respectively.

In (3.3), the first term points out to the desired signal, the second term refers to the

interpair-interference, while the last two terms correspond to the amplified noise at

the relay and noise at the destination, respectively. Thus, the instantaneous end-to-end

SINR for the k-th pair is given by

SINRk =
Pu

∣∣∣gH2kFH
2 WF1g1k

∣∣∣2
Pu

K∑
i 6=k

∣∣∣gH2kFH
2 WF1g1i

∣∣∣2 + ‖gH2kF
H
2 WF1‖2σ2

nR
+ σ2

nD

. (3.4)
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Consequently, the ergodic achievable sum-rate, or simply achievable rate, of this mul-

tipair massive MIMO relaying system can be obtained by1

R =
K∑
k=1

E
[

log2 (1 + SINRk)
]

bit/s. (3.5)

As mentioned before, the role of the analog combiners is to balance out the phase

of the propagation matrices. It is noteworthy that the matrices F1 and F2 can only

perform analog phase shifting, hence, we normalize each entry of these matrices by

1√
N

to avoid an unlimited gain in the analog domain. To this end, we have

]
[
F1

]
i,j

= −]
[
G1

]
j,i
, (3.6)

]
[
F2

]
i,j

= −]
[
G2

]
j,i
, (3.7)∣∣∣[F1

]
i,j

∣∣∣ =
∣∣∣[F2

]
i,j

∣∣∣ =
1√
N
. (3.8)

On the other hand, the baseband precoder matrix W can modify both the amplitude

and phase of the incoming vector. Moreover, we introduce the following long-term

transmit power constraint for the output of the relay station:

E
[
Tr
(
ỹRỹHR

)]
= Pr, (3.9)

where, ỹR = FH
2 WF1yR demonstrates the relay output signal.

In the rest of this chapter, we assume MRC to combine received signals at the

relay, and also consider MRT to forward the received signals from the relay station

to the destinations. We recall that MRC/MRT processing has been well integrated in

the context of massive MIMO, since it offers near-optimal performance and can be

implemented in a distributed manner [81]. Now, we define the following symbols that

will be used in our subsequent analysis; A1
∆
= F1G1, A2

∆
= F2G2, B1

∆
= F1F

H
1 , and

B2
∆
= F2F

H
2 . For the digital MRC/MRT transformation matrix, W

∆
= αA2A

H
1 where

α is an amplification factor to fulfill the power constraint in (3.9). Therefore, we can

1In our subsequent analysis, we assume that the bandwidth is normalized to 1Hz such that equation
(3.5) represents indeed the achievable rate.
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obtain after some mathematical simplifications

α =

√
Pr

Pu‖FH
2 A2AH

1 A1‖2
F + σ2

nR
‖FH

2 A2AH
1 F1‖

2
F

. (3.10)

It is notable that if we assume a short-term constraint, like Tr
(
ỹRỹHR

)
= Pr, the

fluctuation of amplification factor α will be very high particularly in fast fading chan-

nels. Therefore, it would be a challenging task for the relay station to establish a

constant output power, i.e., Pr, based on the variations of α. Fortunately, the simu-

lation result in Fig. 3.2 corroborates that these variations are not substantial around

the average. Hence, assuming the long-term constraint in (3.9) can be considered as a

reasonable assumption from a practical viewpoint.

3.3 Large N analysis

In this section, we asymptotically analyze the performance of the massive MIMO relay

with hybrid processing in two dedicated subsections: Section 3.3.1 assuming ideal

(continuous) phase shifters, and Section 3.3.2 assuming phase quantization.

3.3.1 Ideal (continuous) phase shifters

We now briefly review some asymptotic results that will be particularly useful in our

analysis later on.

Lemma 3.1. Let p and q be two n × 1 mutually independent vectors whose elements

are i.i.d random variables with variances σ2
p and σ2

q , respectively. Then, based on the

law of large numbers, we have

1

n
pHp

a.s.−→ σ2
p and

1

n
qHq

a.s.−→ σ2
q , as n→∞, (3.11)

where a.s.−→ indicates almost sure convergence. Moreover, based on the Lindeberg–Lévy
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Figure 3.2: Fluctuation of relay amplification factor assuming phase cancelation at the analog
beamformers and the MRC scheme at the DSP unit (K = Ka = Kb = 10, N = 100,
Pu
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central limit theorem we can write

1√
n

pHq
dist.−→ CN(0, σ2

pσ
2
q ), (3.12)

where dist.−→ shows the convergence in distribution.

We can now turn our attention to the analog processing matrices F1 and F2 which

satisfy the following relationship.

Lemma 3.2. As N →∞, the matrices F1F
H
1 and also F2F

H
2 converge pairwise to the

identity matrix as follows

F1F
H
1

a.s.−→ IKa , (3.13)

F2F
H
2

a.s.−→ IKb . (3.14)

Proof. See Appendix A.1.
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Corollary 3.3. As N →∞, the analog phase shifter, F1, preserves the distribution of

the AWGN due to its orthonormal rows.

Lemma 3.4. Let us define Ia,b,r ∈ Ra×b as an a×b rectangular diagonal matrix whose

entries are entirely zero except the (i, i)-th elements of matrix which are one, where

i = {1, 2, . . . , r}. Then, we can conclude that

F1H
H
1

a.s.−→
√
Nπ

4
IKa,K,r1 , (3.15)

F2H
H
2

a.s.−→
√
Nπ

4
IKb,K,r2 , (3.16)

where r1 = min {Ka, K} and r2 = min {Kb, K}.

Proof. See Appendix A.2.

Turning now to (3.2) and using the aforementioned lemmas, when N → ∞, it can be

shown that

yD →
√
Puα

(Nπ
4

)2(
D

1
2
2

)H
D

1
2
2

(
D

1
2
1

)H
D

1
2
1 x + α

(Nπ
4

) 3
2 (

D
1
2
2

)H
D

1
2
2

(
D

1
2
1

)H
nR + nD,

(3.17)

which can be simplified for the k-th destination as

yDk →
√
Puα

(Nπ
4

)2

β2kβ1kxk + α
(Nπ

4

) 3
2
β2kβ

1
2
1k
nRk + nDk , (3.18)

where k ∈ {1, 2, . . . , r}, and r = min {Ka, Kb, K}. Thus, from (3.4) we can obtain

the corresponding SINR for the k-th destination in the case that the number of antennas

increases without bound

SINRk →
(Nπ

4
)4Puα

2β2
1k
β2

2k

(Nπ
4

)3σ2
nR
α2β1kβ

2
2k

+ σ2
nD

, asN →∞. (3.19)

In the following, we investigate three power scaling strategies and draw very interesting

engineering insights. Our analysis can be divided into three main cases, namely, Case
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3.3 Large N analysis

1) fixed NPu and NPr while N → ∞; Case 2) fixed NPu while N → ∞; Case 3)

fixed NPr while N →∞.

1. Let lim
N→∞

NPu = Eu and lim
N→∞

NPr = Er, where both Eu and Er are finite

constants. Therefore, we readily conclude that both Pu and Pr go to zero if we

increase the number of antennas to infinity. Hence, from (3.10) we can get

N3α2 → Er

(π
4
)3Et

r∑
i=1

β2
1i
β2i + (π

4
)2σ2

nR

r∑
i=1

β1iβ2i

, (3.20)

which finally yields for k ∈ {1, 2, . . . , r}

SINRk →
(
π
4

)2
EuErβ

2
1k
β2

2k(
π
4

)
Erσ2

nR
β1kβ

2
2k

+
(
π
4

)
Euσ2

nD

r∑
i=1

β2
1i
β2i + σ2

nR
σ2
nD

r∑
i=1

β1iβ2i

.

(3.21)

As a consequence, under a perfect CSI assumption we can reduce the transmitted

power and also relay power proportionally to 1
N

if the number of relay antennas

grows without bound. This result is consistent with [81].

2. Let lim
N→∞

NPu = Eu, where Eu is a finite constant. Therefore, we readily con-

clude that Pu goes to zero if we increase the number of antennas to infinity.

Then, returning to (3.21) and after a few simplifications we obtain

SINRk →
π

4

Euβ1k

σ2
nR

, (3.22)

which is associated with the following achievable rate

R2 →
1

2

r∑
k=1

log2

(
1 +

π

4

Euβ1k

σ2
nR

)
. (3.23)

The above result is quite intuitive. It shows that if the number of RF chains

is, at least, equal to the number of users, i.e. min{Ka, Kb} ≥ K or equiva-
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3.3 Large N analysis

lently r = K, we can enjoy full multiplexing gain and boost the achievable rate.

Moreover, in comparison with a single-input single-output system without any

intra-cell interference, our system model only suffers a π
4
-fold reduction on the

power gain due to the analog processing. All in all, this power gain penalty is

quite acceptable as we have eliminated many relay RF chains, and consequently,

we have substantially reduced the circuitry complexity and power consumption.

Similar to Case 1, we can infer that we can scale down the transmit power analo-

gously to the number of relay antennas and, still, maintain a non-zero achievable

rate.

3. Let lim
N→∞

NPr = Er, where Er is a finite constant. Therefore, we readily con-

clude that Pr goes to zero if we increase the number of antennas to infinity. Then,

we can find out the achievable rate in the same way as pointed out in Case 2 to

get

R3 →
1

2

r∑
k=1

log2

(
1 +

π

4

Erβ
2
1k
β2

2k

σ2
nD

r∑
i=1

β2
1i
β2i

)
. (3.24)

It is noteworthy that if we ignore large-scale fading effects, we get the same

results in Case 2 and 3. However, Case 3 converges faster than Case 2 to its

own asymptotic result. This can be observed from (3.21), where we can asymp-

totically derive both R2 and R3: In Case 3, we can ignore the constant term

Erσ
2
nR
β1kβ

2
2k

in comparison with Euσ2
nD

∑r
i=1 β

2
1i
β2i even for moderate number

of antennas. Unlike, in Case 2, a much higher number of antennas is required to

ignore the constant term Euσ
2
nD

∑r
i=1 β

2
1i
β2i vs. the scaled term Erσ

2
nR
β1kβ

2
2k

in

(3.21).

3.3.2 Phase Quantization

Until now, we have assumed ideal analog phase shifters (beamformers) which generate

any required phases. However, the implementation of such shifters with continuous

phase is not feasible or, at least, is quite expensive due to the hardware limitations
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3.3 Large N analysis

[43, 82–84]. Most importantly, efficiently quantized analog beamformers are more

attractive in limited feedback systems [85, 86]. In the rest of this chapter, the system

performance will be assessed under quantized phases. Thus, the phase of each entry of

F1 and F2 is chosen from a codebook Ψ based on the closest Euclidean distance.

Ψ =
{

0,±
(2π

2q

)
,±2

(2π

2q

)
, · · · ,±2q−1

(2π

2q

)}
, (3.25)

where, q denotes the number of quantization bits. As pointed out previously, the chan-

nel coefficients
[
G1

]
m,n

and
[
G2

]
m,n

all have uniform phase between 0 and 2π, such

that ∠
[
Gi

]
m,n

= φm,n ∼ U(0, 2π), for i = 1, 2. Let us define εm,n as the error between

the unquantized phase φm,n and quantized phase φ̂m,n chosen from the codebook

εm,n
∆
= φm,n − φ̂m,n. (3.26)

Due to the uniform distribution of phase, we can easily conclude that the error is an

uniform random variable, i.e. εm,n ∼ U [−δ,+δ
)
, where we define δ ∆

= π
2q

. This error

affects Lemma 3.4, and in turn, the achievable rate. For this reason, we provide the

following lemma to account for phase quantization. For the sake of presentation clarity,

we use a hat sign for the variables that are associated with the quantized beamforming

assumption in this chapter.

Lemma 3.5. Let F̂1 and F̂2 denote that analog decoder and precoder, respectively.

Then,

F̂1H
H
1

a.s.−→
√
Nπ

4
sinc(δ)IKa,K,r1 , (3.27)

F̂2H
H
2

a.s.−→
√
Nπ

4
sinc(δ)IKb,K,r2 , (3.28)

where we define sinc(δ) = sin(δ)
δ

.

Proof. See Appendix A.3.

Now, we incorporate Lemma 3.5 into the system model and signal description. The
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modified normalization factor α̂ can be calculated as

α̂→
√

Pr

Pu sinc6(δ)‖FH
2 A2AH

1 A1‖2
F + σ2

nR
sinc4 (δ)‖FH

2 A2AH
1 F1‖

2
F

. (3.29)

Furthermore, the received signal for the k-th destination can be obtained from the

following formula

ŷDk →
√
Pu sinc4(δ)α̂

(Nπ
4

)2

β2kβ1kxk +
(Nπ

4

) 3
2

sinc3(δ)α̂ β2kβ
1
2
1k
nRk + nDk .

(3.30)

Phase quantization also affects the power scaling strategies considered in Cases 1–3

above. The corresponding results for these three cases under quantized analog pro-

cessing can be respectively modified as follows

R̂1→
1

2

r∑
k=1

log2

(
1+

(π
4
)2 sinc4(δ)EuErβ

2
1k
β2

2k

(π
4
) sinc2(δ)Erσ2

nR
β1kβ

2
2k

+(π
4
) sinc2(δ)Euσ2

nD

r∑
i=1

β2
1i
β2i+σ

2
nR
σ2
nD

r∑
i=1

β1iβ2i

)
,

R̂2 →
1

2

r∑
k=1

log2

(
1 +

π

4

Euβ1k

σ2
nR

sinc2(δ)
)
, (3.31)

R̂3 →
1

2

r∑
k=1

log2

(
1 +

π

4

Erβ
2
1k
β2

2k

σ2
nD

r∑
i=1

β2
1i
β2i

sinc2(δ)

)
. (3.32)

Taken together, these results indicate a penalty function associated with quantized

processing. Roughly speaking, sinc2(δ) is a good approximation of this power gain

penalty. In a worst case, where we have only one quantization bit q = 1, the SINR will

be reduced by a factor of sinc2(π
2
) = 4

π2 ≈ 40%. However, there are wide range of

applications, each requiring a different quantization resolution [39, 43, 87]. In general,

the beam width is inversely relative to the number of antennas, so if we double the

number of antennas we need to increase the angle accuracy two times more. Hence,

a reasonable rule-of-thumb is to add 1 bit resolution while the number of antennas

doubles.
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Figure 3.3: Achievable rate in Case 1
(
Eu = Er = 13 dB

)
.

3.4 Simulation Results

In this section, Monte Carlo simulations are provided to assess the validity of the

achievable rate of a multipair relay system. We assume that the relay station covers

a circular area with a radius of 1000 meters. Users are located with a uniform random

distribution around the relay with a guard zone of rg = 100 meters. We consider a

Rayleigh flat fading channel for small-scale fading effects. Also, the large-scale fading

is modeled via a log-normal random variable, with standard deviation σsh, which is

multiplied by
( rg
rk

)ν to model the path-loss as well. Here, rk is the distance between

the k-th user and the relay, and also ν denotes the path loss exponent. Without loss

of generality, we assume σ2
nR

= σ2
nD

= 1 to express the powers, i.e. Pu and Pr, in

decibel. We also set ν = 3.8, Ka = Kb = K = 10 and σsh = 8 dB for all simulations.

Figure 3.3 compares the performance of a full-dimensional topology, where all the

amount of detection/precoding is performed in the digital domain, against that of a

hybrid topology with continuous and quantized analog processing. A full-dimensional

massive relay is equipped with N RF chains which seems to be infeasible in practice,

while this number is reduced to only K = 10 in the hybrid structure. Moreover, a
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.

hybrid relay deploys two inexpensive beamformers which can be actually implemented

in the analog domain with the phase shifters. It can be also observed that the hybrid

scheme performs very close to the conventional scheme, with about a 10% reduction

in achievable rate but substantially reduced complexity. However, this reduction in

achievable rate can be compensated by deploying more antennas at the relay station

without any additional RF chains. Hence, this promising idea seems to be a viable

alternative to the conventional relaying system. Moreover, this figure examines a more

restricted case, where there is a severe phase control on beamformers with only 2 bit

resolution. Our results confirm that the proposed method suffers a negligible reduction.

Figures 3.4 demonstrates the similar results for Case 2. Clearly, as the number of

relay antennas increases, the achievable rate approaches the saturation value which is

expected by our analytical approximations. Also, we note that the curve scales slower

in Case 2 in comparison with Case 1. In order to shed light on how quantization scheme

affects the achievable rate, we simulate Case 3 with different quantization levels in

Fig. 3.5. This figure confirms that, although the achievable rate is not outstanding

with one quantization bit, 2-bit resolution can achieve about 90% of the achievable
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.

rate offered by the ideal phase shifters. Moreover, it can be seen that phase shifters

with 3 quantization bits can perform very close to the ideal phase shifters.

3.5 Conclusion
Massive MIMO is a major candidate for the next generation of wireless systems. This

technique combined with relays can enhance the cell coverage, provide uniform qual-

ity of service, with simple signal processing at the relay station. On the other hand,

the high cost and power consumption of RF chains can be prohibitive due to the large

number of mixers and PAs. For this reason, we proposed an analog/digital (hybrid)

structure at the relay and also reduced the number of RF chains to the number of users

while the system still enjoys a full multiplexing gain. Our results revealed that with

only 10 RF chains at the relay station we can capture about 90% of asymptotic achiev-

able rate of a fully digital structure with hundreds of RF chains. For this topology,

we also analytically determined the system robustness even under coarse quantization.

Our analysis revealed that the SINR under q quantization bit almost scales down as a

function of sinc2
(
π
2q

)
.
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Chapter 4

Achievable Rate of Multipair Massive

Relaying with Hybrid Processing and

Imperfect CSI

4.1 Introduction

In the previous chapter, we addressed the hardware constraints of massive MIMO re-

laying by proposing the hybrid analog/digital structure. However, in that scenario,

phase shifters should be adopted to the quick variations of the instantaneous channels.

This phase adaptation, not only requires the perfect CSI at the relay station, but also is

a demanding task due to low flexibility of analog beamformers. Hence, in this chapter,

we assume that perfect CSI is not available at the relay station, and the relay estimates

the channels via uplink orthogonal pilots during the training phase. Also, we assume

the worst case scenario, where we utilize Hadamard beamformers with one bit resolu-

tion and invariant over time. This assumption reduces the channel size to the number

of RF chains and restricts the impact of array gain. However, it avails of a very simple

structure which describes the basic relation between the achievable rate, number of

RF chains, and active users. Besides, we employ an MRC/MRT scheme in the digi-

tal domain to keep the complexity of DSP unit at the relay station to affordable levels.
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Overall, this chapter investigates the performance of multipair AF relaying with a large

number of antennas but limited RF chains under the hybrid structure, and makes the

following specific contributions:

• We investigate the performance of a hybrid analog and digital relaying topology

with imperfect CSI. Our results show that by removing half of the RF chains

in this scenario, the hybrid paradigm can still capture 75% the achievable rate

of a fully digital relaying system. Moreover, to further simplify the described

configuration, we assume that the analog beamformers are implemented using

the simplest phase shifters whose phases ±π are constant over time.

• Since the analog processing is time invariant and independent of the propagation

channel, we perform all the beamforming in the digital domain via MRC/MRT

which avails of simple signal processing. For this scenario and for imperfect CSI,

we derive a tractable lower bound on the achievable rate which involves only

the large-scale fading coefficients by leveraging the properties of large Gaussian

matrices.

4.2 System Model

In this chapter, we consider the same system model as we have already introduced

in Section 3.2. However, we assume that CSI is not available not only at the users,

but also at the relay side. This is a case of practical interest that we will address in

this chapter. Considering this system model, illustrated in Fig. 4.1, we can recall our

signaling models as follows

yR =
√
PuG1x + nR, (4.1)

ỹR = FH
2 WF1yR, (4.2)

yD =
√
PuG

H
2 FH

2 WF1G1x + GH
2 FH

2 WF1nR + nD, (4.3)
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Figure 4.1: Simplified block diagram of a multipair massive relay system with a hybrid ana-
log/digital beamformer. Channels are Rayleigh fading and perfect CSI is not available at the
relay station.

where both small- and large-scale fading are incorporated into the channel matrices

such that G1 = H1D
1
2
1 and G2 = H2D

1
2
2 . In this model H1 and H2 ∈ CN×K de-

note the small-scale fading with i.i.d. CN (0, 1) elements. Additionally, the diagonal

matrices D1 and D2 ∈ CK×K reflect the geometric attenuation and shadow fading,

where their k-th diagonal elements are defined as β1,k and β2,k, respectively. Then,

from (4.3), the received signal at the k-destination user is given by

yDk =
√
Pug

H
2,kF

H
2 WF1g1,kxk+

√
Pu

K∑
i 6=k

gH2,kF
H
2 WF1g1,ixi+gH2,kF

H
2 WF1nR + nDk ,

(4.4)

where the first term refers to the desired signal and the second term corresponds to the

inter-user interference, while the last two terms represent the compound noise.

4.2.1 Design Constraints

The system is subject to a set of practical constraints. First, all entries of F1, F2

should have equal modulus, because the hardware deployed to implement the RF pre-

coder/combiner includes a bank of phase shifters. We fix this amplitude by 1/
√
N

to avoid an unlimited gain in the analog domain. These analog schemes are usually

implemented using phase shifters to do some part of beamforming as well. In gen-

eral, we need high-resolution phase shifters to finely steer the beams and place the
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nulls in predefined directions in each channel realization. This can increase the power

consumption and implementation cost, and will undermine the realizable potential of

the hybrid paradigm. To avoid this, phase shifters should be designed once for ever

and preferably with the minimum resolution. Although Discrete Fourier Transform

(DFT) matrices have been considered in some prior works [88–90], the implementa-

tion of such phase shifters is costly due to its high resolution, particularly in the massive

MIMO ecosystem. Herein, we take a different approach and propose to use Hadamard

matrices which can be constructed with phases ±π. Sylvester’s construction [91] is an

easy way to generate such Hadamard matrices as follows:

M1 = [1] ,

M2 =

 1 1

1 −1

 ,
M2n =

 M2n−1 M2n−1

M2n−1 −M2n−1

 forn ≥ 2, (4.5)

where MN denotes an N × N Hadamard matrix which satisfies MNMT
N = NIN .

Hence, any submatrix extracted from an N × N Hadamard matrix is suitable for our

analog beamformers, i.e. F1 and F2. It is noteworthy that the rows of such matrices

are orthogonal to each other which simplifies our analysis later on.1 Hence, throughout

this chapter we use the property of Hadamard matrices which states that F1F
H
1 = IKa

and F2F
H
2 = IKb , where we normalized each entry of these matrices by 1√

N
to avoid

an unlimited gain in the analog domain. The second constraint is related to the AF

relaying where the received signal should be boosted up to a certain level of power Pr.

Under this setting, the AF relay should satisfy the following long-term constraint as

we discussed earlier in Chapter 3

E
[
Tr
(
ỹRỹHR

)]
= Pr. (4.6)

1It is notable that this property is also satisfied by the prevalent existing analog beamformer, i.e.
DFT beamformer.
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For the sake of presentation clarity, we define A1
∆
= F1G1 and A2

∆
= F2G2 as the

effective channels in the remainder of this chapter. Thus, the received vector at the

destinations in (4.3) can be mathematically re-expressed as

yD =
√
PuA

H
2 WA1x + AH

2 WñR + nD, (4.7)

where we define ñR = F1nR, while its entries follow the same distribution of nR

elements due to the orthogonal rows of the Hadamard matrix F1.

4.2.2 Channel Estimation

As perfect CSI is not available at the relay node, hereafter, we assume that the relay

estimates the channels based on τp uplink training symbols, while this information is

not available at the sources and destination users. This assumption can relax the system

model to a practical scenario with less overhead signaling and feedback transmission,

and is widely used in massive MIMO works. Nevertheless, it is reasonable to assume

that the users know the channel statistics.

By this preamble, let us stack all the pilots into the matrices
√
τpPpΦ1 ∈ Cτp×K

and
√
τpPpΦ2 ∈ Cτp×K , where Pp denotes the average pilot power. We assume that

τp ≥ 2K to guarantee that pilot sequences are mutually orthogonal such that ΦH
1 Φ1 =

IK , ΦH
2 Φ2 = IK and ΦH

1 Φ2 = 0K . Note that the process for the channel estimation

should be done in the digital domain. Thus, we take into account the signals after F1

and F2 which exactly refer to the baseband signals before the DSP unit. Then, the

baseband received signal before the DSP unit is given by

Ypr =
√
τpPpF1G1Φ

T
1 + Npr, (4.8)

where Npr is an AWGN matrix including i.i.d. CN (0, 1) entries. Then, after multi-

plying the received pilot sequences by Φ∗1, we get the new observation matrix Y1 so
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that

Y1 =
√
τpPpF1G1 + N1 (4.9)

where the N1 is an AWGN matrix whose entries follow the same distribution as Npr

entries due to the fact that columns of Φ1 are orthonormal. Now, by employing a

conventional MMSE estimator, the estimate of the effective channel is given by

Â1 =
√
τpPpY1

(
τpPpD1 + IK

)−1

D1, (4.10)

which implies that the k-th column of this estimation matrix is CN
(
0, β̂1,kIK

)
where

β̂1,k =
τpPpβ2

1,k

1+τpPpβ1,k
. The estimation error can also be written from A1 = Â1 + E1

where Â1 and E1 are independent due to their jointly Gaussian distribution and the

orthogonality principle of the MMSE estimator. Therefore, we can conclude that

Â1 = Ĥ1D̂
1/2
1 and E1 = He1D

1/2
e1 , where Ĥ1 and He1 ∈ CKa×K are random ma-

trices with i.i.d. CN (0, 1) elements. Also, D̂1
∆
= diag{β̂1,1, . . . , β̂1,K} and De1

∆
=

diag{βe1,1, . . . , βe1,K}. The same results are analogous for A2 and E2.

4.3 Achievable Rate

In this section, we derive a lower bound on the achievable rate. By recalling (4.7),

the received signal at the k-destination user can be treated as a desired signal plus an

independent effective noise, neffk , where we assume that the MRC/MRT transforma-

tion invoked in this scenario can be formulated as W = αÂ2Â
H
1 with a normalization

factor α to meet the total power constraint in (4.6)

yDk =
√
PuαE

[
âH2,kÂ2Â

H
1 â1,k

]
xk + neffk . (4.11)

In the above equation, the effective noise is given by
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neffk =
√
PuαâH2,kÂ2Â

H
1 â1,kxk −

√
PuαE

[
âH2,kÂ2Â

H
1 â1,k

]
xk

+
√
Puα

∑
i 6=k

âH2,kÂ2Â
H
1 â1,ixi +

√
PuαâH2,kÂ2Â

H
1 E1x

+
√
PuαeH2,kÂ2Â

H
1 Â1x +

√
PuαeH2,kÂ2Â

H
1 E1x

+ αâH2,kÂ2Â
H
1 ñR + αeH2,kÂ2Â

H
1 ñR + nDk , (4.12)

where user nodes do not have access to the channel estimates at the relay station,

and the entropy of the effective noise can be upper-bounded by a Gaussian model in

the worst case. Hence, a lower bound on the ergodic sum achievable rate, or simply

achievable rate, can be obtained by1

R =
T − τp

2T

K∑
k=1

log2 (1 + SINRk) , for K ≤ Ka, Kb ≤ N, (4.13)

where the pre-log factor T−τp
2T

accounts for the half-duplex relaying operation and pilot

overhead, and the SINRk is given by

SINRk =
Puα

2
∣∣∣E[âH2,kÂ2Â

H
1 â1,k

]∣∣∣2
Puα2 (t1 + t2 + t3 + t4 + t5) + α2 (t6 + t7) + σ2

nD

, (4.14)

where the denominator terms are given as follows:

t1 = var
(
âH2,kÂ2Â

H
1 â1,k

)
, (4.15)

t2 =
∑
i 6=k

E
[∣∣âH2,kÂ2Â

H
1 â1,i

∣∣2], (4.16)

t3 = E
[∥∥âH2,kÂ2Â

H
1 E1

∥∥2

2

]
, (4.17)

t4 = E
[∥∥eH2,kÂ2Â

H
1 Â1

∥∥2

2

]
, (4.18)

1In our subsequent analysis, we assume that the bandwidth is normalized to 1Hz such that equation
(4.13) represents indeed the achievable rate.
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t5 = E
[∥∥eH2,kÂ2Â

H
1 E1

∥∥2

2

]
, (4.19)

t6 = E
[∣∣âH2,kÂ2Â

H
1 ñR

∣∣2], (4.20)

t7 = E
[∣∣eH2,kÂ2Â

H
1 ñR

∣∣2]. (4.21)

The following is a set of propositions to further simplify the SINR terms, and provide

a closed-form expression.

Proposition 4.1. Consider the estimates of the two effective channels Â1 and Â2.

Then, we can conclude that

∣∣∣∣E[âH2,kÂ2Â
H
1 â1,k

]∣∣∣∣2 = K2
aK

2
b β̂

2
1,kβ̂

2
2,k. (4.22)

Proof. We conclude the proposition by recalling Â1 = Ĥ1D̂
1/2
1 , Â2 = Ĥ2D̂

1/2
2 , and

borrowing Lemma 1 from Appendix B.1 in (L1) below, to calculate the (k, k)-th entry

of E
[
ÂH

2 Â2Â
H
1 Â1

]
, which is given by

E
[
ÂH

2 Â2Â
H
1 Â1

]
k,k

= E
[
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1
2
2 ĤH

2 Ĥ2D̂
1
2
2 D̂

1
2
1 ĤH

1 Ĥ1D̂
1
2
1

]
k,k

(L1)
==

[
KaKbD̂1D̂2

]
k,k

= KaKbβ̂1,kβ̂2,k. (4.23)

Proposition 4.2. Given the estimates of two effective channels Â1 and Â2, we have

t1 = KaKb(Ka +Kb)β̂
2
1,kβ̂

2
2,k +KaKbβ̂1,kβ̂2,kTr

(
D̂1D̂2

)
. (4.24)

Proof. See Appendix B.2.

Proposition 4.3. Consider the estimates of two effective channels Â1, Â2. Then, it

can be shown that the multipair interference can be simplified as
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t2 = Kb

(
K2
a +Ka

)
β̂2,k

K∑
i 6=k

β̂2
1,iβ̂2,i +Ka(K

2
b +Kb)β̂1,kβ̂

2
2,k

K∑
i 6=k

β̂1,i

+KaKbβ̂2,k

K∑
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K∑
m 6=i,k

β̂1,iβ̂1,mβ̂2,m. (4.25)

Proof. In the first stage, we expand the matrix multiplication across the columns, and

then we use the column orthogonality of matrices Â1 and Â2 to get a simple expres-

sion.

Proposition 4.4. Consider the estimates of two effective channels Â1, Â2 and the

estimation error matrix E1. Then,

t3 = KaKbβ̂2,kTr
(
De1

)(
Kbβ̂1,kβ̂2,k + Tr

(
D̂1D̂2

))
. (4.26)

Proof. See Appendix B.4.

The following results can also be obtained in a similar fashion

t5 = KaKbβe2,kTr
(
De1

)
Tr
(
D̂1D̂2

)
, (4.27)

t6 = KaKbσ
2
nR
β̂2,k

(
Kbβ̂1,kβ̂2,k + Tr

(
D̂1D̂2

))
, (4.28)

t7 = KaKbσ
2
nR
βe2,kTr

(
D̂1D̂2

)
. (4.29)

Proposition 4.5. Let Â1 and Â2 represent the effective channel estimates, then, we

have

t4 = K2
aKbβe2,kTr

(
D̂2

1D̂2

)
+KaKbβe2,kTr

(
D̂1

)
Tr
(
D̂1D̂2

)
. (4.30)

Proof. See Appendix B.5.

As was pointed out earlier, the normalization factor α is chosen to meet the long-

term power constraint at the AF relay station. Starting from (4.6), followed by Lemma
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3 and then applying Lemma 1 from Appendix B.1, we obtain

α =

√
Pr

KaKb (c1 + c2 + c3 + c4)
, (4.31)

where c1 = PuKaTr
(
D̂2

1D̂2

)
, c2 = PuTr

(
D̂1D̂2

)
Tr
(
D̂1

)
, c3 = PuTr

(
D̂1D̂2

)
Tr
(
De1

)
,

and c4 = σ2
nR

Tr
(
D̂1D̂2

)
.

To get better insights into how different parameters affect the achievable rate, we

consider a special case without the large-scale fading effects and with the same amount

of RF chains at the both sides of the relay station, i.e. Ka = Kb. Also, we set τp = 2K

to satisfy the minimum orthogonal pilot requirement. Next, we choose the dominant

terms, which scale faster with Ka, Kb and K, in the numerator and denominator of

SINRk and ignore the other terms. Consequently, we get

R ≈ γ log2

(
1 +

K4
a

2KK3
a +K2K2

a +
σ2
nD

Pr
(KK3

a +K2K2
a)

)
, for K ≤ Ka, Kb ≤ N,

(4.32)

where γ is defined as K(T−2K)
2T

. Roughly speaking, this equation reveals that the ratio

of number of RF chains to the scheduled users (Ka
K

) boosts the power gain, while the

number of scheduled users additionally contributes to the multiplexing gain (i.e. see

the prelog factor). Moreover, the power of users does not appear in this approximation.

Hence, this observation implies that the power of the relay station Pr plays a far more

important role than the users’ power Pu which has been already eliminated in this

approximation.

4.4 Simulation Results

In this section, we provide Monte Carlo simulations to evaluate the performance of

hybrid multipair massive relaying with the channel estimation and validate our pro-

posed achievable bound. We assume that the small-scale fading encountered by the

system model is i.i.d. Rayleigh. Unless otherwise specified, we assume that K = 10,
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N = 128, Pu = Pr = Pp = 13 dB, σ2
nR

= σ2
nD

= 0 dB, T = 196, τp = 2K, and

D1 = D2 = IK .

Figure 4.2 represents the performance of multipair massive relaying for different

number of RF chains. Since there are N = 128 relay antennas, deploying 128 RF

chains represents a canonical fully digital massive relaying. The red curve is our pro-

posed lower bound which evaluates the performance assessment of the signal model

on (4.11):
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PuαE

[
âH2,kÂ2Â

H
1 â1,k

]
xk︸ ︷︷ ︸
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H
1 â1,kxk −

√
PuαE

[
âH2,kÂ2Â

H
1 â1,k

]
xk︸ ︷︷ ︸
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+
√
Puα

∑
i 6=k

âH2,kÂ2Â
H
1 â1,ixi︸ ︷︷ ︸

inter−user interference

+
√
PuαâH2,kÂ2Â

H
1 E1x︸ ︷︷ ︸

estimation error

+
√
PuαeH2,kÂ2Â

H
1 Â1x +

√
PuαeH2,kÂ2Â

H
1 E1x︸ ︷︷ ︸

estimation error

+αâH2,kÂ2Â
H
1 ñR + αeH2,kÂ2Â

H
1 ñR + nDk︸ ︷︷ ︸

aggregated noise

, (4.33)

where we introduce the first term as a desirable signal due to the fact that the channel

estimates are only available at the relay station. However, it is reasonable to assume

that the long-term statistic of channels are available at the destinations. The second

term represents a fluctuation over the desired signal which should be treated as a new

source of ambiguity at the destination. The third term denotes the inter-user interfer-

ence, while the rest describe the compound noise which includes AWGN and channel

estimation errors. The red curve implies that by removing the half of RF chains, the

hybrid system can still capture 75% of the spectral efficiency offered by the fully dig-

ital massive MIMO relaying. In order to understand how tight is our lower bound,

Fig. 4.2 also illustrates an idealistic case, namely upper bound, which is generated by

means of Monte Carlo simulation, see the blue curve. In this case, we assume that the
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Figure 4.2: Achievable rate as a function of number of RF chains with imperfect CSI at the
relay station.

destinations know the channel estimates Â1, Â2, and consequently this signal model

provides a higher achievable rate. Precisely speaking, under this assumption, the re-

ceived baseband signal in (4.33) can be substituted by the less strict model given as

follows

yDk =
√
PuαâH2,kÂ2Â

H
1 â1,kxk︸ ︷︷ ︸

desired signal

+
√
Puα

∑
i 6=k

âH2,kÂ2Â
H
1 â1,ixi︸ ︷︷ ︸

inter−user interference

+
√
PuαâH2,kÂ2Â

H
1 E1x +

√
PuαeH2,kÂ2Â

H
1 Â1x︸ ︷︷ ︸

estimation error

+
√
PuαeH2,kÂ2Â

H
1 E1x︸ ︷︷ ︸

estimation error

+αâH2,kÂ2Â
H
1 ñR + αeH2,kÂ2Â

H
1 ñR + nDk︸ ︷︷ ︸

aggregated noise

, (4.34)

where the fluctuation of desired signal is not a matter anymore. Figure 4.3 showcases

the difference of achievable rate between our analytical lower bound and Monte Carlo

upper bound in percentage. It reveals that by increasing the number of RF chains,

the gap between these bounds is diminished, and with half of the RF chain this gap

is around 8%. Hence, the analytical lower bound is indeed tight even for moderate
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Figure 4.3: Gap between the proposed lower bound and Monte Carlo upper bound, assuming
imperfect CSI at the relay station.

number of RF chains.

In general, there is a tradeoff between the data transmission rate and accuracy of

the channel estimation. In other words, the more pilot signals are dedicated to estimate

the channels, the less payload data we can pass through the system. In this light, the

number of scheduled users plays an important role to maintain the balance between

these two factors, and consequently, achieve the maximum system achievable rate,

according to (4.13). Figure 4.4 depicts the achievable rate as a function of the number

of scheduled users and illustrates the aforementioned trade-off. It can also be observed

that the best operating point for this relaying system with N = 128 antennas and

Ka = Kb = 30 RF chains can be achieved by K = 11 transmitter users which yields 6

bit/s achievable rate; interestingly, this achievable rate scales linearly with the number

of RF chains.

We have also provided another simulation based on practical parameter values to

evaluate the system performance under large-scale fading effects. In this scenario, we

assumeK users are uniformly distributed in a circular area with a radius of 1000 meters

around the relay station, but no closer than rg = 100 meters. The small-scale fading
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Figure 4.4: Achievable rate as a function of the scheduled transmitter users with imperfect CSI
at the relay station.

encountered by the system model is Rayleigh which represents an isotropic scattering

environment. Furthermore, we model the large-scale fading effects with a log-normal

random variable, with standard deviation σsh, scaled by (rk/rg)
−ν to incorporate the

path-loss effects. In this model, rk denotes the distance of k-th user from the relay

station, ν is the path-loss exponent, and the noise power is given by

noise power = BW × kB × T0 × noise figure, (4.35)

where, BW denotes the spectral bandwidth in Hz, kb is Boltzmann’s constant in Joules

Parameter Value Parameter Value
Number of RF chains Ka = Kb Coherence time T = 196 symbols
Number of antennas N = 2Ka Pathloss-exponent ν = 2
Number of users K = 8 Shadowing STD σsh = 4 dB
Relay power Pr = 1 W Boltzmann kb=1.381×10−23J/K
User’s power Pu = 0.1 W Temperature T0 = 290 K
Pilot power Pp = 0.1 W Noise figure 9 dB
Pilot length τp = 2K Bandwidth BW= 20 MHz

Table 4.1: Simulation parameters of system model with imperfect CSI at the relay station.
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Figure 4.5: Achievable rate as a function of number of RF chains while N
Ka

= 2. The parameter
values are detailed in Table 4.1.

per Kelvin (J/K), T0 is the outdoor absolute temperature in Kelvin (K), and then noise

power is expressed in Watt.

Figure 4.5 represents our simulation result considering the parameter settings in

Table 4.1. In this figure, the red curve showcases our analytical lower bound based

on (4.33). On the other hand, the blue curve illustrates the Monte Carlo simulation

result which validates our benchmark upper bound from the signal model in (4.34).

This figure returns an acceptable gap between the proposed lower bound and the upper

bound, and hence, our bound is tight even when the large-scale fading is also taken

into account.

4.5 Conclusion

Massive relaying as a key technology of 5G induces a high implementation cost and

power consumption due to the large number of RF chains. In this chapter, we consid-

ered a hybrid topology to address these challenges through a reduced number of RF

chain. Then, we derived a tractable lower bound on the achievable rate, assuming that
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4.5 Conclusion

perfect CSI is not available at the relay station. A high advantage of the proposed solu-

tion is that the analog beamforming was implemented using Hadamard matrices with

the minimum resolution of phase shifters. This reduces the implementation complexity

of our system even more. Most importantly, it was shown that the performance penalty

compared to a fully digital configuration when deploying less than 50% RF chains was

only 25%.
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Chapter 5

Hybrid Processing Design for

Multipair Massive MIMO Relaying

with Channel Spatial Correlation

5.1 Introduction

As we discussed earlier, the practical implementation of massive MIMO induces some

critical challenges. In particular, having one RF chain per antenna will boost to un-

precedented levels the circuit complexity, fabrication/implementation cost and power

consumption. In Chapter 3, we addressed part of these issues by a cascade structure

of an analog RF beamformer and digital baseband processor referred as hybrid analog

and digital (A/D) structure. Then, we relaxed the resolution of phase shifters in analog

beamformers to arbitrary quantization bits, and also derived a closed-form expression

for the achievable rate. However, in this scenario, the phase shifters should be able to

adapt to the quick variations of the propagation channels over time. This phase adapta-

tion, not only requires perfect CSI at the relay station, but also is a challenging task due

to less flexibility of analog beamformers compared to the digital ones. To avoid this,

in Chapter 4, we considered the fixed analog beamformers based on Hadamard matri-

ces to alleviate the burden of signal processing at the relay station. However, in this
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methodology, the propagation channel and analog beamformers are treated together as

a single effective channel. Therefore, this assumption restricts the channel size to the

number of RF chains, and consequently restricts the ability of the number of antennas

to boost the power gain especially in the absence of perfect CSI.

At the other extreme, it has been long recognized that the achievable rate of point-

to-point MIMO systems is deteriorated due to the spatial correlation [67,92,93]. Never-

theless, spatial correlation in multiuser MIMO systems can be exploited in the transceiver

design offering performance improvements [94, 95]. To the best of our knowledge,

there is no prior work in the context of hybrid MIMO relaying design under spatially

correlated fading channels. In this chapter, motivated by the above discussion and

due to the fact that analog beamformers are implemented in the RF domain with less

flexibility than in baseband domain, we adjust the analog beamformers to the slow

variation of channel statistics rather than the short-term fluctuations of channel. Thus,

we will design our correlation-based analog beamformers to leverage the long-term

channel spatial selectivity for the hybrid relaying structure. The main contributions of

this chapter are summarized as follows:

• We consider a relay station with a hybrid architecture, and take the spatial cor-

relation and imperfect CSI into account. In this scenario, we explicitly evaluate

the role of digital beamformer by developing analytical bounds on the achievable

rate for the prevalent digital schemes, i.e., MRC/MRT and ZF. Our closed-form

expressions involve only the statistical parameters of the channels. Also, our nu-

merical results reveal that the ZF scheme avails of channel correlation and offers

higher achievable rate compared to the MRC/MRT scheme, even for low SNR

values.

• We design a correlation-based analog beamformer which exploits the long-term

eigenmodes of the propagation channel to maximize the achievable rate. Our

analytical result showcases that, although, multiplexing and array gain are obvi-

ously restricted under this hybrid A/D architecture, the system can still avail of

promising spatial diversity gain. Moreover, our simulation results illustrate that
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with only 50 RF chains, in a typical massive MIMO system with 128 antennas

elements, the hybrid A/D structure can nearly capture 90% of the achievable rate

offered by the conventional fully digital structure with 128 RF chains.

• We numerically evaluate the achievable rate of hybrid structure under quantized

phase shifter assumption. Our simulation results reveal that the hybrid config-

uration paradigm is robust to phase quantization, and this observation is more

pronounced for the hybrid structure utilizing the MRC/MRT scheme.

5.2 System Model

5.2.1 Signal Model and Hybrid Architecture

We assume the same system model as in previous chapters, which is illustrated in Fig.

5.1. Considering that users are randomly located around the relay station, we assume

that the propagation channels at the users’ terminals are uncorrelated due to their large

distance from each other, whereas there exists correlation among the relay antennas on

both sides of the relay station. This correlation occurs if the relay antennas are insuffi-

ciently spaced from each other or there are a limited number of scatterers surrounding

the relay station. We also assume that there are no direct links between K pairs due to

the heavy shadowing and/or path loss attenuation. For the simplicity of analysis, and

for obtaining a clear understanding of the impact of the antennas correlation, the large-

scale fading is neglected. Nevertheless, it is notable that our results can be readily

extended to propagation channels which include large-scale fading.1 Having a case of

practical interest, we assume that CSI is not available at the users’ nodes, and the relay

station has to estimate the channels via the uplink pilots during the training phase.

Under this configuration setup, we recall our signal models for the received and

transmitted signals at the relay station, and also the model for the received signals at

1The impact of large-scale fading can be compensated by a power control scheme at the relay
station which is proportional to the inverse of the channel long-term attenuation, including path-loss
and shadow fading [96–99].
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Figure 5.1: Simplified block diagram of a multipair relay system with a baseband digital pro-
cessor combined with two analog RF beamformers. Channels are Rayleigh faded and corre-
lated at the relay side. Only statistics and estimates of the propagation channels are available
at the relay station.

K destinations in below

yR =
√
PuG1x + nR, (5.1)

ỹR = FH
2 WF1yR, (5.2)

yD =
√
PuG

H
2 FH

2 WF1G1x + GH
2 FH

2 WF1nR + nD, (5.3)

where the propagation channels from the K sources to the relay, and from the relay

to the destinations are expressed as G1, G2 ∈ CN×K , respectively. We represent the

spatial correlation matrices between the relay antennas by R1, R2 ∈ CN×N which

have been already incorporated into the channel matrices, i.e., G1 = R
1
2
1 H1 and G2 =

R
1
2
2 H2. In this model, H1 and H2 ∈ CN×K denote the small-scale fading with i.i.d.

CN (0, 1) elements. Then, from (5.3), the received signal at the k-destination can be

extracted as

yDk =
√
Pug

H
2,kF

H
2 WF1g1,kxk +

√
Pu

K∑
i 6=k

gH2,kF
H
2 WF1g1,ixi + gH2,kF

H
2 WF1nR + nDk ,

(5.4)

where nDk is AWGN at the k-th destination. In this aggregated received signal, the first

term refers to the desired signal and the second term signifies inter-user interference,

while the last two terms represent the compound noise.
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This system model is still under two major practical constraints. First, the ana-

log combiner and precoder just contribute to the phase alignment as they are usually

implemented using a bank of analog phase shifters. In this light, we have to assign

an equal modulus to all the entries of matrices F1 and F2. We fix this modulus by

1/
√
N to avoid an unlimited gain in the analog domain. Second, the AF relay station

receives the signals from all sources, and boosts them up to a certain level of power

Pr before transmitting to the destinations. Thus, we consider the following long-term

power constraint

E
[
Tr
(
ỹRỹHR

)]
= Pr. (5.5)

5.2.2 Channel Estimation

To capture the advantages that massive MIMO relay can offer, CSI is required at the

relay station. This CSI is used to design the digital processor W. The CSI acquisition

at the relay station is done via the uplink pilots transmitted from the sources and the

destinations. Let T be the length of each coherence interval, and τp be the duration for

uplink training (in symbols). Then, the remaining part, T−τp, is used for downlink data

transmission. We assume that pilot sequences sent from all sources and destinations

are mutually orthogonal. This requires 2K ≤ τp ≤ T . Let us stack all of these pilot

sequences into the matrices
√
τpPpΦ1 ∈ Cτp×K and

√
τpPpΦ2 ∈ Cτp×K , where Pp

denotes the average pilot power. Then, we have ΦH
1 Φ1 = IK , ΦH

2 Φ2 = IK and

ΦH
1 Φ2 = 0K . The baseband received pilot signals at the receive and transmit sides of

the relay station before the DSP unit can be expressed, respectively, as

Ypr =
√
τpPpF1G1Φ

T
1 + Npr, (5.6)

Ypt =
√
τpPpF2G2Φ

T
2 + Npt, (5.7)

where Npr ∈ CKa×τp and Npt ∈ CKb×τp are AWGN matrices including i.i.d. CN (0, 1)

entries. Hereafter, we just derive the results for the source side and the same result
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can be similarly deduced for the destination side. We can obtain the matrix Y1 after

projecting matrix Ypr onto Φ∗1

Y1 = YprΦ
∗
1 =

√
τpPpF1R

1
2
1 H1 + N1, (5.8)

where the entries of N1 ∈ CKa×K follow the same distribution as the entries of Npr

due to the fact that the columns of Φ1 are orthonormal. Then, for a given channel

correlation R1, the MMSE estimate of G1 can be obtained by [71]

Ĝ1 =
√
τpPpR1F

H
1

(
τpPpF1R1F

H
1 + IKa

)−1

Y1. (5.9)

Since the MMSE estimator is a linear transformation, we can conclude that the channel

estimation matrices Ĝ1, Ĝ2 and their errors E1, E2 are Gaussian random matrices,

such that

G1 = Ĝ1 + E1, (5.10)

G2 = Ĝ2 + E2. (5.11)

After some standard manipulations, we can rewrite the channel estimate as

Ĝ1 =

( E
[
Ĝ1Ĝ

H
1

]
Tr
(
E
[
Ĝ1ĜH

1

])) 1
2

Ĥ1

(
E
[
ĜH

1 Ĝ1

]) 1
2

=

(
τpPpR1F

H
1

(
τpPpF1R1F

H
1 + IKa

)−1

F1R1

) 1
2

Ĥ1

=

(
R1 −

(
R−1

1 + τpPpF
H
1 F1

)−1
) 1

2

Ĥ1, (5.12)

where Ĥ1 ∈ CN×K is a Gaussian random matrix with i.i.d. CN (0, 1) entries, and the

last equality is derived by invoking the matrix inversion lemma. We can derive the

same result in a similar fashion for the error matrix. As a consequence, we gather both
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results into the following simple expressions

Ĝ1 = U
1
2
1 Ĥ1, (5.13)

E1 = U
1
2
e1He1, (5.14)

where He1 ∈ CN×K is independent of Ĥ1 and its entries are independent CN (0, 1)

random variables. Furthermore, Ue1 and U1 are the error correlation matrix and esti-

mation correlation matrix, given respectively by

Ue1
∆
=
(
R−1

1 + τpPpF
H
1 F1

)−1

, (5.15)

U1
∆
= R1 −Ue1 . (5.16)

5.3 Achievable Rate Analysis

In this section, we analytically evaluate the achievable rate of hybrid configuration

paradigm to get better insights into how analog beamformers affect the system per-

formance. The achievable rate is derived via the “use and forget" technique which is

commonly used in the context of massive MIMO [20]. Let us recall (5.4) and take the

channel estimations (5.10), (5.11) into account, then we have

yDk= E
[√

Puĝ
H
2,kF

H
2 WF1ĝ1,k

]
xk︸ ︷︷ ︸

desired signal

+
√
Puĝ

H
2,kF

H
2 WF1ĝ1,kxk−E

[√
Puĝ

H
2,kF

H
2 WF1ĝ1,k

]
xk︸ ︷︷ ︸

desired signal fluctuation

+
√
Pu

K∑
i 6=k

ĝH2,kF
H
2 WF1ĝ1,ixi︸ ︷︷ ︸

inter−user interference

+
√
Puĝ

H
2,kF

H
2 WF1E1x︸ ︷︷ ︸

estimation error

+
√
Pue

H
2,kF

H
2 WF1Ĝ1x︸ ︷︷ ︸

estimation error

+
√
Pue

H
2,kF

H
2 WF1E1x︸ ︷︷ ︸

estimation error

+ ĝH2,kF
H
2 WF12 + eH2,kF

H
2 WF12 + nDk︸ ︷︷ ︸

aggregated noise & estimation error

. (5.17)

We introduce the first term as a desirable signal due to the fact that the channel es-

timates are only available at the relay station. However, it is reasonable to assume

that the long-term statistic of the channels are available at the destinations. The sec-
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ond term represents a fluctuation over the desired signal which should be treated as a

new source of ambiguity at the destination. The third term points out to the inter-user

interference, while the rest describe the compound noise which includes AWGN and

channel estimation errors. Thus, we can obtain a sum achievable rate as

R =
T − τp

2T

K∑
k=1

log2

(
1 + SINRk

)
, (5.18)

where,

SINRk =
Put0

Pu (t1 + t2 + t3 + t4 + t5) + (t6 + t7) + σ2
nD

. (5.19)

In (5.18), the factor T−τp
2T

denotes the penalty loss due to the half-duplex relaying op-

eration and the channel estimation overhead. In (5.19), t0, t1, . . . , t7 are defined as

t0 =

∣∣∣∣E[ĝH2,kFH
2 WF1ĝ1,k

]∣∣∣∣2, (5.20)

t1 = Cov
(
ĝH2,kF

H
2 WF1ĝ1,k

)
, (5.21)

t2 =E
[∣∣∣∑

i 6=k

ĝH2,kF
H
2 WF1ĝ1,ixi

∣∣∣2], (5.22)

t3 =E
[∣∣∣ĝH2,kFH

2 WF1E1x
∣∣∣2], (5.23)

t4 =E
[∣∣∣eH2,kFH

2 WF1Ĝ1x
∣∣∣2], (5.24)

t5 =E
[∣∣∣eH2,kFH

2 WF1E1x
∣∣∣2], (5.25)

t6 =E
[∣∣∣ĝH2,kFH

2 WF1ñR

∣∣∣2], (5.26)

t7 =E
[∣∣∣eH2,kFH

2 WF1ñR

∣∣∣2], (5.27)

where for the sake of simplicity we omitted index k that indicates these terms that

correspond to the k-th user pair. It is also notable that in the above equations t0–t7, the

expectation is over all the random variables: information symbols, estimated channels,

channels estimation errors, and AWGN. Since finding the optimal W is a demanding

task due to the non-convex nature of the problem, in the subsections that follow we
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adopt MRC/MRT and ZF digital processors to simplify the achievable rate under these

simple but good linear schemes. Then, given the closed-form expression in this section,

we can design our analog beamformer in the next section (Section 5.5) to improve the

achievable rate.

5.4 MRC/MRT Digital Processor

MRC/MRT strategy is a simple choice that coherently combines the received signals,

and then sends them toward the destinations. With the MRC/MRT scheme, W is

chosen so that FH
2 WF1 = αmĜ2Ĝ

H
1 , where αm is a relay amplification factor cho-

sen to satisfy the long-term constraint in (5.5). Next, we provide some propositions

that further simplify the SINR terms t0 − t7, and provide a closed-form expression

for the achievable rate which only involves the long-term statistics of the propagation

channels. For ease of exposition, we use superscript “mrc” to denote the MRC/MRT

scheme.

Proposition 5.1. With MRC/MRT, the mathematical term corresponding to the desired

signal and its fluctuations, t0 and t1, can be expressed in closed-form, respectively, as

follows

tmrc
0 =α2

mTr2
(
U1

)
Tr2
(
U2

)
, (5.28)

tmrc
1 =α2

m

(
Tr2
(
U1

)∥∥U2

∥∥2
+ Tr2

(
U2

)∥∥U1

∥∥2
+K

∥∥U1

∥∥2∥∥U2

∥∥2
)
. (5.29)

Proof. The proof of the first part is trivial by applying Lemma 1 in Appendix C.1. For

the second part let us define an auxiliary variable namely tmrc
aux , and then simplify it by

expanding the matrix product around its columns. Then, considering this fact that the

columns of the estimation channels are independent, and by recalling Lemma 2 we

have
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tmrc
aux = α2

mE
[∣∣∣ĝH2,kĜ2Ĝ

H
1 ĝ1,k

∣∣∣2]
= α2

mE

[∣∣∣∣ĝH2,k( K∑
m=1

ĝ2,mĝH1,m

)
ĝ1,k

∣∣∣∣2
]

= α2
m

K∑
m=1

E

[∣∣∣∣ĝH2,kĝ2,mĝH1,mĝ1,k

∣∣∣∣2
]

(L2)
= α2

m

(
Tr2 (U2) + ‖U2‖2

)(
Tr2 (U1) + ‖U1‖2

)
+ α2

m(K − 1)
∥∥U1

∥∥2∥∥U2

∥∥2
.

(5.30)

The proof is completed by using tmrc
1 = tmrc

aux − tmrc
0 . For the sake of notational simplic-

ity, hereafter, we use (L1), (L2), and (L3) to denote Lemmas 1–3.

Proposition 5.2. With MRC/MRT, the mathematical term corresponding to inter-user

interference, t2, can be expressed in closed-form as

tmrc
2 = α2

m(K − 1)
(

Tr2
(
U1

)∥∥U2

∥∥2
+ Tr2

(
U2

)∥∥U1

∥∥2
+K

∥∥U1

∥∥2∥∥U2

∥∥2
)
. (5.31)

Proof. It can be proved in a similar fashion as in Proposition 5.1.

Proposition 5.3. With MRC/MRT, the mathematical term t3 is given by

tmrc
3 = Kα2

mTr
(
U1Ue1

)(
Tr2 (U2) +K ‖U2‖2

)
. (5.32)

Proof. By leveraging the property of Gaussian random matrices from Appendix C.1,

we expand tmrc
3 as follows

tmrc
3 = α2

mE
[∣∣∣ĝH2,kĜ2Ĝ

H
1 E1x

∣∣∣2]
= α2

mE
[
ĝH2,kĜ2Ĝ

H
1 E1E

H
1 Ĝ1Ĝ

H
2 ĝ2,k

]
(L1)
= Kα2

mE
[
ĝH2,kĜ2Ĝ

H
1 Ue1Ĝ1Ĝ

H
2 ĝ2,k

]
(L1)
= Kα2

mTr
(
U1Ue1

)
E
[
ĝH2,kĜ2Ĝ

H
2 ĝ2,k

]
(L3)
= Kα2

mTr
(
U1Ue1

)(
Tr2 (U2) +K ‖U2‖2

)
. (5.33)
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Proposition 5.4. With MRC/MRT, the mathematical term t4 can be expressed in closed-

form as

tmrc
4 = Kα2

mTr (U2Ue2)
(

Tr2 (U1) +K ‖U1‖2
)
. (5.34)

Proof. We trivially conclude the proof, by invoking Lemma 1 and Lemma 3

tmrc
4 = α2

mE
[∣∣∣eH2,kĜ2Ĝ

H
1 Ĝ1x

∣∣∣2]
= α2

mE
[
eH2,kĜ2Ĝ

H
1 Ĝ1Ĝ

H
1 Ĝ1Ĝ

H
2 e2,k

]
(L1)
= α2

mE
[
Tr
(
Ue2Ĝ2Ĝ

H
1 Ĝ1Ĝ

H
1 Ĝ1Ĝ

H
2

)]
(L3)
= α2

m

(
Tr2 (U1) +K ‖U1‖2

)
E
[
Tr
(
Ue2Ĝ2Ĝ

H
2

)]
(L1)
= α2

mKTr (U2Ue2)
(

Tr2 (U1) +K ‖U1‖2
)
. (5.35)

The similar methodology can be applied for the rest of terms t5–t7 to finally obtain the

following results

tmrc
5 =K2α2

mTr (U1Ue1) Tr (U2Ue2) , (5.36)

tmrc
6 =α2

mσ
2
nR

Tr (U1)
(

Tr2 (U2) +K
∥∥U2

∥∥2
)
, (5.37)

tmrc
7 =α2

mσ
2
nR
KTr (U1) Tr (U2Ue2) . (5.38)

As was pointed out earlier, the power amplification factor αm is enforced by the

long-term power constraint at the AF relay station. Hence, starting from (5.5), recalling

the relay transformation matrix in (5.2), and then proceeding with the same strategy

that we used to simplify the SINR terms, this amplification gain can be calculated by
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αm =

(
Pr

PuKTr (U2)
(

Tr2 (U1)+K ‖U1‖2
)
+PuK2Tr (U1Ue1)Tr (U2)+σ2

nR
KTr (U1) Tr (U2)

) 1
2

.

(5.39)

5.4.1 ZF Digital Processor

As previously shown in (5.31), the MRC/MRT scheme suffers from relatively high in-

terference compared to other components: estimation error and AWGN, especially at

large K. Motivated by this observation, we employ a ZF scheme at the DSP unit, and

then derive an approximation of the achievable rate. The ZF receiver can be mathemat-

ically expressed based on (5.3) so that FH
2 WF1 = αzĜ2

(
ĜH

2 Ĝ2

)−1(
ĜH

1 Ĝ1

)−1
ĜH

1 ,

where αz is the relay amplification factor in ZF DSP. For the ease of exposition, we

use the superscript “zf” denote the expressions related with the ZF digital processor.

Considering the ZF strategy we have

tzf
0 =α2

z , tzf
1 = 0, tzf

2 = 0, (5.40)

tzf
3 =

[
T3

]
k,k

= α2
z

[
Cov

((
ĜH

1 Ĝ1

)−1
ĜH

1 E1x

)]
k,k

, (5.41)

tzf
4 =

[
T4

]
k,k

= α2
z

[
Cov

(
EH

2 Ĝ2

(
ĜH

2 Ĝ2

)−1
x

)]
k,k

, (5.42)

tzf
5 =

[
T5

]
k,k

= α2
z

[
Cov

(
EH

2 Ĝ2

(
ĜH

2 Ĝ2

)−1(
ĜH

1 Ĝ1

)−1
ĜH

1 E1x

)]
k,k

, (5.43)

tzf
6 =

[
T6

]
k,k

= α2
z

[
Cov

((
ĜH

1 Ĝ1

)−1
ĜH

1 nR

)]
k,k

, (5.44)

tzf
7 =

[
T7

]
k,k

= α2
z

[
Cov

(
EH

2 Ĝ2

(
ĜH

2 Ĝ2

)−1(
ĜH

1 Ĝ1

)−1
ĜH

1 nR

)]
k,k

, (5.45)

which can be approximated in the following manner.

Proposition 5.5. With ZF, the mathematical expression t3 can be approximated by

tzf
3

a.s.−→
Kα2

zTr
(
U1Ue1

)
Tr2
(
U1

) . (5.46)

Proof. The proof is straightforward by invoking Corollary 1 (C1)
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T3 = α2
zE
[(

ĜH
1 Ĝ1

)−1
ĜH

1 E1xxHEH
1 Ĝ1

(
ĜH

1 Ĝ1

)−1
]

= Kα2
zE
[(

ĜH
1 Ĝ1

)−1
ĜH

1 Ue1Ĝ1

(
ĜH

1 Ĝ1

)−1
]

(C1)
a.s.−→ Kα2

zTr
(
U1Ue1

)
E
[(

ĜH
1 Ĝ1

)−2
]

(C1)
a.s.−→

Kα2
zTr
(
U1Ue1

)
Tr2
(
U1

) IK , (5.47)

which concludes the proof.

The other terms can be obtained in a similar spirit, hence for the brevity, we omit their

proofs and just point out to their final results:

tzf
4

a.s.−→
K α2

zTr
(
U2Ue2

)
Tr2
(
U2

) , (5.48)

tzf
5

a.s.−→
K2α2

zTr
(
U1Ue1

)
Tr
(
U2Ue2

)
Tr2
(
U1

)
Tr2
(
U2

) , (5.49)

tzf
6

a.s.−→
α2

zσ
2
nR

Tr
(
U1

) , (5.50)

tzf
7

a.s.−→
Kα2

zσ
2
nR

Tr
(
U2Ue2

)
Tr
(
U1

)
Tr2
(
U2

) , (5.51)

αz =

(
PrTr

(
U1

)
Tr
(
U2

)
PuKTr

(
U1

)
+

PuK2Tr
(

U1Ue1

)
Tr
(

U1

) +Kσ2
nR

) 1
2

. (5.52)

5.5 Analog Beamformer Design

5.5.1 Analog Beamformer Design

Massive MIMO can significantly increase the achievable rate thanks to its ability to

provide a large multiplexing gain. However, this ability is somewhat restricted in

highly correlated channels or in networks with few number of active users, where

either ill-conditioned channel matrices or the limited number of users restrict the huge

degrees of freedom offered by massive MIMO. Therefore, in these cases, exploiting

the multiplexing gain is not the main concern, and consequently the idea of the use of

hybrid structure with reduced number of RF chains suits to these scenarios. However, a
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limited number of RF chains restricts the control of the DSP unit on the antenna arrays

to finely steer the beams and place the nulls in predefined directions especially when

perfect CSI is not available at the relay station. Although power and multiplexing gain

are restricted in hybrid structures, we will show that this topology still can deliver a

reasonable and reliable achievable rate by extracting the best eigenmodes of the chan-

nel correlation matrix. Therefore, in this section we design an analog beamformer

based on the statistics of the propagation channel. According to the signal model in

(5.17) the analog beamformers, i.e. F1 and F2, are only involved in the channel es-

timates Ĝ1 and Ĝ2. Motivated by this observation, we design an analog beamformer

in order to reduce the estimation errors, which in turn boosts the desired signal power,

and finally improves the achievable rate. For the sake of simplicity, we confine our

focus on designing the matrix F1, while the same results can be derived for the matrix

F2. Borrowing the channel estimation error from (5.14), the total estimation error is

given by

ε1 = E
[
Tr
(
E1E

H
1

)]
= KTr

(
R1 − τpPpR1F

H
1

(
τpPpF1R1F

H
1 + IKa

)−1

F1R1

)
= KTr

((
R−1

1 + τpPpF
H
1 F1

)−1
)

= KTr
(
Ue1

)
. (5.53)

Taking the practical constraints of analog beamformer into account, we can design the

analog beamformer from the following optimization problem

min
F1

ε1

s.t. Tr
(
F1F

H
1

)
≤ Ka,

F1 ∈ CKa×N ,

F1 ∈ F, (5.54)

where F denotes the set of Ka ×N complex matrices with equal modulus. Since F is
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not a convex set, we ignore this constraint at this stage, but we will show the impact

of this assumption in simulation results. Under this assumption, we can rewrite the

optimization problem as

min
F1

Tr

((
R−1

1 + τpPpF
H
1 F1

)−1
)

s.t. Tr
(
F1F

H
1

)
≤ Ka,

F1 ∈ CKa×N . (5.55)

Let F1 = UF1ΣF1V
H
F1

and R1 = UR1ΛR1U
H
R1

denote the SVD and eigen value de-

composition of matrices F1 and R1, respectively. The minimum value of the objective

function in (5.55) can be achieved if the eigenvectors of FH
1 F1 are chosen along with

the eigenmodes of R−1
1 , i.e. VF1 = UR1 . By invoking this property, the optimization

problem on hand can be further simplified to

min
ΣF1

Tr

((
Λ−1
R1

+ τpPpΣ
H
F1

ΣF1

)−1
)

(5.56)

s.t. Tr
(
ΣH
F1

ΣF1

)
≤ Ka,

ΣF1 ∈ CKa×N .

Now, let xi and γi denote the i-th biggest eigenvalue of the matrices FH
1 F1 and R−1

1 ,

respectively. Then, this problem can be reduced to a conventional water-filling opti-

mization as follows [100]

min
xi

N∑
i=1

(
1

γi + τpPpxi

)

s.t.
N∑
i=1

xi ≤ Ka,

xi ≥ 0, for i = 1, . . . , Ka,

xi = 0, for i = Ka + 1, . . . , N. (5.57)

We note that this optimization problem is a convex optimization problem as it can be
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rewritten in a format of a standard optimization problem

min
xi

N∑
i=1

(
1

γi + τpPpxi

)

s.t.
N∑
i=1

xi −Ka ≤ 0,

− xi ≤ 0, for i = 1, . . . , Ka,

xi = 0, for i = Ka + 1, . . . , N, (5.58)

where all the constraint functions are affine, so this problem is subject to the convex

constrains. Also, the objective function is the sum of convex functions which means

the objective function is a convex function. By utilizing the Lagrangian duality, and

considering Karush-Kuhn-Tucker (KKT) conditions for optimality, we obtain that the

first K ′a bins should be filled up to a certain level as illustrated in Fig. 5.2 so that

√
τpPp
ν1

= γi + τpPpxi, (5.59)

where ν1 is a constant number to satisfy the constraint
∑N

i=1 xi ≤ Ka with equality.

Then, after some simple mathematics manipulations we can find that

√
τpPp
ν1

=
τpPpKa +

∑K′a
i=1 γi

K ′a
, (5.60)

xi =
1

τpPp

(
τpPpKa +

∑K′a
i=1 γi

K ′a
− γi

)
, for i = 1, . . . , K ′a, (5.61)

xi = 0, for i = K ′a, . . . , N. (5.62)

It is noteworthy that the maximum rank of matrix F1 is Ka, hence the water filling

algorithm is applied for the first Ka bins, whereas K ′a ≤ Ka bins can be filled by

this algorithm as illustrated in Fig. 5.2. We also note that the design of matrices F1

and F2 only depends on the long-term statistics of the channel according to the above

discussion, therefore, we just need to design the analog beamformer once over each
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Figure 5.2: Water filling structure

coherence time T . The final design of the analog beamformer can be summarized as

F1 = UF1ΣF1U
H
R1
, (5.63)

where ΣF1 is aKa×N rectangular diagonal matrix with
[√
x1,
√
x2, . . . ,

√
xK′a , 0, . . . , 0

]T
on its main diagonal. The matrix UF1 does not play any role in the optimization prob-

lem (5.55), hence any unitary matrix can be chosen. For convenience in our subsequent

developments, we just assume UF1 = IN which leads to1

F1 = ΣF1U
H
R1
. (5.64)

5.5.2 Discussion

Altogether, we were able find a closed-form lower bound for the achievable rate for

the MRC/MRT scheme, and also an approximation of the achievable rate for the ZF

scheme which depend on the long-term components of the propagation channels as

reflected by Tr
(
Ui

)
, Tr
(
UiUei

)
, and

∥∥Ui

∥∥ for i = 1, 2. Proposition 5.6 will reduce

1Precisely speaking, UF1 can affect the original optimization problem (5.54) where we need to
design UF1

so that the matrix F1 falls within the set F. It can also contribute to the system robustness,
however, Monte Carlo simulations will confirm that the results are still good enough by considering
UF1

= IN .
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the number of these components by finding a direct connection between these factors.

Proposition 5.6. It can be shown that Tr
(
Ui

)
and Tr

(
UiUei

)
for i = 1, 2 are directly

connected to each other by the level of water-filling ceiling (See also Fig. 5.2)

Tr
(
Ui

)
=

√
τpPp
νi

Tr
(
UiUei

)
, for i = 1, 2. (5.65)

Proof. See Appendix C.2.

It is notable that the impact of Tr
(
Ui

)
for i = 1, 2 is more pronounced at the

numerator of the SINR in (5.19), and hence, it can be treated as a desirable value

that boosts the achievable rate. In contrast, Tr
(
UiUei

)
, which can be interpreted as

the inner product between the error correlation-matrix Uei and estimation correlation-

matrix Ui, deteriorates the achievable rate. Hence, Proposition 5.6 is seemingly useful

to both mathematically and intuitively explain the relation between these two factors.

This proposition numerically explains that for a given MMSE channel estimate, the

impact of error estimation can be harnessed by a scalar, i.e.
√

τpPp
νi

for i = 1, 2, which

basically depends on the number of RF chains, pilot power, and the duration of pilot

sequences. This is, of course, in line with the canonical concept of the pilot-based

channel estimation originally observed in [101, 102].

To obtain a clear understanding how the different parameters affect the achievable

rate in our analog beamformer design followed by the ZF DSP, we consider a special

case with the same channel correlation matrix and the same amount of RF chains at

both sides of the relay station R1 = R2 and Ka = Kb. Also, we note that tzf
5 , tzf

7

and a part of αz are negligible compared to other terms.1 Hence, we can derive a new

simplified approximation for the achievable rate namely R̄zf

R̄zf =
K (T − τp)

2T
log2

1 +
Tr (U)

2Kζ +
σ2
nR

Pu
+

σ2
nD
Pr
K

 , (5.66)

where we define U
∆
= U1 = U2, ζ ∆

=
√

ν
τpPp

, and ν
∆
= ν1 = ν2 for notational

1By invoking Proposition 5.6 in (5.52), we can readily conclude that the last two terms of the
denominator of αz are much smaller than its first term.
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simplicity. This closed-form approximation can shed further light on how the system

parameters contribute to the achievable rate. Precisely speaking, this result implies that

exploiting the long-term statistics of the channel, leads to a diversity gain Tr (U) that

linearly scales the SINR. On the other hand, only the inverse of the uplink SNR
σ2
nR

Pu
,

and downlink SNR per user
σ2
nD
Pr
K

participate as an AWGN in the achievable rate. In

addition, the impact of channel estimation errors simply appears as 2K
√

ν
τpPp

which

can be controlled by the pilot specifications and the level of water-filling.

All in all, we developed a correlation-based analog beamformer followed by simple

linear digital processors, i.e. MRC/MRT and ZF scheme. Then, we provided mathe-

matical closed-form expressions which only involve the long-term characteristics of

propagation channels. These results reveal that even in the worst-case scenario that

multiplexing gain is restricted due to the limited number of RF chains, and array gain

is also confined due to the less control of the DSP unit on the analog beamformers, the

proposed system can still leverage a substantial diversity gain. This diversity gain is

related to the statistical properties of the channels, where analog beamformers exploit

the strongest eigenmodes of the channel correlation matrix. This analysis also shows

that the dominant statistical terms, i.e. Tr
(
Ui

)
for i = 1, 2 have a tendency to boost the

desired signal. On the other hand, the moderate statistical terms like
∥∥Ui

∥∥ for i = 1, 2

mainly contribute to the aggregated noise and interference.

5.6 Numerical Results

In this section, we provide numerical results to evaluate the performance of hybrid

multipair massive relaying with the channel estimation at the relay station. We model

the two deterministic correlation matrices, R1 and R2, as follows:

[R1]m,n =e−j2π(n−m)∆r cos(θr)e−
1
2

(2π(n−m)∆r sin(θr)σr)
2

, (5.67)

[R2]m,n =e−j2π(m−n)∆t cos(θt)e−
1
2

(2π(m−n)∆t sin(θt)σt)
2

, (5.68)
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Parameter Value Parameter Value
Number of antennas N = 128 Coherence time T = 196 symbols
Number of RF chains Ka = Kb = 50 Pilot length τp = 2K symbols
Number of users K = 10 Mean AoA, AoD θr = θt = 0.4π radian
Relay power Pr = 100.5 W Angle spread σr = σt = 0.25 radian
User’s power Pu = 1 W Noise variance σ2

nR
= 1

Pilot power Pp = 1 W Noise variance σ2
nD

= 1

Table 5.1: Simulation parameters of system model with channel correlation at the relay side.

where ∆r, ∆t denote the antenna spacing, θr, θt, σ2
r , and σ2

r represent the mean AoA

to the relay station, mean AoD from the relay station, receive angle spread and trans-

mit angle spread, respectively [64, 68]. These correlation models basically represent

Gaussian matrices with a spread inversely proportional to the product of the antenna

spacing and angle spread. We note that a smaller angel spreads signify higher levels

of spatial correlation. It is also noteworthy that this model can be easily expanded to

the clustered channels where each cluster corresponds to a specific AoA and AoD, and

there are sufficient scatterers in each cluster: approximately 10 or more [103]. For the

sake of simplicity, we assume that the channel matrices are normalized so that σ2
nR

and σ2
nD

contain both noise variance and pathloss. Throughout the simulation, unless

otherwise specified, we utilize the detailed parameter settings as summarized in Table

5.1.

All analytical results obtained in this chapter assume that phase shifters are de-

signed in the digital domain, and they are able to take any modulus and phase. How-

ever, as we described earlier in (5.55), this so-called unconstrained analog beamform-

ing (UAB) design, is not quite practical due to the fact that analog beamformers are im-

plemented by means of phase shifters with a constant modulus constraint. To circum-

vent this problem, we first design the phase shifters as before, and then will normalize

their modulus to satisfy the aforementioned constraint. For the sake of presentation

clarity, we call this methodology as constrained analog beamforming (CAB) design

which satisfies (5.54).

Figure 5.3 shows a great congruency between Monte Carlo simulation and our

analytical result. Moreover, it showcases that the gap between UAB and CAB design is

very small. This observation implies that our methodology is quite robust with respect
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Figure 5.3: Performance of the proposed hybrid beamformer under channel correlation.
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Figure 5.4: Lower bound and upper bound on the sum achievable rate in hybrid structure
equipped with MRC/MRT DSP unit under channel correlation.

to the phase shifters constraint. In addition, this figure illustrates that the ZF processing

can greatly enhance the achievable rate compared to the MRC/MRT processing by

nulling out the inter-user interference. It signifies that by deploying only 50 RF chains

the hybrid configuration paradigm can capture more than 90% of the achievable rate

offered by the fully digital structure with 128 RF chains.

In order to understand how tight is our lower bound, Fig. 5.4 compares our sug-

gested bound with an idealistic case namely upper bound. In this case, we assume

that the destinations know perfectly the channels estimates Ĝ1, Ĝ2. Strictly speaking,

under this assumption, the received baseband signal in (5.17) can be substituted by the
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Figure 5.5: Performance of the proposed analog beamformer with different levels of correla-
tion. Left: N = 256, Right: N = 128.

more accurate model given as follows

yDk =
√
PuαmĝH2,kĜ2Ĝ

H
1 ĝ1,kxk︸ ︷︷ ︸

desired signal

+
√
Puαm

K∑
i 6=k

ĝH2,kĜ2Ĝ
H
1 ĝ1,ixi︸ ︷︷ ︸

inter−user interference

+
√
PuαmĝH2,kĜ2Ĝ

H
1 E1xk︸ ︷︷ ︸

estimation error

+
√
PuαmeH2,kĜ2Ĝ

H
1 Ĝ1xk︸ ︷︷ ︸

estimation error

+
√
PuαmeH2,kĜ2Ĝ

H
1 E1xk︸ ︷︷ ︸

estimation error

+αmĝH2,kĜ2Ĝ
H
1 2 + αmeH2,kĜ2Ĝ

H
1 2 + nDk︸ ︷︷ ︸

aggregated noise & estimation error

, (5.69)

where the fluctuations of desired signal is not a matter anymore. Figure 5.4 show-

cases a very small gap between the lower and upper bounds which concludes that the

analytical lower bound approximates very well the actual achievable achievable rate,

particularly, for a limited number of RF chains.

Fig. 5.5 illustrates the performance of hybrid topology with different levels of

channel spatial correlation. It implies that with a limited number of RF chains, the

proposed analog beamformer followed by ZF scheme can highly avail of the chan-

nel correlation. It is due to this fact that, in highly correlated channels, e.g., smaller

σ, the eigenvalues of the correlation matrix are decentralized and will be spread on

a wider range (See Fig. 5.6). Therefore, there exist few strong modes (paths) that

can be captured by the limited available number of RF chains. On the other hand,

MRC/MRT scheme is unable to decorrelate and extract the strong eigenmodes. Thus,
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Figure 5.6: Empirical cumulative distribution function.

the MRC/MRT scheme showcases a poor performance with a limited number of RF

chains.

Finally, Fig. 5.7 evaluates the impact of deployed antennas at the relay station,

where we increase the number of antennas while the ratioN/Ka is constant. In fact, the

more antennas we deploy at the relay station, the more diversity gain we can achieve.

Therefore, the achievable rate will increase, although the ratio of the service antennas

and RF chains is still constant. More interestingly, Fig. 5.8 demonstrates that the

system performance improves by deploying more antennas, even though the number

of RF chains is fixed Ka = Kb = 50. This is due to the fact that by deploying more

antennas, the number of eigenvalues for correlation matrices (R1, R2) will increase,

and the proposed analog beamformers smartly collect only the strongest ones. In other

words, the water-filling algorithm enhances the system performance by exploiting the

diversity gain from the long-term characteristics of propagation channels.
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Figure 5.7: The impact of the number of relay antennas with N
Ka

= N
Kb

= 3.
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Figure 5.8: The impact of the number of relay antennas with constant RF chains
Ka = Kb = 50.

5.7 Conclusion

Massive MIMO is a promising technique for the next generation of wireless communi-

cation systems which addresses most of the critical challenges associated with concur-

rent relaying systems, such as DSP complexity, long processing delay and low SINR at

the cell edges. However, massive relaying experiences a high fabrication/implementation

cost and power consumption due to the large number of RF chains. To avoid this, we

greatly reduced the number of RF chains in a viable analog/digital configuration which

is usually referred to hybrid structure. It is well-known that this structure reduces the

multiplexing gain and also restricts the power gain due to the less flexibility of analog

beamformers, particularly, with imperfect CSI at the relay station. Thus, we assumed

a correlated channel and then designed a novel analog beamformer which exploits the

long-term channel statistics and results in a high achievable rate. We also derived an
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approximation and lower-bound on the achievable rate which involves the long-term

parameters of the propagation channels.
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Chapter 6

Performance Limits of MIMO Systems

with Nonlinear Power Amplifiers

The development of 5G enabling technologies brings new challenges to the design

of PAs. In particular, there is a strong demand for low-cost, nonlinear PAs which,

however, introduce nonlinear distortions. On the other hand, contemporary expensive

PAs show great power efficiency in their nonlinear region. Inspired by this trade-off

between nonlinearity distortions and efficiency, finding an optimal operating point is

highly desirable. Hence, it is first necessary to fully understand how and how much

the performance of MIMO systems deteriorates with PA nonlinearities. In this chapter,

we first reduce the ergodic achievable rate (EAR) optimization problem from a power

allocation to a power control problem with only one optimization variable, i.e. total

input power. Then, we develop a closed-form expression for the EAR, where this

variable is fixed. Since this expression is complicated for further analysis, two simple

lower bounds and one upper bound are proposed. These bounds enable us to find the

best input power and approach the channel capacity. Finally, our simulation results

evaluate the EAR of MIMO channels in the presence of nonlinearities. An important

observation is that the MIMO performance can be significantly degraded if we utilize

the whole power budget.
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6.1 Introduction

MIMO wireless communication systems have been well investigated over the last two

decades thanks to their ability to enhance the spectral efficiency and reliability [15],

[14]. It is also well known that in a MIMO system, power is mainly consumed by the

last parts of the transmitter chain, and in particular, by the PAs. Most contemporary

MIMO systems deploy expensive, linear PAs although these components are intimately

limited in terms of power efficiency. Yet, with the current strive towards network

densification (i.e. the massive MIMO paradigm [80]), future systems are anticipated

to deploy inexpensive, nonlinear PAs of high power efficiency.

In this context, only a few publications have studied the impact of nonlinear PAs

on the MIMO capacity from a communication theory prospective. For instance, [104]

and [105] considered a power consumption model of the PAs, and then introduced a

low complexity algorithm to maximize the sum rate of multiple-input single-output

systems. They also extended their beamforming method to the case of parallel MIMO

by utilizing a dynamic programming language algorithm. Although the presented

model is relatively precise, it does not go beyond the linear region where we can

enjoy high power efficiency. In [49], the authors considered the impact of PA non-

linearities on channel estimation and then proposed a quantized method to optimize

the bit-error-rate and mutual information. Moreover, they proposed a constellation-

based compensation method for high-power amplifier nonlinearities in [50]. There are

also some other research efforts like [51–56], which have dealt with PA nonlinearities

in different wireless applications, but they either do not focus on MIMO systems or do

not evaluate the achievable rate.

Motivated by the above discussion, this work focuses on studying the performance

of a MIMO system deploying nonlinear PAs. In particular, we start our analysis by

optimizing the EAR over the input power allocation matrix. Then, we simplify this

power allocation problem to a power control problem where the only variable is the

total consumed power. Finally, we propose lower and upper bounds on the EAR,

which can be easily optimized by conventional optimization methods. These analytical

86



6.2 Signal and System Models

results followed by simulations showcase that using the full power budget will reduce

the EAR to zero, since PAs nonlinearities become dominant.

6.2 Signal and System Models

The traditional model of flat-fading point-to-point MIMO channels with Nt transmit

antennas and Nr receive antennas is

y = Hs + w, (6.1)

where s = [s1, s2, . . . , sNt ]
T ∈ CNt×1 represents the complex Gaussian distributed

transmitted signal with zero mean and covariance matrix Ks = E[ssH ]. The received

signal is denoted by y ∈ CNr×1, while the Nr-dimensional vector w models the ad-

ditive circularly symmetric complex Gaussian noise w ∼ CN(0, N0INr). Through-

out this chapter, we assume that the propagation channel coefficients are indepen-

dently circular symmetric complex Gaussian variable with unit variance. Additionally,

H ∈ CNr×Nt is assumed to be known to the receiver, but not at the transmitter; how-

ever, its statistical characteristics are available at the transmitter. Note that the channel

matrix H is normalized so that N0 contains both noise variance and pathloss.

Unfortunately, the above canonical model falls short of describing the nonlinear

behavior of PAs and its impact on the end-to-end performance. To this end, in the

following we extend the canonical model to take the PA nonlinearities into account.

Note that our analysis remains agnostic to any type of nonlinearity that may be induced

by mixers, filters and DACs.

In order to incorporate the impact of transceiver impairments, we first need to ex-

plain the input/output relation of the PA. In general, for a complex baseband input

signal represented as uin(t) = A(t)ejφ(t), the signal at the output of a PA with ampli-

tude gain gA(A(t)) and phase gain gφ(A(t)) is [106]

uout(t) = g(uin(t)) = gA(A(t))ej(φ(t)+jgφ(A(t))). (6.2)
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There are various types of PA models for the amplitude and phase gains, such as ideal

clipping, traveling wave tube, and solid-state amplifier model [106]. Fortunately, all

the models can be encompassed under the umbrella of a polynomial PA model. For the

sake of simplicity, we hereafter assume that all PAs have the same nonlinear conversion

functions which are known at the transceivers [49], [50]. In general, a polynomial PA

model can be easily determined by the following curve fitting of degree N :

gA(Ai) =
N−1∑
n=0

βn+1A
n+1
i , (6.3)

where Ai is the voltage of the input signal in the i-th PA, i = 1, 2, . . . , Nt. Herein,

we also consider memoryless PAs and ignore the phase distortion [55].1 Thus, the

coefficients, βn+1 for n = 0, 1, . . . , N−1, are real constant numbers. By this preamble

and regarding the Bussgang’s theorem [107], the i-th PA output can be expressed in

the form of

si = αixi + di i = 1, 2, . . . , Nt, (6.4)

where di represents the distortion noise which is uncorrelated with the input signal, xi.

Note that, di is a zero-mean (not necessarily Gaussian) distribution with power density

σ2
di

. Since the input signal has a complex Gaussian distribution, its magnitude (Ai)

follows a Rayleigh probability density function, so that

P (Ai) =
Ai
σ2
i

exp

(
− A2

i

2σ2
i

)
, (6.5)

where E [x∗ixi] = 2σ2
i . Furthermore, in (6.4), si stands for the PA output which will

be emitted from the transmit antennas, and αi is a constant affected by the PA gain

function and its input power. In general, it can be shown that [56]

1This assumption is widespread in the literature especially for solid state PAs. In other words,
memory leads to delay and consequently phase distortion. Therefore, we can ignore the phase distortion
in these PAs as they are memoryless.
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αi =
E [xi

∗si]

E [xi∗xi]
, (6.6)

σ2
di

= E [si
∗si]− α2

iE [xi
∗xi] , (6.7)

where we use the fact that E [x∗i di] = 0. Subsequently, these parameters can be easily

expressed as

αi =
1

2σ2
i

∫ ∞
0

AigA(Ai)P (Ai)dAi, (6.8)

σ2
di

=

∫ ∞
0

g2
A(Ai)P (Ai) dAi −

1

2σ2
i

(∫ ∞
0

AigA (Ai)P (Ai) dAi

)2

. (6.9)

Accordingly, it can be shown that the Bussgang’s parameters for the polynomial model,

can be obtained as [56]

αi =
N−1∑
n=0

βn+12n/2σni Γ
(

2 +
n

2

)
, (6.10)

σ2
di

=
2N∑
n=2

(
γn2n/2σni Γ

(
1 +

n

2

))
− 2σ2

i

(
N−1∑
n=0

βn+12n/2σni Γ
(

2 +
n

2

))2

, (6.11)

where Γ(.) is the Gamma function [108, Eq. (8.310.1)], and γn can be defined as

follows

γn
∆
=

n−1∑
k=1

β̆kβ̆
∗
n−k, (6.12)

and

β̆k
∆
=

 βk, 1 ≤ k ≤ N

0, otherwise.
(6.13)

Now, the impact of PA nonlinearities can be incorporated into canonical system model

based on the Bussgang’s theorem (6.4):
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y = H (Λx + d) + w, (6.14)

where Λ = diag {α1, α2, . . . , αNt} and d = [d1, d2, . . . , dNt ]
T . This equation can be

reorganized as

y = HΛx + (Hd + w)︸ ︷︷ ︸
n

, (6.15)

in which the vector n denotes the aggregated noise at the receiver with covariance

matrix

= Rn = E
[
nnH

]
= HDHH +N0INr , (6.16)

where we define D
∆
= E

[
ddH

]
.

Remark 6.1. We note that the aggregated noise at the receiver n is not necessarily

a Gaussian random vector due to the non-Gaussian distribution of distortion vector

d. However, for the sake of analysis simplicity, and also considering the worst case

scenario, we assume that the vector n follows a Gaussian distribution such that n ∼

CN(0,Rn).

6.3 Ergodic Achievable Rate Analysis

In this section, we analyze the EAR in the presence of PA nonlinearities by simplifying

the power allocation problem to a power control problem.

6.3.1 Ergodic Achievable Rate

Based on the channel impairment model in Section 6.2, we are now ready to determine

the MIMO achievable rate under Gaussian signaling for an arbitrary number of anten-

nas. When Gaussian symbols are transmitted over the MIMO channel, an achievable
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rate (in bits/s) is given by

R = sup
Tr(Q)≤Pt,Q�0

E

[
B log2

(
det
(
INr + R−1

n HΛQΛHHH
))]

, (6.17)

where B denotes the bandwidth. For the sake of clarity, we will drop B from our

subsequent analytical results, but in the numerical results section, we do include the

impact of bandwidth. Moreover, Q = E
[
xxH

]
and Tr(Q) ≤ Pt indicates that the

transmitter is constrained to its total power. For the purpose of simplification we define

Tr(Q) =
∑Nt

i=1 2σ2
i

∆
= P , and also define the instantaneous MIMO channel correlation

matrix as

W
∆
=

 HHH , Nr ≤ Nt

HHH, Nr > Nt,
(6.18)

since its eigenvalues, λi, will be often used in our calculations.

Remark 6.2. In order to reach the ergodic capacity, we need to assume a propagation

channel with the maximum uncertainty [102]. For channel with known finite energy,

the i.i.d Gaussian channel provides the maximum entropy. On the other hand, capacity

can be achieved by jointly Gaussian input signals [15]. Although we consider the

inputs to the PAs to be jointly Gaussian, the outputs of the PAs are not strictly jointly

Gaussian. In light of this fact, in the remainder of this chapter, we will be referring to

(6.17) as the maximum EAR.

Proposition 6.3. The EAR is a concave function in its domain with respect to the

covariance matrix Q.

Proof. Note that log
(

det (·)
)

is a concave function in the cones of positive semi-

definite matrices [109]. Also R−1
n , Λ, and Q are all positive semi-definite matrices.

Thus, the EAR is a concave function in its domain.

Proposition 6.4. The maximum EAR is achieved when Q is a scaled identity matrix,

i.e. Q = P
Nt

INt .

91



6.3 Ergodic Achievable Rate Analysis

Proof. See Appendix D.1.

It is noteworthy that the PAs nonlinearities are affected by two factors: (i) PA

transition function gA(·), which is assumed to be the same for all the PAs; and (ii)

the input power of each PA, i.e. 2σ2
i . As a consequence, Proposition 6.4 simplifies

extensively our analysis as it allocates equal powers to each PA. In other words, we

can conclude that σ1 = σ2 = . . . = σNt
∆
= σ, then α1 = α2 = . . . = αNt

∆
= α,

and σd1 = σd2 = . . . = σdNt
∆
= σd. Therefore, the power allocation optimization

upon the covariance matrix will be reduced to a power control over the power, i.e. P .

Correspondingly, the noise covariance and EAR are respectively simplified as follows

Rn = σ2
dHHH +N0INr , (6.19)

R = sup
0≤P≤Pt

E

[
log2

(
det

(
INr +

Pα2

Nt

(N0INr + σ2
dHHH)−1HHH

))]
. (6.20)

Note that, in contrast to Telatar’s methodology, our objective function in (6.20) is not

necessarily a strictly ascending or descending function of the power P . This is due to

the presence of σ2
d in (6.20) which also increases with P .

Corollary 6.5. The maximum EAR can be rewritten as

R = sup
0≤P≤Pt

E

[
log2 det

(
INt + Z

)]
, (6.21)

where Z is a diagonal Nt×Nt square matrix whose entries are ζi,i =
(

Pα2λi
Ntσ2

dλi+NtN0

)
.

Proof. See Appendix D.2.

Proposition 6.6. Assuming i.i.d. Rayleigh fading channels, the maximum EAR under

the proposed PAs nonlinearities model is analytically given by
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R = sup
0≤P≤Pt

r

ln 2
K

r∑
m=1

r∑
n=1

(−1)n+m det (Ω) Γ (t+ 1)

t+1∑
k=1

(
e1/fEt+2−k

(
1

f

)
− e1/gEt+2−k

(
1

g

))
, (6.22)

where we define q ∆
= max{Nt, Nr}, r

∆
= min{Nt, Nr}, t

∆
= n + m + q − r − 2, and

K
∆
=
(∏r

i=1(q − i)!
∏r

j=1(r − j)!
)−1

is a constant. Moreover, f ∆
=

Pα2+Ntσ2
d

N0Nt
, g ∆

=
σ2
d

N0
,

and also En(x) = xn−1Γ(1 − n, x). Here, Γ(s, x) =
∫∞
x
ts−1e−tdt is incomplete

Gamma function [108, Eq. (8.350.2)]. Finally, Ω is an (r− 1)× (r− 1) matrix whose

(i, j)-th entry is given by

Ω = (φ
(n)(m)
ij + q − r)!r−

1
r−1 , (6.23)

for which,

φ
(n)(m)
ij

∆
=


i+ j − 2, if i ≤ n , and j ≤ m

i+ j, if i ≥ n , and j ≥ m

i+ j − 1, otherwise.

(6.24)

Proof. Assuming i.i.d. Rayleigh fading channels, W is full-rank with probability one

[70]. Recalling Corollary 6.5, the maximum EAR can be expressed as

R = sup
0≤P≤Pt

E

log2

rank(Z)∏
i=1

(1 + ζi,i)


= sup

0≤P≤Pt
E

[
r∑
i=1

log2

(
1 +

(
Pα2λi

Ntσ2
dλi +NtN0

))]

= sup
0≤P≤Pt

E

[
r log2

(
1 +

Pα2λ

Ntσ2
dλ+NtN0

)]
. (6.25)

Note that W is an r × r random, positive semi-definite matrix following the complex

Wishart distribution. Therefore, it has real non-negative eigenvalues, and the probabil-
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ity density function of its unordered eigenvalue, λ, can be found in [110]

Pλ(λ) = K
r∑

m=1

r∑
n=1

(−1)n+mλn+m+q−r−2e−λ det(Ω). (6.26)

We can now define a ∆
= Pα2, b ∆

= Ntσ
2
d, c ∆

= N0Nt, and then proceed along with some

integral techniques

R = sup
0≤P≤Pt

∫ ∞
0

r log2(1 +
aλ

bλ+ c
)Pλ(λ)dλ

= sup
0≤P≤Pt

∫ ∞
0

r log2(aλ+ bλ+ c)Pλ(λ)dλ−
∫ ∞

0

r log2(bλ+ c)Pλ(λ)dλ

= sup
0≤P≤Pt

∫ ∞
0

r log2(1 +
a+ b

c
λ)Pλ(λ)dλ−

∫ ∞
0

r log2(1 +
b

c
λ)Pλ(λ)dλ. (6.27)

Then, the final result can be easily obtained following the methodology of [111].

6.3.2 Asymptotic Analysis

Intuitively, the maximum EAR may behave as a non-increasing (non-monotonic) func-

tion of the input power. This is due to the presence of the nonlinearity distortion power

σ2
d in (6.20), which also scales with the input power (see (6.11)). Thus, we seek to

work out the EAR in the asymptotic regime. First, we obtain the EAR when we use

the whole power budget, i.e. P = Pt → ∞. After some manipulations, it can be

shown that the EAR approaches to a saturation point, according to

lim
σ→∞

α = βN2N−1/2σN−1Γ

(
3 +N

2

)
, (6.28)

lim
σ→∞

σ2
d = γ2N2Nσ2NΓ (1 +N)−Nt2

Nβ2
Nσ

2NΓ2

(
3 +N

2

)
, (6.29)

where σ2 = P
2Nt

is the power of input signal (real/imaginary part). Thus,

Rhigh = lim
P→∞

R = r log2

(
1 +

β2
NΓ2

(
3+N

2

)
γ2NΓ(1 +N)−Ntβ2

NΓ2
(
3 + n

2

)) . (6.30)
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The high-power asymptote in (6.30) reveals that increasing the input power with no

bound, leads to a saturated value for the EAR. This observation is in sharp contrast

with the classical MIMO results [15], [14], which consider perfectly linear PAs.1

At the other extreme, we find a closed-form expression for the EAR in the low SNR

regime where P → 0. In this case, we use the approximation ln(1 + u) ≈ u for small

u to get

Rlow = lim
P→0

R = sup
0≤P≤Pt

β2
1

(log2 e)P

N0Nt

E
[
Tr(W)

]
= sup

0≤P≤Pt
β2

1

(log2 e)P

N0Nt

E

[
Nr∑
i=1

Nt∑
j=1

|hij|2
]

= sup
0≤P≤Pt

β2
1

(log2 e)P

N0Nt

r∑
i=1

λi

= sup
0≤P≤Pt

β2
1

(log2 e)PNr

N0

= β2
1

(log2 e)PNr

N0

. (6.31)

The result in (6.31) is consistent with the classical MIMO results where PAs are as-

sumed to be perfectly linear [70], [113]. This is due to the fact that in the low SNR

regime, PAs are still operating in their linear regime.

6.3.3 Bounds

In the previous subsections, we have reduced the problem from a power allocation

optimization to a power control based on only one variable, P . However, (6.22) and

(6.25) are complicated formulas. Motivated by this, we confine the EAR between an

upper and two lower bounds such that Rlower ≤ R ≤ Rupper. We start with the upper

bound using Jensen’s inequality for the concave function log2 (1 + x) in (a) and for

the concave function 1
1+ 1

x

in (b):

1Interestingly, our result is in line with [112] which used a Gaussian model for the hardware residual
distortions.
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R = sup
0≤P≤Pt

E
[
r log2

(
1 +

Pα2λ

Ntσ2
dλ+NtN0

)]
(a)

≤ sup
0≤P≤Pt

r log2

(
1 + E

[
Pα2λ

Ntσ2
dλ+NtN0

])

(b)

≤ sup
0≤P≤Pt

r log2

1 +
Pα2

Ntσ2
d

(
1 + N0

σ2
dE
[
λ
])


= sup

0≤P≤Pt
r log2

(
1 +

Pα2q

Ntσ2
dq +NtN0

)
∆
=Rupper. (6.32)

The EAR can also be lower bounded by recalling that E
[
log2

(
1 + ρ (λ)

)]
≥

log2

(
1 + expE

[
ln ρ(λ)

])
in (c), to get

R = sup
0≤P≤Pt

E

[
r log2

(
1 +

Pα2λ

Ntσ2
dλ+NtN0

)]

= sup
0≤P≤Pt

E

[
r log2

(
1 + exp

(
ln
( Pα2

Ntσ2
d

λ

λ+ N0

σ2
d

)))]
(c)

≥ sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
E

[
ln

(
λ

λ+ N0

σ2
d

)]))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp
(
E
[

ln(λ)
]
− E

[
ln
(
λ+

N0

σ2
d

)]))
≥ sup

0≤P≤Pt
r log2

(
1 +

Pα2

Ntσ2
d

exp

(
E
[

ln (λ)
]
− ln

(
E
[
λ
]

+
N0

σ2
d

)))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2 exp
(
E [ln(λ)]

)
Ntσ2

d

exp

(
− ln

(
q +

N0

σ2
d

)))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2 exp
(
E [ln(λ)]

)
Ntσ2

dq +NtN0

)
∆
= Rlower1. (6.33)

It is known that E
[

ln
(

det (W)
)]

=
∑r−1

l=0 ψ (q − l), where ψ(·) represents the

Euler digamma function [114]. Hence, we can represent E
[

ln (λ)
]

in the following
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way

E
[

ln (λ)
]

=
1

r
E

[
r∑
i=1

ln(λi)

]
=

1

r
E
[

ln
(

det (W)
)]

=
1

r

r−1∑
l=0

ψ (q − l) . (6.34)

To sum up, the EAR can be lower- and upper-bounded as follows

sup
0≤P≤Pt

r log2

(
1 +

Pα2 exp
(

1
r

∑r−1
l=0 ψ (q − l)

)
Ntσ2

dq +NtN0

)
≤ R ≤ sup

0≤P≤Pt
r log2

(
1 +

Pα2q

Ntσ2
dq +NtN0

)
.

(6.35)

Hereafter, we also use another lower bound, named second lower bound, that can

be especially useful when the number of receive antennas is much higher than the

number of transmit antennas.1 We follow the same approach to derive this bound:

R ≥ sup
0≤P≤Pt

E

[
r log2

(
1 + exp

(
ln

(
Pα2

Ntσ2
d

λ

λ+ N0

σ2
d

)))]

≥ sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
E

[
ln

(
λ

λ+ N0

σ2
d

)]))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d

exp

(
ln

(
1

1 + N0

σ2
d
E
[

1
λ

])))

= sup
0≤P≤Pt

r log2

(
1 +

Pα2

Ntσ2
d +NtN0

1
Nr−Nt

)

= Rlower2, (6.36)

where we have invoked the central Wishart matrix property

E
[
Tr

(
W−1

)]
=

Nt

Nr −Nt

Nr ≥ Nt + 1. (6.37)

1According to (6.37), the second lower bounds becomes loose whenever the numbers of trans-
mit and receive antennas are close to each other. However, we can introduce a new lower bound like
Rlower = max{Rlower1, Rlower2} to always guarantee a tight lower bound.
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6.4 Simulation Results

In this section, we present simulation results illustrating the EAR of MIMO systems in

the presence of PA nonlinearities by generating 104 Monte Carlo realizations of the flat

fading matrix H. Hereafter, we choose solid state PAs, whose AM/AM and AM/PM

functions are specified by [115]

gA(A) =
A[

1 +
(

A
Aos

)2v
] 1

2v

, (6.38)

gφ(A) = 0, (6.39)

where Aos denotes the output saturation voltage and v sets the smoothness of transi-

tion from the linear region to the saturation part. In particular, for large v this model

approaches the ideal clipping PA model which is commonly used to represent the hard

clipping effect [49]. Furthermore, we fit this PA conversion function with a polyno-

mial of degree 9 in a least-squares sense, and ignore the even order terms, since they
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Figure 6.1: Impact of Bussgang’s theorem parameters on the EAR (Nt = 3, Nr = 4, Aos = 1,
v = 1, N0 = 1, B = 1 MHz).
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Figure 6.2: Impact of the number of transmit antennas on EAR (Nr = 4, Aos = 1, v = 1,
N0 = 1, B = 20 MHz).

contribute with only out-band distortion [106]. Figure 6.1 depicts the role of the Buss-

gang’s parameters on the EAR. Although, the linearity coefficient (α), is dominant in

the low-power regime, distortion (σd) dominates in the higher input power. By this

observation, a non-monotonic behavior of EAR function is anticipated.

The performance of MIMO system under PA nonlinearities model for different

transceiver antennas is shown in Fig. 6.2 and 6.3, respectively. It can be easily observed

that an increase in the number of transmit antennas leads to an array gain and pushes

the maximum of the EAR into higher input powers. On the other hand, when we

increase the number of antennas on the receiver side, the maximum point is obtained

in the lower input power regime. It is best suitable to justify this behavior by the fact

that PAs, as a major source of nonlinearities, only exist in the transmitter side. So, as

a practical result, we are interested in utilizing more antennas on the receiver side to

achieve a high EAR by a lower input power. Finally, Fig. 6.4 illustrates how tight the

suggested bounds are. These bounds seem to offer a very good approximation of the

EAR for any total input power. However, approximating the best total input power that

leads to the maximum EAR is more important. Figure 6.4 confirms indeed that the
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Figure 6.3: Impact of the number of receive antennas on ergodic achievable rate (Nt = 4,
Aos = 1, v = 1, N0 = 1, B = 20 MHz).
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Figure 6.4: Lower and upper bounds for the ergodic achievable rate of MIMO systems under
PA nonlinearity assumption (Nt = 3, Nr = 4, Aos = 1, v = 1, N0 = 1, B = 20 MHz).

best operating power of lower/upper bounds leads to the maximum EAR.
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6.5 Concluding Remarks

Working with inexpensive nonlinear PAs seems to be a viable solution for the next

generation of wireless systems. This nonlinear behavior distorts the transmitted signal

and unfortunately reduces the achievable rate in any communication system. This

performance degradation becomes substantial when the power fed into the PAs is high.

On the other hand, PAs offer their best efficiency in their nonlinear regime. Motivated

by the above fundamental tradeoff, we have analytically quantified the impact of PAs

nonlinearities on the achievable rate of MIMO systems. Our analysis derived closed-

form exact expressions along with tractable asymptotic approximations.
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Chapter 7

Conclusion and Future Work

In this thesis, we considered a MIMO relay system with a large number of antennas at

both sides, but with limited number of RF chains to keep the cost, power consumption,

and complexity of the system to affordable levels. To do this, we proposed a low-

cost hybrid configuration paradigm at the relay station which consists of an RF analog

beamformer followed by a linear baseband digital signal processors, either MRC/MRT

or ZF. We assumed a fully connected structure for the analog beamformer, where each

RF chain is connected to all the service antennas via a bank of phase shifters. We also

took into account that phase shifters contribute to generate the beam patterns instead of

adjusting both modulus and phase. Then, we evaluated the performance of the system

in terms of achievable rate under a wide range of assumptions such as: Given perfect

CSI at the relay station, given only imperfect CSI at the relay station, having ideal

or quantized phase shifters, correlated and uncorrelated channels. Also, in order to

have a low-cost architecture we assumed another scenario, but in the context of MIMO

systems, where we deployed inexpensive nonlinear PAs at the transmitter side. By

making this assumption, we further analyzed the performance of system and showed

that the linearity coefficient is dominant in the low-power regime, while in-band distor-

tion dominates in the higher input power. Then, we developed upper and lower bounds

on the EAR which describe rigorously the behavior of system for a wide range of input

powers.
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7.1 Conclusion

In Chapter 3, we proposed a hybrid structure at the relay station for multipair massive

MIMO relaying, where perfect CSI is known at the relay station. Then, we derived

the asymptotic achievable rate under three different power regimes and showed that

the power at either the relay or user nodes can scale down inversely proportional to

the number of service antennas at the relay station, while the system can still achieve

the same achievable rate as before. To have a case of practical interest, we relaxed

the accuracy of phase shifters to q-bit resolution, and then analytically showed that

the performance of system will decrease by the function of sinc2
(
π
2q

)
. Our simulation

results illustrated that only 2 quantization bits are sufficient to capture near 90% of the

achievable rate offered by an unrealistic system with ideal phase shifters.

In Chapter 4, we assumed that perfect CSI is not available at the relay station,

hence we estimated the channels with uplink orthogonal pilots. Then, we deployed a

Hadamard analog beamformer with phases±π to further reduce the cost and complex-

ity of the system. Our analytical results followed by Monte Carlo simulation imply that

the system can capture 75% of the achievable rate offered by a fully digital structure

where the number of RF chains are equal to the number of antennas.

In Chapter 5, we generalized our system model to the case that the propagation

channels are correlated at the relay side. Next, we estimated the channel at the relay

node and designed the analog beamformer to minimize the channel estimation error

and, in turn, optimize the achievable rate. This optimization finally resulted in a con-

ventional water-filling algorithm, where the analog beamformer chose the strongest

eigenmodes of the channel correlation matrix. Our analytical and simulation results

showcased that by removing half of the RF chains, the hybrid structure can achieve

95% of the achievable rate of the fully digital structure. Moreover, the performance of

the system is robust to the practical constraints on the phase shifters. Furthermore, the

results intuitively imply that although multiplexing gain is confined due to the limited

number of RF chains at the relay station, and also the power gain is restricted due to

the less control of the DSP unit on the antennas, the system avails of a diversity gain
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by exploring the strongest paths.

Finally, in Chapter 6, we assumed another low-cost architecture in the context of

point-to-point MIMO systems, where there exists a crucial demand for inexpensive

but nonlinear PAs. We first brought all the PA modelings under the same umbrella

by utilizing the polynomial model. Then, we reduced the optimization of the EAR

from a power allocation optimization into a simple power control with a closed-form

expression based on the total input power. To have a tractable and insightful result, we

developed two tight lower bounds and one upper bound on the EAR. In addition, we

showed that in the low power regime the system performance is similar to the systems

with linear PAs, while in the very high power regime the performance of the system

deteriorates due to the in-band distortion.

7.2 Future Work

This thesis has provided important contributions to our understanding of low-cost ar-

chitectures for future MIMO systems. It has proposed a multipair massive MIMO

relaying with limited number of RF front-ends, which can achieve most of the achiev-

able rate offered by a fully RF chain structure. As well as this, the thesis has studied

the impact of PA nonlinearities in the context of MIMO systems. Our results revealed

that increasing the input power with no bound, may substantially reduce the EAR.

Nonetheless, there are still some issues that warrant investigation in the future. These

include:

• The number of RF chains which achieve the maximum energy efficiency:

In general, there is a trade-off between the achievable rate and power consump-

tion in wireless communication systems. This trade-off can be best captured

by energy efficiency which signifies the total number of bits sent per Joule of

energy. Although this thesis has shown a great power saving in the proposed hy-

brid topology, the energy efficiency of the system should be analytically derived

to understand how many RF chains is required to meet the maximum energy

efficiency.

104



7.2 Future Work

• Hybrid topology for other types of massive MIMO relaying: In this thesis,

we explored the performance of multipair massive MIMO relaying with the hy-

brid structure at the AF relay station. However, there is a dearth of literature for

other types of relying schemes such as hybrid topology for decode-and-forward

massive relaying, full duplex massive relaying, and two-way massive relaying.

These systems can be analyzed from different view points such as outage prob-

ability, latency, spectral efficiency, and energy efficiency.

• Millimetre-wave hybrid relaying systems: In general, hybrid massive MIMO

structure is beneficial in microwave wireless communications, but this topol-

ogy is seemingly essential in millimetre-wave communications. Since the RF

technology is pushed to its operation boundaries, the intrinsic imperfections and

power consumption of the RF chains are more and more governing the system

performance of wireless systems, particularly in millimetre wave bands. On the

other hand, the sparse-scattering structure of millimetre-wave channels enables

us to employ low-complex precoding/decoding algorithms, such as orthogonal

matching pursuit and compressive sensing schemes.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 3.2

Having discussed how to construct F1, we can write each entry of this matrix as

1√
N

exp (jθm,n), where θm,n is a uniform random variable, i.e. θm,n ∼ U [0, 2π). Now,

let the vectors f1p and f1q contain the elements of the p-th and q-th rows in matrix F1,

respectively. Then, fH1pf1p = 1 since the phases cancel out each other. On the other

hand, if N →∞, due to the central limit theorem for any p 6= q we have

fH1pf1q =
1

N

N∑
l=1

ej(θp,l−θq,l) → E
[
ejθp
]
E
[
e−jθq

]
= 0, (A.1)

where the distribution of θp and θq are defined similar to θm,n. The same result is

analogous for matrix F2.

A.2 Proof of Lemma 3.4

Let us rewrite the (m,n)-th entry of matrix H1 like rm,nejφm,n , where the modulus

and phase have a Rayleigh and uniform distribution, respectively. In other words,

rm,n ∼ R
(
0, 1

2

)
, and φm,n ∼ U [0, 2π). Now, let the vectors f1p and h1p denote the

p-th row of matrix F1 and H1, respectively. Then, since phases cancel out each other,

for any p ≤ r1 we have that

fH1ph1p =
1√
N

N∑
l=1

rp,l
(a)→
√
NE
[
rp
]

=

√
Nπ

4
, (A.2)

106



A.3 Proof of Lemma 3.5

where we have used the central limit theorem in (a), and the fact that rp is a Rayleigh

random variable with parameter 1
2
. In a similar way, we can prove the second part.

A.3 Proof of Lemma 3.5

The results follow trivially by using the same methodology outlined in Lemma 3.4.

Let vectors f̂1p and h1p denote the p-th row of matrix F̂1 and H1, respectively. Then,

for any p ≤ r1 we have

f̂H1ph1p =
1√
N

N∑
l=1

rp,le

(
φp,l−φ̂p,l

)
=
√
NE
[
rp
]
E
[
eε
]

=

√
Nπ

4
sinc(δ), (A.3)

where rp is a Rayleigh random variable with parameter 1
2
, and ε is an uniform random

variable ε ∼ U
[
− δ,+δ

)
.
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Appendix B

Proofs for Chapter 4

B.1 Prerequisite Lemmas for Chapter 4

In this appendix, we derive some prerequisite lemmas for the random matrix analysis

which are useful in our analysis.

Lemma 1. Let M ∈ CM×N be a zero-mean Gaussian random matrix with i.i.d. entries
of power σ2 . Also, assume that V ∈ CN×N is a deterministic matrix. Then, we have

E
[
MVMH

]
= σ2Tr

(
V
)
IM . (B.1)

Proof. Let us expand this multiplication across the columns of M, and then simplify
the expression using the fact that these columns are mutually uncorrelated.

E
[
MVMH

]
=

N∑
i=1

N∑
j=1

[
V
]
ij
E
[
mim

H
j

]
=

N∑
i=1

[
V
]
ii
E
[
mim

H
i

]
= σ2Tr

(
V
)
IM .

(B.2)

Lemma 2. Let v ∈ CN denote a complex Gaussian random vector with i.i.d. entries
CN (0, 1). Then, we can conclude that

E
[
‖v‖4

2

]
= N2 +N. (B.3)

Proof. Let (v)i denote the i-th element of vector v. Then, we have

E
[
‖v‖4

2

]
= E

[[ N∑
i=1

∣∣ (v)i
∣∣2]2

]
= E

[[ N∑
i=1

2Yi

]2
]

= 4E
[
Z2
]

= N2 +N, (B.4)

where Yi ∼ Exp(λ = 2) is an exponential random variable, and consequently Z
follows an Erlang distribution.

Lemma 3. Let A = HD
1
2 , where H is an M ×N matrix with independent zero-mean

unit variance complex Gaussian random entries, and D is an N × N deterministic
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B.2 Proof of Proposition 4.2

diagonal matrix diag {β1, . . . , βN}. Then,

E
[
AHAAHA

]
= M2D2 +MTr

(
D
)
D. (B.5)

Proof. First, let us expand A based on its definition and then define Q in a following
way

E
[
AHAAHA

]
= D

1
2 E
[
HHHDHHH

]︸ ︷︷ ︸
Q

D
1
2 , (B.6)

where the (i, j)-th element of Q can be obtained by

[
Q
]
ij

= E
[
hHi HDHHhj

]
=

N∑
n=1

βnE
[
hHi hnh

H
n hj

]
. (B.7)

The off-diagonal entries i 6= j are zero due to the orthogonality of columns, however
for the diagonal entries we can obtain

[
Q
]
ii

=
N∑
n6=i

βnE
[
hHi hnh

H
n hi
]

+ βiE
∥∥hi∥∥4

2
= M2βi +M

N∑
n=1

βn, (B.8)

where the last equation followed directly by Lemma 2. Therefore, we conclude that

Q = M2D +MTr
(
D
)
IN . (B.9)

B.2 Proof of Proposition 4.2

Considering that the effective channels are independent of each other, and also ac-

cording to Proposition 4.1, we can rewrite var
(
âH2,kÂ2Â

H
1 â1,k

)
based on its power and

average such that

var
(
âH2,kÂ2Â

H
1 â1,k

)
= E

[
âH2,kÂ2BÂH

2 â2,k

]
−K2

aK
2
b β̂

2
1,kβ̂

2
2,k, (B.10)

where the matrix B is defined as

B
∆
= E

[
ÂH

1 â1,kâ
H
1,kÂ1

]
. (B.11)

We show that the matrix B is a diagonal matrix, like B
∆
= diag

{
β̂b,1, · · · , β̂b,k, · · · , β̂b,K

}
.

The off diagonal elements of this matrix are zero due to the orthogonal columns of Â1.

Precisely speaking, we have
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B.3 Proof of Proposition 4.3

[
B
]
ij

= E
[
âH1,iâ1,kâ

H
1,kâ1,j

]
= 0, for ∀i 6= j. (B.12)

On the other hand, by taking Lemma 1 into account in (L1) below, the i-th entry on

the main diagonal vector, is given by

[
B
]
ii

= E
[
âH1,iE

[
â1,kâ

H
1,k

]
â1,i

]
(L1)
= Kaβ̂1,kβ̂1,i

∆
= β̂b,i, for i 6= k. (B.13)

In a similar manner and using Lemma 2, we obtain the k-th entry of the main diagonal

vector

[
B
]
kk

= E
[(

âH1,kâ1,k

)2
]

= (K2
a +Ka)β̂

2
1,k

∆
= β̂b,k. (B.14)

By using the above, we can express the matrix B as

B = Kaβ̂1,kD̂1 +K2
a β̂

2
1,kJ

kk = diag
{
β̂b,1, · · · , β̂b,K

}
, (B.15)

where Jkk is a single-entry matrix, in which
[
J
]
kk

= 1 and the rest of the elements

are zero. Now, considering that B is a diagonal deterministic matrix we can further

simplify E
[
âH2,kÂ2BÂH

2 â2,k

]
by expanding the matrix product across the columns,

and then after some straightforward mathematical manipulations we get

E
[
âH2,kÂ2BÂH

2 â2,k

]
= K2

b β̂
2
2,kβ̂b,k +Kbβ̂2,k

K∑
i=1

β̂2,iβ̂b,i. (B.16)

This finishes the proof.

B.3 Proof of Proposition 4.3

In the first stage, we expand the matrix multiplication across the columns, and then we

use the column orthogonality in (a) below to get a simple expression.
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B.4 Proof of Proposition 4.4

∑
i 6=k

E
[∣∣∣âH2,kÂ2Â

H
1 â1,i

∣∣∣2] =
∑
i 6=k

E
[(

âH2,k

K∑
m=1

â2,mâH1,mâ1,i

)(
âH2,k

K∑
n=1

â2,nâ
H
1,nâ1,i

)H]

=
K∑
i 6=k

K∑
m=1

K∑
n=1

E
[
âH2,kâ2,mE

[
âH1,mâ1,iâ

H
1,iâ1,n

]
âH2,nâ2,k

]
(a)
=

K∑
i 6=k

K∑
m=1

E
[
âH2,kâ2,mE

[
âH1,mâ1,iâ

H
1,iâ1,m

]
âH2,mâ2,k

]
, (B.17)

for which,

E
[
âH1,mâ1,iâ

H
1,iâ1,m

]
=


(K2

a +Ka) β̂
2
1,i, if k 6= m = i

Kaβ̂1,iβ̂1,k, if k = m 6= i

Kaβ̂1,iβ̂1,m, if k 6= m 6= i,

(B.18)

which finally after some manipulations leads to (4.25).

B.4 Proof of Proposition 4.4

Let (L1) and (L2) refer to Lemma 1 and Lemma 2, respectively. Then, using these

lemmas we reach to

t3 = E
[
âH2,kÂ2Â

H
1 E
[
E1E

H
1

]
Â1Â

H
2 â2,k

]
(L1)
= Tr

(
De1

)
E
[
âH2,kÂ2E

[
ÂH

1 Â1

]
ÂH

2 â2,k

]
(L1)
= KaTr

(
De1

)
E
[
âH2,kÂ2D̂1Â

H
2 â2,k

]
(a)
= KaTr

(
De1

)
E
[
âH2,kÃ2Ã

H
2 â2,k

]
= KaTr

(
De1

)
E
[ K∑
i 6=k

∣∣âH2,kã2,i

∣∣2 +
∣∣âH2,kã2,k

∣∣2]
(L2)
=
(b)

KaTr
(
De1

)(
Kbβ̂2,k

K∑
i 6=k

β̂1,iβ̂2,i + (K2
b +Kb)β̂1,kβ̂

2
2,k

)
, (B.19)

where Ã2 in (a) is given as

Ã2 = Â2D̂
1
2
1 = Ĥ2D̂

1
2
2 D̂

1
2
1 . (B.20)
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B.5 Proof of Proposition 4.5

Finally, the result in (b) is derived invoking the following technique, where we apply

this fact that all entries of effective channel matrices are independent:

E
[∣∣∣âH2,kã2,i

∣∣∣2] = E

[∣∣∣∣ Kb∑
j=1

[
Â2

]∗
jk

[
Ã2

]
ji

∣∣∣∣2
]

= E

[
Kb∑
j=1

Kb∑
l=1

(
Â2

)∗
jk

(
Ã2

)
ji

(
Ã2

)∗
li

(
Â2

)
lk

]

=

Kb∑
j=1

E
∣∣∣[Â2

]
jk

∣∣∣2E∣∣∣[Ã2

]
ji

∣∣∣2 = Kbβ̂2,kβ̂2,iβ̂1,i. (B.21)

B.5 Proof of Proposition 4.5

Applying Lemma 3 (L3), followed by Lemma 1 (L1), we find that

E
[∥∥eH2,kÂ2Â

H
1 Â1

∥∥2
]

= E
[
eH2,kÂ2E

[
ÂH

1 Â1Â
H
1 Â1

]
ÂH

2 e2,k

]
(L3)
= K2

aE
[
eH2,kE

[
Ĥ2D̂

2
1D̂2Ĥ

H
2

]
e2,k

]
+KaTr

(
D̂1

)
E
[
eH2,kE

[
Ĥ2D̂2D̂1Ĥ

H
2

]
e2,k

]
(L1)
= K2

aTr
(
D̂2

1D̂2

)
E
[
eH2,ke2,k

]
+KaTr

(
D̂1

)
Tr
(
D̂1D̂2

)
E
[
eH2,ke2,k

]
, (B.22)

from which the proposition is obtained.
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Appendix C

Proofs for Chapter 5

C.1 Prerequisite Lemmas for Chapter 5

In this appendix, we provide some prerequisite lemmas which are useful in our analy-

sis.

Lemma 1. Let H ∈ CN×K be a zero-mean Gaussian random matrix with i.i.d. entries
with variance σ2. Also, assume that V ∈ CN×N is a deterministic matrix. Then, we
have

E
[
HHVH

]
= σ2Tr (V) IK . (C.1)

Lemma 2. Let the vectors h, g ∈ CN be two independent zero-mean circular Gaussian
random vectors such that h, g ∼ CN (0, IN). Also, consider the deterministic matrix
U, then it holds that

E
[∣∣∣hHUg

∣∣∣2] =
∥∥U∥∥2

, (C.2)

E
[∣∣∣hHUh

∣∣∣2] =
∣∣∣Tr
(
U
)∣∣∣2 +

∥∥U∥∥2
. (C.3)

Proof. See [116, Lemma 2].

Lemma 3. Let G = U
1
2 H, where H ∈ CN×K is a zero-mean Gaussian random

matrix with i.i.d. entries of unit variance. Then, for any Hermitian deterministic matrix
U ∈ CN×N we have

E
[
GHGGHG

]
=
(

Tr2
(
U
)

+K
∥∥U∥∥2

)
IK . (C.4)

Proof. Let us define the matrix Q as it is shown in below,

Q
∆
=E
[
GHGGHG

]
, (C.5)

then the (i, i)-th element of matrix Q can be obtained as

113



C.1 Prerequisite Lemmas for Chapter 5

[
Q
]
i,i

=E
[
gHi

( K∑
m=1

gmgHm

)
gi

]
=E
[
gHi gig

H
i gi + gHi

( K∑
m 6=i

gmgHm

)
gi

]
= E

[∣∣gHi gi
∣∣2]+

K∑
m6=i

E
[∣∣gHi gm

∣∣2]
=Tr2 (U) +K ‖U‖2 . (C.6)

We note that in the last equation we applied Lemma 2. In a similar spirit we can show
the off-diagonal elements of matrix Q are zero. This finishes the proof.

Lemma 4. Let the vector h ∈ CN be a zero-mean circular Gaussian random vector
such that h ∼ CN (0, IN). Also let us assume that U ∈ CN×N is a positive definite
matrix with a limited spectral norm, λmax

(
U
)
< ∞, where λmax

(
U
)

denotes the
largest eigenvalue of matrix U. Then, it can be shown that for N →∞

hHUh

Tr
(
U
) a.s.−→ 1. (C.7)

Proof. This Lemma can be directly proved invoking the Chebyshev’s inequality for
the random variable X = hHUh

Tr
(

U
)

Pr

(∣∣∣X − E [X]
∣∣∣ ≥ ε

)
≤ var (X)

ε2
, (C.8)

where we assume that ε is a very small real number. The expectation and power of the
random variable X are given by (see equation (C.3))

E
[
X
]

= 1, (C.9)

E
[
X2
]

=
Tr2
(
U
)

+
∥∥U∥∥2

Tr2
(
U
) . (C.10)

Let us assume that λi denotes the i-th biggest eigenvalue of matrix U, then

var (X) =

∥∥U∥∥2

Tr2
(
U
) =

N∑
i=1

λ2
i

N∑
i=1

λ2
i +

N∑
i=1
i 6=j

N∑
j=1

λiλj

≤

N∑
i=1

λ2
i

N∑
i=1

λ2
i + (N2 −N)λN

≤ 1

1 +
(N−1)λ2N

λ21

, (C.11)

and considering that λ1 <∞ we can conclude that for any positive real number ε
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C.2 Proof of Proposition 5.6

lim
N→∞

var (X)

ε2
= 0, (C.12)

which implies that

lim
N→∞

Pr

(∣∣∣X − E [X]
∣∣∣ ≥ ε

)
= 0. (C.13)

Thus, the proof is complete.

Lemma 5. Let the vectors h, g ∈ CN be two independent zero-mean circular Gaussian
random vectors such that h, g ∼ CN (0, IN). Also, let us assume that U ∈ CN×N is
a positive definite matrix with a limited spectral norm. Then, it can be shown that for
N →∞

hHUg

Tr
(
U
) a.s.−→ 0. (C.14)

Proof. The proof is in a similar manner as Lemma 4, by defining a zero-mean random
variable Y = hHUg

Tr
(

U
) and considering that

var
(
Y
)

=

∥∥U∥∥2

Tr2
(
U
) . (C.15)

Corollary 1. Let H ∈ CK×N be a Gaussian random matrix with i.i.d CN (0, IN)
entries. Also let us assume that U ∈ CN×N is a positive definite matrix with a limited
spectral norm. Then, it can be shown that for N →∞

HHUH

Tr
(
U
) a.s.−→ IK . (C.16)

Remark: Lemma 4, 5 and consequently Corollary 1 remain agnostic to semi-definite

(and ill-conditioned) matrices with large number of non-zero (and non-trivial) eigen-

values. To prove this, just define the number of non-trivial and non-zero eigenvalues

of matrix U as N ′. Then, the proof is trivially followed by substituting N ′ instead of

N in (C.11).

C.2 Proof of Proposition 5.6

Without loss of generality, we just prove the proposition for the case i = 1, and the

same result can be similarly deduced for the case i = 2. Let R1 = UR1ΛR1U
H
R1
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C.2 Proof of Proposition 5.6

represent the eigenvalue decomposition of the channel correlation matrix, then we have

ΛR1 =

 Λ
′
R1

0

0 Λ
′′
R1

 , (C.17)

where ΛR1 = diag{λ1, λ2, . . . , λN} includes the eigenvalues of the correlation matrix

in descending order such that λ1 ≥ . . . ≥ λN . We also note that the size of matri-

ces Λ
′
R1
∈ CK

′
a×K′a and Λ”

R1
∈ C(N−K′a)×(N−K′a) depends on K ′a, i.e. the number of

bins which is filled by water (See Fig. 5.2). Based on the water-filling algorithm in

Subsection 5.5, we readily conclude that

Ue1 = UR1


√

ν
τpPp

IKa′ 0

0 Λ
′′
R1

UH
R1
, (C.18)

U1 = R1 −Ue1 = UR1

 Λ
′
R1
−
√

ν
τpPp

IKa′ 0.

0 0

UH
R1
. (C.19)

Thus, after some simple manipulations we can complete the proof by

Tr
(
U1Ue1

)
=

√
ν

τpPp
Tr

(
UR1

(
Λ
′

R1
−
√

ν

τpPp
IKa′

)
UH
R1

)
=

√
ν

τpPp
Tr
(
U1

)
. (C.20)
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Appendix D

Proofs for Chapter 6

D.1 Proof of Proposition 6.4

The optimality of this result is an advanced consequence of [112, Corollary 1] or fol-

lowing Telatar’s methodology in [15]. A standard Gaussian random matrix, H, is a

bi-unitarily invariant matrix. It means that the joint distribution of its entries equals

that of UHVH for any unitary matrices U and V independent of H. Now, by follow-

ing Telatar’s approach, we can limit our attention only to a diagonal D, and diagonal

ΛQΛH in (6.16), (6.17) which implies that

Rn = E
[
nnH

]
= HDHH +N0INr , (D.1)

R = sup
Tr(Q)≤Pt,Q�0

E

[
B log2

(
det
(
INr + R−1

n HΛQΛHHH
))]

. (D.2)

According to the diagonal structure of Λ, we simply conclude that Q must be a di-

agonal matrix as well. Assume that Q̂ is the best power allocation, and also Πi

i = 1, 2, ..., Nt!, is a permutation matrix which has exactly one “1” in each row

and each column and zeros elsewhere. Since Q̂ is a diagonal matrix which satisfies

Tr(Q̂) ≤ Pt and Q̂ � 0, it can be easily derived that Q̃ = 1
Nt!

∑Nt!
i=1 ΠiQ̂ΠH

i satisfies

both constraints as well. Now, given the following function

Ψ(Q)
∆
= E

[
log2

(
det
(
INr +

(
HDHH +N0INr

)−1
HΛQΛHHH

))]
, (D.3)
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D.2 Proof of Corollary 6.5

we can demonstrate that Ψ(Q̃) ≥ Ψ(Q̂). By starting from the left hand side, and by

taking into account the concavity of the function Ψ in (d) below, we get

Ψ(Q̃) =Ψ

(
1

Nt!

Nt!∑
i=1

ΠiQ̂ΠH
i

)
(d)

≥ 1

Nt!

Nt!∑
i=1

Ψ
(
ΠiQ̂ΠH

i

)
=

1

Nt!

Nt!∑
i=1

E

[
log2

(
det

(
INr +

(
H
(
ΠiDΠH

i

)
HH +N0INr

)−1

(
H
(
ΠiΛΠH

i

)(
ΠiQ̂ΠH

i

)(
ΠiΛ

HΠH
i

)
HH

)))]
. (D.4)

Note that any permutation on the input covariance matrix, leads to the same permuta-

tion on the matrices D and Λ as we have already done in (D.4). Considering the fact

that ΠΠH = I, the last equation is simplified to

Ψ(Q̃) ≥ 1

Nt!

Nt!∑
i=1

E

[
log2

(
det
(
INr +

(
HDHH +N0INr

)−1

HΛQ̂ΛHHH
))]

=Ψ(Q̂).

(D.5)

As we assumed Q̂ is the best power allocation, so Ψ(Q̃) ≥ Ψ(Q̂) would be valid only

by equality. In other words, Q̃ is the best power allocation which can be written in

terms of the following matrix transformation

Q̃ =
1

Nt!

Nt!∑
i=1

ΠiQ̂ΠH
i =

1

Nt

Tr
(
Q̂
)
INt

∆
=

P

Nt

INt , (D.6)

which is indeed a scaled identity matrix. It is obvious that P can be interpreted as the

total input power.

D.2 Proof of Corollary 6.5

Let H = UΣVH be a SVD of the Rayleigh fading channel. By applying this decom-

position, and using the fact that det (I + AB) = det (I + BA) we derive a simpler

closed-form expression for the maximum EAR
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D.2 Proof of Corollary 6.5

R = sup
0≤P≤Pt

E

[
log2

(
det
(
INr +

Pα2

Nt

(
N0INr + σ2

dHHH
)−1

HHH
))]

= sup
0≤P≤Pt

E

[
log2

(
det
(
INr +

Pα2

Nt

(
N0INr + σ2

dUΣUH
)−1

UΣUH
))]

= sup
0≤P≤Pt

E

[
log2

(
det
(
INr +

Pα2

Nt

(
U
(
N0INr + σ2

dΣ
)
UH
)−1

UΣUH
))]

= sup
0≤P≤Pt

E

[
log2

(
det
(
INt +

Pα2

Nt

UHU
(
N0INr + σ2

dΣ
)−1

ΣUHU
))]

= sup
0≤P≤Pt

E

[
log2

(
det
(
INt +

Pα2

Nt

(
N0INr + σ2

dΣ
)−1

Σ
))]

= sup
0≤P≤Pt

E

[
log2

(
det
(
INt + Z

))]
. (D.7)
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