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Jesús Mart́ınez del Rincon j.martinez-del-rincon@qub.ac.uk

Queen’s University Belfast, Northern Ireland, UK

Cassio P. de Campos c.decampos@uu.nl

Utrecht University, The Netherlands

Editor: PGM 2018

Abstract

Sum-product networks are an increasingly popular family of probabilistic graphical models
for which marginal inference can be performed in polynomial time. They have been shown
to achieve state-of-the-art performance in several tasks. When learning sum-product net-
works from scarce data, the obtained model may be prone to robustness issues. In par-
ticular, small variations of parameters could lead to different conclusions. We discuss the
characteristics of sum-product networks as classifiers and study the robustness of them
with respect to their parameters. Using a robustness measure to identify (possibly) unreli-
able decisions, we build a hierarchical approach where the classification task is deferred to
another model if the outcome is deemed unreliable. We apply this approach on benchmark
classification tasks and experiments show that the robustness measure can be a meaningful
manner to improve classification accuracy.

Keywords: Sum-product networks; sensitivity analysis; robustness; classification.

1. Introduction

Probabilistic graphical models allow for the compact specification of uncertain knowledge
through a graphical language which facilitates elicitation, improves interpretability, and
achieves good inferential performance (Koller and Friedman, 2009; Darwiche, 2009). In
spite of that, many independences are not captured (Chavira and Darwiche, 2005; Zhang
and Poole, 1996). Sum-Product Networks (spns) are a class of probabilistic graphical mod-
els that allow for the explicit representation of context-specific independence (Poon and
Domingos, 2011). They are popular due to their ability to represent complex distributions
while retaining efficient marginal inference (Nath and Domingos, 2016; Rathke et al., 2017).
The internal nodes of an spn perform (weighted) sums and multiplications, while leaves
represent variable assignments. The sum nodes can be interpreted as latent variables in-
ducing mixtures of distributions, while the product nodes can be interpreted as encoding
probabilistic independences (Gens and Domingos, 2013; Peharz et al., 2016). We discuss
how spns naturally generalise the Naive Bayes classifier, which somehow justifies their good
performance in classification tasks (given that Naive Bayes, albeit quite simplistic, is one
of the top performing classifiers in the literature for a wide range of problems). We also
discuss on other relations of spns and Bayesian network classifiers.

On par with other probabilistic graphical models, spns learned from data may generalise
poorly for configurations of the variables that do not appear often, and produce unreliable
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and overconfident conclusions. The main contribution of this paper is to introduce an ap-
proach to overcome such drawback based on cascading multiple classifiers and deferring the
decision when the current prediction is not reliable. In order to measure such reliability, we
make use of recent algorithms proposed for credal spns (Mauá et al., 2017). Such robustness
measure can be computed both at training and testing time and is capable of discriminating
reliable versus unreliable predictions, but it requires the tuning of its threshold parameter.
For that, we propose to learn the threshold from data, and we empirically show that this
framework increases classification accuracy with small extra effort. We study how different
spns perform under certain network learning constraints, and how they improve when com-
bined using a hierarchy of spns that decide, based on their robustness measure, whether to
defer the responsibility of prediction to another spn.

The paper is divided as follows. Section 2 describes the notation and defines the spns
that are used in this work. It also discusses on a learning approach and how it relates to
some Bayesian network classifiers. Section 3 describes our approach to defer the decision to
another spn when the prediction is not reliable enough. Section 4 presents our experimental
setup and the obtained results, and finally Section 5 concludes the paper.

2. Sum-product networks

Random variables are denoted with a subscript (e.g., X1, Xi). A collection of random
variables indexed by a set V is denoted by XV = {Xi : i ∈ V}. A configuration of a
collection of random variables is denoted as XV = xV or XV = z. We assume every
random variable Xi is categorical and take values in {0, . . . , |Xi| − 1}. Indicator variables
{λi,j : j = 0, . . . , |Xi| − 1} are used to indicate an outcome of the variable Xi. For any
configuration XV = xV we write λxv to denote the configuration of indicator variables such
that λi,xi = 1 and λi,j = 0 for all j 6= xi. When the configuration mentions only a subset of
all the variables, say XE = e for E ⊂ V, we write λe to denote the configuration of indicator
variables that assigns λi,j = 0 if i ∈ E and ei 6= j and λi,j = 1 otherwise. That is, λe is the
configuration of indicator variables that is consistent with the configuration and assigns 1
to indicator variables associated to unrealised random variables.

An spn is a concise graphical representation of the multilinear polynomial specifying
a (discrete) probability measure (Darwiche, 2003). In more detail, an spn is a weighted,
rooted and acyclic directed graph where internal nodes are labelled as either sum or prod-
uct operations and leaves are associated with indicator variables. We assume that every
indicator variable appears in at most one leaf node. Every arc from a sum node i to a child
j is associated with a non-negative weight wij . Given an spn S and a node i, we denote Si

the spn obtained by rooting the network at i, that is, by discarding any non-descendant of
i (other than i itself). We call Si the sub-network rooted at i. If w are the weights of an
spn S and i is a node, we denote by wi the weights in the sub-network Si rooted at i, and
by wi the vector of weights wij associated with arcs from i to children j. The height of a
(sub)network S equals the longest path (in number of arcs) from the root to the deepest
internal node.

The value of an spn S at a given configuration λ of its indicator variables, written
S(λ), is defined recursively in terms of its root node i. If i is a leaf node associated with
indicator variable λi,xi then S(λ) = λi,xi . Else, if i is a product node, then S(λ) =

∏
j S

j(λ),
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where j ranges over the children of i. Finally, if i is a sum node then S(λ) =
∑

j wijS
j(λ),

where again j ranges over the children of i. The scope of an spn with a single node is the
respective random variable. The scope of an spn with a root node which is not a leaf is
the union of the scopes of the sub-networks rooted at every child of such root node. Every
joint distribution over categorical random variables can be represented by an spn. In order
to ensure that any spn computes a valid distribution and its marginals, we impose the
following properties (Peharz et al., 2015):

Completeness: The scopes of children of a sum node are identical;

Decomposition: The scopes of children of a product node are disjoint;

Normalisation: The sum of the weights of arcs leaving a sum node is one.

Every spn specifies a probability measure P such that P(X = x) = S(λx) under such
conditions, and a marginal probability can be computed by setting all indicator variables
of the summed out variables to one. Let E ⊆ V and consider some evidence XE = e. Then
P(XE = e) can be computed as S(λe) (Poon and Domingos, 2011). Hence, it follows that
S(λe) =

∑
x∼e S(λx), where x ∼ e represents all configurations of X = x that agree with

evidence XE = e. The evaluation of an spn for a given configuration λ of the indicator
variables can be performed by a bottom-up message propagation scheme where each node
sends to its parent its value. The whole procedure takes linear time and space. Conditional
probabilities can also be obtained in linear time either by evaluating the network at query
and evidence (then dividing the result) or by applying Darwiche’s differential approach,
that propagates messages up and down the network (Darwiche, 2003; Peharz et al., 2016).
Other inferences such as maximum-a-posteriori inference are however NP-hard to compute
or even to approximate (Conaty et al., 2017).

2.1. Learning from data

Many algorithms have been devised to “learn” spns from data (Gens and Domingos, 2013;
Peharz et al., 2013, 2014; Lee et al., 2014; Rooshenas and Lowd, 2014; Dennis and Ventura,
2015; Adel et al., 2015; Rahman and Gogate, 2016; Zhao et al., 2016). Most learning
algorithms employ a greedy search on the space of spns augmenting the network in either
a top-down or bottom-up fashion. The sum nodes in an spn can be interpreted as hidden
(latent) variables in a mixture model, and the product nodes can be seen as defining context-
specific independences (Poon and Domingos, 2011; Peharz et al., 2016). The number of
values of the hidden variable (and hence the number of mixtures) corresponding with a sum
node is the number of outgoing arcs. For instance, Gens and Domingos (2013)’s algorithm
starts with a single node representing the entire dataset, and recursively adds product and
sum nodes that divide the dataset into smaller datasets (if columns are variables and rows
are samples, then sum nodes can be seen as horizontal partitions, while product nodes are
vertical partitions) until a stopping criterion is met. Product nodes are created by using
independence tests (pairwise tests will form a dependency graph, and variables in distinct
components of the graph become the scope of the children of the product node), while sum
nodes are created by performing clustering on the row instances. The weights associated
with sum nodes are learned as the proportion of instances assigned to a cluster. In principle
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any independence test and clustering method can be used. Since we are mainly interested
in studying the possibility of cascading models and how that can improve accuracy, we
decided to employ efficient and well-known approaches for those tasks. During clustering,
we run a partition around medoids (PAM) method, and as independence test we employ
the G-test (which is a likelihood-ratio test).

One of the most frequent uses of spns is in building probabilistic classifiers, that is,
in estimating a probability distribution over class and attribute values, which can then
be used to classify objects into classes by maximising the class conditional probability.
For instance, Poon and Domingos (2011) learned spns to predict the missing pixels of an
image. We employ two variations that can be valuable for classification: (1) we allow the
spn learning to start with either a product or a sum node (a parameter controls that; we
call it a sum-rooted spn if the root is a sum node, and product-rooted spn otherwise);
(2) we may force the first sum node containing a target variable (the class variable in
classification problems) to be partitioned based on the values of that variable (we call this
as class-discriminative spn, since the data is partitioned by the class values). Finally, we
also control the maximum height of the learned spn. If we define an upper bound height
h, then when a node reaches depth h − 1, it is forced to become a product node with all
variables independent of each other, where each child will be a single sum node (at height
h) with univariate scope defining an univariate probability distribution for that variable
(and will have as children the indicator functions for it). The height control is intended to
analyse if the learned spns are prone to overfitting related to their depth, but it also allows
us to create a clear relationship between spns and other classifiers. The learning algorithm
is displayed below.

learn(D, product-first, class-discriminative, max-height, height): returns an spn
Inputs: D: dataset; product-first and class-discriminative: Booleans, max-height: controls the
height; height: starts at 0 for the main root node

1. If D contains a single variable, then

(a) Create a sum node S with children as the leaf nodes corresponding to the values of that variable,
and weights according to their frequencies in the data.

(b) Return S.

2. If height equals max-height−1, then

(a) Create a product node S and partition the dataset into D1, . . . , Dt (where t is the number of
variables in D), with one single variable per Di.

(b) For i = 1, . . . , t, call learn(Di, false, false, max-height, height+1) and these spns as a
children of S.

(c) Return S.

3. If product-first, then

(a) Create an empty product node S. Create an empty (undirected) graph.

(b) For every i, j, compute G-test(D,Xi, Xi) and if the p-value is below pval-threshold, include
an edge (i, j) in the graph.

(c) Compute the connected components C1, . . . , Ct of the graph, and partition the dataset D into
D1, . . . , Dt based on the variables that appear in each component (Di shall contain all data
related to variables in Ci).

(d) For i = 1, . . . , t, call learn(Di, false, class-discriminative, max-height, height+1) and
add each returned spn as a child of S.
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(e) Return S.

4. Create an empty sum node S.

5. If discriminate-by-class (and the class variable is part of D), then

(a) Partition the dataset D into D1, . . . , Dt, with t the number of classes, based on the values of
the class variable in D.

(b) For i = 1, . . . , t, call learn(Di, false, false, max-height, height+1) and add each returned
spn as a child of S with associated weight proportional to the number of occurrences of i in the
class variable.

(c) Return S.

6. Partition the dataset D into D1, . . . , Dt, using a call to the partition-around-medoids clustering
algorithm, where samples are seen as multi-dimensional vectors.

7. For i = 1, . . . , t, call learn(Di, false, false, max-height, height+1) and add each returned spn
as a child of S with associated weight proportional to number of samples in cluster i.

8. Return S.

By using some particular settings when calling the learning algorithm, we obtain varia-
tions/generalisations of some Bayesian network classifiers.

Lemma 1 Let a Bayesian network classifier be defined as a model where the class variable
is the only root node and has all features (that is, non-class variables) as children. A class-
discriminative sum-rooted spn generalises a Bayesian network classifier, that is, it contains
a Bayesian network classifier as a subcase.

Proof Because the class variable of the Bayesian network classifier is a parent of every
single variable, their conditional probability tables will be indexed by the values of the
class variable, and hence will be learned using the data related to that class. One can see
each children of the root node of the class-discriminative sum-rooted spn as representing
the conditional probability of the features given that particular value of the class, so it
can represent the same distribution as the Bayesian network classifier (since an spn can
represent any distribution, even if that may be resource demanding). Finally, the marginal
probability of the class, which is encoded in the root node of the Bayesian network classifier,
can be encoded in the weights of the sum node which is the root of the spn.

Lemma 2 A class-discriminative sum-rooted spn of height 2 is equivalent to a Naive Bayes
model.

Proof The result follows from Lemma 1 and the height restriction, since every node which
is a child of the root node will reach the limit of the height and will become a product node
that makes all variables independent. Therefore, the sum nodes of the next layer represent
the conditional probability of each feature given the class (for the appropriate value of the
class according to the path from the root of the spn).
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Lemma 3 A class-discriminative product-rooted spn of height 3 is equivalent to a Naive
Bayes model over variables that were not discarded by a feature selection procedure (based
on independence tests).

Proof There are two points to realise here:

1. The product root node will act as a feature selection procedure, since the scopes of the
children are disjoint, only one of them will have the class variable; during testing, the
messages coming from all other children will be irrelevant, since they will be the same
whichever is the class value, and thus they could be safely ignored (computing them
does not cost much in spns, but crucially they do not interfere in the class prediction).

2. The only child of the product root node containing the class will be a class-discriminative
sum-rooted spn of height 2, because the child of a product node cannot be another
product node (it is clearly redundant to have a product node as child of a product
node, since the pairwise independence tests will run over the same data and thus
will not unveil any new independences). Finally, by Lemma 2 this sub-network is
equivalent to a Naive Bayes model.

3. Deferring predictions

In order to obtain a measure of robustness for issued predictions, we can allow parameters
of the model to vary within a certain set and verify whether the outcome (predicted class)
remains the same whichever choice of parameters we make. Let Sw denote a spn whose
weights are w. Following the work of Mauá et al. (2017), we can investigate the robustness
of a model by varying the weights w inside some fixed space, subject to the constraint
that they still define a (normalised) spn. A Credal Sum-Product Network (cspn) is a
set {Sw : w ∈ C}, where C is the Cartesian product of probability simplexes, and each
probability simplex constrains only the weights associated with a single sum node. In this
way, an spn is a cspn where weights take values in a singleton C, and every choice of weights
w inside C specifies an spn. Thus, the cspn induces a credal set, that is, a (not necessarily
convex) set of probability measures (Levi, 1980). We are particularly interested in cspns
formed as follows: for each sum node with local weights w, we use an ε-contamination of w
(with 0 ≤ ε ≤ 1)

Cw,ε =

(1− ε)w + εv : vj ≥ 0,
∑
j

vj = 1

 . (1)

Now, given a class variables Xc, evidence XE = e, and an cspn, we say that an assign-
ment c1 for Xc credally dominates another assignment c2 if

min
w

[
Sw(λc1,e)− Sw(λc2,e)

]
> 0 . (2)

This task can be performed efficiently in polynomial time (Mauá et al., 2017) when the
number of classes is bounded and the internal graph of the spn is a tree. Following the
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proposals of de Bock et al. (2014), assume an spn has been learned from data, and used to
issue a classification based on the maximum probability class label. Given a value ε > 0, we
say that a classification is ε-robust if the respective class label is not credally dominated by
any other class label in the cspn obtained by ε-contamination of the spn. The robustness of
a prediction is the largest value of ε for which the maximum probability class is robust. In
this work, we employ the robustness of a prediction to decide whether to defer the decision
to another model.

Our approach is based on cascading two or more cspns until one of them is confident
in providing a decision. In other words, a list of spns S1, . . . , St (with t ≥ 2) is learned
from data and a list of robustness thresholds τ1, . . . , τt−1 is constructed. These spns are
then used in order to predict the class variable, in sequence. When Si is employed, we
compute the robustness value ε of the issued prediction, and if ε < τi, then we ignore the
prediction and increment i, moving to the next spn (if i = t, we issue a prediction no
matter the robustness measure). The robustness thresholds can be manually fixed (since
the contamination has a clear meaning, an expert could for instance choose 0.01 to lean
towards accepting predictions, or for instance 0.5 to only issue very certain predictions).

We have also implemented an approach of learning the threshold from data: we apply
the cascading model of spns to the training data using different threshold and we fixed
them based on the maximum accuracy (over the training samples). We argue that this does
not overfit, because we are only learning when to defer decisions (we will show in the sequel
that indeed there is good improvement in overall accuracy by such approach). There are
obviously multiple ideas that are reasonable to choose the thresholds, since there is a clear
trade-off about their choices and which spn will end up making the decision. As for the
choices of spns to include in the list, Section 2 discussed some insights about the relation
of spns with other classification approaches. With that in mind, a possible strategy is to
select spns that relate to different models, or to select spns with different amount of fitness
(and hence a diverse balance between under- and overfitting) to include in the list. We
experiment with multiple options in the next section.

4. Experiments

We start the experiments by creating a collection of spns based on different learning con-
straints. Table 4 describes the datasets of UCI (http://archive.ics.uci.edu/ml/) that
we use and the accuracy results of multiple spns using a 10-fold cross-validation (each run
6 times). All datasets were curated and contain only categorical variables. Our goal is to
show different accuracies that might be obtained depending on the constraints, and not
to select a best spn against others. In spite of that, the class-discriminative/general spns
seem to perform better than the Naive Bayes-like spns, and the stronger constraints on the
height seem to produce poorer classifiers.

Our main goal is to examine the effects of cascading layers of networks. We performed
experiments with a variation of constraints. In each cascading experiment, we train the
spns using all the data, and then we apply the cascading idea through a chosen robustness
threshold to defer the decision. The spns are evaluated in sequence until one issues a reliable
prediction (or the list is exhausted). Figure 1 has four distinct spns as first model in the
cascading, from left to right: (i) product-rooted spn without learning constraints, (ii) class-
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Model NB FS+NB SPN Dis.SPN Height3 Height5 Height9

audiology 30.09 29.79 54.13 57.52 29.72 39.16 50.52
autos 88.94 87.89 88.37 87.97 88.62 87.24 88.21
balance scale 67.57 72.11 72.45 71.65 73.60 73.87 72.48
breast cancer 69.81 71.16 72.09 73.08 70.69 73.08 73.02
bridges 56.85 57.17 56.85 57.63 56.70 55.92 56.85
cars 70.15 70.79 87.87 83.54 70.35 74.58 82.86
cmc 42.24 43.47 50.07 49.40 43.09 45.89 48.80
colic 69.43 71.38 81.34 80.84 72.69 78.17 80.21
cylinder bands 56.42 56.51 66.08 68.55 56.73 59.69 65.65
dermatology 48.18 48.64 94.08 94.35 49.87 65.03 85.43
diabetes 67.06 68.34 70.14 70.09 67.90 68.60 70.42
ecoli 60.17 62.35 72.17 71.68 62.15 66.97 71.13
flags 37.80 38.57 40.72 42.70 38.32 39.95 40.38
flare 40.02 51.43 72.06 72.26 51.23 65.16 71.48
glass 38.08 39.88 57.87 55.38 40.34 49.92 56.70
haberman 73.80 73.53 73.53 73.10 73.53 73.53 73.53
hayes roth 42.30 35.10 35.36 51.90 34.98 34.60 35.10
heart h 74.77 74.60 79.59 79.87 73.81 79.14 78.46
heart statlog 73.33 73.39 71.85 72.78 72.22 72.47 72.04
hepatitis 79.35 79.35 81.18 80.11 79.46 81.08 80.76
hypothyroid 92.29 92.29 92.12 92.02 92.29 92.29 92.29
ionosphere 64.15 72.79 80.30 79.25 75.07 81.86 81.06
iris 66.34 67.11 80.56 80.56 65.67 78.56 79.56
kr vs kp 54.12 53.48 92.48 92.97 54.50 60.75 72.74
labor 80.70 76.61 88.31 88.89 73.39 80.12 91.81
liver disorders 54.06 54.01 62.42 63.72 54.49 62.08 62.22
lung cancer 35.94 44.27 42.19 44.79 40.11 42.71 33.85
lymph 69.03 71.06 76.01 75.00 71.85 74.78 76.24
molecular biology 48.74 52.20 71.54 72.8 51.73 67.92 72.49
mushroom 71.90 87.64 99.99 99.99 86.17 92.49 98.15
page blocks 89.77 89.97 93.75 93.72 89.85 91.81 93.48
postoperative 70.74 71.11 71.11 70.37 71.11 71.11 71.11
primary tumor 26.45 26.79 35.60 34.51 26.79 30.63 33.68
segment 26.36 46.00 81.31 81.14 46.85 63.53 76.16
shuttle landing 55.56 60.00 60.00 52.22 60.00 60.00 60.00
sick 93.88 93.88 93.73 93.71 93.88 93.88 93.81
solar flare 45.53 47.81 73.11 73.86 50.99 64.46 73.08
sonar 60.02 62.18 68.19 67.47 60.90 63.94 65.31
soybean 20.21 20.13 75.67 75.21 20.11 33.87 57.76
spambase 73.48 76.02 79.66 79.68 75.48 77.31 78.78
tae 33.11 32.78 41.61 42.39 35.43 41.50 43.60
tic tac toe 65.32 65.78 80.48 81.12 65.29 66.89 77.40
vehicle 35.76 38.50 62.37 62.55 39.08 44.78 57.80
vote 87.90 87.74 95.09 94.94 87.86 91.99 94.56
waveform 5000 61.81 61.76 78.37 77.44 61.80 70.49 78.21
zoo 59.74 60.24 85.98 86.14 60.24 74.59 85.15

Table 1: UCI datasets and classification accuracy (%) for different learned spns based on
constraints during the training are presented. NB is the Naive Bayes-like spn,
FS+NB is the Naive Bayes-like spn preceeded by feature selection, SPN is the
product-rooted network with no constraints on learning, Dis.SPN is the sum-rooted
class-discriminative spn, and those labelled Height are general spns restricted by
maximum height of 3, 5 and 9 (height 7 is omitted for the sake of space).
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Figure 1: Boxplots of cascading two spns which differ by their structural constraints. From
left to right, we have a product-rooted spn without learning constraints, a dis-
criminative spn, the Naive Bayes-equivalent spn, and the feature-selection plus
Naive Bayes equivalent spn. The second model of the cascading is always the
product-rooted spn (except for itself, which has the discriminative as second
model). In each graph, we show results based on a fixed robustness threshold and
based on learning the threshold from data.

discriminative sum-rooted spn, (iii) class-discriminative sum-rooted spn (equivalent to a
Naive Bayes classifier), and (iv) product-rooted class-discriminative spn of height 3 (similar
to feature-selection based on independence tests followed by a Naive Bayes classification
approach). As deferring model, we employed the product-rooted spn without learning
constraints, so each box plot shows the percentage gain (that is, cascaded accuracy divided
by single spn accuracy over each dataset). In the left-most graph using model (i), we use
the class-discriminative sum-rooted spn as deferring model (otherwise results would always
be equal to 1). For each graph, we show both the gain with a fixed threshold at 0.01,
and with a learned threshold from training data (as discussed in the previous section). All
results show a significant gain by the use of cascading, with more prominent results when
the threshold is learned. This suggests that cascading by this robustness measure approach
can improve the classification accuracy regardless of the learning constraints that employed
in the models.

We have further investigated the cascading approach by combining two spns of different
maximum heights. Clearly the maximum height relates to the amount of fitness of the
model, and might related to the trade-off between underfit and overfit in classification. We
have chosen to run experiments with four different maximum heights and product-rooted
spns without further constraints at learning. Figure 2 shows the results of cascading in two
layers, starting with maximum height 3, 5, 7, and 9 (from left to right) as the first spn in
the cascading, followed by the spn of maximum height equal to 7 (except for itself, which
is followed by the spn of maximum height of 9). Again, we show results with robustness
threshold to defer decisions of 0.01, and also with a learned threshold using the training
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Figure 2: Boxplots of cascading two spns which differ by their height upper bound. From
left to right, they show the improve in accuracy (cascaded divided by single spn)
of spns with height limit at 3, 5, 7 and 9, followed by the spn of height limit 7
(the one of height 7 is followed by the height 9). We show results based on a fixed
robustness threshold and based on learning the threshold from data.

data. All results show superior performance of cascading with respect to the single spn
classification (that is, the boxplots are all above the ratio of 1).

Finally, we empirically investigate whether cascading is useful if we do multiple layers
instead of only two. We have used a new set of four spns with learned threshold and forced
it to stop both at layer two or at layer four. The results are shown in Figure 3. We decided
to use a combination of different spns for the sequences (using product-rooted, sum-rooted,
class-discriminative, and different p-values for the G-test of independence). For the sake of
space, in the plots we show only some results: from left to right, the cascading sequences
are (a),(d),(c),(b); (b),(a),(d),(c); (c),(b),(d),(a); (d),(b),(a),(c), where: (a) product-rooted
spn with p-value 0.05, (b) product-rooted spn with p-value 0.01, (c) product-rooted class-
discriminative spn with p-value 0.05, (d) class-discriminative sum-rooted spn with p-value
0.05. Results are always superior to the single spn classifier, and never decrease significantly
by the four layers (and actually increase in most combinations; in the four displayed cases,
it has increases in the two on the left but not in the two in the right). Overall, cascading
(with two or four layers) has significantly increased the classification accuracy.

5. Conclusions

In this work we discussed the use of sum-product networks for classification and their re-
lation with some well-known classifiers, notably the Naive Bayes classifier. We created
a procedure to cascade multiple sum-product networks in order to build a classifier that
predicts in a more robust manner, and thus may achieve higher accuracy than any single
sum-product network alone. The choice of which sum-product network should be employed
for each instance to be classified depends on the robustness of the prediction as computed
by a credal sum-product network, obtained by perturbing parameters of the original sum-
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Figure 3: Boxplots of cascading two/four spns which differ by their structural constraints.
Each graph represents a different order for deferring the classification (chosen
arbitrarily to demonstrate that the gains are not highly dependent on the chosen
models). We show results based on on learning the threshold from data.

product network. Multiple experiments using UCI datasets suggest that the use of a model’s
own robustness to decide whether to defer issuing predictions to other models has positive
implications in the overall accuracy of the classifier, and we argue that such approach
through the analysis of robustness may bring benefits also for other classifiers and/or com-
binations of classifiers. We leave for future work the study of robustness based on variations
of the data and/or prior distributions, instead of direct perturbation of the model. We have
already started to investigate such avenue, and results look promising.
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F. Rathke, M. Desana, and C. Schnörr. Locally adaptive probabilistic models for global segmenta-
tion of pathological oct scans. In Proceedings of the International Conference on Medical Image
Computing and Computer Assisted Intervention, pages 177–184, 2017.

A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable
interactions. In Proceedings of the 31th International Conference on Machine Learning, pages
710–718, 2014.

N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference. Journal
of Artificial Intelligence Research, 5:301–328, 1996.

H. Zhao, P. Poupart, and G. Gordon. A Unified Approach for Learning the Parameters of Sum-
Product Networks. In Neural Information Processing Systems (NIPS), Barcelona, Spain, 2016.

12


	Introduction
	Sum-product networks
	Learning from data

	Deferring predictions
	Experiments
	Conclusions

