
Accelerating Image Algorithm Development using Soft Co-processor
on FPGAs

Deng, T., Crookes, D., Woods, R., & Siddiqui, F. M. (2018). Accelerating Image Algorithm Development using
Soft Co-processor on FPGAs. Paper presented at 29th Irish Signals and Systems Conference 2018, .

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Aug. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160110745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/accelerating-image-algorithm-development-using-soft-coprocessor-on-fpgas(ea997d21-830e-4165-900a-a5b437efc977).html

978-1-5386-6046-1/18/$31.00 ©2018 IEEE

1

Abstract—FPGAs can offer high performance with low power

and low hardware usage. However, with current software, FPGAs

are hard to program, and lengthy re-synthesis times make them

unsuitable for the algorithm experimentation which is typical of

developing image processing applications. In this paper, we

present a system model based on a set of Soft Co-Processors, each

of which implements a basic image-level operation (or a common

combination of such operations) based on the high-level operators

in Image Algebra. Both ‘debug’ (generic but unoptimised) and

‘release’ (specific and optimised) versions of the Soft

Co-Processors can be used. The advantage of debug mode is that

no re-synthesis is required during algorithm experimentation. For

release mode, a novel macro-based transformation tool enables

the creation of a set of reusable HLS skeleton co-processors which

require the user only to write a C function to obtain a new,

special-purpose Soft Co-Processor.

Initial experiments with several algorithms show that the area

and speed overheads for using debug (rather than release) mode

are both around 25-30%, thus enabling algorithm development to

take place on the FPGA itself. For creating function-specific

Co-processors using our macro-based tool, the overheads

compared with an expert hardware design are around 20%.

Index Terms—Image Processing, FPGA, Image Algebra

I. INTRODUCTION

mage processing algorithms are used in many applications,

such as image classification, medical image processing,

video surveillance and target detection and tracking [1-3].

Using the concepts of Image Algebra (IA) [4], many image

processing algorithms can be expressed as a combination of

basic image-level operations, including: point operations,

neighbourhood operations and global operations.

 Image processing applications usually require the

processing of large amounts of data, in some cases in real-time.

Possible hardware platforms include multi-core CPUs, Graphic

Processing Units (GPUs), and Field Programmable Gate

Arrays (FPGAs). FPGAs can offer high computation capability

and high bandwidth, and can also have the benefit of low power

[5, 6]. Currently, however, implementation on FPGAs is very

design intensive and require hardware design knowledge, so

FPGAs are usually only used to run a stable image processing

algorithm. Unfortunately, the development of image

processing algorithms tends to be experimental and iterative.

Even if it was possible to speed up the FPGA design process,

the usual lengthy synthesis time is not acceptable for algorithm

experimentation and tuning.

 Several tools have been designed to bridge the gap

between hardware design and high-level programming.

Vivado HLS allows developers to use C syntax to develop

dedicated hardware on FPGAs. However, it is difficult to tune

architectures using HLS without re-synthesising the whole

system on an FPGA [5, 6]. In addition, despite using C syntax, a

developer must still think in terms of hardware design. The

developer must understand what the software tools will

generate, in case they write code which the tools cannot handle

efficiently. Also, the IP cores generated by HLS need to be

integrated with the rest of the system using Vivado. If we use a

soft-processor on FPGAs (such as the Xilinx MicroBlaze),

which is a common approach, we have to trade performance for

programmability, because the multiple fetch-execute cycles

interrupt the dataflow stream processing.

FPGAs have a lot of computing resources but limited

memory, and the efficient use of memory resources is crucial to

system performance. A skilled developer can choose the

optimal memory management approach from a vast range of

possibilities in a way that existing tools are incapable of doing.

 Given the current state of the art, three main challenges for

developing image processing systems on FPGAs are:

 The long synthesis time during iterative algorithm

development and tuning is not acceptable.

 Balancing programmability against performance.

 The hardware design time for new algorithms.

In order to address these challenges, this paper presents a

system model based on a set of IA based Soft Co-Processors on

an FPGA, with an AXI-Stream interconnection-based system,

which allows users to develop and experiment with their

algorithm without having to re-synthesize the whole system.

We call this ‘debug’ mode. We secondly provide a simple code

transformation tool to enable the development of optimized

co-processors with minimal coding effort. This gives our

‘release’ mode. More specifically, the main contributions are as

follows:

 A set of parameterized Soft Co-Processors on FPGAs for

each of the core IA types of image-level operation: point

operations, neighbourhood operations, and global

operations. We also provide co-processors for common

multi-function operations, such as a neighbourhood

operation followed by a point operation. The co-processors

use optimized memory management, and can be linked

together for full algorithm development.

 A flexible AXI-Stream-based system which allows users to

link co-processors in any pattern, corresponding to the

required dataflow model of the application.

Tiantai Deng, Danny Crookes, Roger Woods and Fahad Siddiqui

School of EEECS, Queen’s University Belfast, Belfast BT7 1NN, UK

Accelerating Image Algorithm Development

using Soft Co-Processors on FPGAs

I

2

 A simple code transformation tool in Vivado HLS, which

allows users to define their own customized Soft

Co-Processors. Unlike the tool in [7], it is not a code

generation tool, but a lightweight macro-based

transformation tool which exploits the C preprocessor.

II. BACKGROUND AND RELATED WORK

A. Image Algebra

Image Algebra (IA) [4] is a mathematical theory concerned

with the transformation and analysis of digital images at the

whole image (rather than pixel) level. The main goal is the

establishment of a comprehensive and unifying theory of image

transformations, image analysis, and image understanding.

Basic IA operations can be classified as: point operations,

neighbourhood operation, and global operations.

1) Point Operation (P2P): In a point operation, the same

operation is applied at every input pixel position. Operations

can be binary or unary; they include relational (e.g. ‘>’, ‘=’),

arithmetic (e.g. ‘+’, ‘×’), and logical (e.g. ‘and’, ‘or’)

operations. It must normally generate one output pixel for each

corresponding input pixel position. A point operation produces

an output image of the same size as the input image(s).

2) Neighbourhood Operation (N2P): A neighbourhood

(window) operation is applied to each (potentially overlapping)

region of image. It is common to use a 3×3 or 5×5 window. A

new pixel value will be generated for each window position.

The same operation is applied at each window position. The

size of the result image may be slightly different from the input

image size because the window at boundary pixel positions

may exceed the image limits. The neighbourhood operation at

each window position has two phases: an initial point operation,

and a secondary reduction operation. For example, for

convolution, the two operations are multiplication and

summation. In the original IA, the configuration of windows

can be location-dependent, but implementations often restrict

windows to a fixed configuration (as we do).

3) Global Operation (R2S or R2V): A global operation is a

reduction operation which is applied to the whole image and

produces a scalar (R2S) or a vector (R2V). For example, the

global maximum will produce one scalar value, whereas

histogram will produce a 256-element vector.

B. Implementing Image Processing Algorithms on FPGAs

When an image processing algorithm is implemented on

FPGAs, the algorithm usually processes a stream of pixels in

order to increase task parallelism and save memory resources.

It is necessary to arrange internal memory differently according

to the operations. For example, point operations do not need

buffers, but neighbourhood operations require line buffers to

hold the relevant pixels within the window.

There is much existing work to indicate how to implement

neighbourhood operations on FPGAs. In [8-11], several

comparisons have been carried out, showing the advantage of

line buffering for efficient data management. In [12], Yu and

Leeser implemented a highly-parallel system for edge detection.

To get the best performance, they used two line-buffers and two

off-chip memories to increase the bandwidth. They also

describe a tool, called SWOOP, for implementing sliding

window operations (Sliding window operation optimization).

C. Current tools to accelerate the design process on FPGAs

There are many high level synthesis (HLS) tools which aim

to accelerate the design process on FPGAs. Both academic and

commercial HLS tools have been developed recently. Some are

for general purpose applications, such as Vivado HLS from

Xilinx [5] and LegUp from University of Toronto [13]. There

are also some application-specific HLS tools such as DK

Design Suite for image processing [14]. Using these tools,

developers can program FPGAs in a high-level language syntax

and achieve potentially acceptable performance. However,

even using HLS tools, developers have to be aware of how the

hardware is utilised by the tool, and must optimize the code

carefully to achieve acceptable performance, especially in

image processing. Schmid solves the problem of memory

arrangement by using a code generation tool combined with a C

based library of image processing functions [7, 15]. The library

covered most of the functions in OpenCV, which is important

for developers from a purely software background.

In [16-18] Crookes, Benkrid et al used hardware skeletons to

accelerate the design process of image processing algorithms.

They also provide several hardware skeletons and use the

language Prolog to describe hardware. The skeleton handles all

the memory management details, while the developer supplies

the function applied at each window position. Users can

generate hardware within a very short time. Similarly,

Fernando and Wijtvliet use sequential C code to describe

hardware using hardware skeletons [19].

However, all these approaches suffer from an underlying

problem that, although the developer may be using a high-level

syntax, the design thinking is often still somewhat at the

hardware level. Another key disadvantage of the above

systems is that a modification to, or tuning of, the high level

description of the algorithm generally requires re-synthesis of

the FPGA architecture. This can be very time-consuming. The

development of image processing algorithms is particularly

experimental in nature, and involves many design iterations.

Thus a simplistic approach to architecture synthesis can

become frustrating, and can reduce productivity.

Now we present our novel approach for developing image

processing hardware on FPGA. This is based on providing a set

of Soft Co-Processors. Each co-processor implements a single,

highly parameterised core IA operation, or a common

compound operation. Co-processors can be linked together as

in a data flow graph. There are FIFO buffers between connected

co-processors, which addresses the stream synchonisation

problem. The approach supports two levels of system use: (i) a

‘debug’ mode where the FPGA is configured with a fixed (but

user-selected) mixture of generic, parameterised co-processors,

rather like an FPGA having embedded functional units.

Changing co-processor parameters and their interconnection

does not require re-synthesis; and (ii) a ‘release’ mode where,

once the algorithm development has stabilised, equivalent

algorithm-specific co-processors can replace the more generic

‘debug’ co-processors by writing C functions within a chosen

skeleton co-processor. This requires re-synthesis, but results in

greater efficiency. This is facilitated by providing a simple

macro-based code transformation tool, which allows users to

define their own function and extend the AXI-Stream

interconnection system without touching the hardware.

3

III. SOFT CO-PROCESSOR BASED SYSTEM

In order to provide optimized memory allocation on point,

neighbourhood and global operations, we provide three types of

co-processor based on the core IA operations. Each

co-processor instance can connect through an AXI-Stream

interface. User will be able to edit the application dataflow

graph in terms of IA co-processors without re-synthesis.

A. Image Algebra-based Core Classes

We define several types of parameterised IA co-processor,

corresponding to each class of IA operation. For each image

operation to be performed by the system, the user includes one

of the available co-processor instances, and supplies the

appropriate parameters (including the lower level functions).

 Point Operation Co-processors: these have two modes:

Image-to-Scalar (I2S) and Image-to-Image (I2I). When I2S is

used, the co-processor takes a streamed input image and a

scalar value (a parameter), and applies the specified point

function (also a parameter) at all pixel positions in the input

image. When I2I is used, the hardware takes two input images,

and performs the specified function on all pairs of input pixels.

 The supported point operations include:

“>”, “<”, “=”, “!”, “+”, “-”, “--”, “×”, “/”, “and”, “or”, “not”.

“--” performs B-A rather than A-B.

If these basic operations cannot meet the requirements of

users, users can create their own point co-processors using a

simple C language function.

To perform a point operation in the code, the user first

acquires one of the available point co-processors. Then the

parameters of the IA operation are sent to the co-processor. For

example, if we want merely to threshold an image (from a

defined input source channel) using a threshold value of 120,

sending its output to some other channel, we could create and

configure a co-processor as shown in Figure 1:
int main()

{

 pointOP Thresh; // A point co-processor

 Thresh.initPoint();

 Thresh.setMode("I2S");

 Thresh.setOp(2, ">", 120); // Channel 2

 Thresh.setOut(3); // Output channel 3

}

Figure 1. Code for defining a thresholding (Point) Operation

In the code, we create and initialise a new co-processor

called “PointOp1”. We set its mode to “I2S” and define its

function parameters to be ‘>’ and the scalar parameter to be 120.

Then we define the output image channel to which the result

image will be streamed: in the above, we have merely specified

some channel “3” in the AXI-Stream interconnection system.

A Point co-processor essentially consists of the set of

functional units and the FIFO for storing outputs. Its size is

small, but most of its area will be unused in any one operation.

 Neighbourhood Operation Co-Processor

We provide several types of neighbourhood co-processor.

The most basic implements just a single operation (such as

convolution) using a fixed kernel size (e.g. 3x3). Users need to

define the kernel weights, and the two functions (point and

reduction) which define the neighbourhood operation. The

range of reduction operations include: Min, Max, Σ, |Σ|

(absolute value of the final sum). For example, to obtain a

convolution, the user would supply the parameters “×” and

“Σ” and a vector of 9 kernel weights. To erode (or dilate) a

binary input image, the first operator would be “AND”, and the

reduction operator would be MIN (or MAX).

We also provide more powerful neighbourhood co-processors

which implement more complex, multi-function patterns. One

such co-processor (NeighOp2) applies the kernel operation in

several rotated orientations of the kernel, in parallel, and then

combines the pixel result from each orientation using a third

function. Many edge detection and morphological operations

have this pattern. Rotations should be multiples of 45 degrees.

This co-processor type also provides for a final point operation

(it could be NOP if no extra function is required).

For example, to specify a complete Sobel edge detection

operator, we apply a 3x3 window in two orientations –

horizontal and vertical. We supply the kernel once (the vertical

one, say) and specify two orientations, with a rotation step of 90.

The two neighbourhood function parameters are “×” and “|Σ|”

and the vector of kernel weights is [-1, 0, 1, -2, 0, 2, -1, 0, 1].

The operation to combine the two window outputs is ‘+’

(combining the vertical and horizontal edge strengths). Finally,

we could use the option of a final point operation to perform

thresholding with a scalar value supplied as a parameter.

This more complex type of co-processor can be implemented

relatively efficiently because it needs only one line buffer. The

only difference between this and the previous simple

neighbourhood co-processor is in the sophistication of the

function which acts on the 3x3 window. We would thus code

the Sobel operation, in ‘debug’ mode, as shown in Figure 2.

int main()

{

 // Define kernel, etc. …

 NeighOP2 Sobel;

 Sobel.initNeighOP();

 Sobel.setKernel(Kernel, 2, 90);

 Sobel.setOp(2, "×", "|Σ|","+", ">", 120);

 Sobel.setOut(3); // Output channel 3

}
Figure 2. Code for Sobel using Neighbourhood Operation

 Global Operation Co-Processor

Global operations can reduce a streamed input image to either

a scalar result or a vector result. We therefore have two types of

global co-processor: R2S and R2V. The main reduction

operations are Min, Max, Σ, |Σ|, Count and Average. These can

be applied to give either a scalar or vector result. An image

histogram can be obtained by setting mode R2V, and

specifying Count as the function. The results of the global

operation will be stored in a fixed address (in BRAM); users

can get the result by accessing that address directly.

The advantage of this ‘debug’ mode is that the FPGA can be

pre-configured with a user-defined selection of multiple copies

of each type of co-processor, and provided these resources are

sufficient, any system can be run without any re-synthesis.

The disadvantage, though, is that each co-processor must

have hardware for a wide range of functions, and most of these

will not be utilised. The penalty for this ‘debug’ mode is thus

primarily in requiring extra area on the chip, and some speed

penalty compared to a custom-designed core (see section V).

4

B. User-defined Co-Processors and Code Transformation

This section describes the mechanism which our software

environment provides for producing an optimised ‘release’

version of a co-processor (and which we have used to develop

the more generic IA-based co-processors above).

A particular image processing application may use a

combination of IA operations which in theory could be

performed by a single, complex, co-processor, but for which we

have no single co-processor available in our library. When

developing in ‘debug’ mode, we typically would use several

co-processors to implement the more complex function. For a

more efficient implementation, we enable the user to easily

create a new, customised image co-processor by merely

providing the C code for the inner operation itself, with all the

housekeeping provided by pre-prepared skeleton co-processors.

This approach might also be used if we wish to produce an

optimised version of a generic co-processor (such as for

implementing Sobel). The motivation for this would be to

optimise the area, and to a lesser extent, speed.

To assist this, we have developed a simple code

transformation tool, so that users can embed their pixel-level

function in a pre-prepared skeleton co-processor, and generate

a new co-processor which is compatible with the rest of the

system including the AXI-Stream interconnection system.

Unlike the code generator in [7], we exploit the potential of

macros and the C/C++ preprocessor, instead of writing our own

transformation system. We provide a library of macros which

act like simple programming language extensions. We actually

provide different implementations of the same set of macros;

this enables the user to run the program either on a PC or on an

FPGA (and potentially on a GPU platform) simply by including

the appropriate macro definition files. For example, if the user

includes “Macros_PC.h”, then the code will be suitable for a

PC and after the macro expansion, all of the code will appear as

normal C/C++. However, if the file “Macros_Virtex7.h” is

included, after the macro expansion, the code will appear as

HLS C/C++ code, with synchronization and pragmas in the

code. Users can, if they wish, debug and verify their code on a

PC, and then synthesise and export their code without change.

This also enables multiple FPGA families to be made available.

C. Design Flow of our System

In ‘debug’ mode, which is shown in the left side of figure 3,

the user initially defines how many of each type of co-processor

they want to have available. These are then synthesised (if

necessary), and system development can proceed as long as the

number of each type of co-processor is not exceeded. Once the

final system is stable, users can define only the precise number

of co-processors required, and move to ‘release’ mode for

further optimisation.

IV. CASE STUDY ON CREATING A NEW CO-PROCESSOR

In this section, we illustrate the production of an optimised

co-processor (a ‘release’ version) specifically for convolution.

We then give results for the two versions (debug and release) in

terms of both speed and area, to demonstrate the trade-offs

when using debug mode as opposed to using release mode.

(a) (b)

Figure 3. Design Flow for the System, for (a) Debug mode

and (b) initial extension for release mode

The key macros included in the macro library are for:

 - creating objects, such as line buffers and array objects

 (_NEW_LINE_BUFFER, _NEW_2D_ARRAY)

 - starting and ending the neighbourhood processing of a

 streamed image

 (_STREAM2D_N_FOR_START, _STREAM2D_N_FOR_END)

 - Read a pixel from the line buffer

 (_GET_LINEBUFFER)

_STREAM2D_N_FOR_START acts like the start of a double (2D)

for loop. It initially fills the line buffer from the supplied input

stream, and sets the coordinates of the first complete window

position. (The coordinate variables idxRow and idxCol are

actually the coordinates of the bottom right hand corner of the

window – i.e. the most recently input pixel).

_STREAM2D_N_FOR_END acts like the end of the for loop. It

normally outputs the supplied output value and stores the next

input pixel in the line buffer. It will also handle border pixels,

with options including zero fill and extension by reflection. If

however, it has reached the end of the input stream, it sends the

appropriate signal to the output stream and ends the loop.

Figure 4 shows the code we use for any neighbourhood

operation. The macros all begin with ‘_’. The code can handle

an input image of any size up to a defined maximum size,

_IMAGE_X_MAX by _IMAGE_MAX_Y. The cost of this is

that the width of the line buffer will be the maximum image

width, even if this is not all used. But the advantage is that we

can process other image sizes without re-synthesising the

co-processor. The window size is defined by two constants

(KERNEL_X and KERNEL_Y). Changing these will require

re-synthesis.

The heart of the co-processor code is the 2D for loop. Inside

this, the first step is to extract a 3x3 region of the line buffer into

a separate 3x3 array (window). In some cases, this may be a bit

of an overhead; but is it more efficient if any pixel is accessed

more than once because it uses registers rather than BRAMs.

The actual function which is to be applied at each window

position (window_function) is not shown here. This function is

written in pure C code. Our ‘debug’ IA co-processors are

implemented simply by writing more generic functions which

take the various function operands as parameters. To illustrate

the process, Figure 5 shows the code for a basic convolution

function (output is cropped to 0..255).

5

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "Macros_HLS.h"

#define IMAGE_X_MAX 2048

#define IMAGE_Y_MAX 2048

#define KERNEL_X 3

#define KERNEL_Y 3

#define BORDER_VAL 0 // Border handling strategy

#define IMAGE_BIT 8 // Bits per pixel

#define PIXEL_SIZE 8

_COPROCESSOR(Kernel_skeleton,inStream,outStream,

 IMAGE_X,IMAGE_Y,

 char Kernel[KERNEL_X][KERNEL_Y])

{

 _NEW_LINE_BUFFER(linebuff,_PIXEL_TYPE(PIXEL_SIZE),

 KERNEL_Y,IMAGE_Y_MAX);

 _NEW_2D_ARRAY(window,_INT(10),KERNEL_X,KERNEL_Y);

 _PIXEL_TYPE(PIXEL_SIZE) pixIn;

 _PIXEL_TYPE(PIXEL_SIZE) valOutput;

 _PIXEL_TYPE(PIXEL_SIZE) val;

 _STREAM2D_N_FOR_START(idxRow, idxCol, IMAGE_X,

 IMAGE_Y,instream, linebuff)

#pragma HLS PIPELINE

 // Window centre is [idXRow-1, idxCol-1]

 for (int i=0;i<KERNEL_X;i++)

 {

 for (int j=0; j<KERNEL_Y; j++)

 {

 val = _GET_LINE_BUFFER

(linebuff,i,(j+idxCol-(KERNEL_Y-1)));

 window[i][j] = val;

 }

 }

 valOutput = window_function(window, Kernel);

 _STREAM2D_N_FOR_END(idxRow, idxCol, BORDER_VAL,

 outStream, valOutput)

}

Figure 4. Code for a neighbourhood co-processor skeleton

_PIXEL_TYPE(PIXEL_SIZE) window_function(

 _PIXEL_TYPE(PIXEL_SIZE) window[KERNEL_X][KERNEL_Y],

 char Kernel[KERNEL_X][KERNEL_Y])

{

 // Implements a basic convolution

 _PIXEL_TYPE(PIXEL_SIZE) valOutput;

 _INT(16) temp = 0;

 for (int i=0;i<KERNEL_X;i++)

 for (int j=0; j<KERNEL_Y;j++)

#pragma HLS PIPELINE

 temp += window[i][j] * Kernel[i][j];

 if (temp>=255) return 255;

 if (temp<0) return 0;

 return temp;

}

Figure 5. Co-processor code for a convolution function

 The advantage of this co-processor over the more generic

IA (debug) version is of course that it is more area efficient,

since it does not need the logic for the wide range of point and

reduction operations which the generic version has. An

additional optimisation when the kernel weights are known

would be to unroll the inner reduction loop, using the known

weights in the calculation.

V. RESULTS AND COMPARISON

Advances in the performance of tools such as Vivado HLS

mean that the code in which we have written the (debug)

versions of our IA co-processors is much more acceptable than

in the past. Therefore, rather than comparing our architectures

with VHDL-coded versions, we compare different versions of

the two modes (debug and release).

Our first performance test in this section is based on a simple

comparison between the performance of a 3x3 convolution

implemented firstly using our generic IA neighbourhood

co-processor, and the customised version using the code shown

in Figure 4 and Figure 5 (see Table 1).

256×256 LUTs FFs DSPs BRAMs Clk cycles FPS

Debug 1059 853 0 4 197,284 506

Release 801 638 0 3 131,111 768

[21] 2648 3652 0 97.5 <1,666,800 > 40

512×512 LUTs FFs DSPs BRAMs Clk cycles FPS

Debug 1404 1104 0 5 786,524 128

Release 700 913 0 3 521,293 192

[15] 14241 10950 45 2 265308 >700

Table 1. Resources for processing 256×256 and 512×512

images, in debug and release mode, 100MHz

([15] 214.4MHz, [21] 150MHz)

It can be seen that the optimised (release) version saved

about 25% hardware resources over the very generic (debug)

implementation, and it performs about 50% faster. Although

these savings are significant in a final system, the overhead of

using a very flexible, generic system, which does not require

repeated re-synthesis, suggests that our proposed approach is a

useful compromise between convenience and efficiency.

Compared with similar work in the literature, our design

keeps both programmability and performance. Compared with

[21] (where clock cycles are calculated from their FPS), our

approach is slightly faster using the same platform and similar

architecture. Since [21] uses a colour image and does grayscale

conversion before the multi-convolution, their performance

will be similar to ours if doing the same task. In [15] (FPS is

calculated from their clock cycles), with a library-based

implementation of convolution for a 512×512 image, they

achieved performance of one clock cycle/pixel, with a clock

speed of 214.4 MHz, which equates to over 700FPS. However,

it uses 20 times the resources to run their hardware at this clock

frequency just for doing convolution.

Our second comparison is based on a novel implementation

of the Lloyds K-Means Clustering algorithm (publication in

preparation). We first developed an efficient hardware-based

implementation in HLS. Then we used our higher level

macro-based notation described in section IV to develop an

equivalent co-processor. In Table 2, we compare the hardware

usage of the two designs. Here, we see that the resources for our

high level, macro-based coding version is only about 1.2 times

that of the hand-coded HLS implementation. The increase is

partly because the macro-based version introduces some

variables, which are never actually used (such as the

coordinates of the current image pixel).

6

 LUTs FFs DSPs BRAMs

Hand-coded HLS 936 784 4 2

Macro-based 1101 964 4 2

Table 2. Resources for K-Means clustering, comparing

manual hardware design vs. our higher level Macro coding

In terms of performance, the high-level implementation of

K-means takes 0.0045s (222 FPS) to cluster a 256×256 image

(with 50 iterations) and output the cluster values. The low-level

hardware design using HLS takes 0.0036s (277.8 FPS) to

cluster the same image.

From both these tests, we can conclude that:

 The overhead in using the generic co-processors is not very

significant during the development cycle (~25-30%). The

benefits of not having to re-synthesis during algorithm and

system experimentation outweigh the resource and

performance overheads.

 The high level, macro-based approach often enables more

efficient co-processors to be obtained with a small amount

of algorithmic C programming (rather than using C syntax

while still thinking in terms of hardware), without

significant hardware expertise.

 Our high level macro-based hardware programming tool

has also proved beneficial in designing co-processors for

important image processing algorithms (such as Kmeans

clustering) which are not so easily expressible in IA.

VI. CONCLUSIONS

In this paper, we have presented an approach to developing

image processing applications based on the concept of Soft

Co-Processors. The co-processors are based on implementing

image-level operations using an IA-like notation. The complete

system comprises a set of interconnected co-processors which

reflects the structure of the corresponding data flow graph.

The paper presents two modes of application development:

using a set of generic co-processors whose functionality is

parameterised, and which can therefore be re-purposed without

the need to re-synthesis the whole system. This is designed to

speed up the development cycle on FPGAs, which enables

algorithm and application development to take place on the

FPGA itself, with a performance reduction and resource

overhead of typically around only 25%-30%. For development

purposes, this is a very significant benefit.

Further, we have demonstrated that, when creating

function-specific co-processors, we can raise the programming

level considerably without the need to develop and maintain

sophisticated software tools, by exploiting the macro facilities

of the C/C++ pre-processor. Again, while there is a cost

(~25-30%) of this higher level approach over hand-optimised

hardware design, this trade-off is a small price to pay for the

more rapid design cycle, and the reduction in hardware

awareness needed of the developer. By merely using different

macro definition files, users can re-target their program for a

different FPGA family or different hardware platform.

VII. ACKNOWLEDGEMENT

This work was supported by the Chinese Scholarship Council.

REFERENCES

[1] Ciresan D C, Meier U, Masci J, et al. Flexible, high performance

convolutional neural networks for image classification, Proc. IJCAI
International Joint Conference on Artificial Intelligence. 2011, 22(1):

1237.

[2] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep
convolutional neural networks. In Advances in neural information

processing systems. 2012: 1097-1105.

[3] Ovtcharov K, Ruwase O, Kim J Y, et al. Accelerating deep convolutional
neural networks using specialized hardware. Microsoft Research

Whitepaper, 2015, 2(11).

[4] Wilson J N, Ritter G X. Handbook of computer vision algorithms in Image
Algebra. CRC press, 2000.

[5] Crockett L H, Elliot R A, Enderwitz M A, et al. The Zynq Book: Embedded

Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000. All
Programmable Soc. Strathclyde Academic Media, 2014.

[6] Bailey D G. Design for embedded image processing on FPGAs. John

Wiley & Sons, 2011.
[7] Reiche O, Schmid M, Hannig F, et al. Code generation from a

domain-specific language for C-based HLS of hardware accelerators. Proc

IEEE International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2014. pp 1-10.

[8] Johnston C T, Gribbon K T, Bailey D G. Implementing image processing
algorithms on FPGAs. Proc. 11th Electronics New Zealand Conference,

ENZCon’04, 2004. pp. 118-123.

[9] Shokr M E. Evaluation of second‐order texture parameters for sea ice

classification from radar images. Journal of Geophysical Research:

Oceans, 1991, 96(C6): 10625-10640.
[10] Benedetti A, Prati A, Scarabottolo N. Image convolution on FPGAs: the

implementation of a multi-FPGA FIFO structure. Proc. Euromicro

Conference, 1998. Proceedings. 24th. IEEE, 1998, 1: 123-130.
[11] Monson J, Wirthlin M, Hutchings B L. Optimization techniques for a high

level synthesis implementation of the Sobel filter. Proc. International

Conference on Reconfigurable Computing and FPGAs (ReConFig), IEEE,

2013. pp. 1-6.

[12] Yu H, Leeser M. Automatic sliding window operation optimization for

FPGA-based computing boards. Proc. 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2006. FCCM'06. pp.

76-88.

[13] Canis A, Choi J, Aldham M, et al. LegUp: high-level synthesis for
FPGA-based processor/accelerator systems. Proc. 19th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays. ACM,

2011. pp. 33-36.
[14] DK design suite: Handel-C to FPGA for algorithm design. 2010.

[15] Schmid M, Apelt N, Hannig F, et al. An image processing library for

C-based high-level synthesis. Proc. 24th International Conference on Field
Programmable Logic and Applications (FPL), 2014. IEEE, 2014: 1-4.

[16] Crookes D, Alotaibi K, Bouridane A et al. An environment for generating
FPGA architectures for image algebra-based algorithms. Proc.

International Conference on Image Processing (ICIP 98). 1998: 990-994.

[17] Benkrid, K, Crookes, D, Smith, J, & Benkrid, A. High-level programming
for FPGA based image and video processing using hardware skeletons.

Proc. 9th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2001. (FCCM'01). pp. 219-226.
[18] Benkrid K, Crookes D. From application descriptions to hardware in

seconds: a logic-based approach to bridging the gap. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2004, 12(4): 420-436.
[19] Fernando S, Wijtvliet M, Nugteren C, et al. Accelerator synthesis using

algorithmic skeletons for rapid design space exploration. Proc. 2015

Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium, 2015. pp. 305-308.

[20] Nugteren C, Corporaal H, Mesman B. Skeleton-based automatic

parallelization of image processing algorithms for GPUs. Proc. IEEE
International Conference on Embedded Computer Systems (SAMOS),

2011. pp. 25-32.

[21] Altuncu M A, Guven T, Becerikli Y, et al. Real-time system
implementation for image processing with hardware/software co-design on

the Xilinx Zynq platform[J]. International Journal of Information and

Electronics Engineering, 2015, 5(6): 473.

