
Using Docker Swarm with a User-Centric Decision-Making Framework
for Cloud Application Migration

Barlaskar, E., Kilpatrick, P., Spence, I., & Nikolopoulos, D. S. (2018). Using Docker Swarm with a User-Centric
Decision-Making Framework for Cloud Application Migration. In Cloud Computing and Service Science - 7th
International Conference, CLOSER 2017, Revised Selected Papers (1 ed., Vol. 864, pp. 81-101).
(Communications in Computer and Information Science; Vol. 864). Springer International Publishing.
https://doi.org/10.1007/978-3-319-94959-8_5
Published in:
Cloud Computing and Service Science - 7th International Conference, CLOSER 2017, Revised Selected Papers

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 Springer Nature.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160110624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/using-docker-swarm-with-a-usercentric-decisionmaking-framework-for-cloud-application-migration(b90b96f1-cce3-49b3-acce-985896a9a708).html

Using Docker Swarm with a user-centric
decision-making framework for

cloud application migration

Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and
Dimitrios S. Nikolopoulos

The School of Electronics, Electrical Engineering
and Computer Science,

Queen’s University Belfast,
BT7 1NN, Belfast, United Kingdom

{ebarlaskar01,p.kilpatrick,i.Spence,
d.nikolopoulos}@qub.ac.uk

Abstract. Vendor lock-in is a major obstacle for cloud users in performing multi-
cloud deployment or inter-cloud migration, due to the lack of standardization.
Current research efforts tackling the inter-cloud migration problem are com-
monly technology-oriented with significant performance overheads. Moreover,
current studies do not provide adequate support for decision making such as
why and when inter-cloud migration should take place. We propose the architec-
ture and the problem formulation of a Multi-objective dYnamic MIgratioN Deci-
sion makER (MyMinder) framework that assists cloud users in achieving a stable
QoS performance in the post-deployment phase by helping decide on actions to
be taken as well as providing support to achieve such actions. Additionally, we
demonstrate the migration capability of MyMinder by proposing an Automated
Triggering Algorithm (ATA), which uses existing Docker Swarm technology for
application migration.

Keywords: Cloud computing, Dynamic decision making, QoS monitoring, Inter-
cloud migration, Docker Swarm

1 Introduction

With the expansion of the range of Cloud Infrastructure-as-a-Service (IaaS) providers,
efficient and accurate cloud provider (CP) selection based on user-specific requirements
has become a significant challenge for cloud IaaS users. Cloud users have to engage in
a number of complex decision-making processes which mainly stem from performance
variability amongst the CPs and also from diversified pricing policies offered by dif-
ferent CPs. The reason for such variability is the heterogeneity prevailing amongst the
CPs. In addition to this initial challenge in CP selection, there exist further challenges
after the deployment of user applications in the form of monitoring the health of the
acquired virtual machines (VMs) to verify whether the applications are performing in
a stable manner with minimum or acceptable variations. In the post-deployment phase

2 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

the major cause for performance variability is muti-tenancy problems which arise be-
cause most of the computing resources (network and disk I/O) except for CPU cores
are shared amongst several users’ instances (from here on we will use the terms VM
and instance interchangeably) running in a physical server [15] [19] [18]. Such vari-
ations due to performance degradation can be a serious problem for latency-sensitive
and I/O-bound applications. Therefore, accurate monitoring and detection methods are
required. Although cloud service monitoring tools are provided by CPs and third party
companies [30] [33] [4], these monitoring tools do not provide any decision support
on what steps a cloud user should follow if he/she realises that even their minimum
performance requirements are not met by the selected instances in the current CP.

To meet the desired performance requirements cloud users may require to migrate
their applications to new instance type with higher configuration from the same provider
or with a similar configuration from a different provider . Apart from performance,
cost can also be an important factor for certain budget-constrained users who may be
interested to migrate to different instances if the price for the current cloud service
rises or other providers offer a better price. Taking decisions on whether to migrate
applications for better performance/cost poses further decision making and technical
challenges for cloud users.

Although some researchers have tried to address the vendor lock-in issues by de-
signing inter-cloud migration techniques, they have not provided any decision-making
support. Others have focussed mainly on pre-deployment decision-making and there
has been very limited work on post-deployment phase support, and these latter do not
consider realistic migration overheads in the evaluation of their decision making frame-
work. Therefore, naive cloud users should have an efficient dynamic decision making
framework, which can help to provide guidance on the following:

1. How to detect if the current provider is not performing as required by user’s appli-
cation?

2. How to decide that the user’s application needs to be migrated from the current
provider?

3. Which alternative CP should be chosen to migrate the VM?
4. What instance type(s) will provide the best trade-off between cost and perfor-

mance?
5. Whether the migration overhead will be more significant compared to the perfor-

mance degradation in the current CP?

We envisage a system which can handle inter-cloud migration automatically along with
a decision making framework, thus delivering the best of both the worlds. In previ-
ous work [1] we introduced a Multi-objective dYnamic MIgratioN Decision makER
(MyMinder) framework designed to address the above issues. MyMinder offers a cat-
alogue of metrics based on performance, cost and type of resources, from which cloud
users can choose their requirement metrics depending on their application. Also, while
choosing these metrics users can set some internal performance requirements and their
maximum budget. MyMinder takes these requirements as inputs to carry out the mon-
itoring and computes user satisfaction values based on their applications’ performance
requirements. In the event of any QoS violation or performance degradation MyMinder
supports the user in finding alternative cloud services which can provide near-optimal

Using Docker Swarm with a user-centric decision-making framework 3

performance, and efficiently migrate the application to that service provided by either
the same or different CP. Our work in [1] presented the MyMinder architecture and
problem formulation for selecting the most suitable CP to migrate the VM along with
some initial experimental results that motivate the need for live VM migration from
one CP to another. Although we presented the performance variability results from the
bursting instance types of the selected public CPs, authors in [15] and [14] have exper-
imentally proved that even dedicated instances show performance variability.

In this study we present MyMinder’s migration module and demonstrate its use for
performing user application migration across VMs within the same CP or across differ-
ent CPs. We deploy user applications using Docker container technology [5]. Docker
container is a lightweight virtualisation technology that relies on operating system vir-
tualisation. Using operating system virtualisation, containers can be easily ported across
multiple providers and can run smoothly on top of public cloud providers’ virtual ma-
chines. These capabilities have made Docker container technology highly prevalent in
the DevOps community [5]. All these features make containers a suitable lightweight
option for cloud user applications that easily supports transferability/portability and in-
teroperability across different CPs. Considering the benefits of Docker containers and
Docker Swarm management facilities[8] (detailed discussion is in Section 2), the pro-
posed MyMinder prototype adopts the widely accepted Docker Swarm technology in
order to perform the multi-cloud deployment of user applications. However, Docker
Swarm does not provide a facility for resource provisioning policies that are required
by MyMinder. Therefore, we introduce an Automated Triggering Algorithm (ATA)
that automates VM allocation and de-allocation in the Docker Swarm cluster and inte-
grates the Swarm orchestration features as guided by the output generated by MyMin-
der’s Decision-making process. We evaluate the performance of MyMinder’s migration
process by deploying it in an OpenStack testbed, where a cluster of Docker Swarm
nodes are created using the VMs and application containers are transferred among these
Swarm nodes. This evaluation is an attempt to verify the feasibility of MyMinder’s mi-
gration process and does not include performance results from inter-cloud migration
across public clouds.

The remainder of the paper is organised as follows. Section 2 presents background
and related work in user centric live VM migration and decision making. Section 3
and Section 4 provide detail of the problem formulation and the MyMinder architec-
ture, respectively. Migration using Docker Swarm and ATA is explained in Section 5.
MyMinder migration module prototype set-up and performance evaluation of ATA are
discussed in Section 6. Section 7 concludes the paper and discusses future work.

2 Background and Related Work

With the proliferation of CPs it has become very difficult for cloud users to select the
one that best meets their needs. Once they select the perceived optimal cloud service
from a CP, cloud users encounter further challenges as they need to verify whether their
applications are performing in a stable manner with minimum or acceptable variations
after being deployed in the CP’s instances. If the user realises that their desired QoS
requirements are not met by the selected instances then they may require to migrate

4 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

their applications to a new instance type from the same provider or to an instance with
a similar configuration from a new provider. Apart from performance, cost can also
be an important factor for certain budget-constrained users who may be interested in
migrating to different instances if the price for the current cloud service rises or other
providers offer better price. Taking decisions on whether to migrate applications for
better QoS/cost poses further decision-making and technical challenges for the user. We
discuss how current work in the literature addresses these challenges in the following
sections.

2.1 Post-deployment decision making

Although researchers have proposed different decision making methods in the pre-
deployment phase [16], [3], [11], [32], [26], [24] decision making in the post-deployment
phase has not received much attention, other than the works in [25] and [17].

The authors in [25] address decision making in the post-deployment phase by
proposing a multi-stage decision-making approach. In the first stage, the available CP
instances are shortlisted on the basis of the user’s minimum QoS and cost criteria, and in
the second stage, migration cost and time are evaluated. After completing these stages,
they use the Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) [2] and ELimination Et Choix Traduisant la REalit (ELimination and Choice Ex-
pressing REality), commonly known as ELECTRE [28], to find the most appropriate
migration suggestion. They demonstrate their approach using a case study example.
However, in their evaluation, they consider the overhead of a manual migration process
where they assume that the network throughput between the source and the destination
hosts remains constant during the migration process, which is unlikely to be true in real
scenarios.

In [17] a linear integer programming model for dynamic cloud scheduling via mi-
gration of VMs across multiple clouds is proposed in the context of a cloud brokerage
system. The migration is triggered if a CP either offers a special discount or introduces a
new instance type, and also if the user needs to increase the infrastructure capacity. They
do not consider QoS violation or degradation in their migration decision. Moreover,
they performed their experiments in a simulation based environment and the metrics
that they considered for measuring migration overhead may not be feasible to obtain in
real world scenarios.

2.2 User-centric inter-cloud migration

Although cloud users should not be worried about the complexities involved in VM
migration - which is the essence of the ‘cloud philosophy’, experienced cloud users
may wish to have the flexibility that migration brings in the form of inter-cloud mi-
gration. However, there are complexities in migrating VMs from one CP to another
CP due to vendor lock-in issues. Vendor lock-in makes a cloud customer dependent on
a specific CP due to inherent dependencies on underlying cloud infrastructures. This
makes it very difficult for the customers to transfer their applications to another CP
without substantial migration costs. These dependencies are often subject to CPs spe-
cific (non-standardized) service APIs. For users to avail of the benefits of application

Using Docker Swarm with a user-centric decision-making framework 5

migration independent of the CP’s permission, recent studies proposed different inter-
cloud migration techniques which use a second layer of hardware virtualisation called
nested virtualisation [34], [12], [23]. Nested VMs are usually migrated by using an
NFS-based solution or an iSCSI-based solution. In some cases such as that of [22] the
focus is not on providing storage and network support for wide-area network (WAN)
application but rather on providing an enclosed environment for distributed applica-
tion development and debugging. In an NFS-based and iSCSI-based solution the WAN
VM migration experiences increased latencies, low bandwidth, and high internet cost
in accessing a shared disk image if the shared storage is located in a different data
centre or region. To address this issue [31] proposed Supercloud using nested virtu-
alisation with a geo-replicated image file storage that maintains the trade-off between
performance and cost. They designed an image storage that tries to propagate only
data which is frequently accessed and it proactively transmits data before migration is
triggered. However, Supercloud have some performance overhead due to that fact that
nested virtualization imposes additional performance overhead, I/O overhead and CPU
scheduling delay and also they do not provide any decision-making framework.

Other state-of-the-art techniques which allow multi-cloud deployment are Docker [5]
and Multibox containers [10]. Nowadays containers are widely used as an alternative
solution to more traditional Virtual Machines (VMs) allowing the deployment of vir-
tualised resources with comparatively limited performance impact. Unlike VMs which
run a full OS on virtual hardware, containers provide operating system level virtualisa-
tion where the associated deployments are much smaller in size because the container-
based applications share their underlying OS. Containers can easily package an appli-
cation into a single file which makes the process of application delivery and orchestra-
tion very flexible for the developers. Docker offers an elastic container platform called
Docker Swarm which integrates container hosts (also referred to as Docker nodes or
Docker Engines) into one single and higher level cluster. The Docker SwarmKit per-
forms the Docker Engine’s cluster management and builds the orchestration features
for the cloud user applications. These features include deployment, scale up/down, ter-
mination, and migration/transfer across Docker nodes. The author in [13] proposed a
control loop which is able to scale and transfer elastic container platforms (i.e. Docker
Swarm and Kubernates etc.) across different public and private cloud-service providers.
However, this control loop is just one phase of a self-adaptive auto-scaling MAPE loops
(monitoring, analysis, planning, execution) and does not include the monitoring, analy-
sis and planning phases.

In an extensive discussion the author in [13] points out the four main benefits of
using the elastic container platforms (like Docker Swarm, Google’s Kubernetes, etc.),
which are summarised below:

1. One logical cluster can be formed by integrating single container nodes (hosts),
where the hosts are within a single CP in order to help in complexity management
of the deployed application.

2. This logical cluster can be extended across different CPs.
3. Different CP container nodes can be accessed as one single cluster which will solve

the vendor lock-in problem.

6 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

4. These elastic container platforms have self-healing capabilities as they are designed
with failover mechanisms. Their auto-restart, auto-replication, and auto scaling fea-
tures help in the event of node failure or any process failure.

Considering the benefits of lightweight virtualization and evaluating the complexi-
ties/performance overhead of the existing inter-cloud migration techniques like nested
virtualisation[12], the proposed MyMinder prototype adopts the widely accepted Docker
Swarm container technology [8] in order to perform the multi-cloud deployment of user
applications. However, Docker Swarm does not provide the facility for resource provi-
sioning policies that are required by MyMinder. Therefore, we introduce an Automated
Triggering Algorithm (ATA) that automates Docker Swarm cluster management and
orchestration features based on the output generated by MyMinder’s Decision-making
process.

3 Problem Formulation

As presented in [1] the MyMinder framework (Figure 1) can assist cloud users in
achieving a stable QoS performance in the post-deployment phase by helping decide
on actions to be taken as well as providing support to achieve such actions. MyMin-
der can monitor the performance of the deployed users’ applications and provide the
required measurements to determine the satisfaction level of the user’s requirements
described in their requests. In the event of QoS violation or degradation in the current
CP’s service, MyMinder can trigger a migration decision after identifying a suitable
CP to which the overhead of migration and the chances of QoS violation are the least.
For performing these actions MyMinder needs to evaluate the satisfaction values based
on the QoS/performance requirements specified in the user’s requests. In the following
subsections we illustrate user requirements, details of the CP instance type model, and
the related measures [1].

3.1 User Requirements

A user sends a request describing his/her resource requirements and QoS/performance
requirements. This request is represented by a requirement vector : r = [r1,r2,,r j]
where r j specifies the jth(j = 1,2, ...J) requirement of the user that has to be satisfied
by the selected CP and these requirements may include the following information crite-
ria [1]: 1) Resource criteria: amount of resources required for running user’s application
(e.g. memory, storage, CPU etc.). 2)Budget constraint: prices of the instances should
be within the cost limit of the user. 3)QoS/performance criteria: Quality of service or
performance requirements of user’s application that has to be fulfilled (e.g. desired and
maximum execution time, response time, throughput etc.) 4)Migration overhead con-
straint: cost of migration and performance overhead of migration should be acceptable.

Here, criteria 1 and 2 will be evaluated before deploying the application and only
if these criteria are met then the application will be deployed and after deploying the
application criteria 3 will be measured using a satisfaction value. The criteria 4 depends
on the type of inter-cloud migration technology being used. The details of migration
overhead measurement is discussed in section 5

Using Docker Swarm with a user-centric decision-making framework 7

3.2 CP Instance Types Model

Instances of different CPs differ in performance depending on their characteristics such
as VM instance size, hardware infrastructure, VM placement policies used for load bal-
ancing or power optimisation etc. Factors affecting the QoS obtained from a particular
instance type of a CP are typically not known by the user and so the QoS data of a given
CP are not available in advance. It is possible to measure the QoS parameters only after
the instance is deployed and these measurements may be evaluated against the require-
ments specified in the user request by determining the runtime performances such as
execution time of applications, instructions committed per second (IPS), throughput
etc. These measurements constitute the evaluation of the extent to which the QoS/ per-
formance requirements specified in the user’s request r j are satisfied. The satisfaction
level of user requirement r j is denoted by s j ∈ [0,1], where s j = 1 if the requirement r j
is fully satisfied, otherwise 0 6 s j < 1 [1].

If a user provides the requirement vector ri along with the desired QoS requirement
and acceptable maximum variability in the QoS, then standard deviation (SD) is used
as a measure of QoS performance variability. The closer the SD is to 0, the greater
is the uniformity of performance data to the desired value (rQd(r j)) and greater is the
satisfaction value. The closer the SD is to 1, the greater is the variability of performance
data to the desired value and smaller is the satisfaction value. Hence, the satisfaction
value is given as follows [1]:

s j = 1−SD (1)

SD =

√
1

N−1

N

∑
i=1

(Qa(r j)−M(r j))2 (2)

M(r j) =
1

N−1

N

∑
i=1

(Qa(r j)) (3)

where,
Qa(r j)=Actual QoS value obtained after deploying the user’s application (e.g. actual
execution time, response time, etc.). These values are in normalised form.
M(r j)= The arithmetic mean of Qa(r j) .
rQd(r j)= Desired QoS requirements of the user’s applications (e.g. desired execution
time, response time, etc.) for the QoS requirement r j. This value is used as a standard
value against which QoS variability is compared.
N= total number of measurements.

3.3 Utility Function

The utility function f (r) for each user request r j is a linear combination of the satis-
faction value s j and the associated weights w j multiplied by an indicator function φ(r).
The weight for each of the user requests indicates its importance to the user and the
indicator function sets the satisfaction level to zero when the request is not satisfied. In
the case of satisfied requests the value of the indicator function is selected such that:

8 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

φ(r) = (∑ j w j)
−1 normalizes the weight vector and limit the maximum possible value

of f (r) to 1 [1].
Thus, the utility function is defined as [1]:

f (r) = φ(r)
J

∑
n=1

w js j (4)

where

φ(r) =

{
0, if QoS not met.
(∑ j w j)

−1, otherwise.
(5)

If all the requirements of a user are fully satisfied then f (r) = 1; otherwise if the
requirements are partially satisfied then the value of f (r) will vary with the amount of
requirements being satisfied by a particular instance type of a CP. To demonstrate this
lets consider one simple example [1]:

Let r = [r1,r2,,r j] be the user’s requirement vector while making his/her initial
request. The request contains the user’s requirements constraints and the type of the
requirement attributes are presented below:

1) rR: Requested amount of resources required for running the user’s application
(e.g. memory, storage, CPU etc.) where rR ∈ micro,small,medium, large,xlarge.

2) rB: Prices of the instances specified in the user’s budget where rB ∈Maxprice

3) rQd : Desired QoS requirements of the user’s applications (e.g. desired execution
time, response time, IPS, etc.) where rQd ∈ Dval .

4) rMo: Maximum migration overhead a user can accept where rM ∈Overhead o f migration.
The value of the satisfaction vector is calculated with the help of monitoring and

detection modules (see Section 4) which is given by ST
i (Equation 1). We assume that

for a user’s request with a requirement vector ri=[micro, 200s, 400s, £5/hr, 30%], the
satisfaction vector is calculated as [1]:

ST = [1,0,1,1] (6)

For simplifying the example we did not consider partial satisfaction values, and
here 0 denotes fully satisfied and 1 denotes not satisfied. Therefore the utility value is
calculated as follows if the weight vector is W T = [0.1,0.1,0.1,0.3] [1]:

f (r) =

{
0, if QoS not met.
φ(r)W T ST = 0.5, otherwise.

(7)

The induction function’s value is considered to be 1 in this case and also the utility
function’s value did not exceed 0.5 even though more than half of the requirements
were fully satisfied.

These utility values will be used to predict the QoS for each CP’s instance types
model [1].

Using Docker Swarm with a user-centric decision-making framework 9

4 MyMinder Architecture

In this section we describe the architecture of MyMinder [1] that will implement the
problem formulation. Figure 1 [1] depicts the MyMinder architecture, which includes
modules for: monitoring, detection, prediction, decision making and migration. We de-
scribe each of these modules in the following subsections:

Fig. 1: MyMinder Architecture

4.1 Monitoring Module

The monitoring module is designed for monitoring the QoS performance of the user’s
application containers deployed in the VM. The performance data are collected by lo-
cal monitoring agents deployed in each user’s VM. The local monitoring agents send

10 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

the collected data periodically to the global monitoring component in the monitoring
module and then finally the data are stored in the QoS performance repository. Also,
the monitoring module maintains another repository, which stores information regard-
ing the list of available VMs from different CPs and their prices. This information is
collected by CP profiling components.

4.2 Detection Module

The detection module is responsible for detecting any QoS violation or degradation in
the performance. The performance data are retrieved from the QoS performance repos-
itory. It uses a window-based violation detection technique [20] to generate QoS viola-
tion or performance degradation alarms based on the user’s QoS requirement constraints
and the user can decide the size of the window. This module generates QoS violation
alarms if the current performance value falls outside the acceptable range as defined
by the QoS statement. It also can be tuned to generate a degradation alarm if the per-
formance moves to and stays within a defined distance of the QoS limits throughout a
defined period. Degradation alarms may be used to predict likely breach of QoS and so
may contribute to preventative migration. The module reports QoS violation and degra-
dation alarms on a continuous basis by sending them to the decision making module.

4.3 Prediction Module

The objective of the prediction module is to help identify a suitable CP instance to
which the user’s application may be migrated. Based on the user’s QoS satisfaction
values (measured by the detection module) and the user’s requirements, the prediction
module calculates the utility function (see Equation 4) for each of the available CP
instances. The satisfaction values for the current as well as previously deployed CP in-
stances by the same user or different users are stored with their corresponding utility
values. These perceived utility values are used to train the prediction models for each
of the CP instances using machine learning techniques. Thus, the prediction models
are capable of predicting the QoS satisfaction values in the destination CP for the new
user’s instance which needs migration. Further, the prediction module predicts appli-
cation migration/transfer time based on the analysis of the historical migration time
data (stored in the monitoring module) factoring in similar type of applications and also
the pair of CPs involved in the migration. The measurements of the migration time are
previously obtained by ATA (see Section 5) in the migration module.

4.4 Decision-making Module

The decision making module receives alarms from the detection module if any QoS
violation or degradation is detected, and also it takes utility function values as input
from the prediction module. It then checks with user requirement constraints to know
whether the user wants to be informed before reaching the minimum requirement lev-
els, i.e. performance degradation alert or to be informed if the minimum requirements
are not met, i.e. QoS violation alert. After confirming user requirements, this module

Using Docker Swarm with a user-centric decision-making framework 11

verifies whether the instances with different utility values provided by the prediction
module are currently available for selection. If the instances are available then it eval-
uates the migration overhead of each of the instances and finally ranks the instances
based on their utility value and migration overhead values. The instance with high-
est utility value and lowest migration overhead is chosen for migration. The migration
overhead will depend on the type of inter-cloud migration technique being used. The
migration overhead can be defined either in terms of monetary loss or performance loss
and it usually denotes the service downtime penalty per time unit.

4.5 Migration Module

The migration module (Figure 2) takes the decision generated by the decision-making
module as its input for transferring/migrating user applications to the selected VM of
the same CP or different CP. Once the migration module completes the task of applica-
tion transfer/migration, it sends the migration overhead measurements to the monitoring
module, which stores them as historical data for later use by the predication module.
We adopt Docker containers to deploy user applications in the VMs of the selected
CPs and Docker Swarm technology [8] to enable the transferability and portability fea-
tures of Docker containers. We introduce an Automated Triggering Algorithm (ATA)
that takes the output generated by the Decision-making module and makes use of the
Docker Swarm cluster management and orchestration features (e.g. auto-placement,
auto-restart, auto-replication and auto-scaling) in order to meet MyMinder’s migration
requirements. For example, if the decision making module takes a decision to migrate
the user application from CP1 to CP2, ATA firstly adds the selected VMs of CP2 to
the Swarm cluster and secondly, ATA de-allocates the VMs of CP1. The Swarm cluster
immediately identifies this de-allocation of VMs as node failures and then using its self-
healing mechanism it auto-restarts the lost application containers in CP2. Although this
action is just a rescheduling mechanism of the Docker Swarm platform due to the node
failures, this appears to be a migration from CP1 to CP2 at real-time from a cloud user
perspective. The following section explains the transferability/migration operations in
details.

5 Migration using Docker Swarm

As stated earlier, by proposing MyMinder we do not aim to design a new inter-cloud
migration technique, but rather we aim to design a framework for cloud users which
can take correct decisions on when and where to migrate their applications in case of
QoS violations and degradations. In order to demonstrate the capability of MyMinder
in performing migrations, we prototype the migration using the existing Docker Swarm
technology in a lab-based OpenStack cloud.

12 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

Fig. 2: MyMinder Migration Module

Fig. 3: MyMinder migration scenario 1 (migration within a single cloud provider (CP1)): (a) start
new VMs, (b) allocate new VMs to Swarm Cluster, (c) de-allocate old VMs from Swarm cluster,
(d) terminate the old VMs

Using Docker Swarm with a user-centric decision-making framework 13

In addition to using the Docker Swarm orchestration features we need to perform
allocation and de-allocation of resources (VMs) to/from the Docker Swarm cluster in
order to complete the migration operation. Specifically, we need to allocate new VMs
(to which the applications need to be migrated) from the same CP or a different CP
in the Swarm cluster and de-allocate current VMs (which failed to meet users’s satis-
faction) from the Swarm cluster. Figure 3 shows the migration scenario within a single
CP, whereas Figure 4 depicts inter-cloud migration scenario. However, adding VMs to
a Swarm cluster from multiple CPs is challenging due to the different approaches fol-
lowed by different CPs in providing access to their virtual resources. As reported in [13]
the public CPs organize their IaaS by using mainly two approaches which are identi-
fied as project-based and region-based service deliveries. Any multi-cloud deployment
must consider the occurrence of both approaches in parallel. Therefore, we introduce
an Automated Triggering Algorithm (ATA) to merge different approaches of different
CPs and allocate/de-allocate VMs to Swarm cluster. To connect the Swarm cluster with
a specific public CP it is required to have a configuration file for storing details used
to communicate with the CPs. This can include authentication credentials and driver-
specific configuration options. In this paper, the focus is on multiple VMs from a single
private OpenStack cloud as depicted in figure 3, so the discussions on authentication
credentials and driver-specific configurations are not included. Deployment in multiple
public CPs will be considered in our future work once the decision-making module is
functional; readers interested in details of multi-cloud deployment can refer to [13]. We
describe MyMinder’s migration operation using ATA in the following subsection.

14 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

Fig. 4: MyMinder migration scenario 2 (migration across cloud providers (CP1 to CP2)): (a) start
new VMs in CP2, (b) allocate new VMs to Swarm Cluster, (c) de-allocate old VMs from Swarm
cluster, (d) terminate the old VMs from existing cloud provider (CP1)

5.1 Automated Triggering Algorithm (ATA)

This section describes MyMinder’s migration operation using ATA, which includes four
stages. We present the pseudocode of the algorithm in Algorithm 1 and explain the
stages as follows.

Using Docker Swarm with a user-centric decision-making framework 15

Algorithm 1
Automated Triggering Algorithm

input:

V Mnew : list of N new VMs (name and flavour of the VMs) to be allocated to Swarm cluster
V Mold : list of N old VMs (name and flavour of the VMs) to be de-allocated from Swarm

cluster
CPsel : selected CP where the new VMs need to be allocated
Cred : credential file that includes the authentication credentials for the new VMs

Driver : IaaS driver for the selected CP
output: Moverhead - total application migration overhead, which is calculated as the summation

of VM allocation, VM de-allocation, and application transfer time.
explanation: token = Swarm cluster joining token, one for master node and one for worker

node,

1: for each V Mnewi where i=1,...,N do
2: ssh to V Mnewi
3: start VM(V Mnewi, Cred, Driver) in the CPsel
4: end for
5: allocation start time = current time()
6: for each V Mnewi where i=1,...,N do
7: if (V Mnewi is INITIAL VM) then
8: install docker engine()
9: token[master/worker] = swarm init()

10: else
11: allocate VM(token[master/worker])
12: end if
13: end for
14: allocation end time = current time()
15: allocation time = allocation end time - allocation start time
16: de-allocation start time = current time()
17: for each V Mold i where i=1,...,N do
18: de-allocate VM(SwarmLeave[master/worker])
19: end for
20: de-allocation end time = current time()
21: de-allocation time = de-allocation end time - de-allocation start time
22: transfer start time = current time()
23: transfer application (from V Mold to V Mnew) . this is performed by Swarm cluster’s

auto-restart feature
24: transfer end time = current time()
25: transfer time = transfer end time - transfer start time
26: for each V Mold i where i=1,...,N do
27: terminate VM(V Mold i, Cred, Driver) in the CPexisting
28: end for
29: Moverhead = allocation time + de-allocation time + transfer time
30: return Moverhead

1. Resoruce (VM) provisioning: ATA runs a configuration file for provisioning new
VMs (as decided by the decision making module) either from the same CP (as
shown in figure 3(a)) or from a different CP (as shown in figure 4(a)). This config-

16 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

uration file includes the detailed information about the VMs (e.g. flavor and name)
along with the authentication credentials and IaaS drivers. In this stage all the re-
quested VMs are started (pseudocode lines 1-4). This installation is done by run-
ning SSH-based scripts. ATA starts the second stage only when all the requested
VMs are running successfully and all the security groups are ready.

2. VM allocation to Swarm cluster: ATA installs Docker Engine in the VMs (pseu-
docode line 8) and allocates these VMs to the Swarm cluster (as shown in fig-
ures 3(b) and 4(b)) (pseudocode line 11). During the allocation process their roles
(master/ worker) are defined by calling the CP specific platform driver [6]. In
Docker Swarm platform nodes acts as either masters or workers. The master per-
forms all scheduling tasks (auto-restart, auto-scale etc.) and the workers run the
application containers. Therefore, the VMs which are master nodes are added first
and then the worker nodes. If any of joining fails then ATA again runs the joining
procedure until all the requested nodes are successfully added to the Swarm cluster.

3. VM de-allocation from Swarm cluster: To reach the desired state (as given by the
output of the decision-making module) the user application containers need to be
rescheduled to the newly added Swarm nodes (new VMs). This is achieved by de-
allocating the current Swarm nodes (old VMs) (as shown in figures 3(c) and 4(c))
(pseudocode lines 17-19) which in turn triggers the Swarm master to auto-restart
the application containers in the available nodes (new VMs). Thus, in this stage
all the old VMs are de-allocated from the Swarm cluster. After the de-allocation
procedure, the Swarm scheduler recognises this as node failure and then using its
auto-rescheduling features it automatically transfers all the application containers
to the newly added Swarm nodes (new VMs) (pseudocode line 23).

4. Resource (VM) termination: After the containers are auto-restarted in the new
Swarm nodes, ATA terminates the old VMs (as shown in figures 3(d) and 4(d))
and also deletes the old security groups (pseudocode lines 26-28). Finally, the total
application migration overhead is calculated by adding the time required for VM
allocation, VM de-allocation, and application transfer (pseudocode line 29).

6 Experimental Evaluation

In this section we evaluate the performance of MyMinder’s migration operation while
migrating user applications from one VM to another VM in a lab-based OpenStack
cloud. As the decision making module is not yet fully functional, we trigger the migra-
tion module manually by requesting migration of a user application from one VM to
another VM.

6.1 Experimental Set-up

We built a multi-node Swarm cluster in an OpenStack cloud test-bed which consists of
four compute nodes. All the compute nodes are Dell PowerEdge R420 servers which
run CentOS 6.6 and have 6 cores, 2-way hyper-threaded, clocked at 2.20 GHz with
12GB DRAM clocked at 1600 MHz. The nodes include two 7.2K RPM hard drives
with 1TB of SATA in RAID 0 and a single 1GBE port. KVM is the default hypervisor
of the compute nodes.

Using Docker Swarm with a user-centric decision-making framework 17

To measure the application transfer time we run a simple voting application [29]
from Docker [7] that is representative of real world microservice cloud applications.
The application has several microservices. The voting application is composed of: (i)
Python web app (vote-app) which allows users to vote between two options (cats or
dogs), (ii) Redis queue which collects new votes, (iii) .NET worker which consumes
votes and stores them in a database, (iv) Postgres database backed by a Docker volume
(volume is created in the Swarm manager node), and (v) Node.js webapp (results-app)
which shows the results of the voting. The services are deployed in the Swarm with cer-
tain constraints. The Python web app and the redis are deployed with two replicas and
with a restart policy which restarts the containers on node failures. The Node.js webapp
is also deployed with node failure restart policy and with one replica. But the Postgres
database and the .NET worker are deployed with a placement constraint which starts
them on the Swarm manager node only and without any restart policy. The database
is stored in the host machine (Swarm manager node) which provides data persistence
for the application. Therefore, in our experiments the Swarm manager node is not de-
allocated (also referred to as drained) as the Docker volume is attached to this VM. We
have put this placement constraint because if we deploy the Postgres container in one
of the worker nodes which is drained later then losing the data of the Postgres container
would cause the application to fail.

However, this approach does not allow migration of application containers with at-
tached databases: to perform such migrations Docker Swarm requires additional storage
plugins. Open-source container data volume orchestrators such as Flocker [9], Port-
worx [21] and REX-RAY [27] can be used for migrating stateful Dockerized applica-
tions. Unlike a Docker data volume which is tied to a single server, the data volume
provided by these storage drivers is portable and can be used with any container in the
Swarm cluster. Flocker can only be used within a single data centre whereas, Portworx
and REX-RAY can migrate data across CPs. In our future work we will consider state-
ful application (databases) migration across CPs by using the storage drivers such as
Portworx or REX-RAY.

6.2 Experimental Results and Discussion

MyMinder’s migration operation is performed by Docker Swarm and with the help
of ATA allocation and de-allocation of VMs (Swarm nodes) to/from Docker Swarm
cluster. We examine the migration performance by measuring the allocation and de-
allocation time of the Swarm nodes and the application transfer time taken by Docker
Swarm node manager (scheduler). In order to collect these measurements we initially
set the Swarm cluster with four VMs allocated as the Swarm nodes where one of the
VMs acts as the Swarm master node and rest of the three VMs act as Swarm worker
nodes. All four VMs are ‘medium’ flavour instances from OpenStack. Later we add
three new ‘large’ flavour VMs (as Swarm worker nodes) to the Swarm cluster and re-
move the three ‘medium’ flavour VMs (Swarm worker nodes) one by one. The list of
the VMs for addition and deletion are stored in a configuration file which is sent to the
ATA to trigger the Swarm cluster’s node allocation and de-allocation steps.

In the Figure 5, we present the time taken to allocate new VMs (the new ”large”
flavour VMs as Swarm worker nodes) to the existing Swarm cluster, the time taken to

18 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

de-allocate the existing VMs (the ”medium” flavour VMs running as Swarm worker
nodes) from the Swarm cluster, and the application transfer time from one VM to an-
other VM which is performed by the Docker Swarm. We present the averaged values
of the observed measurements, where the allocation, de-allocation, and transfer were
performed 20 times. The allocation and de-allocation time are almost the same every
time but the the transfer time showed some variation in a 10 seconds range when we
repeated the transfer procedure. As shown in Figure 5 the time taken to allocate one
Swarm worker node is less than 1 second and to allocate all the three worker nodes
together is between 1 to 3 seconds. The de-allocation time is between 1 to 2 seconds
to remove 1 worker node and between 3 to 6 seconds to remove all three worker nodes
one by one. De-allocation takes longer than the allocation time because the nodes are
removed sequentially to avoid over stressing the Swarm master in rescheduling the ap-
plication containers, whereas allocation is done in parallel as the Swarm master does
not assign any existing container on the newly allocated nodes until any new applica-
tion is deployed or any existing node is failed [13]. Importantly, we observe that once
the ‘medium’ flavour VMs are de-allocated from the Swarm cluster, the application
containers running on those VMs are rescheduled to the new VMs (the ‘large’ flavour
VMs). The application reschedule/transfer time is around 20 seconds for a single node
and it is around 50 seconds for the three nodes, which is shown in the Figure 5. The
reschedule/transfer is performed using Docker Swarm’s auto-restart feature. Since the
de-allocation is performed sequentially, the Swarm scheduler performs the reschedul-
ing of the application containers in the same order in which the their hosted nodes are
de-allocated. We observe that during the transfer period when the Swarm node with the
results-app (Node.js) containers is drained we are not able to browse the results of the
poll until the container is rescheduled and restarted.

If we add up the time taken for allocation, de-allocation, and application resched-
ule/transfer, we get the overall migration time as observed in the Figure 5, which is
around 23 seconds if the migration requires a single node allocation/de-allocation and
around 59 seconds if the migration requires multi-node allocation/de-allocation. These
migration overhead results give us an understanding of the effectiveness of the proposed
ATA in migrating applications across VMs in an OpenStack cloud environment and we
do not intend it to be compared with the inter-cloud migration performance across pub-
lic clouds. We performed the migration in a private cloud environment in order to build
the proof of concept of the migration functionality of MyMinder. In future, we will
carry out further experiments on evaluating ATA in migrating cloud application across
public CPs in order to build the proof of concept of the framework as a whole.

7 Conclusion and Future Work

In this paper we present the architecture of MyMinder [1], a post-deployment decision
making framework, which can detect QoS violation and performance degradation and
dynamically decide whether a user’s VM requires migration from the current provider
to another provider. Also, we present the problem formulation [1] for selecting the most
suitable CP in the case that the VM requires migration from the current provider. As an
extension, we present MyMinder’s migration module and demonstrate its feasibility in

Using Docker Swarm with a user-centric decision-making framework 19

0

20

40

60

1 3
Number of worker nodes

T
im

e
 (

S
e
c
o
n
d
s
)

Allocation

Deallocation

Transfer

Fig. 5: Total application migration time as summation of VM allocation, de-allocation, and trans-
fer time

performing user application migration across VMs from either the same CP or different
CP. The MyMinder migration prototype adopts the widely accepted Docker Swarm
technology. To merge and automate the migration steps, we propose an Automated
Triggering Algorithm (ATA) that performs VM allocation and de-allocation to/from
the Docker Swarm cluster in addition to the core Docker Swarm auto-rescheduling
feature. We evaluate the performance of MyMinder’s migration process by deploying
it in a lab-based OpenStack testbed, where a cluster of Docker Swarm nodes is created
using the VMs and application containers are transferred amongst the Swarm nodes.
The experimental evaluation demonstrates that we can migrate user applications from
one VM to another VM within a single CP without depending on the CP and with
minimum migration overhead. This evaluation is an attempt to verify the feasibility
of MyMinder’s migration process and does not include performance results from inter-
cloud migration across public clouds. In future, we consider to evaluate the performance
of the proposed ATA in migrating applications across public CPs once the monitoring,
detection, prediction, and decision-making modules are fully functional.

References

1. Barlaskar, E., Kilpatrick, P., Spence, I., Nikolopoulos, D.S.: Myminder: A user-centric de-
cision making framework for intercloud migration. In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science. pp. 588–595 (2017)

2. Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M., Ignatius, J.: Review: A state-
of the-art survey of topsis applications. Expert Syst. Appl. 39(17), 13051–13069 (Dec 2012),
http://dx.doi.org/10.1016/j.eswa.2012.05.056

3. Brock, M., Goscinski, A.: Toward ease of discovery, selection and use of clusters within a
cloud. In: 2010 IEEE 3rd International Conference on Cloud Computing. pp. 289–296 (July
2010)

http://dx.doi.org/10.1016/j.eswa.2012.05.056

20 Esha Barlaskar, Peter Kilpatrick, Ivor Spence, and Dimitrios S. Nikolopoulos

4. Ciuffoletti, A.: Application level interface for a cloud monitoring service. Computer Stan-
dards and Interfaces 46, 15 – 22 (2016), http://www.sciencedirect.com/science/
article/pii/S0920548916000027

5. Docker: Docker Containers. https://www.docker.com/ (2013), [Online; accessed 25-
October-2016]

6. Docker: Docker Machine Drivers . https://docs.docker.com/machine/drivers/
(2017), [Online; accessed 1-August-2017]

7. Docker: Try Swarm at scale . https://docs.docker.com/swarm/swarm_at_scale/
about/ (2017), [Online; accessed 2-August-2017]

8. Docker, S.: Docker Swarm . https://docs.docker.com/engine/swarm/ (2017), [Online;
accessed 29-May-2017]

9. Flocker: FLOCKER. https://clusterhq.com/flocker/introduction/ (2016), [On-
line; accessed 29-December-2016]

10. Hadley, J., Elkhatib, Y., Blair, G., Roedig, U.: MultiBox: Lightweight Containers for Vendor-
Independent Multi-cloud Deployments, pp. 79–90. Springer International Publishing, Cham
(2015), http://dx.doi.org/10.1007/978-3-319-25043-4_8

11. Han, S.M., Hassan, M.M., Yoon, C.W., Huh, E.N.: Efficient service recommendation sys-
tem for cloud computing market. In: Proceedings of the 2Nd International Conference on
Interaction Sciences: Information Technology, Culture and Human. pp. 839–845. ICIS ’09,
ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1655925.1656078

12. Jia, Q., Shen, Z., Song, W., van Renesse, R., Weatherspoon, H.: Supercloud: Opportunities
and challenges. SIGOPS Oper. Syst. Rev. 49(1), 137–141 (Jan 2015), http://doi.acm.
org/10.1145/2723872.2723892

13. Kratzke, N.: Smuggling multi-cloud support into cloud-native applications using elastic con-
tainer platforms. In: Proceedings of the 7th International Conference on Cloud Computing
and Services Science - Volume 1: CLOSER,. pp. 57–70. INSTICC, SciTePress (2017)

14. Kratzke, N., Quint, P.C.: About automatic benchmarking of iaas cloud service providers for
a world of container clusters. Journal of Cloud Computing Research 1(1), 16–34 (2015)

15. Leitner, P., Cito, J.: Patterns in the chaos—a study of performance variation and
predictability in public iaas clouds. ACM Trans. Internet Technol. 16(3), 15:1–15:23 (Apr
2016), http://doi.acm.org/10.1145/2885497

16. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: Comparing public cloud providers. In:
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. pp. 1–14.
IMC ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.1145/1879141.
1879143

17. Li, W., Tordsson, J., Elmroth, E.: Modeling for dynamic cloud scheduling via migration of
virtual machines. In: Proceedings of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science. pp. 163–171. CLOUDCOM ’11, IEEE Computer So-
ciety, Washington, DC, USA (2011), https://doi.org/10.1109/CloudCom.2011.31

18. Li, Z., OBrien, L., Zhang, H.: Ceem: A practical methodology for cloud services evaluation.
In: 2013 IEEE Ninth World Congress on Services. pp. 44–51 (June 2013)

19. Li, Z., O’Brien, L., Zhang, H., Cai, R.: On a catalogue of metrics for evaluating commercial
cloud services. In: 2012 ACM/IEEE 13th International Conference on Grid Computing. pp.
164–173 (Sept 2012)

20. Meng, S., Liu, L.: Enhanced monitoring-as-a-service for effective cloud management. IEEE
Transactions on Computers 62(9), 1705–1720 (Sept 2013)

21. PORTWORX: The Solution for Stateful Containers in Production. Designed for DevOps.
https://portworx.com/ (2017), [Online; accessed 16-August-2017]

22. Ravello: Ravello Systems: Virtual Labs Using Nested Virtualization. https://www.
ravellosystems.com (2016), [Online; accessed 15 November-2016]

http://www.sciencedirect.com/science/article/pii/S0920548916000027
http://www.sciencedirect.com/science/article/pii/S0920548916000027
https://www.docker.com/
https://docs.docker.com/machine/drivers/
https://docs.docker.com/swarm/swarm_at_scale/about/
https://docs.docker.com/swarm/swarm_at_scale/about/
https://docs.docker.com/engine/swarm/
https://clusterhq.com/flocker/introduction/
http://dx.doi.org/10.1007/978-3-319-25043-4_8
http://doi.acm.org/10.1145/1655925.1656078
http://doi.acm.org/10.1145/2723872.2723892
http://doi.acm.org/10.1145/2723872.2723892
http://doi.acm.org/10.1145/2885497
http://doi.acm.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
https://doi.org/10.1109/CloudCom.2011.31
https://portworx.com/
https://www.ravellosystems.com
https://www.ravellosystems.com

Using Docker Swarm with a user-centric decision-making framework 21

23. Razavi, K., Ion, A., Tato, G., Jeong, K., Figueiredo, R., Pierre, G., Kielmann, T.: Kangaroo:
A tenant-centric software-defined cloud infrastructure. In: Cloud Engineering (IC2E), 2015
IEEE International Conference on. pp. 106–115 (March 2015)

24. u. Rehman, Z., Hussain, O.K., Hussain, F.K.: Multi-criteria iaas service selection based on
qos history. In: 2013 IEEE 27th International Conference on Advanced Information Net-
working and Applications (AINA). pp. 1129–1135 (March 2013)

25. ur Rehman, Z., Hussain, O.K., Chang, E., Dillon, T.: Decision-making framework for
user-based inter-cloud service migration. Electronic Commerce Research and Applica-
tions 14(6), 523 – 531 (2015), http://www.sciencedirect.com/science/article/
pii/S1567422315000575

26. Rehman, Z.U., Hussain, O.K., Hussain, F.K.: Parallel cloud service selection and ranking
based on qos history. Int. J. Parallel Program. 42(5), 820–852 (Oct 2014), http://dx.doi.
org/10.1007/s10766-013-0276-3

27. REX-RAY: Rex-ray container storage management . http://rexray.readthedocs.io/
en/stable/ (2017), [Online; accessed 16-August-2017]

28. Roy, B.: The outranking approach and the foundations of electre methods. Theory and Deci-
sion 31(1), 49–73 (1991), http://dx.doi.org/10.1007/BF00134132

29. samples, D.: Voting Application . https://github.com/dockersamples/
example-voting-app (2017), [Online; accessed 12-August-2017]

30. Scheuner, J., Leitner, P., Cito, J., Gall, H.C.: Cloud workbench - infrastructure-as-code based
cloud benchmarking. CoRR abs/1408.4565 (2014), http://arxiv.org/abs/1408.4565

31. Shen, Z., Jia, Q., Sela, G.E., Rainero, B., Song, W., van Renesse, R., Weatherspoon, H.:
Follow the sun through the clouds: Application migration for geographically shifting work-
loads. In: Proceedings of the Seventh ACM Symposium on Cloud Computing. pp. 141–154.
SoCC ’16, ACM, New York, NY, USA (2016), http://doi.acm.org/10.1145/2987550.
2987561

32. Silas, S., Rajsingh, E.B., Ezra, K.: Efficient service selection middleware using electre
methodology for cloud environments. Information Technology Journal 11(7), 868 (2012)

33. Silva-Lepe, I., Subramanian, R., Rouvellou, I., Mikalsen, T., Diament, J., Iyengar, A.:
SOAlive Service Catalog: A Simplified Approach to Describing, Discovering and Compos-
ing Situational Enterprise Services, pp. 422–437. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2008), http://dx.doi.org/10.1007/978-3-540-89652-4_32

34. Williams, D., Jamjoom, H., Weatherspoon, H.: The xen-blanket: Virtualize once, run ev-
erywhere. In: Proceedings of the 7th ACM European Conference on Computer Systems.
pp. 113–126. EuroSys ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.
1145/2168836.2168849

http://www.sciencedirect.com/science/article/pii/S1567422315000575
http://www.sciencedirect.com/science/article/pii/S1567422315000575
http://dx.doi.org/10.1007/s10766-013-0276-3
http://dx.doi.org/10.1007/s10766-013-0276-3
http://rexray.readthedocs.io/en/stable/
http://rexray.readthedocs.io/en/stable/
http://dx.doi.org/10.1007/BF00134132
https://github.com/dockersamples/example-voting-app
https://github.com/dockersamples/example-voting-app
http://arxiv.org/abs/1408.4565
http://doi.acm.org/10.1145/2987550.2987561
http://doi.acm.org/10.1145/2987550.2987561
http://dx.doi.org/10.1007/978-3-540-89652-4_32
http://doi.acm.org/10.1145/2168836.2168849
http://doi.acm.org/10.1145/2168836.2168849

	Lecture Notes in Computer Science
	Introduction
	Background and Related Work
	Post-deployment decision making
	User-centric inter-cloud migration

	Problem Formulation
	User Requirements
	 CP Instance Types Model
	Utility Function

	MyMinder Architecture
	 Monitoring Module
	Detection Module
	Prediction Module
	Decision-making Module
	Migration Module

	Migration using Docker Swarm
	Automated Triggering Algorithm (ATA)

	Experimental Evaluation
	Experimental Set-up
	Experimental Results and Discussion

	Conclusion and Future Work

