
Detecting Cryptomining Using Dynamic Analysis

Carlin, D., O'Kane, P., Sezer, S., & Burgess, J. (2018). Detecting Cryptomining Using Dynamic Analysis. In
Proceedings of the 2018 International conference on privacy, security, and trust (PST 2018)

Published in:
Proceedings of the 2018 International conference on privacy, security, and trust (PST 2018)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160110846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/detecting-cryptomining-using-dynamic-analysis(5c91afde-0b12-42f1-b0d6-32918f209e13).html

Detecting Cryptomining Using Dynamic Analysis
Domhnall Carlin∗,Philip O’Kane†,Sakir Sezer‡ and Jonah Burgess§

Centre for Secure Information Technologies, Queen’s University, Belfast, Northern Ireland
Email: ∗dcarlin05@qub.ac.uk, †p.okane@qub.ac.uk, ‡s.sezer@qub.ac.uk, §jburgess03@qub.ac.uk

Abstract—With the rise in worth and popularity of cryptocur-
rencies, a new opportunity for criminal gain is being exploited
and with little currently offered in the way of defence. The cost
of mining (i.e. earning cryptocurrency through CPU-intensive
calculations that underpin the blockchain technology) can be
prohibitively expensive, with hardware costs and electrical over-
heads previously offering a loss compared to the cryptocurrency
gained. Off-loading these costs along a distributed network of
machines via malware offers an instantly profitable scenario,
though standard Anti-virus (AV) products offer some defences
against file-based threats. However, newer fileless malicious
attacks, occurring through the browser on seemingly legitimate
websites, can easily evade detection and surreptitiously engage
the victim machine in computationally-expensive cryptomining
(cryptojacking).

With no current academic literature on the dynamic opcode
analysis of cryptomining, to the best of our knowledge, we
present the first such experimental study. Indeed, this is the first
such work presenting opcode analysis on non-executable files.
Our results show that browser-based cryptomining within our
dataset can be detected by dynamic opcode analysis, with
accuracies of up to 100%. Further to this, our model can
distinguish between cryptomining sites, weaponized benign sites,
de-weaponized cryptomining sites and real world benign sites. As
it is process-based, our technique offers an opportunity to rapidly
detect, prevent and mitigate such attacks, a novel contribution
which should encourage further future work.

Index Terms—Invasive software, Computer Security, Cryp-
tocurrency

I. INTRODUCTION

With iterative developments in the sophistication of mal-
ware, traditional AV solutions, based on signature-analysis and
vulnerability-monitoring, have been demonstrated to be grow-
ingly ineffective [1]. Signature-detection techniques are the
most common approach within commercial AV applications
[2][3], which rely on analysing a file for pre-learned malware
signatures. Any new malicious instances must be captured and
analysed for a signature. Considering the rapid evolution of
malware, generating and maintaining relevant and up-to-date
signatures is an increasingly difficult task. The lag between the
malware’s appearance ‘in the wild’ and the counter-measure
development, creates an opportunity for the malware to cause
serious damage. The effort against malware is constantly
behind the curve compared to the onslaught of new malicious
code and the resulting damage can be significant [4].

Further to this, there has been a noticeable shift in the actual
implementation of malicious software, moving from file-based
threats to fileless attacks. As AV technology struggles to keep
up, malware creators are becoming increasingly adept
978-1-5386-7493-2/18/$31.00 Qc 2018 IEEE

Fig. 1. JavaScript implementation of CoinHive (account redacted)

at finding new vectors along which to safely usher their code
past AV solutions.

A. Fileless Malware
Fileless malware (also known as non-malware) attacks are

defined as malicious attacks on a system, without the use of a
file (document, executable, jpg etc) on disk. The adversary
uses already-existing authorized benign software and processes
for malicious purposes, without downloading any files to disk
[5]. Such software includes the typical applications an average
user would employ daily (e.g. web browser, Office, Flash), and
utilities purposely residing in the OS (PowerShell etc). The key
point is that the files are not committed to disk, not that files
are not downloaded. The attack can simply be triggered by
visiting a corrupted website.

B. Cryptomining
Similarly, websites can employ cryptomining software, forc-

ing the user’s machine to mine for cryptocurrency (Monero,
Bitcoin, Ethereum etc) without their knowledge. This could be
viewed as the anti-thesis to ransomware, i.e. criminals are
profiting via cryptocurrency by putting others’ machines to
work, rather than out of action. As no file is copied to disk no
signature exists; as the software or processes employed are
expected, the attack is practically invisible to endpoint
security. The success of these attacks has seen script-based
malware increase during the last two years, and as much as
53% of breaches are caused by non-malware attacks [5]. While
the detection focus remains on signatures, single time-point or
file I/O operations, fileless attacks will continue to grow.

The mining action is typically spawned with trivial
JavaScript embedded into a HTML file as shown in Figure
1, though poisoning of third-party plugins can also be used.
Easily accessible APIs, such as CoinHive, were made available
in late 2017. This can be intentional on the part of the service
owner, e.g. as a revenue generating scheme, whether the user
is notified or not. Conversely, this code can be inserted
maliciously, with neither the user nor owner being aware of
the action. Thus the costs are bourne by the service provider
and user, and the profits go solely to the miscreant.

mailto:dcarlin05@qub.ac.uk
mailto:p.okane@qub.ac.uk
mailto:s.sezer@qub.ac.uk
mailto:jburgess03@qub.ac.uk

The concept of browser-based cryptomining software has
been around since 2013, with the proof-of-concept Tidbit
created by MIT students as an alternative to in-browser adver-
tising. While the students won a ‘most-innovative’ hackathon
award for the idea, they also received a subpoena from the
State of New Jersey in a case which was later dropped subject
to conditions. Notably, at the point of settlement, the State
conceded that the software did not appear to be intended for
malicious purposes [6]. The concept lost favour with the
turbulence of cryptocurrencies, but a 1000% rise in Bitcoin
value in 2017 was met with a similar surge in interest by those
seeking to profit through surreptitious mining. Off-loading
the hardware and running expenses of dedicated mining rigs
to others, offers overheadless profit potential. This has even
fostered competition between cryptomining malware strains,
with code found which sought to eject any present miners on
the infected host in favour of the newer attacker’s [7].

By the beginning of 2018, notable corporate victims of the
cryptojacking trend included Starbucks stores in Buenos Aires
[8] and YouTube [9]. Almost one billion monthly users of four
online video sites were potentially unknowingly used for
cryptomining [10], while users of notorious torrenting site The
Pirate Bay complained of non-consensual mining [11].

In February 2018, an estimated 4263 websites were found
to be inadvertently employing users’ CPUs to engage in
cryptomining. This occurred due to the breach of a third-party
service for website accessibility tools, which was subsequently
loaded by the impacted sites, causing a CoinHive miner to
be instantiated in each page the plug-in was loaded [12]. As
the plug-in was an accessibility aid, many governmental and
public agency websites were affected, including uscourts.gov,
many council sites in the UK and Ireland, the National Health
Service, and, ironically, the UK Information Commissioner’s
Office. While the attack only lasted an estimated four hours
and only generated approximately $24, the potential for esca-
lation of this type of attack across IOT devices is worrying.

C. Mitigations
The UK’s National Cyber Security Centre issued advice to

developers and administrators following the Feb 2018 breach
[13]. The main advice to website administrators centred
around the use of Sub-Resource Integrity (SRI) and Content
Security Policy (CSP) measures. SRI is a hash-based script
checking protocol, allowing a site to validate the integrity of
the script being called. CSP is a whitelisting service for third-
party script downloads, allowing control over domains from
which scripts are permitted. However, SRI is not universally
browser-supported, and hashing can be rendered redundant for
frequently modified scripts.

A blacklist-based plug-in (NoCoin) was recently added to
the Opera and Chrome browser repositories. This allows sim-
ple blocking of CoinMining services based on a list of known
service providers. However, this only deals with currently
known services, and their listed domains.

While closing the browser window may be an intuitive and
effective way to stop most browser-based cryptomining, some

strains were noted to spawn translucent pop-under windows,
which keep the attack alive after the user has seemingly closed
the browser down [14]. Similarly, attempting to prevent the
JavaScript from running can easily be thwarted by WebASM-
enabled threats, featured in newer cryptominer samples [14]. It
is apparent that this attack vector is merely at the beginning of
its evolution. As witnessed with the explosion in ransomware,
the advancement of technologies designed for societal
enhancement can be equally and oppositely employed for
criminal gain. Yet, to date, the academic literature on the matter
is scarce.

D. Contributions

The work presented here offers very clear and notable
contributions to the current body of knowledge.

First, to the best of our knowledge, this is the first ap-
plication of dynamic opcode analysis using a non-executable
subject file, traced through a standard benign executable. This
opens up an exciting new avenue of investigation, as malware
has begun to move away from file-based implementations and
the portable executable format.

Second, this is the first such experimental dynamic opcode
analysis of cryptomining in the literature, to the best of our
knowledge.

Third, our results show that browser-based cryptomining is
detectable by dynamic opcode analysis. While other detection
techniques are possible, many are easily bypassed. Parsing
HTML for the JavaScript necessary for cryptomining exe-
cution is easily thwarted with obfuscation, which is readily
available. Cycling the mining behaviour on-and-off may avoid
host-based detection systems recognising the tell-tale persis-
tent CPU load spike.

Notably, a key feature of malicious cryptomining implemen-
tations is the attempt at persisting the behaviour, even when
the user has seemingly closed down the browser tab, window
or application. As it is process-based, our technique offers an
opportunity to detect, prevent and mitigate such attacks, a
novel contribution which should encourage further future
work.

The remainder of this paper is presented as follows: Sec-
tion II provides highlights of academic literature in malware
analysis, particularly dynamic opcode techniques. Section III
describes the methodology employed for the present research.
Section IV presents our results, which are discussed in Section
V.

II. RELATED WORK

Recent research into approaches to the detection of malware,
has focused on the runtime behaviour of the code, i.e. what it
does at runtime, rather than how it does it. Opcodes
(operational codes) are the assembly language instructions
directly performed by the CPU. Monitoring and analysing the
host operating system’s native run-time opcodes provides the
opportunity to detect malware operations while bypassing
attempts at obfuscation [1].

Santos et al. [15] used a bi-gram representation of opcodes
(i.e. consecutively-occurring pairs) in statically-generated
datasets. Using ROC-SVM (support vector machine), the au-
thors presented accuracy rates of >85%.

Runwal et al. [16] applied graph techniques to opcodes from
Portable Executable (PE) files on the Windows OS, extending
[17] in the context of metamorphic malware. Using similarity
scores, the model detected families of metamorphic malware
from benignware and also other families of metamorphic
malware with high accuracy levels.

O’Kane et al. [1] investigated the use of dynamically-
yielded opcodes in the detection of obfuscated malware using
supervised machine learning. Run-time traces of malicious and
benign files were captured using a virtual machine running the
file under investigation. The researchers found that 99.5% of
variance in the data could be attributed to 8 opcodes, thus
reducing the data from the original 150 opcodes.

Carlin et al. [18] used a similar dynamic opcode analysis
approach on the classification of around 48,000 malicious

2. File is launched
with Firefox as a
process for OllyDbg
to trace

3. Trace file is saved

4. Trace is parsed
and opcode totals
added to dataset

Fig. 2. Tracing process

1. Automation
script selects
next file

5. Next file is
selected until
end of set

executables, while examining the effects of run-length (i.e.
number of instructions traced) and n-grams (i.e. combinations
of observed opcodes sequences). The authors found that 32k-
long opcode run-traces using n=1 offered the peak accuracy
(99.05%) with a Random Forest classifier and 10- fold cross-
validation. Feature reduction slightly lowered the accuracy to
99.01%, using only 50 opcodes. This demonstates that
dynamic opcode analysis, applied to a wide range of malware,
can detect the malicious behaviours of unseen malware both
speedily and accurately.

Despite the clear advantages of dynamic analysis, to the best

of our knowledge no literature currently exists regarding the
dynamic execution of cryptomining code, particularly dynamic
opcode analysis.

The motivation of the research presented here is to in-
vestigate dynamic opcode analysis as a tool for detecting
fileless browser-based cryptomining, a first in the literature.
Specifically, we sought to address the following research
questions:

1) Can dynamic analysis of a legitimate executable provide
run traces of malicious and benign non-executable code?

2) Can dynamic opcode analysis be employed to detect the
presence of cryptomining code within a browser?

3) Can a machine learning model distinguish benign code
from malicious in this context?

4) What quality and quantity of data must be captured in
order to generate a suitable model?

III. METHODOLOGY

Fig.2 depicts the tracing methodology employed to generate
the datasets. Dedicated machines were used for the experi-
ments, using a fresh image of Windows 7 64-bit, an Intel
Celeron 2.90GHz G3930 CPU and 4GB RAM. The open
source OllyDbg v2 debugger was used to trace the dynamic
opcodes of each runtime, with StrongOD v0.4.8.892 used to
cloak the running debugger, as per [1]. Firefox 54 was used as

the browser to execute all HTML files. Bespoke Python scripts
were employed to automate the execution process, which was
as follows:

1) The list of files-to-run was enumerated, and the next
HTML file to be launched was passed as an argument to
the script.

2) The automation script launched OllyDbg in a pre-
configured trace setting. Firefox and the file to be
launched were passed to OllyDbg as arguments, en-
abling OllyDbg to execute Firefox and the file as the
debugee, and directly trace the relevant processes.

3) The file was loaded and allowed to continue for 1 minute
before tear down. During pilot experiments, this was
ample time to allow the file to load correctly and deal
with any lag in the debugger.

4) The OllyDbg trace into function was used to trace all
instructions issued to the CPU and write them to a
standard trace file.

5) A bespoke parser was employed to count each of the
610 opcodes in the Intel x86/x64 architecture [19] in
each trace, and compile these into a CSV file for use
within machine learning frameworks.

This methodology was held constant for creation of all
datasets, with the only variable being the input files.

A. Datasets

Four separate datasets were created using the above
process, as depicted in Fig. 3.

Cryptomining: 296 samples of CryptoMining HTML files
acquired from the VirusShare website [20]. With each having
a unique MD5 hash and having been uploaded to the site
within the previous two months, all files were checked for
the presence of cryptomining code. This formed an observed
malicious dataset.

TABLE I
MACHINE LEARNING METRICS FOR THE ENHANCED MODEL, BUILT AND

TESTED USING 10F CV.

 TP FP Prec Recall F MCC ROC PRC

Malicious 0.997 0.014 0.987 0.997 0.992 0.983 1 1
Benign 0.986 0.003 0.997 0.986 0.991 0.983 1 1

Avg. 0.992 0.009 0.992 0.992 0.992 0.983 1 1

Datasets

Fig. 3. Datasets derived from source data

Deactivated cryptomining: 194 randomly-chosen
cryptomining files were deactivated by removing the relevant
start() function call, with all other aspects of the file
retained. This formed a synthetic benign dataset.

Canonical: A canonical (i.e. legitimately observed) benign
dataset was created using the OpenDNS Random Sample List
[21], a random sample of 10,000 domain names checked as
malware-free. The first 359 sites were chosen.

Canonical injected: 57 weaponized versions of randomly-
selected canonical files were created by injecting the malicious
cryptomining code, taken from the cryptomining dataset, into
the benign files. This created a synthetically malicious dataset,
simulating the code which would be experienced by injection
attacks on legitimate websites, as mentioned in the introduc-
tion to this paper.

B. Machine Learning
The Random Forest (RF) [22] machine learning algorithm

was used, as implemented in WEKA 3.9, for all classification
tasks. RF is an ensemble learner, combining the decisions of
multiple small learners (decision trees). RF varies from
traditional tree-based learners, in that each node uses a random
number of features to decide the parameter, improving noise
immunity and reducing the tendency to overfit. From an imple-
mentation point of view, RF functions well with large datasets,
i.e. feature vector size and instance quantity. It is capable of
parallelization [22], and is also highly recommended for
imbalanced data [23].

IV. RESULTS

A. Experiment 1: Distinguishing cryptomining from deacti-
vated cryptomining

A RandomForest model was built and tested on the cryp-
tomining and deactivated cryptomining datasets using 10-fold

cross-validation. In total, 490 classifications were attempted,
and the model correctly identified 100% of the test instances
(194 Benign, 296 Malicious). While this was an impressive
result, the websites used to create the benign test set could be
viewed as atypical of the average website visited, i.e. only
created for the purposes of operating the cryptomining process,
thus diminishing the potential application of this model in a real
world setting.

B. Experiment 2: Model validation against real-world data
Experiment two sought to increase the difficulty of the

problem by testing the model against unseen real-world data
i.e. the canonical set. A subset of the canonical set was used as
an unary-class testing set. The model attempted 259
classifications, and achieved an accuracy of 0%, labelling
every instance as malicious. This indicated that the model, as
trained on the cryptomining and deactivated cryptomining
samples, could not detect the new benign real-world samples.

C. Experiment 3: Model enhancement incorporating real-
world data

In order to assess the potential of the technique to be
successfully applied outside of the malicious and benign
cryptomining data, experiment three exposed the model to the
canonical dataset for training. Using the cryptomining,
deactivated cryptomining, and canonical datasets, a new model
was built and tested using 10-fold cross-validation. Fig. 4
shows the confusion matrix of the results, and Table I depicts
the machine learning metrics. Overall accuracy (i.e. correctly
classified instances) was 99.15% of 589 attempted, with a
true positive (TP) rating of 99.7% and true negative (TN) of
98.6%. The averaged F1 measure was 0.992, indicating
balance between both precision and recall. Matthews’ Corre-
lation Coefficient (MCC) was 0.983, suggesting a very strong
positive correlation between classifications and observations.
The two ratio curve metrics precision-recall curve (PRC) and
Receiver Operating Characteristic Curve (ROC) show perfect
results.

D. Experiment 4: Enhanced model tested against real-world
and simulated data

To examine if this technique could differentiate between
benign and cryptomining data, both synthetic and observed,
all datasets were combined to provide an overall training and
test set. A model was built and evaluated using 10-fold cross
validation across all data points (351 malicious and 553
benign). The classifier achieved an accuracy of 99.89%,

Canonical
Injected

(malicious)

Canonical

(benign)

Deactivated
Cryptomining

(benign)

Cryptomining

(malicious)

TABLE III
MACHINE LEARNING METRICS FOR EXPERIMENT 5

Class TP FP Prec Recall F MCC ROC PRC

Crypto-deactivated 1 0 1 1 1 1 1 1
Canonical 1 0.002 0.997 1 0.999 0.998 0.999 0.997
Cryptominer 0.997 0 1 0.997 0.998 0.997 0.998 0.998
Canonical Injected 1 0 1 1 1 1 1 1

Avg. 0.999 0.001 0.999 0.999 0.999 0.998 0.999 0.998

Fig. 4. Confusion matrix for the enhanced model, built and tested using 10f
CV.

TABLE II
MACHINE LEARNING METRICS FOR EXPERIMENT 4

Class TP FP Prec Recall F MCC ROC PRC

Malicious 0.997 0 1 0.997 0.999 0.998 0.998 0.998
Benign 1 0.003 0.998 1 0.999 0.998 0.998 0.998

Avg. 0.999 0.002 0.999 0.999 0.999 0.998 0.998 0.998

with 903 of the 904 classification attempts being successful.
One malicious file was misclassified as benign. On further
inspection, the single instance that was misclassified was
actually a null trace i.e. all opcodes were recorded as zero. All
metrics, as depicted in Table II, showed excellent classification
performance, even with the single FN rating.

E. Experiment 5: Further investigation of the enhanced model
as a four-class problem

With the extremely accurate classifier performance in Ex-
periment 4, this experiment sought to challenge the classifier
further. The previous experiment resolved all data into either
benign or malicious (i.e. a two-class problem). For the present
experiment, data were labelled under their original dataset into
4 categories (Cryptomining, Deactivated Cryptomining,
Canonical, Canonical Injected), and a 4-class problem was
presented to a new model, which was again built on all data
under 10-fold cross-validation.

The classifier performed with exactly the same accuracy
as in Experiment 4, with a single misclassification out of 904
attempts (99.89% accuracy). This solitary instance was the
same as with Experiment 4, however it was specifically
misclassified as a canonical (benign) file rather than the
overall benign class, as shown in Figure 5. The PRC ratio
metric ranged from 99.7% (canonical) to 100%, due to the
misclassification, which shows excellent performance. Table
III lists the full set of machine learning metrics for this
experiment.

V. CONCLUSIONS

The results presented in this paper demonstrate that dynamic
opcode tracing is extremely effective at detecting cryptomining
behaviours in the sample set within a browser.

Fig. 5. Confusion matrix for Experiment 5

Our model can distinguish cryptomining-enabled HTML
files executed in the browser, from the same files with the
cryptomining behaviours deactivated, at high speed and with
extremely high levels of accuracy. However, it is clear from
Experiments 2 and 3 that training solely on deactivated and
cryptomining files does not adequately build a model which is
extrapolatable against real-world data. This has obvious im-
plications for any implementation of the techniques described
here. Incorporating canonical benign data into the training set
fortifies the model, enabling it to distinguish between
malicious and benign traces with >99% accuracy, including
real-world canonical data.

The key achievement of the results presented in Experiments
4 and 5 is the ability to classify benign from malicious when
trained and tested on all four categories, with a solitary
misclassification out of greater than 900 attempts. When
investigated further, the model is able to detect each of the
four categories of data with 99.9% accuracy. Indeed, the only
misclassified instance was one in which the trace did not
adequately run. As no data cleansing or pre-processing was
employed, this anomalous instance was maintained within the
dataset, as a representation of what challenges an actual
implementation may encounter. The fact that a misclassified
instance was the result of a non-trace (i.e. the file detonation
failed), serves to reinforce the findings that dynamic opcode
tracing offers a very powerful ability to detect cryptomining
behaviour within a browser.

While the datasets used for this initial set of experiments
were limited in size and scope, our future work will involve
a large scale analysis of a greater volume of web pages. This
dynamic-based research fits in tandem with our static
approaches, which are in the experimental phase. Lastly, we

Was actually:

Classified as:

benign

malicious

benign
290

1

malicious
4

294

Was actually:

Classified as:

Deactivated

Cryptomining

Canonical

Cryptomining

Canonical
Injected

Deactivated
Cryptomining 194

Canonical 359 1

Cryptomining
294

Canonical Injected
56

will further investigate this work by implementing the opcode
analysis within the browser, offering a direct approach to
detecting malicious activity.

REFERENCES

[1] P. OKane, S. Sezer, K. McLaughlin, and E. G. Im, “Svm training phase
reduction using dataset feature filtering for malware detection,” IEEE
transactions on information forensics and security, vol. 8, no. 3-4, pp.
500–509, 2013.

[2] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, “N-grams-based
file signatures for malware detection.” ICEIS (2), vol. 9, pp. 317–320,
2009.

[3] S. Vemparala, F. D. Troia, V. A. Corrado, T. H. Austin, and M. Stamp,
“Malware detection using dynamic birthmarks,” in IWSPA 2016 -
Proceedings of the 2016 ACM International Workshop on Security and
Privacy Analytics, co-located with CODASPY 2016, 2016, pp. 41–46.

[4] P. O’Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” Security Privacy, IEEE, vol. 9, no. 5, pp. 41–47, 2011.

[5] M. Viscuso, “What is a non-malware (or fileless) attack?”
[Online]. Available: https://www.carbonblack.com/2017/02/10/non-
malware-fileless-attack/

[6] “Rubin v. new jersey (tidbit),” Electronic Frontier Foundation, Tech.
Rep. [Online]. Available: https://www.eff.org/cases/rubin-v-new-jersey-
tidbit

[7] X. Mertens, “The crypto miners fight for cpu cycles,” Tech.
Rep. [Online]. Available: https://isc.sans.edu/forums/diary/The+Crypto+
Miners+Fight+For+CPU+Cycles/23407/

[8] L. Kelion, “Starbucks cafe’s wi-fi made computers mine crypto-
currency,” Tech. Rep. [Online]. Available: http://www.bbc.co.uk/news/
technology-42338754

[9] “Malvertising campaign abuses google’s doubleclick to
deliver cryptocurrency miners,” Trend Micro, Tech. Rep.
[Online]. Available: https://blog.trendmicro.com/trendlabs-security-
intelligence/malvertising-campaign-abuses-googles-doubleclick-to-
deliver-cryptocurrency-miners/

[10] “Crypto-streaming strikes back,” AdGuard Research, Tech. Rep.
[Online]. Available: https://blog.adguard.com/en/crypto-streaming-
strikes-back/

[11] H. Lau, “Browser-based cryptocurrency mining makes un-
expected return from the dead,” Tech. Rep. [On-
line]. Available: https://www.symantec.com/blogs/threat-intelligence/
browser-mining-cryptocurrency

[12] S. Helme, “Protect your site from cryptojacking with csp + sri.” [Online].
Available: https://scotthelme.co.uk/protect-site-from-cryptojacking-csp-
sri/

[13] “Ncsc advice: Malicious software used to illegally mine cryptocurrency.”
[Online]. Available: https://www.ncsc.gov.uk/guidance/ncsc-advice-
malicious-software-used-illegally-mine-cryptocurrency

[14] J. Segura, “Persistent drive-by cryptomining coming to
a browser near you,” Tech. Rep. [Online]. Avail-
able: https://blog.malwarebytes.com/cybercrime/2017/11/persistent-
drive-by-cryptomining-coming-to-a-browser-near-you/

[15] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using
opcode sequences in single-class learning to detect unknown malware,”
IET information security, vol. 5, no. 4, pp. 220–227, 2011.

[16] N. Runwal, R. M. Low, and M. Stamp, “Opcode graph similarity and
metamorphic detection,” Journal in Computer Virology, vol. 8, no. 1-2,
pp. 37–52, 2012.

[17] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-
based malware detection using dynamic analysis,” Journal in Computer
Virology, vol. 7, no. 4, pp. 247–258, 2011.

[18] D. Carlin, P. O’Kane, and S. Sezer, Dynamic Analysis of Malware using
Run Time Opcodes, 1st ed., ser. Data Analytics and Decision Support
for Cybersecurity - Trends, Methodologies and Applications. Springer,
2017.

[19] K. Lejska, “X86 opcode and instruction reference.” [Online]. Available:
http://ref.x86asm.net/

[20] J.-M. Roberts, VirusShare.com, 2014.
[21] OpenDNS, “Public domain lists.” [Online]. Available: https:

//github.com/opendns/public-domain-lists
[22] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–

32, 2001.

[23] T. M. Khoshgoftaar, M. Golawala, and J. V. Hulse, “An empirical study
of learning from imbalanced data using random forest,” in 19th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI
2007), vol. 2. IEEE, 2007, pp. 310–317.

http://www.carbonblack.com/2017/02/10/non-
http://www.carbonblack.com/2017/02/10/non-
http://www.carbonblack.com/2017/02/10/non-
http://www.eff.org/cases/rubin-v-new-jersey-
http://www.eff.org/cases/rubin-v-new-jersey-
http://www.bbc.co.uk/news/
http://www.symantec.com/blogs/threat-intelligence/
http://www.symantec.com/blogs/threat-intelligence/
http://www.symantec.com/blogs/threat-intelligence/
http://www.ncsc.gov.uk/guidance/ncsc-advice-
http://www.ncsc.gov.uk/guidance/ncsc-advice-
http://ref.x86asm.net/

