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Abstract—FPGAs can offer high performance with low power 

and low hardware usage. However, with current software, FPGAs 

are hard to program, and lengthy re-synthesis times make them 

unsuitable for the algorithm experimentation which is typical of 

developing image processing applications. In this paper, we 

present a system model based on a set of Soft Co-Processors, each 

of which implements a basic image-level operation (or a common 

combination of such operations) based on the high-level operators 

in Image Algebra.  Both ‘debug’ (generic but unoptimised) and 

‘release’ (specific and optimised) versions of the Soft 

Co-Processors can be used. The advantage of debug mode is that 

no re-synthesis is required during algorithm experimentation. For 

release mode, a novel macro-based transformation tool enables 

the creation of a set of reusable HLS skeleton co-processors which 

require the user only to write a C function to obtain a new, 

special-purpose Soft Co-Processor. 

Initial experiments with several algorithms show that the area 

and speed overheads for using debug (rather than release) mode 

are both around 25-30%, thus enabling algorithm development to 

take place on the FPGA itself.  For creating function-specific 

Co-processors using our macro-based tool, the overheads 

compared with an expert hardware design are around 20%. 

Index Terms—Image Processing, FPGA, Image Algebra 

I. INTRODUCTION 

mage processing algorithms are used in many applications, 

such as image classification, medical image processing, 

video surveillance and target detection and tracking [1-3]. 

Using the concepts of Image Algebra (IA) [4], many image 

processing algorithms can be expressed as a combination of 

basic image-level operations, including: point operations, 

neighbourhood operations and global operations.  

 Image processing applications usually require the 

processing of large amounts of data, in some cases in real-time. 

Possible hardware platforms include multi-core CPUs, Graphic 

Processing Units (GPUs), and Field Programmable Gate 

Arrays (FPGAs).  FPGAs can offer high computation capability 

and high bandwidth, and can also have the benefit of low power 

[5, 6]. Currently, however, implementation on FPGAs is very 

design intensive and require hardware design knowledge, so 

FPGAs are usually only used to run a stable image processing 

algorithm.  Unfortunately, the development of image 

processing algorithms tends to be experimental and iterative.  

Even if it was possible to speed up the FPGA design process, 

the usual lengthy synthesis time is not acceptable for algorithm 

experimentation and tuning.  

 Several tools have been designed to bridge the gap 

 
 

between hardware design and high-level programming.  

Vivado HLS allows developers to use C syntax to develop 

dedicated hardware on FPGAs. However, it is difficult to tune 

architectures using HLS without re-synthesising the whole 

system on an FPGA [5, 6]. In addition, despite using C syntax, a 

developer must still think in terms of hardware design.  The 

developer must understand what the software tools will 

generate, in case they write code which the tools cannot handle 

efficiently.  Also, the IP cores generated by HLS need to be 

integrated with the rest of the system using Vivado. If we use a 

soft-processor on FPGAs (such as the Xilinx MicroBlaze), 

which is a common approach, we have to trade performance for 

programmability, because the multiple fetch-execute cycles 

interrupt the dataflow stream processing.  

FPGAs have a lot of computing resources but limited 

memory, and the efficient use of memory resources is crucial to 

system performance. A skilled developer can choose the 

optimal memory management approach from a vast range of 

possibilities in a way that existing tools are incapable of doing.

 Given the current state of the art, three main challenges for 

developing image processing systems on FPGAs are: 

 The long synthesis time during iterative algorithm 

development and tuning is not acceptable. 

 Balancing programmability against performance. 

 The hardware design time for new algorithms. 

In order to address these challenges, this paper presents a 

system model based on a set of IA based Soft Co-Processors on 

an FPGA, with an AXI-Stream interconnection-based system, 

which allows users to develop and experiment with their 

algorithm without having to re-synthesize the whole system. 

We call this ‘debug’ mode. We secondly provide a simple code 

transformation tool to enable the development of optimized 

co-processors with minimal coding effort.  This gives our 

‘release’ mode. More specifically, the main contributions are as 

follows: 

 A set of parameterized Soft Co-Processors on FPGAs for 

each of the core IA types of image-level operation: point 

operations, neighbourhood operations, and global 

operations. We also provide co-processors for common 

multi-function operations, such as a neighbourhood 

operation followed by a point operation. The co-processors 

use optimized memory management, and can be linked 

together for full algorithm development. 

 A flexible AXI-Stream-based system which allows users to 

link co-processors in any pattern, corresponding to the 

required dataflow model of the application.
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 A simple code transformation tool in Vivado HLS, which 

allows users to define their own customized Soft 

Co-Processors. Unlike the tool in [7], it is not a code 

generation tool, but a lightweight macro-based 

transformation tool which exploits the C preprocessor.  

II. BACKGROUND AND RELATED WORK 

A. Image Algebra 

Image Algebra (IA) [4] is a mathematical theory concerned 

with the transformation and analysis of digital images at the 

whole image (rather than pixel) level. The main goal is the 

establishment of a comprehensive and unifying theory of image 

transformations, image analysis, and image understanding. 

Basic IA operations can be classified as: point operations, 

neighbourhood operation, and global operations.  

1) Point Operation (P2P): In a point operation, the same 

operation is applied at every input pixel position.  Operations 

can be binary or unary; they include relational (e.g. ‘>’, ‘=’), 

arithmetic (e.g. ‘+’, ‘×’), and logical (e.g. ‘and’, ‘or’) 

operations. It must normally generate one output pixel for each 

corresponding input pixel position. A point operation produces 

an output image of the same size as the input image(s). 

2) Neighbourhood Operation (N2P): A neighbourhood 

(window) operation is applied to each (potentially overlapping) 

region of image. It is common to use a 3×3 or 5×5 window. A 

new pixel value will be generated for each window position. 

The same operation is applied at each window position. The 

size of the result image may be slightly different from the input 

image size because the window at boundary pixel positions 

may exceed the image limits.  The neighbourhood operation at 

each window position has two phases: an initial point operation, 

and a secondary reduction operation.  For example, for 

convolution, the two operations are multiplication and 

summation.  In the original IA, the configuration of windows 

can be location-dependent, but implementations often restrict 

windows to a fixed configuration (as we do). 

3) Global Operation (R2S or R2V): A global operation is a 

reduction operation which is applied to the whole image and 

produces a scalar (R2S) or a vector (R2V). For example, the 

global maximum will produce one scalar value, whereas 

histogram will produce a 256-element vector.  

B. Implementing Image Processing Algorithms on FPGAs 

When an image processing algorithm is implemented on 

FPGAs, the algorithm usually processes a stream of pixels in 

order to increase task parallelism and save memory resources. 

It is necessary to arrange internal memory differently according 

to the operations. For example, point operations do not need 

buffers, but neighbourhood operations require line buffers to 

hold the relevant pixels within the window.  

There is much existing work to indicate how to implement 

neighbourhood operations on FPGAs. In [8-11], several 

comparisons have been carried out, showing the advantage of 

line buffering for efficient data management. In [12], Yu and 

Leeser implemented a highly-parallel system for edge detection. 

To get the best performance, they used two line-buffers and two 

off-chip memories to increase the bandwidth.  They also 

describe a tool, called SWOOP, for implementing sliding 

window operations (Sliding window operation optimization).  

C. Current tools to accelerate the design process on FPGAs 

There are many high level synthesis (HLS) tools which aim 

to accelerate the design process on FPGAs. Both academic and 

commercial HLS tools have been developed recently. Some are 

for general purpose applications, such as Vivado HLS from 

Xilinx [5] and LegUp from University of Toronto [13]. There 

are also some application-specific HLS tools such as DK 

Design Suite for image processing [14]. Using these tools, 

developers can program FPGAs in a high-level language syntax 

and achieve potentially acceptable performance. However, 

even using HLS tools, developers have to be aware of how the 

hardware is utilised by the tool, and must optimize the code 

carefully to achieve acceptable performance, especially in 

image processing.   Schmid solves the problem of memory 

arrangement by using a code generation tool combined with a C 

based library of image processing functions [7, 15]. The library 

covered most of the functions in OpenCV, which is important 

for developers from a purely software background. 

In [16-18] Crookes, Benkrid et al used hardware skeletons to 

accelerate the design process of image processing algorithms. 

They also provide several hardware skeletons and use the 

language Prolog to describe hardware. The skeleton handles all 

the memory management details, while the developer supplies 

the function applied at each window position.  Users can 

generate hardware within a very short time. Similarly, 

Fernando and Wijtvliet use sequential C code to describe 

hardware using hardware skeletons [19]. 

However, all these approaches suffer from an underlying 

problem that, although the developer may be using a high-level 

syntax, the design thinking is often still somewhat at the 

hardware level.  Another key disadvantage of the above 

systems is that a modification to, or tuning of, the high level 

description of the algorithm generally requires re-synthesis of 

the FPGA architecture.  This can be very time-consuming.  The 

development of image processing algorithms is particularly 

experimental in nature, and involves many design iterations.  

Thus a simplistic approach to architecture synthesis can 

become frustrating, and can reduce productivity. 

Now we present our novel approach for developing image 

processing hardware on FPGA.  This is based on providing a set 

of Soft Co-Processors. Each co-processor implements a single, 

highly parameterised core IA operation, or a common 

compound operation.  Co-processors can be linked together as 

in a data flow graph. There are FIFO buffers between connected 

co-processors, which addresses the stream synchonisation 

problem.  The approach supports two levels of system use: (i) a 

‘debug’ mode where the FPGA is configured with a fixed (but 

user-selected) mixture of generic, parameterised co-processors, 

rather like an FPGA having embedded functional units.  

Changing co-processor parameters and their interconnection 

does not require re-synthesis; and (ii) a ‘release’ mode where, 

once the algorithm development has stabilised, equivalent 

algorithm-specific co-processors can replace the more generic 

‘debug’ co-processors by writing C functions within a chosen 

skeleton co-processor.  This requires re-synthesis, but results in 

greater efficiency.  This is facilitated by providing a simple 

macro-based code transformation tool, which allows users to 

define their own function and extend the AXI-Stream 

interconnection system without touching the hardware.  
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III. SOFT CO-PROCESSOR BASED SYSTEM  

In order to provide optimized memory allocation on point, 

neighbourhood and global operations, we provide three types of 

co-processor based on the core IA operations. Each 

co-processor instance can connect through an AXI-Stream 

interface. User will be able to edit the application dataflow 

graph in terms of IA co-processors without re-synthesis.   

A. Image Algebra-based Core Classes 

We define several types of parameterised IA co-processor, 

corresponding to each class of IA operation.  For each image 

operation to be performed by the system, the user includes one 

of the available co-processor instances, and supplies the 

appropriate parameters (including the lower level functions).   

 Point Operation Co-processors: these have two modes: 

Image-to-Scalar (I2S) and Image-to-Image (I2I). When I2S is 

used, the co-processor takes a streamed input image and a 

scalar value (a parameter), and applies the specified point 

function (also a parameter) at all pixel positions in the input 

image.  When I2I is used, the hardware takes two input images, 

and performs the specified function on all pairs of input pixels. 

 The supported point operations include: 

“>”, “<”, “=”, “!”, “+”, “-”, “--”, “×”, “/”, “and”, “or”, “not”.  

“--” performs B-A rather than A-B. 

If these basic operations cannot meet the requirements of 

users, users can create their own point co-processors using a 

simple C language function.  

To perform a point operation in the code, the user first 

acquires one of the available point co-processors. Then the 

parameters of the IA operation are sent to the co-processor. For 

example, if we want merely to threshold an image (from a 

defined input source channel) using a threshold value of 120, 

sending its output to some other channel, we could create and 

configure a co-processor as shown in Figure 1: 
int main() 

{ 

    pointOP Thresh; // A point co-processor 

    Thresh.initPoint(); 

    Thresh.setMode("I2S"); 

    Thresh.setOp(2, ">", 120); // Channel 2 

    Thresh.setOut(3);  // Output channel 3 

} 

Figure 1. Code for defining a thresholding (Point) Operation 

 

In the code, we create and initialise a new co-processor 

called “PointOp1”. We set its mode to “I2S” and define its 

function parameters to be ‘>’ and the scalar parameter to be 120.  

Then we define the output image channel to which the result 

image will be streamed: in the above, we have merely specified 

some channel “3” in the AXI-Stream interconnection system.  

A Point co-processor essentially consists of the set of 

functional units and the FIFO for storing outputs.  Its size is 

small, but most of its area will be unused in any one operation. 

 Neighbourhood Operation Co-Processor 

We provide several types of neighbourhood co-processor.  

The most basic implements just a single operation (such as 

convolution) using a fixed kernel size (e.g. 3x3).  Users need to 

define the kernel weights, and the two functions (point and 

reduction) which define the neighbourhood operation. The 

range of reduction operations include: Min, Max, Σ, |Σ| 

(absolute value of the final sum).  For example, to obtain a 

convolution, the user would supply the parameters “×” and 

“Σ” and a vector of 9 kernel weights.  To erode (or dilate) a 

binary input image, the first operator would be “AND”, and the 

reduction operator would be MIN (or MAX). 

We also provide more powerful neighbourhood co-processors 

which implement more complex, multi-function patterns. One 

such co-processor (NeighOp2) applies the kernel operation in 

several rotated orientations of the kernel, in parallel, and then 

combines the pixel result from each orientation using a third 

function.  Many edge detection and morphological operations 

have this pattern.  Rotations should be multiples of 45 degrees.  

This co-processor type also provides for a final point operation 

(it could be NOP if no extra function is required). 

For example, to specify a complete Sobel edge detection 

operator, we apply a 3x3 window in two orientations – 

horizontal and vertical.  We supply the kernel once (the vertical 

one, say) and specify two orientations, with a rotation step of 90.  

The two neighbourhood function parameters are “×” and “|Σ|” 

and the vector of kernel weights is [-1, 0, 1, -2, 0, 2, -1, 0, 1].  

The operation to combine the two window outputs is ‘+’ 

(combining the vertical and horizontal edge strengths).  Finally, 

we could use the option of a final point operation to perform 

thresholding with a scalar value supplied as a parameter. 

This more complex type of co-processor can be implemented 

relatively efficiently because it needs only one line buffer.  The 

only difference between this and the previous simple 

neighbourhood co-processor is in the sophistication of the 

function which acts on the 3x3 window.  We would thus code 

the Sobel operation, in ‘debug’ mode, as shown in Figure 2. 

int main() 

{ 

    // Define kernel, etc. … 

    NeighOP2 Sobel; 

    Sobel.initNeighOP(); 

    Sobel.setKernel(Kernel, 2, 90); 

    Sobel.setOp(2, "×", "|Σ|","+", ">", 120); 

    Sobel.setOut(3);  // Output channel 3 

} 
Figure 2. Code for Sobel using Neighbourhood Operation 

 

 Global Operation Co-Processor 

Global operations can reduce a streamed input image to either 

a scalar result or a vector result.  We therefore have two types of 

global co-processor: R2S and R2V.  The main reduction 

operations are Min, Max, Σ, |Σ|, Count and Average.  These can 

be applied to give either a scalar or vector result.  An image 

histogram can be obtained by setting mode R2V, and 

specifying Count as the function.  The results of the global 

operation will be stored in a fixed address (in BRAM); users 

can get the result by accessing that address directly.  

The advantage of this ‘debug’ mode is that the FPGA can be 

pre-configured with a user-defined selection of multiple copies 

of each type of co-processor, and provided these resources are 

sufficient, any system can be run without any re-synthesis.   

The disadvantage, though, is that each co-processor must 

have hardware for a wide range of functions, and most of these 

will not be utilised.  The penalty for this ‘debug’ mode is thus 

primarily in requiring extra area on the chip, and some speed 

penalty compared to a custom-designed core (see section V). 
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B.  User-defined Co-Processors and Code Transformation 

This section describes the mechanism which our software 

environment provides for producing an optimised ‘release’ 

version of a co-processor (and which we have used to develop 

the more generic IA-based co-processors above). 

A particular image processing application may use a 

combination of IA operations which in theory could be 

performed by a single, complex, co-processor, but for which we 

have no single co-processor available in our library.  When 

developing in ‘debug’ mode, we typically would use several 

co-processors to implement the more complex function.  For a 

more efficient implementation, we enable the user to easily 

create a new, customised image co-processor by merely 

providing the C code for the inner operation itself, with all the 

housekeeping provided by pre-prepared skeleton co-processors.  

This approach might also be used if we wish to produce an 

optimised version of a generic co-processor (such as for 

implementing Sobel).  The motivation for this would be to 

optimise the area, and to a lesser extent, speed.   

To assist this, we have developed a simple code 

transformation tool, so that users can embed their pixel-level 

function in a pre-prepared skeleton co-processor, and generate 

a new co-processor which is compatible with the rest of the 

system including the AXI-Stream interconnection system.  

Unlike the code generator in [7], we exploit the potential of 

macros and the C/C++ preprocessor, instead of writing our own 

transformation system.  We provide a library of macros which 

act like simple programming language extensions.  We actually 

provide different implementations of the same set of macros; 

this enables the user to run the program either on a PC or on an 

FPGA (and potentially on a GPU platform) simply by including 

the appropriate macro definition files.   For example, if the user 

includes “Macros_PC.h”, then the code will be suitable for a 

PC and after the macro expansion, all of the code will appear as 

normal C/C++. However, if the file “Macros_Virtex7.h” is 

included, after the macro expansion, the code will appear as 

HLS C/C++ code, with synchronization and pragmas in the 

code. Users can, if they wish, debug and verify their code on a 

PC, and then synthesise and export their code without change.  

This also enables multiple FPGA families to be made available. 

C. Design Flow of our System 

In ‘debug’ mode, which is shown in the left side of figure 3, 

the user initially defines how many of each type of co-processor 

they want to have available.  These are then synthesised (if 

necessary), and system development can proceed as long as the 

number of each type of co-processor is not exceeded.  Once the 

final system is stable, users can define only the precise number 

of co-processors required, and move to ‘release’ mode for 

further optimisation.  

 

IV. CASE STUDY ON CREATING A NEW CO-PROCESSOR 

In this section, we illustrate the production of an optimised 

co-processor (a ‘release’ version) specifically for convolution.  

We then give results for the two versions (debug and release) in 

terms of both speed and area, to demonstrate the trade-offs 

when using debug mode as opposed to using release mode. 

 

 
(a)           (b)  

Figure 3. Design Flow for the System, for (a) Debug mode 

and (b) initial extension for release mode 

 

The key macros included in the macro library are for: 

 - creating objects, such as line buffers and array objects 

   (_NEW_LINE_BUFFER, _NEW_2D_ARRAY) 

 - starting and ending the neighbourhood processing of a  

        streamed image 

   (_STREAM2D_N_FOR_START, _STREAM2D_N_FOR_END) 

 - Read a pixel from the line buffer 

   (_GET_LINEBUFFER) 

_STREAM2D_N_FOR_START acts like the start of a double (2D) 

for loop.  It initially fills the line buffer from the supplied input 

stream, and sets the coordinates of the first complete window 

position. (The coordinate variables idxRow and idxCol are 

actually the coordinates of the bottom right hand corner of the 

window – i.e. the most recently input pixel). 

_STREAM2D_N_FOR_END acts like the end of the for loop.  It 

normally outputs the supplied output value and stores the next 

input pixel in the line buffer.  It will also handle border pixels, 

with options including zero fill and extension by reflection.  If 

however, it has reached the end of the input stream, it sends the 

appropriate signal to the output stream and ends the loop. 

Figure 4 shows the code we use for any neighbourhood 

operation.  The macros all begin with ‘_’.  The code can handle 

an input image of any size up to a defined maximum size, 

_IMAGE_X_MAX by _IMAGE_MAX_Y.  The cost of this is 

that the width of the line buffer will be the maximum image 

width, even if this is not all used.  But the advantage is that we 

can process other image sizes without re-synthesising the 

co-processor.  The window size is defined by two constants 

(KERNEL_X and KERNEL_Y).  Changing these will require 

re-synthesis. 

The heart of the co-processor code is the 2D for loop.  Inside 

this, the first step is to extract a 3x3 region of the line buffer into 

a separate 3x3 array (window).  In some cases, this may be a bit 

of an overhead; but is it more efficient if any pixel is accessed 

more than once because it uses registers rather than BRAMs. 

The actual function which is to be applied at each window 

position (window_function) is not shown here.  This function is 

written in pure C code.  Our ‘debug’ IA co-processors are 

implemented simply by writing more generic functions which 

take the various function operands as parameters.  To illustrate 

the process, Figure 5 shows the code for a basic convolution 

function (output is cropped to 0..255). 
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#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "Macros_HLS.h" 

 

#define IMAGE_X_MAX  2048 

#define IMAGE_Y_MAX  2048 

#define KERNEL_X    3 

#define KERNEL_Y    3 

#define BORDER_VAL   0 // Border handling strategy 

#define IMAGE_BIT   8 // Bits per pixel 

#define PIXEL_SIZE   8 

 

_COPROCESSOR(Kernel_skeleton,inStream,outStream, 

             IMAGE_X,IMAGE_Y,  

       char Kernel[KERNEL_X][KERNEL_Y]) 

{ 

 _NEW_LINE_BUFFER(linebuff,_PIXEL_TYPE(PIXEL_SIZE),  

                   KERNEL_Y,IMAGE_Y_MAX); 

 _NEW_2D_ARRAY(window,_INT(10),KERNEL_X,KERNEL_Y); 

 _PIXEL_TYPE(PIXEL_SIZE) pixIn; 

 _PIXEL_TYPE(PIXEL_SIZE) valOutput; 

 _PIXEL_TYPE(PIXEL_SIZE) val; 

 

 _STREAM2D_N_FOR_START(idxRow, idxCol, IMAGE_X, 

                        IMAGE_Y,instream, linebuff) 

#pragma HLS PIPELINE 

    // Window centre is [idXRow-1, idxCol-1] 

  for (int i=0;i<KERNEL_X;i++) 

  { 

   for (int j=0; j<KERNEL_Y; j++) 

   { 

    val = _GET_LINE_BUFFER 

(linebuff,i,(j+idxCol-(KERNEL_Y-1))); 

    window[i][j] = val; 

   } 

  } 

  valOutput = window_function(window, Kernel); 

 _STREAM2D_N_FOR_END(idxRow, idxCol, BORDER_VAL, 

                      outStream, valOutput) 

} 

Figure 4.  Code for a neighbourhood co-processor skeleton 

 
_PIXEL_TYPE(PIXEL_SIZE) window_function( 

 _PIXEL_TYPE(PIXEL_SIZE) window[KERNEL_X][KERNEL_Y],  

  char Kernel[KERNEL_X][KERNEL_Y]) 

{  

 // Implements a basic convolution 

 _PIXEL_TYPE(PIXEL_SIZE) valOutput; 

 _INT(16) temp = 0; 

 for (int i=0;i<KERNEL_X;i++) 

  for (int j=0; j<KERNEL_Y;j++) 

#pragma HLS PIPELINE 

   temp += window[i][j] * Kernel[i][j]; 

 if (temp>=255) return 255; 

 if (temp<0)  return 0; 

 return temp; 

} 

Figure 5.  Co-processor code for a convolution function 

 

 The advantage of this co-processor over the more generic 

IA (debug) version is of course that it is more area efficient, 

since it does not need the logic for the wide range of point and 

reduction operations which the generic version has.  An 

additional optimisation when the kernel weights are known 

would be to unroll the inner reduction loop, using the known 

weights in the calculation. 

V. RESULTS AND COMPARISON 

Advances in the performance of tools such as Vivado HLS 

mean that the code in which we have written the (debug) 

versions of our IA co-processors is much more acceptable than 

in the past.  Therefore, rather than comparing our architectures 

with VHDL-coded versions, we compare different versions of 

the two modes (debug and release). 

Our first performance test in this section is based on a simple 

comparison between the performance of a 3x3 convolution 

implemented firstly using our generic IA neighbourhood 

co-processor, and the customised version using the code shown 

in Figure 4 and Figure 5 (see Table 1). 

 

256×256 LUTs FFs DSPs BRAMs Clk cycles FPS 

Debug 1059 853 0 4 197,284 506 

Release 801 638 0 3 131,111 768 

[21] 2648 3652 0 97.5 <1,666,800 > 40 

512×512 LUTs FFs DSPs BRAMs Clk cycles FPS 

Debug 1404 1104 0 5 786,524 128 

Release 700 913 0 3 521,293 192 

[15] 14241 10950 45 2 265308 >700 

Table 1.  Resources for processing  256×256 and 512×512 

images, in debug and release mode, 100MHz  

([15] 214.4MHz, [21] 150MHz) 

It can be seen that the optimised (release) version saved 

about 25% hardware resources over the very generic (debug) 

implementation, and it performs about 50% faster.  Although 

these savings are significant in a final system, the overhead of 

using a very flexible, generic system, which does not require 

repeated re-synthesis, suggests that our proposed approach is a 

useful compromise between convenience and efficiency.  

Compared with similar work in the literature, our design 

keeps both programmability and performance. Compared with 

[21] (where clock cycles are calculated from their FPS), our 

approach is slightly faster using the same platform and similar 

architecture. Since [21] uses a colour image and does grayscale 

conversion before the multi-convolution, their performance 

will be similar to ours if doing the same task.  In [15] (FPS is 

calculated from their clock cycles), with a library-based 

implementation of convolution for a 512×512 image, they 

achieved performance of one clock cycle/pixel, with a clock 

speed of 214.4 MHz, which equates to over 700FPS. However, 

it uses 20 times the resources to run their hardware at this clock 

frequency just for doing convolution.  

Our second comparison is based on a novel implementation 

of the Lloyds K-Means Clustering algorithm (publication in 

preparation).  We first developed an efficient hardware-based 

implementation in HLS.  Then we used our higher level 

macro-based notation described in section IV to develop an 

equivalent co-processor.  In Table 2, we compare the hardware 

usage of the two designs. Here, we see that the resources for our 

high level, macro-based coding version is only about 1.2 times 

that of the hand-coded HLS implementation. The increase is 

partly because the macro-based version introduces some 

variables, which are never actually used (such as the 

coordinates of the current image pixel).   
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  LUTs FFs DSPs BRAMs 

Hand-coded HLS  936 784 4 2 

Macro-based 1101 964 4 2 

Table 2.  Resources for K-Means clustering, comparing 

manual hardware design vs. our higher level Macro coding 

 

In terms of performance, the high-level implementation of 

K-means takes 0.0045s (222 FPS) to cluster a 256×256 image 

(with 50 iterations) and output the cluster values. The low-level 

hardware design using HLS takes 0.0036s (277.8 FPS) to 

cluster the same image.   

From both these tests, we can conclude that: 

 The overhead in using the generic co-processors is not very 

significant during the development cycle (~25-30%).  The 

benefits of not having to re-synthesis during algorithm and 

system experimentation outweigh the resource and 

performance overheads. 

 The high level, macro-based approach often enables more 

efficient co-processors to be obtained with a small amount 

of algorithmic C programming (rather than using C syntax 

while still thinking in terms of hardware), without 

significant hardware expertise. 

 Our high level macro-based hardware programming tool 

has also proved beneficial in designing co-processors for 

important image processing algorithms (such as Kmeans 

clustering) which are not so easily expressible in IA. 

VI. CONCLUSIONS 

In this paper, we have presented an approach to developing 

image processing applications based on the concept of Soft 

Co-Processors.  The co-processors are based on implementing 

image-level operations using an IA-like notation. The complete 

system comprises a set of interconnected co-processors which 

reflects the structure of the corresponding data flow graph.   

The paper presents two modes of application development:  

using a set of generic co-processors whose functionality is 

parameterised, and which can therefore be re-purposed without 

the need to re-synthesis the whole system.  This is designed to 

speed up the development cycle on FPGAs, which enables 

algorithm and application development to take place on the 

FPGA itself, with a performance reduction and resource 

overhead of typically around only 25%-30%.  For development 

purposes, this is a very significant benefit. 

Further, we have demonstrated that, when creating 

function-specific co-processors, we can raise the programming 

level considerably without the need to develop and maintain 

sophisticated software tools, by exploiting the macro facilities 

of the C/C++ pre-processor. Again, while there is a cost 

(~25-30%) of this higher level approach over hand-optimised 

hardware design, this trade-off is a small price to pay for the 

more rapid design cycle, and the reduction in hardware 

awareness needed of the developer. By merely using different 

macro definition files, users can re-target their program for a 

different FPGA family or different hardware platform.  
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