
Does Massive MIMO Fail in Ricean Channels?

Matthaiou, M., Smith, P. J., Ngo, H. Q., & Tataria, H. (2018). Does Massive MIMO Fail in Ricean Channels?
IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2018.2853131

Published in:
IEEE Wireless Communications Letters

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of
the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160110493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/does-massive-mimo-fail-in-ricean-channels(d4b85797-decd-4729-b798-d68f7986dc5a).html


1

Does Massive MIMO Fail in Ricean Channels?
Michail Matthaiou,Senior Member, IEEE,Peter J. Smith,Fellow, IEEE,

Hien Quoc Ngo,Member, IEEE,and Harsh Tataria,Member, IEEE

Abstract—Massive multiple-input multiple-output (MIMO) is
now making its way to the standardization exercise of future 5G
networks. Yet, there are still fundamental questions pertainingto
the robustness of massive MIMO against physically detrimental
propagation conditions. On these grounds, we identify scenarios
under which massive MIMO can potentially fail in Ricean chan-
nels, and characterize them physically, as well as, mathematically.
Our analysis extends and generalizes a stream of recent papers
on this topic and articulates emphatically that such harmful
scenarios in Ricean fading conditions are unlikely and can be
compensated using any standard scheduling scheme. This implies
that massive MIMO is intrinsically effective at combating inter-
user interference and, if needed, can avail of the base-station
scheduler for further robustness.

Index Terms—Inter-user interference, massive multiple-input
multiple-output (MIMO), spatial correlation.

I. I NTRODUCTION

Massive multiple-input multiple-output (MIMO) is nowa-
days a well-established technology which forms the backbone
of the fifth-generation (5G) [1]. The seamless development of
massive MIMO since 2010 has been based on the concept of
favorable propagation [2], which leverages asymptotic prop-
erties of Gaussian random vectors. That is, as the number of
base-station (BS) antennas becomes unconventionally large,
channel vectors become pairwise orthogonal. In order for
this key property to hold, a common assumption is that
the individual channel vectors have independent, zero-mean
Gaussian entries with a particular finite variance.

Surprisingly, once we start moving away from these condi-
tions little is known about the massive MIMO performance. In
[2], it was shown that, for a fixed number of users and under
pure line-of-sight (LoS) conditions, the orthogonality between
two random channel vectors breaks whenever their angular
difference scales asO(1/M), whereM is the number of BS
antennas. The authors of [3] investigated the performance of
massive MIMO when the total electrical length of the BS
antenna array is fixed. Their results showcased that inter-user
interference for pure LoS conditions does not vanish in the
massive MIMO regime. In [4], Bj̈ornsonet al. proved that for
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correlated Rayleigh fading conditions, if the pilot-sharing users
have asymptotically linearly independent covariance matrices,
the massive MIMO capacity grows without bound.The work
of [5] leveraged tools of random matrix theory to derive
asymptotic expressions for the average rate and concluded that
Ricean fading is more beneficial than Rayleigh fading. Finally,
[6] derived conditions to guarantee favorable propagationfor
different array topologies.

We herein consider a far more general propagation scenario
compared to [2]–[6], which is modeled via the semi-correlated
Ricean distribution, where each user has a different covari-
ance matrix and a differentK-factor. This general model is
inherently suitable for future dense networks, where different
sets of incident directions are likely to be observed by geo-
graphically separated terminals. These propagation conditions
cause variations in the covariance profiles across different
users [7]. Then, we identify, both physically and mathemati-
cally, scenarios under which the mean inter-user interference
power with maximum-ratio processing does not vanish in the
large-antenna limit, thereby limiting the seemingly extensive
massive MIMO gains. Our performance metric is the mean
interference power since it provides an average over the small-
scale fading making possible a second-order characterization
of a multi-user massive MIMO system. Our analysis provides
a number of important observations, for this class of Ricean
fading channels: (a) It is unlikely that massive MIMO will
fail; (b) Failure occurs when we have strong alignment of
two distinct LoS responses and/or non-vanishing alignment
of a LoS response of thek-th user with the eigenvectors of
the covariance matrix of theℓ-th user; (c) If any of these
scenarios kicks in, a standard scheduling scheme can remove
the undesired user(s) from the communication link, hence,
minimizing the inter-user interference; (d) under some mild
conditions, the instantaneous Gram matrix normalized byM
converges to its mean in the mean-square sense, respectively.

Notation: We use upper and lower case boldface to denote
matrices and vectors, respectively. Then × n identity matrix
is expressed asIn. A complex normal vector with meanb
and covarianceΣ reads asCN (b,Σ). The expectation of a
random variable is denoted asE [·], while the matrix trace by
tr(·). The symbols(·)T and (·)H represent the transpose and
Hermitian transpose of a matrix.

II. SYSTEM MODEL

Consider an uplink cellular system withM BS antennas
which serveL single-antenna users in the same time-frequency
resource withM ≫ L. We focus on a very general fading
scenario with semi-correlated Ricean fading, where each user
has a differentK-factor and a semi-positive definiteM ×M
covariance matrixRk, with tr(Rk) = M . In the subsequent
theoretical analysis, we temporarily ignore the effects of
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large-scale fading as they do not affect our findings and,
most importantly, because we are exclusively interested in
the macroscopic impact of small-scale fading. Yet, in the
simulation results, we do consider a realistic large-scalefading
model. TheM × 1 channel from thek-th user to the BS is

gk =

√
Kk

Kk + 1
h̄k +

√
1

Kk + 1
R

1/2
k h̃k, (1)

whereKk is the RiceanK factor, h̄k is the deterministic LoS
component with||h̄k||2 = M and h̃k ∼ CN (0, IM ) models
the diffuse multipath components.

With maximum-ratio processing and perfect channel state
information (CSI)1, the interference created by thel-th to
the k-th user is defined as:Tkℓ , |gH

k gℓ|2, such that the
total interference power seen by thek-th user is equal to

L∑
ℓ=1,ℓ 6=k

|gH
k gℓ|2. Our performance metric will be the mean

interference power [8, Lemma 2]:

E [Tkℓ] =
Kℓ

Kℓ + 1

1

Kk + 1

(
h̄H
ℓ Rkh̄ℓ

)

︸ ︷︷ ︸
term1

+
tr(RℓRk)

(Kk + 1)(Kℓ + 1)︸ ︷︷ ︸
term2

+
Kk

Kk + 1

Kℓ

Kℓ + 1
|h̄H

ℓ h̄k|2
︸ ︷︷ ︸

term3

+
Kk

Kk + 1

1

Kℓ + 1

(
h̄H
k Rℓh̄k

)

︸ ︷︷ ︸
term4

. (2)

In the following sections, we will separately study these four
individual terms in (2) and, in particular, their scaling behavior
with an increasing number of antennasM . Our main objective
is to identify physical scenarios under which any of these four
terms scales asO(M2), which is also the scaling order of the
desired signal power [1], [3].

III. W HEN DOES MASSIVEMIMO FAIL ?

A. Analysis ofterm1 in (2)

To analyze this term, we focus our attention on the quadratic
form insideterm1, that is,h̄H

ℓ Rkh̄ℓ. This term is a quadratic
form of the LoS vectors̄hℓ and the covariance matrix of user
k, Rk.2 We can now sort theM real eigenvalues ofRk in de-
scending order as followsλ(k)

1 ≥ λ
(k)
2 ≥ . . . ≥ λ

(k)
M ≥ 0 with∑M

i=1 λ
(k)
i = tr

(
Rk

)
= M, ∀k = 1, . . . , L. Hence, the eigen-

value decomposition ofRk reads asRk = UkΛkU
H
k , where

Uk ,

[
u
(k)
1 ,u

(k)
2 , . . . ,u

(k)
M

]
is a unitary matrix that contains

the eigenvectors ofRk andΛk , diag
(
λ
(k)
1 , λ

(k)
2 , . . . , λ

(k)
M

)
.

We now have that

1

M2
h̄H
ℓ Rkh̄ℓ =

1

M

h̄H
ℓ√
M

Rk
h̄ℓ√
M

=
1

M

h̄H
ℓ

||h̄ℓ||
Rk

h̄ℓ

||h̄ℓ||
(3)

which from the Rayleigh-Ritz theorem can be lower and upper
bounded as follows

λ
(k)
M

M
≤ 1

M2
h̄H
ℓ Rkh̄ℓ ≤

λ
(k)
1

M
≤ 1. (4)

1Interestingly, the case of perfect CSI is mathematically analogous to the
case of imperfect CSI with orthogonal pilot signaling with the only difference
pertaining to the covariance matrix of the estimate, which is ashifted version
of Rk. For this reason and to keep the notation neat, we work with the former
case.

2Note that a similar analysis can be pursued forterm4 in (2), which is
omitted for the sake of brevity.

From (4), it is clear that situations exist wherēhH
ℓ Rkh̄ℓ

scales asO(M2). One such case is the extreme (and unlikely)
situation wherēhℓ is aligned with the weakest eigenvector of
Rk andλ(k)

M is O(M). A set of milder conditions under which
channel orthogonality breaks is considered below.

Scenario 1. Note that by definition̄hℓ can be expressed as
a linear combination of the linearly independent eigenvectors
u
(k)
i . If the corresponding eigenvalue(s) scale asO(M), then

term1/M2 does not vanish asM → ∞.

Proof. We express̄hℓ as a linear combination of the eigen-
vectorsu(k)

i , i = 1, . . . ,M such that 1√
M
h̄ℓ =

∑M
i=1 βiu

(k)
i ,

where
∑M

i=1 |βi|2 = 1. Thus, we have

1

M2
h̄H
ℓ Rkh̄ℓ =

1

M

M∑

i=1

β∗
i

(
u
(k)
i

)H (
UkΛkU

H
k

) M∑

j=1

βju
(k)
j

=
1

M

M∑

i=1

β∗
i (0, . . . , 1, . . . , 0)ΛkU

H
k

M∑

j=1

βju
(k)
j

=
1

M

M∑

i=1

β∗
i λ

(k)
i βi =

1

M

M∑

i=1

|βi|2λ(k)
i . (5)

Thus, (5) does not converge to zero ifhℓ has non-vanishing
alignment

(
|βi|2 > 0 as M → ∞

)
with one or more eigen-

vectors,u(k)
i , whose eigenvalues,λ(k)

i , scale asO(M).

Discussion: Fundamentally,term1/M2 will not vanish
if three conditions are fulfilled: (a)Rk has one or more
eigenvalues that scale asO(M); (b) h̄ℓ must align with the
corresponding eigenvectors or any linear combination of them;
(c) this alignment should be preserved asM → ∞. Note
that for full-rankRk, all λ(k)

i are de facto positive and this
increases the chances of non-vanishing alignment between the
LoS responsēhℓ and the eigenvectorsu(k)

i . On the contrary,
if Rk is rank-deficient with rankr, then term1/M2 will
vanish unless we have non-vanishing alignment ofh̄ℓ with
u
(k)
i , i = 1, .., r, which is again an improbable situation to kick

in. Interestingly, [4] articulated that rank-deficient covariance
matrices with orthogonal support eliminate pilot contamination
resulting in unbounded massive MIMO capacity.

B. Analysis ofterm2 in (2)

To analyze the behavior of this term, we first recall the
decomposition ofRk = UkΛkU

H
k . Then, we have for the

trace term insideterm2:

tr(RℓRk)

M2
=

tr
(
Λ

1/2
k UH

k RℓUkΛ
1/2
k

)

M2

=
1

M2

M∑

i=1

λ
(k)
i

(
u
(k)
i

)H

Rℓu
(k)
i ≤ λ

(ℓ)
1

M∑

i=1

λ
(k)
i

M2
=

λ
(ℓ)
1

M
≤ 1

whereλ(ℓ)
1 is the maximum eigenvalue ofRℓ. Note that the

upper bound above,λ(ℓ)
1 /M , is achieved when all eigenvectors

of Rk align with the principal eigenvector ofRℓ. Although
this scenario is mathematically possible, it is highly unrealistic
in practice. We will now delineate the general conditions under
which term2/M2 does not vanish asM → ∞.
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Scenario 2. By definitionu(ℓ)
i can be expressed as a linear

combination of the linearly independent eigenvectorsu
(k)
i (or

vice versa). If the corresponding eigenvalue(s) scale asO(M),
thenterm2/M2 does not vanish asM → ∞.

Proof. We simply replacēhℓ with u
(ℓ)
i in Scenario 1.

This scenario requires non-vanishing alignment of the eigen-
vectorsu(ℓ)

i with the eigenvectorsu(k)
i and the corresponding

eigenvalue(s) of any ofRℓ,Rk to be scaling asO(M).

C. Analysis ofterm3 in (2)

In (2), term3 represents the amount of cross-interference
between two LoS vectors. We now identify two scenarios that
make this term have asymptotically non-vanishing power.

Scenario 3.When the two LoS vectors̄hk and h̄ℓ are aligned,
term3/M2 does not vanish asM → ∞.

Proof. Assuming that̄hk = αh̄ℓ, where|α|2 = 1, we have

1

M2

Kk

Kk + 1

Kℓ

Kℓ + 1
|h̄H

ℓ h̄k|2 =
Kk

Kk + 1

Kℓ

Kℓ + 1
.

Scenario 4. Let us now consider the practical scenario where
the BS is equipped with a uniform linear array (ULA). This
setup was also investigated in [2], [9]. When the angular
difference between̄hk and h̄ℓ scales asO(1/M c), with c ≥ 1
term3/M2 does not vanish in the massive MIMO regime.

Proof. In this case, the LoS vector̄hk can be expressed:

h̄k =
[
1, e−j 2πd

λ
sin (θk), · · · , e−j 2πd

λ
(M−1) sin (θk)

]T
. (6)

We now assume thatsin (θℓ)− sin (θk) = γ/M whereγ ∈
R

+. Then, we can show using the technique of [2] that

1

M2

Kk

Kk + 1

Kℓ

Kℓ + 1
|h̄H

ℓ h̄k|2

→ Kk

Kk + 1

Kℓ

Kℓ + 1

(
λ

2πγd

)2 ∣∣∣ej
2πγd

λ
−1

∣∣∣
2

, asM → ∞.

Discussion:These two scenarios showcase that whenever
the LoS vectors are either (a) aligned in the complex plane or
(b) have similar angular characteristics, the channel orthogo-
nality breaks down. As a matter of fact, the higher the values
of α andγ are, the further away from favorable propagation we
move. Interestingly, Scenario 4 is a special case of Scenario 3,
since it requires only correlated angular characteristics. Note
that stronger LoS conditions (i.e. higherK-factors) will only
make things even worse as it will be extremely difficult to
discriminate any two channel vectors̄hk and h̄ℓ.

D. Implications

Putting everything together, we conclude that massive
MIMO will not fail if these mild conditions are fulfilled:

C1 :
h̄H
ℓ Rkh̄ℓ

M2
→ 0, as M → ∞, ∀k, ℓ = 1, . . . , L (7)

C2 :
tr(RℓRk)

M2
→ 0, as M → ∞, ∀k, ℓ = 1, . . . , L (8)

C3 :
|h̄H

ℓ h̄k|2
M2

→ 0, as M → ∞, ∀k, ℓ = 1, . . . , L. (9)

We can now leverage the conditions above to present the
following result that is very useful for the performance analysis
of massive MIMO. For this analysis, we need to define
G , [g1,g2, . . . ,gL] ∈ C

M×L.

Proposition 1. If the conditions C1 and C2 are fulfilled, then
the instantaneous Gram matrixGHG converges as follows

1

M
GHG

m.s.−→ 1

M
E
[
GHG

]
(10)

where
m.s.−→ denotes convergence in the mean-square sense.

Proof. The (k, ℓ)-th element ofGHG can be expressed as

1

M

[
GHG

]
kℓ

=
1

M

(√
Kk

Kk + 1

√
Kℓ

Kℓ + 1
h̄H
k h̄ℓ

+

√
Kk

Kk + 1

√
1

Kℓ + 1
h̄H
k R

1/2
ℓ h̃ℓ (S1)

+

√
1

Kk + 1

√
Kℓ

Kℓ + 1
h̃H
k R

1/2
k h̄ℓ (S2)

+

√
1

Kk + 1

√
1

Kℓ + 1
h̃H
k R

1/2
k R

1/2
ℓ h̃ℓ

)
(S3).

It is easy to see that for the termS1, we have that

E [S1] = 0 (11)

E
[
|S1|2

]
=

1

M2

Kk

Kk + 1

1

Kℓ + 1
h̄H
k Rℓh̃ℓ (12)

such thatS1
m.s.−→ 0 if condition C1 is fulfilled. Clearly, the

same methodology can be followed forS2. For S3, we have

E [S3] = 0 (13)

E
[
|S3|2

]
=

1

M2

1

Kk + 1

1

Kℓ + 1
tr(RℓRk) (14)

such thatS3
m.s.−→ 0 if condition C2 is fulfilled. The proof

concludes by evaluating the diagonal terms ofGHG, i.e.,
1
M

[
GHG

]
kk

which also converge in the mean-squared sense
when conditions C1 and C2 are fulfilled.

Note that the above result holds for a very general fading
model as outlined in (1). Although Proposition 1 is an asymp-
totic result we can utilize it even for a finite number of anten-
nas to replaceGHG ≈ E

[
GHG

]
with very good accuracy

[10]. Most importantly, such a substitution can facilitatethe
performance analysis of massive MIMO with different linear
precoding/detection schemes in which the random termGHG

appears very often [1].

IV. N UMERICAL RESULTS

We now provide numerical results to verify our analysis.
Our first performance metric is the capacity per user:

C =
1

L
log2 det

(
IL + puB

HB
)
, (15)

wherepu is the normalized transmit power andB = GD1/2,
whereD is theL × L diagonal matrix containing the large-
scale fading coefficients, which are generated using the model
of [11]. To explore the effects ofterm1–term4, we consider
two special cases for the covariance matrix:
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Fig. 1: (a): Capacity per user CDF for non-LoS channels, i.e., Kk = 0; (b): Capacity per user CDF for randomKk; (c):
Average SE per user with maximum ratio combining (MRC).

• Case 1 (uncorrelated fading):Rk = IM , for all k =
1, . . . , L.

• Case 2 (variable correlation): We use the one-ring corre-
lation model [10]. With the one-ring correlation model,
the (i, j)-th entry ofRk is given by

[Rk]i,j =
1

2∆k

∫ ∆k+φk
0

−∆k+φk
0

e−j 2πd
λ

(j−i) sin(φk)dφk, (16)

where∆k is the azimuth angular spread corresponding
to the k-th user,φk

0 is the nominal direction-of-arrival,
λ is the wavelength, andd is the antenna spacing.
Furthermore, the LoS component is modeled as in (6).

For now, we chooseM = 100, L = 10, pu = 0dB, and half-
wavelength antenna spacing. In addition, theL angles{φk

0}
are i.i.d. uniform random variables, distributed in[0, 2π] while
D = diag[0.749, 0.546, 0.425, 0.635, 0.468, 0.31, 0.64, 0.757,
0.695, 0.515]. Figure 1(a) shows the cumulative distribution of
the capacity per user forKk = 0 and different azimuth angular
spread (in degrees). WithKk = 0, the channel does not have
the LoS component, and hence, the effect ofterm2 can be
exclusively exploited. We can see that the capacity for the
practical case (variable correlation) is very close to the one for
the ideal case (uncorrelated fading, i.e.,Rk = IM ) especially
in the high CDF tail. Yet, we can see that in the low CDF
tail there is still a noticeable performance gap between these
cases, especially when∆k = 10o. This comes from the effect
of term2. The dotted curves (with user selection) represent
the cases that two users which cause the largestterm2 are
dropped from service. We see that after dropping two users
from service, the performance gap between Case 1 and Case
2 reduces significantly. This suggests that we need to drop a
small number of users from service to make massive MIMO
working as in the ideal case.

We next consider the case which includes both LoS and non-
LoS components to examine the effects of all termsterm1−
term4. Figure 1(b) shows the cumulative distribution of the
capacity per user for randomKk and different angular spreads.
The values ofKk are randomly and independently chosen such
that they are uniformly distributed in[0, 2]. Due to the presence
of all four terms, the effect of the azimuth angular spread is
not that significant compared to Fig. 1.

Finally, Fig. 1(c) shows the average-per-user spectral ef-
ficiency for an MRC detector [3, Eq. (6)] as a function

of M . We consider a two-user network with∆k = 60o,
D = diag[0.749, 0.546], K1 = K2 = 1, whereas all other
parameters are kept the same. In line with our theoretical
analysis, we study three detrimental scenarios: in Scenario 1
we assume that̄h2 =

√
Mu

(1)
1 ; in Scenario 2 we assume that

R1 = R2 = diag[M/2,M/(2M − 2), . . . ,M/(2M − 2)] and
in Scenario 3, we assume thath̄1 = h̄2. All three scenarios
make the SE saturate withM , whilst the most destructive
scenario is when the LoS responses are aligned.

V. CONCLUSION

We have identified a set of scenarios under which massive
MIMO can potentially fail in Ricean fading channels. These
extreme scenarios require non-vanishing alignment between
LoS vectors and/or between the covariance matrices and the
LoS vectors. In case a massive MIMO system encounters such
a case, any standard scheduling scheme can compensate for the
performance loss by dropping the highly-correlated users.As a
final remark, we point out the small variations of the capacity
around its mean value across all cases in Figures 1 and 2,
which corroborates the theoretical findings of Proposition1.
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