
Tracking-assisted Weakly Supervised Online Visual Object
Segmentation in Unconstrained Videos

Zhang, Z., Hua, Y., Song, T., Xue, Z., Ma, R., Robertson, N., & Guan, H. (2018). Tracking-assisted Weakly
Supervised Online Visual Object Segmentation in Unconstrained Videos. In ACM International Conference on
Multimedia 2018: Proceedings (pp. 941-949) https://doi.org/10.1145/3240508.3240638

Published in:
ACM International Conference on Multimedia 2018: Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 ACM.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019

https://pure.qub.ac.uk/portal/en/publications/trackingassisted-weakly-supervised-online-visual-object-segmentation-in-unconstrained-videos(6cce9c55-22ac-4442-89e0-f5d75a6f488b).html


Tracking-assisted Weakly Supervised Online Visual Object
Segmentation in Unconstrained Videos

Zongpu Zhang1, Yang Hua2, Tao Song1, ∗
Zhengui Xue3,1, Ruhui Ma1, Neil Robertson2, Haibing Guan1

1Shanghai Jiao Tong University, Shanghai, China
2Queen’s University Belfast, Belfast, UK

3Ulster University, Belfast, UK
{zhangz-z-p, songt333, zhenguixue, ruhuima, hbguan}@sjtu.edu.cn, {Y.Hua, N.Robertson}@qub.ac.uk

ABSTRACT
This paper tackles the task of online video object segmentation with
weak supervision, i.e., labeling the target object and background
with pixel-level accuracy in unconstrained videos, given only one
bounding box information in the first frame. We present a novel
tracking-assisted visual object segmentation framework to achieve
this. On the one hand, initialized with a given bounding box in
the first frame, the auxiliary object tracking module guides the
segmentation module frame by frame by providing motion and
region information, which is usually missing in semi-supervised
methods. Moreover, compared with the unsupervised approach, our
approach with such minimum supervision can focus on the target
object without bringing unrelated objects into the final results. On
the other hand, the video object segmentationmodule also improves
the robustness of the visual object tracking module by pixel-level
localization and objectness information. Thus, segmentation and
tracking in our framework can mutually help each other in an
online manner. To verify the generality and effectiveness of the
proposed framework, we evaluate our weakly supervised method
on two cross-domain datasets, i.e., the DAVIS and VOT2016 datasets,
with the same configuration and parameter setting. Experimental
results show the top performance of our method, which is even
better than the leading semi-supervised methods. Furthermore, we
conduct the extensive ablation study on our approach to investigate
the influence of each component and main parameters.
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Figure 1: Sample results on the DAVIS dataset. Top-
left: Ground truth; Top-right: OSVOS [5] (semi-supervised
method); Bottom-left: LVO [39] (unsupervised method);
Bottom-right: Ours (weakly supervisedmethod), overlaid on
the video frame. Best viewed in color.

ACM Reference Format: Zongpu Zhang, Yang Hua, Tao Song,
and Zhengui Xue, Ruhui Ma, Neil Robertson, Haibing Guan. 2018.
Tracking-assisted Weakly Supervised Online Visual Object Seg-
mentation in Unconstrained Videos. In 2018 ACM Multimedia Con-
ference (MM’18), October 22-26, 2018, Seoul, Republic of Korea.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3240508.
3240638

1 INTRODUCTION
Video object segmentation is the process of extracting a target ob-
ject from the background with pixel-level accuracy in video data.
It has been successfully applied to many multimedia applications,
such as content-based video coding [25, 45] and video editing [23],
and other real-world scenarios including video surveillance [37],
autonomous driving [7, 16]. However, due to the extensive user
scenarios, high accuracy object segmentation technique with mini-
mum human interaction in unconstrained videos (e.g., 4K movies
or low-quality surveillance data) is still heavily desired.

Generally speaking, video object segmentation techniques can
be classified into three groups: supervised, semi-supervised and
unsupervised methods. Supervised video segmentation methods
[4, 15] usually require continuous user inputs, i.e., interactive an-
notation, during the segmentation procedure. These methods can
output fine results eventually, however, they also bring tedious
workload to users. In contrast, unsupervised video segmentation
methods [13, 24, 30, 38, 39], also known as automatic methods, do
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not require any annotation information but only rely on the infor-
mation of intrinsic cues, such as motion, saliency and objectness.
Early methods of unsupervised video segmentation [30] only uti-
lize motion information (i.e., optical flow) between pairs of frames.
They assume that the object (foreground) motion is dissimilar from
the surroundings (background). Therefore, they are susceptible to
the motion errors, and they also cannot identify the object if it
has similar motion with the background. Recently, the two-stream
model [13, 39] combining the information ofmotion and appearance
becomes popular in unsupervised video segmentation. Although
it has achieved promising results on several public datasets, this
approach still suffers from unrelated objects included in the final re-
sults, as shown in the bottom-left of Figure 1. Furthermore, though
tremendous progress has been made in optical flow in both accu-
racy and speed, e.g., FlowNet 2.0[21], it still performs unstable in
low-quality videos, which holds back the real-world applications
of this approach.

Semi-supervised methods [5, 8, 22, 31] try to balance between
supervised methods and unsupervised methods. On the one hand,
a semi-supervised method significantly reduces the requirement of
annotation. It only needs a full object mask in the first frame of the
whole video sequence. On the other hand, with the information of
one-frame mask, a semi-supervised method can focus on the target
object without bringing in unwanted objects in the segmentation
results, thus it solves the issue mentioned above in unsupervised
methods. However, as illustrated in the top-right of Figure 1, the
results of semi-supervised methods tend to degenerate into small
pieces due to the lack of continuously updated guidance information
used in supervised methods. Moreover, it is still burdensome for
users to prepare full object mask in the first frame.

In this paper, we propose a novel framework by combining the
object segmentation module with a general object tracking module.
On one side, the general object tracking module supplies continu-
ous guidance for the segmentation module. It can provide certain
motion information without calculating optical flow and region
information avoiding the degenerating issue in the semi-supervised
approach. All these benefits only require one bounding box as
input in the first frame. In this way, the annotation burden is dra-
matically reduced compared with full object mask needed by the
semi-supervised approach. On the other side, the output of the
object segmentation module can also improve the robustness of
the general object tracking module. It overcomes common issues
that cause to drift, such as heavy motion blur and abrupt motion.
In short, the tasks of segmentation and tracking in our framework
can mutually improve each other in an online manner.

The contributions of this paper are two-fold. Firstly, we propose
a weakly supervised visual object segmentation framework in un-
constrained videos supported by a general tracking module that
only requires one bounding box as input in the first frame. Secondly,
we present state-of-the-art results on different domain datasets in-
cluding the DAVIS dataset [32] from video segmentation domain
and the VOT2016 dataset [26] from visual object tracking domain
(see §4.4). In addition, we also provide an extensive ablation study
to show the impact and influence of the components and parame-
ters in our framework (see §4.3). The code and pre-trained models
are publicly available at https://github.com/Maphist0/TWS-VOS.

2 RELATEDWORK
Semi-supervised video object segmentation. Semi-supervised video

object segmentation assumes that the full object mask is given
in the first frame. Following up this setting, most of the existing
semi-supervised methods focus on propagating the initial object
mask into the following frames, using temporal superpixels [6],
video seams [3], co-clustering [41], or optical flow [8, 40]. Recently,
two CNN-based semi-supervised approaches, named OSVOS [5]
and MSK [31], have achieved state-of-the-art results on the DAVIS
dataset. Both of these methods pre-trained their networks with ex-
tra image data and fine-tuned them in the first frame. MSK further
utilizes optical flow to provide complementary motion information.

Unsupervised video object segmentation. Unsupervised video ob-
ject segmentation methods directly process the video without any
human supervision. In the early stage, there were two major meth-
ods based on supervoxel [17, 44] and motion boundary [30], respec-
tively. In recent years, video object segmentation with two-steam
fashion has become popular. FSEG [13] proposed an end-to-end
two-stream deep learning framework to combine appearance and
motion information. Later, LVO [39] adopted this two-stream frame-
work and built a novel memory module based on ConvGRU, which
represents all the video frames jointly. Though these two-steam
unsupervised methods can achieve impressive performance on pop-
ular video segmentation dataset without any human annotation, it
is liable to bring in unexpected objects into the final results. Dif-
ferent from semi-supervised and unsupervised approaches, our
framework using minimum supervision information can target on
the correct object, thus overcomes the intrinsic problem of the unsu-
pervised approach and could be easily adopted to wide applications
with less human efforts. Furthermore, by replacing optical flowwith
a general object tracking module, our segmentation framework also
has overall guidance with motion information and is more stable
in real-world, specifically low-resolution, video sequences.

Weakly-supervised image segmentation. Weakly-supervised im-
age segmentation methods produce masks of objects given the
bounding boxes. In recent years, iterative methods are commonly
used in the process [9, 34]. Grabcut [34] extended graph-cut ap-
proaches by proposing an iterative algorithm of the optimization
utilizing a bounding box. BoxSup [9] proposed a training procedure
where the network is trained with automatically generated region
proposals and after that refines the segmentations for training in an
iterative manner. On the other hand, SimpleDoesIt [1] proposed an
approach for normal segmentation training procedure by using well
designed masks. Our proposed iterative algorithm for generating
the mask of the first frame extends predecessor by choosing high
quality masks while training, in order to prevent failure cases.

Visual object tracking. Visual object tracking is one of the funda-
mental tasks in computer vision, commonly used as assistance in
multimedia applications such as surveillance system [14]. Given an
initial bounding box in the first frame of a video sequence, it follows
the target object in the following frames. Recently, deep learning
based tracking methods have received significant attention and
archived dominated performance on general visual object tracking
benchmarks [26, 27, 43]. ECO [10] is an improved version based
on C-COT [12]. It introduces a factorized convolution operator
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based on Discriminative Correlation Filter (DCF), which signifi-
cantly reduces the complexity of the model and memory usage
while improves robustness.

3 OUR APPROACH
The overall structure of our tracking-assisted video object segmen-
tation framework (except the first frame) is illustrated in Figure 2.
More details of the first-frame processing will be depicted in §3.2.
For each frame t in the sequence (except the first frame), the tracker
(i.e., Figure 2-(2)) first predicts the target’s location, illustrated as
the yellow box in Figure 2-(3). The tracker guides the segmentation
to focus on a smaller region around the target, i.e., the cyan box in
Figure 2-(3). After one-round forwarding both appearance network
and contour network in segmentation (see §3.1), the initial seg-
mentation results are obtained, which shows with the red mask in
Figure 2-(5). As shown in Figure 2-(6) (see §3.3), the tracker refines
segmentation by locating the connected mask around the predicted
target’s location while the segmentation updates tracker’s target
position according to the outer bound of the mask, which leads to
the outputs of both tracker and segmentation in Figure 2-(7).

3.1 Baseline
Our tracking-assisted segmentation framework is flexible and in
general applicable for different existing video object segmentation
modules, e.g., OSVOS [5] and MSK [31], and online tracking mod-
ules, such as ECO [10], C-COT [12] and the other trackers with
hand-crafted feature [11, 18, 20]. In this paper, we adopt OSVOS
and ECO as our segmentation module and general tracking module
considering their high performance and flexibility, respectively.

OSVOS contains two main parts, namely appearance network
and contour network. OSVOS constructs the appearance network
with a VGG Net [36] as a backbone (named as ‘base network’),
and connects it with a series of deconvolutional layers trained
with DAVIS dataset [32] for pixel-level output. Furthermore, since
OSVOS is a semi-supervised method, it utilizes a full annotated
ground truth mask in the first frame to fine-tune the base network
into a more specific network, namely ‘parent network’. Meanwhile,
OSVOS builds the contour network featuring VGG Net, which is
trained with PASCAL-Context [33]. The contour network is then
used to refine the outputs of the appearance network by means of
Ultrametric Contour Map (UCM) [2] in order to generate the final
segmentation results.

It is worth noticing that sequences in video object segmentation
dataset, such as DAVIS, are generally well chosen for their high
resolution, clear object appearance, and limited camera movement.
The network trained with DAVIS in OSVOS is incapable of handling
more general video sequences, such as surveillance videos. There-
fore, in order to further improve the generality of the proposed
framework, we adopt 101-layer Residual Network [19] (ResNet) to
replace VGG Net in OSVOS and train it with Microsoft COCO 2017
dataset [28], which contains more objects and sceneries. For clearer
comparison with the baseline, we leave the contour network in
OSVOS and the tracking module (i.e., ECO) unchanged.

3.2 Initialization of Segmentation Task
Following up the setting of OSVOS, in order to fit specific objects
in different sequences, the appearance network should be further
fine-tuned from parent network with a pixel-level mask in the first
frame. However, in our weakly-supervised framework, if we use
the given bounding box in the first frame directly, the segmentation
performance will degrade dramatically. Therefore, similar to the
seminal GrabCut algorithm [34] and its recent successors [1, 9], we
propose a simple but effective algorithm to generate fine object
mask from an input bounding box to help construct the appearance
network. Given the first frame i0 of a sequence, the output of our
initialization algorithm is a maskm0 generated with the help of
ground-truth bounding box b0. Our proposed method first collects
a set of candidate masksMc = {m :m ⊂ R2} by iteratively training
the parent network. In each iteration, the prediction from forward
propagating the current network is refined based on the contour
and the bounding box to generate a new mask for the next iteration.
Then a subset of masks is selectedMs ⊆ Mc with high probability
of covering the target. Finally, to combine all masks inMs together,
the intersection of masks inMs is returned as the maskm0 for the
first frame and it is used to fine-tune the parent network.

Candidate masks generation. Suppose totally we have nt itera-
tions to generate initial mask from input bounding box, in each iter-
ation i ∈ [1,nt ] the raw possibility map p(i) ⊂ R2 of the foreground
object is obtained by forward propagating the current network with
i0. The first refinement we adopt is using the contour map c0 ⊂ R2

from contour network to snap onto p(i) by means of the superpixels
using Ultrametric Contour Map (UCM) [2]. The threshold θ (i)UCM
for assigning the 4-connected components from UCM controls the
fineness of information from the contour, specifically, higher θ (i)UCM
produces coarser information, resulting in lower controllability of
c0 and higher controllability of p(i) to the snapped mask. Secondly,
all predictions outside b0 are set to background. Then the resulting
maskm(i) for iteration i is stored inMc , and its weight, calculated
by dividing the area it covers by the area of b0, is stored inWc for
later usage. At the end of each iteration, the network from previous
iteration is trained for ⌊N /nt ⌋ steps given the total training steps
N and the training pair {i0, m(i)}.

To prevent an initialization failure on the first iteration caused by
empty mask generated from the first forward propagation, which is
common especially in real-world video sequences where the object
is relatively small, the UCM threshold θ (i)UCM is initialized to a low
value and gently increase with step size ∆θUCM as the iteration
goes larger. The algorithm which takes the bounding box as input
and generatesMc described above is illustrated in Algorithm 1.

Final mask generation. With the set of candidate masksMc and
their corresponding weightsWc , we further choose a subsetMs of
them, and obtain a final maskms by taking the intersection ofMs .
To exclude empty masks in the mask candidates, we apply bi-class
clustering to the weight of all candidates, and exclude the set with
lower average weight, which typically consists of empty masks
in the candidate set. Formally speaking, providing two subsets of
weights for their corresponding masksWc,1 andWc,2,

Wc,1 ∪Wc,2 =Wc , Wc,1 ∩Wc,2 = ∅ (1)



Figure 2: Tracking-assisted Weakly Supervised Segmentation Framework: (1) Input frame t . (2) A general tracking module,
adopted fromECO [10]. (3) The tracker first helps to guide the segmentation. The yellow bounding box represents the predicted
target position and size by tracker, while the cyan bounding box represents the area that is cropped for segmentation. (4)
Segmentation module contains appearance network and contour network. (5) Initial segmentation results indicating with the
red mask. (6) Tracking output and segmentation results help refine each other mutually. (7) Finally, two outputs are given, a
bounding box for tracking, and a mask for segmentation. Best viewed in color.

Algorithm 1 Generate candidate set of masks for the first frame
with bounding box
1: Given the first frame i0 and the bounding box b0.
2: Given the parent network Net (1) and UCM threshold θ (1)UCM .
3: Given the contour network Cont_Net .
4: InitializeMc with {}.
5: InitializeWc with {}.
6: c0← Forward(Cont_Net , i0).
7: for i = 1 to nt do
8: p(i)← Forward(Net (i), i0).
9: m

(i)
raw ← Snap(p(i), c0, θ (i)UCM ).

10: m(i)← {m(i)raw (y, x) : (y, x) in b0}.
11: w(i)← Area(m(i)) / Area(b0).
12: Mc ←Mc ∪ {m(i)}.
13: Wc ←Wc ∪ {w(i)}.
14: Net (i+1)← Fine-tune(Net (i),m(i), ⌊N /nt ⌋).
15: θ

(i+1)
UCM ← θ

(i)
UCM + ∆θUCM .

16: end for
17: return {Mc ,Wc }.

the subset of masks with higher average weight is chosen asMs .

Ms = {m(i) | w(i) ∈ arдmaxWc,i {mean(Wc,i )}} (2)
To further exclude failed cases where the parent network is unable
to separate the object from its surroundings, the final maskm0 is
then the pixel-wise intersection ofMs ,

m0 = {1(x,y) s .t . ∀m(i )∈Ms , m(i )(x,y)=1} (3)

As a backup strategy, in case the parent network completely
failed to detect the object, the region bounded by bounding box is
filled with ones (denoting the foreground object) when less than
5% pixels inside the bounding box are labeled as foreground.

3.3 Tracking-assisted Segmentation
Framework

At the beginning of each sequence, the parent network is fine-tuned
with our generated mask derived from the input bounding box. In

the following frames, the region of segmentation is guided by crop-
ping around the target position obtained from tracker. Then the
segmentation network generates a mask, and snaps with contour
response from the contour network. After that, tracker and segmen-
tation jointly refine the results by: (1) moving the bounding box
provided by the tracker to cover as many pixels connected with the
mask inside the bounding box as possible, and (2) excluding pixels
outside the bounding box provided by segmentation to better focus
on the target of interest. The output for each frame consists of both
segmentation results and tracking results, illustrated in Figure 2.

To guide segmentation, we choose a crop region three times
larger than the tracking bounding box. Then the cropped region
is resized to fit the input dimension of the segmentation network.
The benefits of this guiding strategy are two-fold. Firstly, cropping
the frame helps the segmentation network focus on the target
better. On the other hand, it helps to avoid irrelevant background
objects from affecting the segmentation results. Instead of forward
propagating the entire frame, this strategy preserves much more
details especially in real-world video sequences with small targets.

We further use the tracker to refine the segmentation results.
Starting from the tracking result bounding box {P , S}, where P and
S stand for center location and size respectively, we first move
and resize the bounding box such that all pixels connected to the
mask originally inside {P , S} are included in the afterward box
{P ′, S ′}. Then, due to segmentation’s instability of including back-
ground noises, the update of bounding box is smoothened by two
parameters θp and θs , controlling the impact on position and size,
respectively. The updated bounding box {P̂ , Ŝ} is given by equation
4. Finally the mask inside {P̂ , Ŝ} is set as segmentation results.

P̂ = P + θp ∗ (P ′ − P), Ŝ = S + θs ∗ (S ′ − S) (4)

4 EXPERIMENTS
4.1 Datasets and evaluation
We use two datasets to evaluate the segmentation performance
of our framework, i.e., Densely Annotated VIdeo Segmentation
(DAVIS) [32] and VOT2016 pixel-wise annotations [42].



Network Combine
Name First Mask VGG ResNet Tracker? J
-GT Groundtruth ✓ ✓ 81.1
-GT-V Groundtruth ✓ ✓ 80.3

-GT-WoT Groundtruth ✓ 78.8
-BB B-Box ✓ ✓ 62.6
-BB-V B-Box ✓ ✓ 56.1
-V Iterative ✓ ✓ 70.5

-WoT-V Iterative ✓ 71.7
-WoT Iterative ✓ 78.0
Ours Iterative ✓ ✓ 80.3

Table 1: Ablation study on DAVIS: Evaluation of our frame-
work using VGG Net (-V), without tracking (-WoT), fine-
tuning with ground truth annotations (-GT), fine-tuning
with masks obtained by filling the ground truth bounding
box (-BB).

DAVIS. DAVIS is one of the most popular datasets for training
and evaluating segmentation algorithms, which contains 50 high
quality, Full HD video sequences with 3455 annotated frames in
total. It covers multiple common segmentation challenges such as
appearance changes, motion blur and occlusions. We report the
average region similarity (J) in the following discussion. Contour
accuracy (F) and temporal (in-)stability (T) originally proposed in
DAVIS [32] are not presented due to paper length limitation.

VOT2016. It contains 60 high-quality video sequences targeted at
video tracking tasks, covering a wide range of challenges such as il-
lumination changes, motion changes, occlusion and camera motion.
In [42], Vojir et al. provided a set of manually segmented, pixel-level
segmentation annotations for the VOT2016 dataset, constructing
a challenging segmentation training and evaluation dataset. We
evaluate with other state-of-the-art methods on this segmentation
dataset, and report the average region similarity (J).

4.2 Implementation details
We use a 101-layer Residual Network [19] pre-trained on ILSVRC
[35] as the base network and replace its fully connected layers with
deconvolutional layers. The settings for deconvolutional layers are
kept the same as proposed in [5] except that all kernel sizes and
strides in them are doubled to fit the output size of residual network
blocks. We use masks from the COCO 2017 [28] dataset to train
deconvolutional layers, with sigmoid cross entropy balance loss,
base learning rate 0.0001 and step size 10,000. We use the contour
network provided in [5] to snap contour onto appearance based
prediction. We adopt the same parameters in [10] as our tracker.

While initializing at the test phase, we iteratively generate and
refine the mask for 8 iterations, and fine-tune the current network
for 50 steps in total to obtain the mask from the bounding box.
We set θ (i)UCM to start from 0.1 and increase in each iteration with
step size 0.1. We train the parent network with our generated mask
for 500 steps at the initialization step, and set θp and θs to 0.8 and

Training With mask
θUCM Steps N selection? J

SimpleDoesIt [1] / / / 67.2
Grabcut [34] / / / 58.6

0.4 50 ✓ 84.1
0.6 50 ✓ 83.2

Ours Dy. 5 ✓ 84.4
Dy. 100 ✓ 83.1
Dy. 50 66.5
Dy. 50 ✓ 84.6

Table 2: Ablation study on iterative algorithm for the first
frame’s mask: Evaluation of our iterative algorithm for gen-
erating the first frame from ground truth bounding box. Per-
formance is compared on the first frame of each sequence
in DAVIS 2016 train. In column θUCM , ‘Dy.’ means initializ-
ing θUCM with 0.1, and increasing by 0.1 in each iteration.
Mask selection refers to the algorithm which generates Ms
and process into final maskm0 in §3.2

.

0.1 in the combination step respectively. We use exactly the same
configuration and parameter setting on all cross-domain datasets.

Our framework is tested on a machine with Intel Xeon @2.4GHz
and Nvidia Tesla K80 graphics card. Our code are mainly written in
MATLAB. We use Caffe for the segmentation network, Matconvnet
for the ECO tracker. The combination of segmentation and tracking
tasks is developed in MATLAB with the help of MatCaffe API.
Following the above configuration, our framework takes around 60
(s) / 50 (iter) to generate the mask for the first frame consumes, and
around 250 (s) / 500 (iter) to train the parent model for the current
sequence. While testing, the joint framework runs at around 2 fps.

4.3 Ablation Study on DAVIS
In this section, firstly we analyze the impact of each component in
our framework, i.e., the iterative weakly-supervised mask gener-
ating algorithm, the tracker-segmentation combination algorithm,
and the use of ResNet trained with Microsoft COCO. Table 1 shows
the evaluation of our framework with or without each component.
We adopt the following abbreviations for various settings: (1) -GT:
Fine-tuning parent network with ground truth mask. (2) -BB: Fine-
tuning parent network with masks obtained by naively filling the

(Fix θs = 0.1) θp 0.2 0.4 0.6 0.8 1.0
J 79.3 79.5 80.2 80.3 79.8

(Fix θp = 0.8) θs 0.04 0.06 0.1 0.3 0.5
J 80.2 77.2 80.3 79.5 76.1

Table 3: Ablation study on DAVIS about combination param-
eter: Evaluation of our framework with different values of
combination parameter θp and θs . While testing θp , θs is
fixed to 0.1. While testing θs , θp is fixed to 0.8.



Semi-Supervised Unsupervised Weakly-Supervised
Measure OSVOS MSK SFLS VPN LVO FSEG LMP FST CUT Ours-WoT Ours
MeanM ↑ 79.8 79.7 76.1 70.2 75.9 70.7 70.0 55.8 55.2 78.0 80.3

J Recall O ↑ 93.6 93.1 90.6 82.3 89.2 83.5 85.0 64.9 57.5 93.5 95.2
Decay D ↓ 14.9 8.9 12.1 12.4 2.3 1.5 1.3 -0.0 2.2 8.5 5.4

Table 4: DAVIS Validation: Our method versus the state of art in terms of average region similarity J. Ours-WoT represents
the score of our segmentation network without the help of tracker. We can achieve state-of-art performance compared with
both unsupervised and unsupervised methods. For rows with ↑, higher numbers are better, and vice versa for rows with ↓.

Semi-Supervised Unsupervised Weakly-Supervised
Measure OSVOS MSK SFLS VPN LVO FSEG LMP FST CUT Ours-WoT Ours

AC 80.6 79.8 77.6 65.2 74.7 71.1 71.3 56.9 59.1 80.0 83.6
DB 74.3 74.1 54.9 44.4 55.7 50.0 58.3 46.9 35.4 68.4 70.2
FM 76.5 74.8 71.9 59.4 69.8 68.2 67.6 53.8 54.3 77.2 78.1
MB 73.7 73.4 74.1 64.8 70.6 63.6 64.8 47.6 52.4 74.8 75.6
OCC 77.2 75.5 71.0 71.2 73.0 61.5 69.2 46.4 41.2 75.8 75.6

Table 5: Per-attribute analysis on DAVIS Validation: Our method versus the state of art in terms of average region similarity
J over all sequences with that specific attribute. AC stands for appearance change, DB for dynamic background, FM for fast
motion, MB for motion blur, and OCC for occlusion.

ground truth bounding box. (3) -WoT: Without the help of tracker.
(4) -V: Using VGG structure in the parent network.

Regarding the impact of our iterative algorithm for generating
the first mask, two cases are compared: the ground truth annota-
tion containing prior sequence-specific object information, and the
mask obtained by naively filling the ground truth bounding box
containing lots of background noises. The results of our framework
using masks with different quality show a positive influence to
the overall performance from the quality of the first mask. Our
method with ground truth masks performs 1.0% higher than that
with masks from our iterative method (-GT versus Ours). The score
evaluated with our generated mask of the first frame achieves state-
of-the-art performance compared with semi-supervised methods
which use ground truth masks to fine-tune the parent network.
One of the biggest benefits of our weakly-supervised framework is
that our framework requires much less human effort on annotating
the first frame, which has been one of the main problems limiting
the application of semi-supervised video object segmentation algo-
rithms in real world situations. The performance with our masks
is 28.3% higher than that with masks obtained by naively filling
the bounding box (Ours versus -BB), which shows the necessity of
obtaining a mask from the bounding box on the first frame.

Table 1 also shows the impact of tracker assistance to the segmen-
tation network. We achieve 2.9% better performance with tracker,
with our generated first masks (Ours versus -WoT), and 2.9% better
performance with tracker, and with ground truth masks (-GT versus
-GT-WoT). Compared with traditional segmentation frameworks
which tend to focus on objectness, the tracker in our framework fo-
cuses more on specific target object information besides objectness.
This enables segmentation to locate the target better and separate
out pixels with higher confidence belonging to the target.

Lastly, the performance of our tracking-assisted framework with
ResNet is 13.9% higher than using VGG Net with tracker (Ours
versus -V), and is 8.6% higher without tracker (-WoT versus -WoT-
V), both showing the benefit of using ResNet as the base network
with our iteratively generatedmask. Our framework does encounter
subtle performance drop using the ground truth mask and without
tracker , 1.3% lower in our case (-GT-WoT versus OSVOS).

Iterative mask generation algorithm. To test the impact of each
operation involved while generating the first frame mask with
the ground truth bounding box, we examine the performance of
our iterative algorithm on DAVIS 2016 train dataset, illustrated
in Table 2. Besides, we also compare with other box-supervised
segmentation methods, Grabcut [34] and SimpleDoesIt [1]. For
dynamically changing θUCM , our strategy of increasing from 0.1
with step size of 0.1 outperforms static θUCM by 0.6% and 1.7%
for θUCM = 0.4 and θUCM = 0.6, respectively. Regarding the
total training steps N , we realize that the performance downgrades
whenN is too small or too large, with 0.2% and 1.8% comparing ours
(N = 50) with N = 5 and N = 100. Besides, the mask selection and
combination step play a key role in our iterative algorithm, where
we observe significantly 27.2% better with this process enabled.
Compared with other box-supervised segmentation algorithms,
our method outperforms Grabcut and SimpleDoesIt by 44.4% and
25.9%, respectively. The main reasons for the improvement lie in the
ability to use the pre-trained segmentation network, i.e., the parent
network and generate the final mask from a stack of high-quality
candidate masks in each iteration.

Tracking and segmentation combination. We further test the in-
fluence of two parameters θp and θs , which control the amount of
influence each task gives to another. We find that updating tracker’s



(a) Groundtruth (b) OSVOS[5] (c) MSK[31] (d) LVO[39] (e) FSEG[13] (f) Ours

Figure 3: Illustration of Segmentation Results on the DAVIS dataset: The green rectangle represents bounding box that tracker
generate to help guide segmentation task. Our framework can achieve state-of-the-art performance compared with both semi-
supervised (OSVOS and MSK) and unsupervised methods (LVO and FSEG). Best viewed in color.

center position in DAVIS dataset does not affect the final perfor-
mance too much, as illustrated in Table 3. The reason is that the size
of the target in DAVIS dataset is too big for an update to influence its
memory of the target. However, the parameter θs , which controls
the influence of size changes does affect the segmentation results.
Because our framework is an online method and generic tracking
methods tend to be not so stable, the performance with different
combination parameters does not show linearity. We prove the gen-
erality of our method by using exactly the same set of parameters
while testing on cross-domain datasets.

4.4 Comparison to State of the Art
Segmentation. To begin with, we first test our framework on

DAVIS 2016 validation set, and the comparison ofJ is listed in Table
4. Per-attribute analysis is listed in Table 5. Our weakly-supervised
framework can achieve state-of-the-art performance comparedwith
both semi-supervised and unsupervised methods. Compared with
unsupervised methods, our framework outperforms LVO by 5.8%
and FSEG by 13.6%, while avoiding calculating Optical Flow, which
is very computationally expensive and error-prone for real-world
video sequences. Compared with semi-supervised methods, our
framework achieves better results than OSVOS with 0.63%, given
only a bounding box of the object instead of a pixel-level ground
truth annotation for the first frame. Our framework without the
help of tracker also achieves state-of-the-art performance compared
with unsupervised methods, 2.8% better than LVO.

OSVOS[5] LVO[39] FSEG[13] Ours
J 31.3 18.9 17.3 31.8

Table 6: VOT2016 pixel-wise annotations evaluation: Evalu-
ation of our framework with other methods.

Then we test our framework on the VOT2016 pixel-wise annota-
tions dataset, which is originally designed for tracking algorithm.
It is much harder but closer to real-world scenarios. From Table
6, we observe that the results of our proposed framework achieve
an improvement of 68.3% and 83.8% compared with unsupervised
frameworks LVO and FusionSeg, respectively. We also achieve state-
of-the-art performance compared with semi-supervised method
OSVOS, with 1.6% improvement.

Tracking. We evaluate the tracker’s performance in our frame-
work on the DAVIS dataset and compare with both segmentation
and tracking methods, including OSVOS [5], LVO [10], MDNET
[29] and ECO [10]. Results listed in Table 7 show that the tracker in
our framework achieves the best performance on DAVIS. Compared
with tracking methods, our framework can overcome the difficulty
of deformable objects and oversized objects, generating a better
bounding box with the help of the segmentation mask. Compared
with segmentation methods, our method can focus on the target
object and provide a continuous and global guidance, preventing
the mask of irrelevant objects from appearing in the final results.

Qualitative results. Because the objects in the DAVIS dataset is
relatively big and clean, most recent segmentation methods can
achieve fairly decent performance on it. But there are still some
problems, for example, unsupervised methods work poorly when
multiple objects appear in the frame. From the first row in Figure 3,
the car in the background has a similar appearance to the target
object, which confused unsupervised methods, leading to false
positives. Although semi-supervised methods generally have better
results than unsupervised, they work poorly on deformable objects.
As shown in the last row in Figure 3, the appearance of motorbike
changes dramatically compared with the first frame, causing semi-
unsupervised method MSK to work poorly. Our approach further
prevents these cases by providing guidance of the target’s position.



(a) Groundtruth (b) OSVOS[5] (c) LVO[39] (d) FSEG[13] (e) Ours

Figure 4: Illustration of SegmentationResults on theVOT2016 pixel-wise annotation: Green rectangle represents bounding box
that tracker generate to help guide segmentation task. Our framework outperforms both semi-supervised and unsupervised
methods. But the failure of tracker is prone to affect the performance of segmentation, for example in the last row, the tracker
failed to follow the girl but follows another man, causing the segmentation to lose the target. Best viewed in color.

Overlap 0.5 0.6 0.7 0.8 0.9 AVG
Ours 88.1 83.8 76.3 66.8 48.3 72.7
Ours-WoT 69.2 62.7 55.9 49.1 41.4 55.7
OSVOS[5] 78.2 72.2 65.8 59.4 49.6 65.0
LVO[39] 77.7 72.3 67.3 57.8 37.4 62.5
MDNET[29] 66.4 57.8 43.4 29.5 14.7 42.4
ECO[10] 59.7 49.0 36.2 22.8 12.4 36.0

Table 7: Tracking evaluation on DAVIS for percentage of
overlap: Evaluation as a tracker of our framework with OS-
VOS and ECO on DAVIS. The percentage of bounding boxes
which has no less than different threshold of overlap with
ground truth bounding box is recorded.

Compared with DAVIS, sequences in VOT pixel-wise annotations
dataset is more challenging and closer to real-world situations. Both
semi-supervised and unsupervised methods have problems with
these cross-domain datasets. For example, unsupervised methods
cannot separate the main object from a frame and bring in a lot
of irrelevant objects into their masks, like the scoreboard and car
in the first and last row of Figure 4. In the third row of Figure 4,
because the octopus is not moving, both optical-flow-based unsu-
pervised methods LVO and FSEG fail to perform a segmentation.
Semi-supervised method OSVOS also fails to segment the octopus
because of lack of global constraints of the target. However, the

instability of tracker on VOT pixel-wise annotations limits the seg-
mentation results in some difficult sequences. For example, when
tracker loses the target because of occlusion, the segmentation of
our framework in the following frames will completely miss the
target, which is shown in the last row of Figure 4.

5 CONCLUSION
In this paper, we have proposed a weakly supervised visual ob-
ject segmentation framework assisted by a general object tracking
module. By only inputting a bounding box in the first frame, our
approach can overcome the intrinsic issue of the unsupervised
approach. Meanwhile, it also provides continuous guidance to vi-
sual object segmentation module, which is usually missing in the
semi-supervised approach. The generality and effectiveness of our
method have been validated on the DAVIS and VOT2016 datasets,
which usually belong to different research domains. With the same
configuration and parameter setting, our method has obtained su-
perior performance on both datasets. It has been shown that our
approach with minimum supervision even outperforms the top
semi-supervised methods.

ACKNOWLEDGMENT
This work was supported in part by National NSF of China (NO.
61525204, 61732010) and Shanghai Key Laboratory of Scalable Com-
puting and Systems.



REFERENCES
[1] Khoreva Anna, Benenson Rodrigo, Hosang Jan, Hein Matthias, and Schiele Bernt.

2017. Simple Does It: Weakly Supervised Instance and Semantic Segmentation.
In CVPR.

[2] Pablo Arbelaez. 2006. Boundary extraction in natural images using ultrametric
contour maps. In CVPRW.

[3] S Avinash Ramakanth and R Venkatesh Babu. 2014. Seamseg: Video object
segmentation using patch seams. In CVPR.

[4] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro. 2009. Video snapcut:
robust video object cutout using localized classifiers. In ACM Transactions on
Graphics, Vol. 28. ACM, 70.

[5] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixe, Daniel
Cremers, and Luc Van Gool. 2017. One-Shot Video Object Segmentation. In
CVPR.

[6] Jason Chang, Donglai Wei, and John W Fisher. 2013. A video representation
using temporal superpixels. In CVPR.

[7] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:
Learning affordance for direct perception in autonomous driving. In ICCV.

[8] Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, and Ming-Hsuan Yang. 2017.
SegFlow: Joint Learning for Video Object Segmentation and Optical Flow. In
ICCV.

[9] Jifeng Dai, Kaiming He, and Jian Sun. 2015. BoxSup: Exploiting Bounding Boxes
to Supervise Convolutional Networks for Semantic Segmentation. In ICCV.

[10] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.
2017. ECO: Efficient Convolution Operators for Tracking. In CVPR.

[11] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and Michael Felsberg.
Learning spatially regularized correlation filters for visual tracking. In ICCV.

[12] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, and Michael Felsberg.
2016. Beyond correlation filters: Learning continuous convolution operators for
visual tracking. In ECCV.

[13] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. 2017. FusionSeg: Learning to
Combine Motion and Appearance for Fully Automatic Segmentation of Generic
Objects in Videos. In CVPR.

[14] L. Hanhe et al. 2016. Online Weighted Clustering for Real-time Abnormal Event
Detection in Video Surveillance. In ACMMM.

[15] Qingnan Fan, Fan Zhong, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen.
2015. JumpCut: non-successive mask transfer and interpolation for video cutout.
ACM Transactions on Graphics 34, 6 (2015), 195–1.

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In CVPR.

[17] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. 2010. Efficient
hierarchical graph-based video segmentation. In CVPR.

[18] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet, Ming-Ming Cheng,
Stephen L Hicks, and Philip HS Torr. 2016. Struck: Structured output tracking
with kernels. IEEE transactions on pattern analysis and machine intelligence 38,
10 (2016), 2096–2109.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[20] Yang Hua, Karteek Alahari, and Cordelia Schmid. 2015. Online object tracking
with proposal selection. In ICCV.

[21] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In CVPR.

[22] Varun Jampani, Raghudeep Gadde, and Peter V Gehler. 2017. Video propagation
networks. In CVPR.

[23] Hanqing Jiang, Guofeng Zhang, Huiyan Wang, and Hujun Bao. 2015. Spatio-
temporal video segmentation of static scenes and its applications. IEEE Transac-
tions on Multimedia 17, 1 (2015), 3–15.

[24] Margret Keuper, Bjoern Andres, and Thomas Brox. 2015. Motion trajectory
segmentation via minimum cost multicuts. In ICCV.

[25] Changick Kim and Jenq-Neng Hwang. 2002. Fast and automatic video object
segmentation and tracking for content-based applications. IEEE transactions on
circuits and systems for video technology 12, 2 (2002), 122–129.

[26] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman P. Pflugfelder,
Luka Cehovin, Tomás Vojír, Gustav Häger, and et al. Abdelrahman Eldesokey.
2017. The Visual Object Tracking VOT2017 Challenge Results. In ICCV Workshop
on Visual Object Tracking Challenge.

[27] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman P. Pflugfelder,
Luka Cehovin, Tomás Vojír, Gustav Häger, Alan Lukezic, Gustavo Fernández,
Abhinav Gupta, and Alireza Memarmoghadam et al. 2016. The Visual Object
Tracking VOT2016 Challenge Results. In ECCV Workshop on Visual Object Track-
ing Challenge.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In ECCV.

[29] Hyeonseob Nam and Bohyung Han. 2016. Learning multi-domain convolutional
neural networks for visual tracking. In CVPR.

[30] Anestis Papazoglou and Vittorio Ferrari. 2013. Fast object segmentation in
unconstrained video. In ICCV.

[31] Federico Perazzi, Anna Khoreva, Rodrigo Benenson, Bernt Schiele, and Alexander
Sorkine-Hornung. 2017. Learning Video Object Segmentation From Static Images.
In CVPR.

[32] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus
Gross, and Alexander Sorkine-Hornung. 2016. A Benchmark Dataset and Evalu-
ation Methodology for Video Object Segmentation. In CVPR.

[33] X. Liu N.-G. Cho S.-W. Lee S. Fidler R. Urtasun R. Mottaghi, X. Chen and A. Yuille.
2014. The role of context for object detection and semantic segmentation in the
wild. In CVPR.

[34] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 2004. "GrabCut":
interactive foreground extraction using iterated graph cuts. ACM Transactions
on Graphics 23, 3 (2004), 309–314.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115, 3 (2015), 211–252.

[36] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. (2015).

[37] Ying-Li Tian, Max Lu, and Arun Hampapur. 2005. Robust and efficient foreground
analysis for real-time video surveillance. In CVPR.

[38] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. 2017. Learning motion
patterns in videos. In CVPR.

[39] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. 2017. Learning Video
Object Segmentation with Visual Memory. In ICCV.

[40] Yi-Hsuan Tsai, Ming-Hsuan Yang, and Michael J Black. 2016. Video segmentation
via object flow. In CVPR.

[41] David Varas and Ferran Marques. 2014. Region-based particle filter for video
object segmentation. In CVPR.

[42] Tomas Vojir and Jiri Matas. 2017. Pixel-Wise Object Segmentations for the VOT 2016
Dataset. Research Report CTU–CMP–2017–01. Center for Machine Perception,
K13133 FEE Czech Technical University, Prague, Czech Republic.

[43] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. 2015. Object tracking benchmark.
IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 9 (2015), 1834–
1848.

[44] Chenliang Xu, Caiming Xiong, and Jason J Corso. 2012. Streaming hierarchical
video segmentation. In ECCV.

[45] JY Zhou, Ee Ping Ong, and Chi Chung Ko. Video object segmentation and tracking
for content-based video coding. In ICME.


	Abstract
	1 Introduction
	2 Related Work
	3 Our approach
	3.1 Baseline
	3.2 Initialization of Segmentation Task
	3.3 Tracking-assisted Segmentation Framework

	4 Experiments
	4.1 Datasets and evaluation
	4.2 Implementation details
	4.3 Ablation Study on DAVIS
	4.4 Comparison to State of the Art

	5 Conclusion
	References

