
Detecting Cryptomining Using Dynamic Analysis

Carlin, D., O'Kane, P., Sezer, S., & Burgess, J. (2018). Detecting Cryptomining Using Dynamic Analysis. In
Proceedings of the 2018 International conference on privacy, security, and trust (PST 2018)

Published in:
Proceedings of the 2018 International conference on privacy, security, and trust (PST 2018)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160110846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/detecting-cryptomining-using-dynamic-analysis(5c91afde-0b12-42f1-b0d6-32918f209e13).html


Detecting Cryptomining Using Dynamic Analysis 
Domhnall Carlin∗,Philip O’Kane†,Sakir Sezer‡  and Jonah Burgess§ 

Centre for Secure Information Technologies, Queen’s University, Belfast, Northern Ireland 
Email: ∗dcarlin05@qub.ac.uk, †p.okane@qub.ac.uk, ‡s.sezer@qub.ac.uk, §jburgess03@qub.ac.uk 

 
 

Abstract—With the rise in worth and popularity of cryptocur- 
rencies, a new opportunity for criminal gain is being exploited 
and with little currently offered in the way of defence. The cost  
of mining (i.e. earning cryptocurrency through CPU-intensive 
calculations that underpin the blockchain technology) can be 
prohibitively expensive, with hardware costs and electrical over- 
heads previously offering a loss compared to the cryptocurrency 
gained. Off-loading these costs along a distributed network of 
machines via malware offers an instantly profitable scenario, 
though standard Anti-virus (AV) products offer some defences 
against file-based threats. However, newer fileless malicious 
attacks, occurring through the browser on seemingly legitimate 
websites, can easily evade detection and surreptitiously engage 
the victim machine in computationally-expensive cryptomining 
(cryptojacking). 

With no current academic literature on the dynamic opcode 
analysis of cryptomining, to the best of our knowledge, we 
present the first such experimental study. Indeed, this is the first 
such work presenting opcode analysis on non-executable files. 
Our results show that browser-based cryptomining within our 
dataset can be detected by dynamic opcode analysis, with 
accuracies of up to 100%. Further to this, our model can 
distinguish between cryptomining sites, weaponized benign sites, 
de-weaponized cryptomining sites and real world benign sites. As 
it is process-based, our technique offers an opportunity to rapidly 
detect, prevent and mitigate such attacks, a novel contribution 
which should encourage further future work. 

Index Terms—Invasive software, Computer Security, Cryp- 
tocurrency 

 
I. INTRODUCTION 

With iterative developments in the sophistication of mal- 
ware, traditional AV solutions, based on signature-analysis and 
vulnerability-monitoring, have been demonstrated to be grow- 
ingly ineffective [1]. Signature-detection techniques are the 
most common approach within commercial AV applications 
[2][3], which rely on analysing a file for pre-learned malware 
signatures. Any new malicious instances must be captured and 
analysed for a signature. Considering the rapid evolution of 
malware, generating and maintaining relevant and up-to-date 
signatures is an increasingly difficult task. The lag between the 
malware’s appearance ‘in the wild’ and the counter-measure 
development, creates an opportunity for the malware to cause 
serious damage. The effort against malware is constantly 
behind the curve compared to the onslaught of new malicious 
code and the resulting damage can be significant [4]. 

Further to this, there has been a noticeable shift in the actual 
implementation of malicious software, moving from file-based 
threats to fileless attacks. As AV technology struggles to keep 
up, malware creators are becoming increasingly adept 
978-1-5386-7493-2/18/$31.00 Qc 2018 IEEE 

 

 
 

Fig. 1. JavaScript implementation of CoinHive (account redacted) 
 
 

at finding new vectors along which to safely usher their code 
past AV solutions. 

A. Fileless Malware 
Fileless malware (also known as non-malware) attacks are 

defined as malicious attacks on a system, without the use of   a 
file (document, executable, jpg etc) on disk. The adversary 
uses already-existing authorized benign software and processes 
for malicious purposes, without downloading any files to disk 
[5]. Such software includes the typical applications an average 
user would employ daily (e.g. web browser, Office, Flash), and 
utilities purposely residing in the OS (PowerShell etc). The key 
point is that the files are not committed to disk, not that files 
are not downloaded. The attack can simply be triggered by 
visiting a corrupted website. 

B. Cryptomining 
Similarly, websites can employ cryptomining software, forc- 

ing the user’s machine to mine for cryptocurrency (Monero, 
Bitcoin, Ethereum etc) without their knowledge. This could be 
viewed as the anti-thesis to ransomware, i.e. criminals are 
profiting via cryptocurrency by putting others’ machines to 
work, rather than out of action. As no file is copied to disk no 
signature exists; as the software or processes employed   are 
expected, the attack is practically invisible to endpoint 
security. The success of these attacks has seen script-based 
malware increase during the last two years, and as much as 
53% of breaches are caused by non-malware attacks [5]. While 
the detection focus remains on signatures, single time-point or 
file I/O operations, fileless attacks will continue to grow. 

The mining action is typically spawned with trivial 
JavaScript embedded into a HTML file as shown in Figure    
1, though poisoning of third-party plugins can also be used. 
Easily accessible APIs, such as CoinHive, were made available 
in late 2017. This can be intentional on the part of the service 
owner, e.g. as a revenue generating scheme, whether the user 
is notified or not. Conversely, this code can be inserted 
maliciously, with neither the user nor owner being aware of 
the action. Thus the costs are bourne by the service provider 
and user, and the profits go solely to the miscreant. 
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The concept of browser-based cryptomining software has 
been around since 2013, with the proof-of-concept Tidbit 
created by MIT students as an alternative to in-browser adver- 
tising. While the students won a ‘most-innovative’ hackathon 
award for the idea, they also received a subpoena from the 
State of New Jersey in a case which was later dropped subject 
to conditions. Notably, at the point of settlement, the State 
conceded that the software did not appear to be intended for 
malicious purposes [6]. The concept lost favour with the 
turbulence of cryptocurrencies, but a 1000% rise in Bitcoin 
value in 2017 was met with a similar surge in interest by those 
seeking to profit through surreptitious mining.  Off-loading 
the hardware and running expenses of dedicated mining rigs 
to others, offers overheadless profit potential. This has even 
fostered competition between cryptomining malware strains, 
with code found which sought to eject any present miners on 
the infected host in favour of the newer attacker’s [7]. 

By the beginning of 2018, notable corporate victims of the 
cryptojacking trend included Starbucks stores in Buenos Aires 
[8] and YouTube [9]. Almost one billion monthly users of four 
online video sites were potentially unknowingly used for 
cryptomining [10], while users of notorious torrenting site The 
Pirate Bay complained of non-consensual mining [11]. 

In February 2018, an estimated 4263 websites were found 
to be inadvertently employing users’ CPUs to engage in 
cryptomining. This occurred due to the breach of a third-party 
service for website accessibility tools, which was subsequently 
loaded by the impacted sites, causing a CoinHive miner to    
be instantiated in each page the plug-in was loaded [12]. As 
the plug-in was an accessibility aid, many governmental and 
public agency websites were affected, including uscourts.gov, 
many council sites in the UK and Ireland, the National Health 
Service, and, ironically, the UK Information Commissioner’s 
Office. While the attack only lasted an estimated four hours 
and only generated approximately $24, the potential for esca- 
lation of this type of attack across IOT devices is worrying. 

C. Mitigations 
The UK’s National Cyber Security Centre issued advice to 

developers and administrators following the Feb 2018 breach 
[13]. The main advice to website administrators centred 
around the use of Sub-Resource Integrity (SRI) and Content 
Security Policy (CSP) measures. SRI is a hash-based script 
checking protocol, allowing a site to validate the integrity of 
the script being called. CSP is a whitelisting service for third- 
party script downloads, allowing control over domains from 
which scripts are permitted. However, SRI is not universally 
browser-supported, and hashing can be rendered redundant for 
frequently modified scripts. 

A blacklist-based plug-in (NoCoin) was recently added to 
the Opera and Chrome browser repositories. This allows sim- 
ple blocking of CoinMining services based on a list of known 
service providers. However, this only deals with currently 
known services, and their listed domains. 

While closing the browser window may be an intuitive and 
effective way to stop most browser-based cryptomining, some

strains were noted to spawn translucent pop-under windows, 
which keep the attack alive after the user has seemingly closed 
the browser down [14]. Similarly, attempting to prevent the 
JavaScript from running can easily be thwarted by WebASM- 
enabled threats, featured in newer cryptominer samples [14]. It 
is apparent that this attack vector is merely at the beginning of 
its evolution. As witnessed with the explosion in ransomware, 
the advancement of technologies designed for societal 
enhancement can be equally and oppositely employed for 
criminal gain. Yet, to date, the academic literature on the matter 
is scarce. 

 
D. Contributions 

The work presented here offers very clear and notable 
contributions to the current body of knowledge. 

First, to the best of our knowledge, this is the first ap- 
plication of dynamic opcode analysis using a non-executable 
subject file, traced through a standard benign executable. This 
opens up an exciting new avenue of investigation, as malware 
has begun to move away from file-based implementations and 
the portable executable format. 

Second, this is the first such experimental dynamic opcode 
analysis of cryptomining in the literature, to the best of our 
knowledge. 

Third, our results show that browser-based cryptomining is 
detectable by dynamic opcode analysis. While other detection 
techniques are possible, many are easily bypassed. Parsing 
HTML for the JavaScript necessary for cryptomining exe- 
cution is easily thwarted with obfuscation, which is readily 
available. Cycling the mining behaviour on-and-off may avoid 
host-based detection systems recognising the tell-tale persis- 
tent CPU load spike. 

Notably, a key feature of malicious cryptomining implemen- 
tations is the attempt at persisting the behaviour, even when 
the user has seemingly closed down the browser tab, window 
or application. As it is process-based, our technique offers an 
opportunity to detect, prevent and mitigate such attacks, a 
novel contribution which should encourage further future 
work. 

The remainder of this paper is presented as follows: Sec- 
tion II provides highlights of academic literature in malware 
analysis, particularly dynamic opcode techniques. Section III 
describes the methodology employed for the present research. 
Section IV presents our results, which are discussed in Section 
V. 

 
II. RELATED WORK 

Recent research into approaches to the detection of malware, 
has focused on the runtime behaviour of the code, i.e. what it 
does at runtime, rather than how it does it. Opcodes 
(operational codes) are the assembly language instructions 
directly performed by the CPU. Monitoring and analysing the 
host operating system’s native run-time opcodes provides the 
opportunity to detect malware operations while bypassing 
attempts at obfuscation [1]. 



Santos et al. [15] used a bi-gram representation of opcodes 
(i.e. consecutively-occurring pairs) in statically-generated 
datasets. Using ROC-SVM (support vector machine), the au- 
thors presented accuracy rates of >85%. 

Runwal et al. [16] applied graph techniques to opcodes from 
Portable Executable (PE) files on the Windows OS, extending 
[17] in the context of metamorphic malware. Using similarity 
scores, the model detected families of metamorphic malware 
from benignware and also other families of metamorphic 
malware with high accuracy levels. 

O’Kane et al. [1] investigated the use of dynamically- 
yielded opcodes in the detection of obfuscated malware using 
supervised machine learning. Run-time traces of malicious and 
benign files were captured using a virtual machine running the 
file under investigation. The researchers found that 99.5% of 
variance in the data could be attributed to 8 opcodes, thus 
reducing the data from the original 150 opcodes. 

Carlin et al. [18] used a similar dynamic opcode analysis 
approach on the classification of around 48,000 malicious
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executables, while examining the effects of run-length (i.e. 
number of instructions traced) and n-grams (i.e. combinations 
of observed opcodes sequences). The authors found that 32k-
long opcode run-traces using n=1 offered the peak accuracy 
(99.05%) with a Random Forest classifier and 10- fold cross-
validation. Feature reduction slightly lowered the accuracy to 
99.01%, using only 50 opcodes. This demonstates that 
dynamic opcode analysis, applied to a wide range of malware, 
can detect the malicious behaviours of unseen malware both 
speedily and accurately. 

 
Despite the clear advantages of dynamic analysis, to the best 

of our knowledge no literature currently exists regarding the 
dynamic execution of cryptomining code, particularly dynamic 
opcode analysis. 

The motivation of the research presented here is to in- 
vestigate dynamic opcode analysis as a tool for detecting 
fileless browser-based cryptomining, a first in the literature. 
Specifically, we sought to address the following research 
questions: 

1) Can dynamic analysis of a legitimate executable provide 
run traces of malicious and benign non-executable code? 

2) Can dynamic opcode analysis be employed to detect the 
presence of cryptomining code within a browser? 

3) Can a machine learning model distinguish benign code 
from malicious in this context? 

4) What quality and quantity of data must be captured in 
order to generate a suitable model? 

III. METHODOLOGY 

Fig.2 depicts the tracing methodology employed to generate 
the datasets. Dedicated machines were used for the experi- 
ments, using a fresh image of Windows 7 64-bit, an Intel 
Celeron 2.90GHz G3930 CPU and 4GB RAM. The open 
source OllyDbg v2 debugger was used to trace the dynamic 
opcodes of each runtime, with StrongOD v0.4.8.892 used to 
cloak the running debugger, as per [1]. Firefox 54 was used as

the browser to execute all HTML files. Bespoke Python scripts 
were employed to automate the execution process, which was 
as follows: 

1) The list of files-to-run was enumerated, and the next 
HTML file to be launched was passed as an argument to 
the script. 

2) The automation script launched OllyDbg in a pre- 
configured trace setting. Firefox and the file to be 
launched were passed to OllyDbg as arguments, en- 
abling OllyDbg to execute Firefox and the file as the 
debugee, and directly trace the relevant processes. 

3) The file was loaded and allowed to continue for 1 minute 
before tear down. During pilot experiments, this was 
ample time to allow the file to load correctly and deal 
with any lag in the debugger. 

4) The OllyDbg trace into function was used to trace all 
instructions issued to the CPU and write them to a 
standard trace file. 

5) A bespoke parser was employed to count each of the 
610 opcodes in the Intel x86/x64 architecture [19] in 
each trace, and compile these into a CSV file for use 
within machine learning frameworks. 

This methodology was held constant for creation of all 
datasets, with the only variable being the input files. 

 
A. Datasets 

Four separate datasets were created using the above 
process, as depicted in Fig. 3. 

 
Cryptomining: 296 samples of CryptoMining HTML files 
acquired from the VirusShare website [20]. With each having 
a unique MD5 hash and having been uploaded to the site 
within the previous two months, all files were checked for   
the presence of cryptomining code. This formed an observed 
malicious dataset. 



TABLE I 
MACHINE LEARNING METRICS FOR THE ENHANCED MODEL, BUILT AND 

TESTED USING  10F CV. 
 

 TP FP Prec Recall F MCC ROC PRC 

Malicious 0.997 0.014 0.987 0.997 0.992 0.983 1 1 
Benign 0.986 0.003 0.997 0.986 0.991 0.983 1 1 

Avg. 0.992 0.009 0.992 0.992 0.992 0.983 1 1 

 
 
 
 
 
 

Datasets 
 

Fig. 3. Datasets derived from source data 
 
 

Deactivated cryptomining: 194 randomly-chosen 
cryptomining files were deactivated by removing the relevant 
start() function call, with all other aspects of the file 
retained. This formed a synthetic benign dataset. 

 
Canonical: A canonical (i.e. legitimately observed) benign 
dataset was created using the OpenDNS Random Sample List 
[21], a random sample of 10,000 domain names checked as 
malware-free. The first 359 sites were chosen. 

 
Canonical injected: 57 weaponized versions of randomly- 
selected canonical files were created by injecting the malicious 
cryptomining code, taken from the cryptomining dataset, into 
the benign files. This created a synthetically malicious dataset, 
simulating the code which would be experienced by injection 
attacks on legitimate websites, as mentioned in the introduc- 
tion to this paper. 

B. Machine Learning 
The Random Forest (RF) [22] machine learning algorithm 

was used, as implemented in WEKA 3.9, for all classification 
tasks. RF is an ensemble learner, combining the decisions of 
multiple small learners (decision trees). RF varies from 
traditional tree-based learners, in that each node uses a random 
number of features to decide the parameter, improving noise 
immunity and reducing the tendency to overfit. From an imple- 
mentation point of view, RF functions well with large datasets, 
i.e. feature vector size and  instance  quantity.  It is capable of 
parallelization [22], and is also highly recommended for 
imbalanced data [23]. 

IV. RESULTS 

A. Experiment 1: Distinguishing cryptomining from deacti- 
vated cryptomining 

A RandomForest model was built and tested on the cryp- 
tomining and deactivated cryptomining datasets using 10-fold

cross-validation. In total, 490 classifications were attempted, 
and the model correctly identified 100% of the test instances 
(194 Benign, 296 Malicious). While this was an impressive 
result, the websites used to create the benign test set could    be 
viewed as atypical of the average website visited, i.e. only 
created for the purposes of operating the cryptomining process, 
thus diminishing the potential application of this model in a real 
world setting. 

B. Experiment 2: Model validation against real-world data 
Experiment two sought to increase the difficulty of the 

problem by testing the model against unseen real-world data 
i.e. the canonical set. A subset of the canonical set was used as 
an unary-class testing set. The model attempted 259 
classifications, and achieved an accuracy of 0%, labelling 
every instance as malicious. This indicated that the model, as 
trained on the cryptomining and deactivated cryptomining 
samples, could not detect the new benign real-world samples. 

C. Experiment 3: Model enhancement incorporating real- 
world data 

In order to assess the potential of the technique to be 
successfully applied outside of the malicious and benign 
cryptomining data, experiment three exposed the model to the 
canonical dataset for training. Using the cryptomining, 
deactivated cryptomining, and canonical datasets, a new model 
was built and tested using 10-fold cross-validation. Fig. 4 
shows the confusion matrix of the results, and Table I depicts 
the machine learning metrics. Overall accuracy (i.e. correctly 
classified instances) was 99.15% of 589 attempted, with a 
true positive (TP) rating of 99.7% and true negative (TN) of 
98.6%. The averaged F1 measure was 0.992, indicating 
balance between both precision and recall. Matthews’ Corre- 
lation Coefficient (MCC) was 0.983, suggesting a very strong 
positive correlation between classifications and observations. 
The two ratio curve metrics precision-recall curve (PRC) and 
Receiver Operating Characteristic Curve (ROC) show perfect 
results. 

D. Experiment 4: Enhanced model tested against real-world 
and simulated data 

To examine if this technique could differentiate between 
benign and cryptomining data, both synthetic and observed, 
all datasets were combined to provide an overall training and 
test set. A model was built and evaluated using 10-fold cross 
validation across all data points (351 malicious and 553 
benign). The classifier achieved an accuracy of 99.89%, 

Canonical 
Injected 

(malicious) 

Canonical 
 

(benign) 

Deactivated 
Cryptomining 

(benign) 

Cryptomining 
 

(malicious) 



TABLE III 
MACHINE LEARNING METRICS FOR EXPERIMENT 5 

 
Class TP FP Prec Recall F MCC ROC PRC 

Crypto-deactivated 1 0 1 1 1 1 1 1 
Canonical 1 0.002 0.997 1 0.999 0.998 0.999 0.997 
Cryptominer 0.997 0 1 0.997 0.998 0.997 0.998 0.998 
Canonical Injected 1 0 1 1 1 1 1 1 

Avg. 0.999 0.001 0.999 0.999 0.999 0.998 0.999 0.998 

 

 

Fig. 4. Confusion matrix for the enhanced model, built and tested using 10f 
CV. 

 

TABLE II 
MACHINE LEARNING METRICS FOR EXPERIMENT 4 

Class TP FP Prec       Recall     F MCC ROC PRC 

Malicious     0.997     0 1 0.997       0.999      0.998      0.998     0.998 
Benign 1 0.003 0.998 1 0.999 0.998 0.998 0.998 

 
 

Avg. 0.999 0.002 0.999 0.999 0.999 0.998 0.998 0.998 
 

 

 
 

with 903 of the 904 classification attempts being successful. 
One malicious file was misclassified as benign. On further 
inspection, the single instance that was misclassified was 
actually a null trace i.e. all opcodes were recorded as zero. All 
metrics, as depicted in Table II, showed excellent classification 
performance, even with the single FN rating. 

E. Experiment 5: Further investigation of the enhanced model 
as a four-class problem 

With the extremely accurate classifier performance in Ex- 
periment 4, this experiment sought to challenge the classifier 
further. The previous experiment resolved all data into either 
benign or malicious (i.e. a two-class problem). For the present 
experiment, data were labelled under their original dataset into 
4 categories (Cryptomining, Deactivated Cryptomining, 
Canonical, Canonical Injected), and a 4-class problem was 
presented to a new model, which was again built on all data 
under 10-fold cross-validation. 

The classifier performed with exactly the same accuracy   
as in Experiment 4, with a single misclassification out of 904 
attempts (99.89% accuracy). This solitary instance was the 
same as with Experiment 4, however it was specifically 
misclassified as a canonical (benign) file rather than the 
overall benign class, as shown in Figure 5. The PRC ratio 
metric ranged from 99.7% (canonical) to 100%, due to the 
misclassification, which shows excellent performance. Table 
III lists the full set of machine learning metrics for this 
experiment. 

V. CONCLUSIONS 

The results presented in this paper demonstrate that dynamic 
opcode tracing is extremely effective at detecting cryptomining 
behaviours in the sample set within a browser. 

 
 
 
 
 
 
 
 

Fig. 5. Confusion matrix for Experiment 5 
 
 

Our model can distinguish cryptomining-enabled HTML 
files executed in the browser, from the same files with the 
cryptomining behaviours deactivated, at high speed and with 
extremely high levels of accuracy. However, it is clear from 
Experiments 2 and 3 that training solely on deactivated and 
cryptomining files does not adequately build a model which is 
extrapolatable against real-world data. This has obvious im- 
plications for any implementation of the techniques described 
here. Incorporating canonical benign data into the training set 
fortifies the model, enabling it to distinguish between 
malicious and benign traces with >99% accuracy, including 
real-world canonical data. 

The key achievement of the results presented in Experiments 
4 and 5 is the ability to classify benign from malicious when 
trained and tested on all four categories, with a solitary 
misclassification out of greater than 900 attempts. When 
investigated further, the model is able to detect each of the 
four categories of data with 99.9% accuracy. Indeed, the only 
misclassified instance was one in which the trace did not 
adequately run. As no data cleansing or pre-processing was 
employed, this anomalous instance was maintained within the 
dataset, as a representation of what challenges an actual 
implementation may encounter. The fact that a misclassified 
instance was the result of a non-trace (i.e. the file detonation 
failed), serves to reinforce the findings that dynamic opcode 
tracing offers a very powerful ability to detect cryptomining 
behaviour within a browser. 

While the datasets used for this initial set of experiments 
were limited in size and scope, our future work will involve    
a large scale analysis of a greater volume of web pages.  This 
dynamic-based research fits in tandem with our static 
approaches, which are in the experimental phase. Lastly, we
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will further investigate this work by implementing the opcode 
analysis within the browser, offering a direct approach to 
detecting malicious activity. 
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