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In the clinic, proton beam therapy (PBT) is based on the use of a generic relative biological effectiveness
(RBE) of 1.1 compared to photons in human cancers and normal tissues. However, the experimental basis
for this RBE lacks any significant number of representative tumor models and clinically relevant end-
points for dose-limiting organs at risk. It is now increasingly appreciated that much of the variations
of treatment responses in cancers are due to inter-tumoral genomic heterogeneity. Indeed, recently it
has been shown that defects in certain DNA repair pathways, which are found in subsets of many cancers,
are associated with a RBE increase in vitro. However, there currently exist little in vivo or clinical data that
confirm the existence of similarly increased RBE values in human cancers. Furthermore, evidence for vari-
able RBE values for normal tissue toxicity has been sparse and conflicting to date. If we could predict vari-
able RBE values in patients, we would be able to optimally use and personalize PBT. For example,
predictive tumor biomarkers may facilitate selection of patients with proton-sensitive cancers previously
ineligible for PBT. Dose de-escalation may be possible to reduce normal tissue toxicity, especially in pedi-
atric patients. Knowledge of increased tumor RBE may allow us to develop biologically optimized thera-
pies to enhance local control while RBE biomarkers for normal tissues could lead to a better
understanding and prevention of unusual PBT-associated toxicity. Here, we will review experimental
data on the repair of proton damage to DNA that impact both RBE values and biophysical modeling to
predict RBE variations. Experimental approaches for studying proton sensitivity in vitro and in vivo will
be reviewed as well and recent clinical findings discussed. Ultimately, therapeutically exploiting the
understudied biological advantages of protons and developing approaches to limit treatment toxicity
should fundamentally impact the clinical use of PBT.
� 2018 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology xxx (2018) xxx–xxx This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

There exists a great potential for therapeutic benefits of proton
beam therapy (PBT) in several cancer types [1]. PBT has superior
physical characteristics compared to standard photon radiation
in many anatomical sites, but its biological properties have been
thought to be similar to photons [2,3]. This is reflected by the
use of a generic relative biological effectiveness (RBE) of 1.1 for
both cancer and normal tissues (Fig. 1). However, there exists a
scarcity of data on RBE variations in human tumors. In a compre-
hensive review from 2002, the average RBE was estimated as
�1.2 in vitro and ~1.1 in vivo. However, most of the 20 cell lines
were of Chinese hamster ovary (CHO) origin resulting in a some-
what higher in vitro RBE, and only 7 human cancer cell lines were
included [2]. In a recent update, the number of cancer cell lines
remained limited, with an average RBE of �1.15 [3]. However,
there remains considerable variability related to both experimen-
tal conditions (incl. dose, beam characteristics) and cell biology
(incl. DNA repair status, a/b ratio).

This experimental basis for the current clinical use of a generic
RBE of 1.1 is a major limitation, given the considerable genomic
heterogeneity across cancers even for the same type and histology
as unraveled by recent genomic studies. Moreover, it is increas-
ingly appreciated that much of the variations in treatment sensitiv-
ity observed clinically are due to inter-tumoral heterogeneity,
which includes alterations in the DNA damage response (DDR)
[4–9]. Indeed, several reports have now demonstrated that defects
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Fig. 1. Relative Biological Effectiveness (RBE) of different ionizing radiation qualities. (A) RBE is the ratio of doses to reach the same level of effect (Endpoint) when comparing
two radiation modalities, i.e., reference photons (Cobalt-60, Co60) vs. protons. The radiation dose in PBT is prescribed as Gy[RBE] according to ICRU. For example, for a RBE =
1.1 and a desired Co60 equivalent (Co60Eq) dose of 2 Gy, the corresponding physical proton dose would be 1.82 Gy (1.82 Gy � 1.1 = 2 Gy[RBE]). (B) Examples of ionizing
radiation types and representative dose-average LET (Linear Energy Transfer) and RBE values [10,103,104]. LET of c-rays refers to secondary electrons. (C) Illustration of how
protons induce DNA damage that is slightly more clustered than photons (or Co60 c-rays), which in DNA repair-proficient cells yields a RBE of 1.1.

2 Variable Proton RBE
in the homologous recombination (HR) and Fanconi Anemia (FA)
DDR pathways are associated with RBE values of 1.3 or more
in vitro [10–13]. However, there currently exist few pre-clinical
in vivo or clinical data to demonstrate the existence of increased
RBE values in human cancers, and evidence with regard to RBE
variations in normal tissues remains sparse as well [2,14–16].

Importantly, we lack an in-depth understanding of the mecha-
nisms that underlie RBE variations in tumors and normal tissues,
and we are currently unable to identify individual cancer patients
whose tumors and/or normal tissues exhibit increased sensitivity
to PBT. These shortcomings constitute critical barriers to fully har-
nessing the potential superiority of PBT and to avoiding unneces-
sary toxicity. Here, we review our current knowledge of and
approaches to understanding RBE variations in tumors and normal
tissues. In the not too distant future, therapeutically exploiting the
understudied biological advantages of protons and developing
approaches to limiting treatment toxicity are expected to funda-
mentally impact the clinical use of PBT in the increasing number
of proton centers worldwide.
DNA damage caused by particle radiation and its repair

DNA repair of double-strand breaks and clustered damages

Although the use of charged particle therapy has increased
rapidly over the last few decades, the contribution and the inter-
play of specific DNA repair pathways to the repair of DNA lesions
induced by these radiation modalities is incompletely understood.
Particle radiations such as proton or carbon ion beams induce more
highly localized and clustered DNA damage than X- and c-rays.
Clustered DNA damage includes abasic sides, base damages,
single- (SSBs) and double-strand breaks (DSBs) that are in close
proximity to each other [17]. The complexity and yield of
radiation-induced clustered DNA damage increases with ionization
density [18–21]. Hence, for a given dose, therapeutic carbon beams
(200–430 MeV/n; �>10–80 keV/lm linear energy transfer (LET))
are expected to induce more clustered DNA lesions than therapeu-
tic proton beams (65–250 MeV/n; �2–10 keV/lm). Clustered DNA
damage represents a considerable obstacle to efficient repair, and
DSBs within clustered lesions rejoin with slower kinetics and less
completely than frank DSBs [20,22], likely contributing to the
observed higher RBEs for cell killing after charged particle- com-
pared to photon-irradiated cells [18,23]. A major question is
whether the mechanisms of repairing DNA damages caused by
PBT resemble those triggered by photons or those operating in
response to heavy ion exposure.
Please cite this article in press as: Willers H et al. Toward A variable RBE for
radonc.2018.05.019
When potentially lethal DSBs occur, cells repair these DNA ends
mainly by two distinct pathways, non-homologous end joining
(NHEJ) and HR. These two pathways differ biochemically, have dif-
ferent substrate requirements, and are used differently throughout
the cell cycle (for review, see [24]). Briefly, NHEJ is the main path-
way of ionizing radiation-induced DSB repair in G1- and early S-
phase cells while both HR and NHEJ contribute to DSB repair in late
S-/G2-phase cells [25,26]. Importantly, HR also is the predominant
pathway for the repair of stalled and damaged DNA replication
forks [27,28]. Notably, mutations in HR genes increase cellular sen-
sitivity to photon radiation and also to replicative and transcrip-
tional stress [29,30]. During HR a DSB, or a DNA replication fork
encountering a DNA lesion, undergoes nucleolytic resection to
yield 30 single-stranded (ss) DNA ends which are immediately cov-
ered by the ssDNA binding protein replication protein A (RPA). RPA
is then replaced by the RAD51 recombinase forming a nucleopro-
tein complex termed the presynaptic filament. The presynaptic fil-
ament searches for, engages, and invades a homologous duplex
target DNA to form the displacement loop (D-loop). DNA synthesis
and resolution of DNA intermediates follows to complete HR repair
[31]. During NHEJ, the KU70/80 heterodimer, which has high affin-
ity for free DNA ends [13], initiates the pathway, whereby nucle-
olytic processing of DNA ends is blocked. KU70/80 recruit DNA-
PKcs, and DNA-PKcs immobilizes the two DNA ends and facilitates
the rejoining reaction [32–34], in which ligation is carried out by
the XRCC4-DNA ligase IV complex [35]. NHEJ is the major repair
pathway for DSBs induced by photon radiation including X-rays
(for review, see [36]).
Repair pathways for high-LET radiations

To date, only a limited number of studies have addressed the
relative contributions of NHEJ, HR and resection-mediated repair
pathways to removing complex DSBs induced by different charged
particle radiation types. Evidence is accumulating that shows that
NHEJ is less capable of removing clustered DSBs induced by high-
LET radiations as compared to low-LET radiations [37–42]. Yajima
et al. [42] investigated the propensity of human and mouse cells to
undergo DNA resection after low-LET (X- or c-rays) versus high-
LET radiations (70 keV/lm carbon (290 MeV/n) or 250 keV/lm
iron ions (500 MeV/n)). Their study showed that >80% of the DSBs
induced by heavy ions were subjected to end resection, which is
significantly more than what was observed after low-LET radia-
tions [41,43]. Interestingly, Yajima et al. [42] also reported on
DNA resection occurring in G1 phase cells after heavy ion treat-
ment and suggested that microhomology-mediated end-joining
proton beam therapy. Radiother Oncol (2018), https://doi.org/10.1016/j.
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(MMEJ) may take over from inefficiently working NHEJ at clustered
DSBs in G1-phase cells. These findings are in accord with results
reported by Averbeck and collaborators [44], who investigated
G1-phase cells and a large number of heavy ion beams including
90 and 170 keV/lm carbon ions. These investigators also con-
cluded that an increased requirement for processing of DNA ends
at complex DSBs forces DNA repair pathway choice in G1-phase
cells toward resection-dependent MMEJ repair [44].

One of the first studies that directly investigated the involve-
ment of the HR pathway in repairing complex DSBs induced by
heavy ions (1 GeV/n iron ions; LET = 150 keV/lm) compared the
response to iron ions of HR-proficient and deficient Chinese ham-
ster ovary (CHO) cell lines, and of syngeneic human cells depleted
for the key HR protein RAD51 or its paralog RAD51D by RNA inter-
ference [45]. HR capability after iron ion irradiation was found to
contribute to cell survival in rodent cells and to limiting mutagen-
esis in human cells, whereby the requirement for an intact HR
pathway in protecting cells from the detrimental effects of charged
particle radiation was demonstrated [45]. Interestingly, when the
relative contributions of the NHEJ and HR pathways to the repair
of DNA lesions induced by 200 MeV protons (energy spread at
the mid-SOBP = 0–60 MeV; dose-average LET = 2.2 keV/lm), 290
MeV/n carbon ions (energy spread at the mid-SOBP = 0–160 Me
V; dose-average LET = 50 keV/lm) or c-rays were compared in
CHO cell lines, HR capability was found to be more critical for
the repair of carbon ion-induced DSBs than for the repair of DSBs
induced by protons or by c-rays [46].

The effects of a range of different heavy ions, including a 290
MeV/n carbon ion SOBP beam (LET = 50 keV/lm), on the survival
of mouse embryonic fibroblasts (MEFs), fully DSB repair proficient
or compromised in NHEJ or HR by homozygous deletion of the Lig4
or Rad54 genes, respectively, showed that defects in NHEJ lead to
higher cellular sensitivity to therapeutic carbon beams than
defects in HR [47]. However, it is interesting to note that, when
compared to 200 kVp X-rays, RBE values for SOBP carbon ions at
10% survival were actually higher for Rad54-deficient MEFs
(�2.1) than for Lig4-deficient MEFs (�1.4) [47]. These data suggest
that, similar to the findings by Gerelchuluun et al. [46], even
though NHEJ-deficiency is linked to the greatest cytotoxicity for
all radiation types tested, exposure of HR-deficient cells to carbon
ions is still more effective in reducing cell survival than exposure of
HR-deficient cells to X-rays.
Repair pathways for low-LET protons

Grosse et al. reported that the removal of proton-induced DSBs
preferentially relied on HR when comparing the cytotoxicity of
200 kVp X-rays to protons (energy spread at the mid SOBP �138
MeV) in CHO cells [13]. This study also showed that the DSB repair
kinetics in HR-deficient cell lines were significantly delayed after
proton irradiation compared to X-rays, and the authors concluded
that PBT may be particularly beneficial to cancer patients with
mutations in HR pathway genes. In a follow-up study, Fontana
and collaborators investigated NHEJ and HR pathway choice in
human A549 lung cancer cells depleted for RAD51 and in BRCA2-
deficient ovarian carcinoma cells after exposure to X-rays and pro-
tons [12]. In accord with the results from their earlier study [13],
an enhanced susceptibility of HR-deficient tumor cells to protons
and an increased sensitivity of photon-irradiated tumor cells to
NHEJ inhibitors were detected [12], further supporting the notion
that tumors with defects in HR may be more susceptible to PBT
than to photons. Similarly, data based on monitoring RAD51 and
53BP1 foci formation by stimulated emission depletion (STED)
microscopy in S/G2-phase HeLa cells exposed to 21 MeV protons
(LET = 2.56 keV/lm) showed that the HR pathway may be operat-
ing at higher levels after protons [48] than after photons [41].
Please cite this article in press as: Willers H et al. Toward A variable RBE for
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An open question remained as to whether HR repair of DSB in
late S/G2-phase or DNA replication fork-associated HR was
required for the repair of proton-induced DNA damage. In a screen
of 17 human lung cancer cell lines exposed to a clinical proton
beam at mid-SOBP (235 MeV; 2.5 keV/lm), a range of proton RBE
values was observed. Increased RBE values in the lung cancer
and other human cell lines correlated with defects in HR or FA
genes [49]. Importantly, HR and the FA pathway cooperate specif-
ically at DNA replication forks to ensure fork protection and restart
[28,50]. These data, therefore, suggested that clustered DNA dam-
age resulting from proton irradiation challenges the progression of
DNA replication forks in S-phase cells, leading to increased depen-
dency on the HR/FA pathways for DNA damage repair and replica-
tion fork restart [49,51]. Liu and coworkers [11] corroborated this
presumption demonstrating that immortalized human fibroblasts
derived from a FA complementation group P patient with bi-
allelic SLX4 mutations are hypersensitive to protons, and that this
hypersensitivity was linked to the SLX4-interacting MUS81 pro-
tein. Notably, both SLX4 and MUS81 are required for replication
fork restart and HR (for review, see [28]).

In contrast to these studies [10–13], the report by Gerelchuluun
et al. did not find an increased RBE of protons compared to X-rays
when HR was impaired due to loss of XRCC2 or XRCC3 function
[46]. The reason for this discrepancy remains unclear but may
relate to assay parameters. Gerelchuluun et al. employed immedi-
ate plating for colony formation after irradiation which was not
used in the other studies. It is possible that early trypsinization
interferes with cell cycle progression and reduces the odds of
DNA replication forks encountering unrepaired DSBs. Taken
together, the majority of the published data suggest that the differ-
ential DNA repair capabilities between tumor and surrounding
normal tissues could be exploited to improve regimens of PBT.

Since genetic or epigenetic alterations in HR and FA genes are
increasingly being detected in many different cancer types [52–
54], more cancer patients than historically thought may be appro-
priate candidates for PBT. Conceivably, other DDR defects and
tumor genotypes may also be associated with increased RBE val-
ues. More in vivo and clinical data are urgently needed to substan-
tiate the promising data obtained in cell culture experiments. It
will also be necessary to more systematically investigate the link
between HR/FA repair deficiencies and carbon ions, to improve
our understanding of the similarities and differences of clustered
DNA lesions induced by protons vs carbon ions. Ideally, a larger
set of genomically characterized human cancer cell lines should
be included in these experiments, as it has been done for protons
in the past [49]. A model to depict the effects of different radiation
qualities combined with deficiencies in the HR/FA pathways on
RBE values is shown in Fig. 2.
Modeling and predicting the RBE of proton beam therapy

Even if we could determine the effects of DNA repair deficien-
cies that influence proton sensitivity in tumors, this may not be
enough to predict clinically relevant RBE variations. Such predic-
tions require quantitative models to assess how physical factors,
such as radiation dose and LET, and biological parameters, such
as tumor type and functional DNA repair status, combine within
an individual’s treatment. However, despite the growing under-
standing of the mechanistic drivers of RBE as described above
and elsewhere [3], few biophysical models fully incorporate this
knowledge, but instead fall into two broad categories.

Firstly, a number of models use conventional linear-quadratic
dose responses, and modify the a and b parameters with LET-
dependent terms to incorporate increasing damage complexity
[55–57]. A second group of models incorporate increased physical
proton beam therapy. Radiother Oncol (2018), https://doi.org/10.1016/j.
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Fig. 2. Model: HR/FA defects lead to an increase in RBE as a function of clustered damage complexity. Cells with defects in DNA repair by homologous recombination (HR) or
the Fanconi Anemia (FA) pathway are impaired in the ability to repair DNA replication forks that encounter clustered DNA damages. Even though the average LET is similar
between orthovoltage X-rays and protons at mid-SOBP, protons are hypothesized to generate more complex lesions that present a greater obstacle to HR/FA-deficient cells
than those produced by X-rays [10]. Clustered damages after high-LET carbon ion beam irradiation likely rely on an intact HR pathway for removal as well.

4 Variable Proton RBE
detail by replacing averaged LET with detailed sub-cellular dose
calculations, including the Microdosimetric Kinetic Model [58],
Local Effect Model [59], and Monte Carlo Damage Simulation
[60]. A common feature of these models is that they do not incor-
porate significant detail about the underlying biology, typically
extrapolating empirical parameters by fitting between photon
and proton exposures. As a result, they have limited ability to
incorporate our knowledge of the impact of genomic heterogene-
ity, in particular aspects of genomically determined radiation sen-
sitivity. Consequently, new models are needed if inter-patient RBE
heterogeneity is to be successfully incorporated into treatment
planning.

Numerous models of radiation response processes are under
development, including biophysical models of radiation-induced
DNA damage distribution and complexity, models of DSB repair
incorporating kinetics of protein recruitment and damage com-
plexity, and models of cell death following different stresses [61–
67]. But while these models can provide useful insights, most focus
on a single endpoint, making them unsuitable to fully describe the
variations in RBE which depend on multiple physical and biological
factors. Integrated multi-scale models are needed to enable us to
incorporate our knowledge of these processes to deliver individu-
alized RBE predictions.

Some groups have begun to develop links between these differ-
ent scales, including recent developments in the Local Effect
Model, Giant Loop Binary Lesion Model, PARTRAC, and others
[68–73]. These models have helped to compare which factors
may be most significant in driving variations in RBE, and they have
demonstrated the benefits of combining these factors into inte-
grated models. However, the development of such models is chal-
lenging as each additional process to be modeled requires
additional parameters which must be characterized and quantified,
introducing uncertainties which are impossible to address through
studies of cell survival based RBE values alone.

Development of multi-scale models instead demands close col-
laboration between experimentalists and modelers to design
multi-scale experiments, combining terminal endpoints such as
survival with quantification of intermediate processes such as
DNA repair and other endpoints such as mutation or chromosome
aberration formation to allow all stages of cellular radiation
response to be characterized. By integrating all aspects of radiation
response in individual studies, inter-experimental uncertainties
can be reduced, enabling the development of more robust and
extensible individualized RBE models.

Experimental approaches for determining proton RBE in vitro
and in vivo

Although the number of operating proton therapy centers
worldwide has been increased to more than 60, with currently
26 in the United States (www.ptcog.ch), it is important to realize
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that access to those centers for biological in vitro and in vivo exper-
iments will likely be limited. This is not reflecting a lack of interest
in proton research but rather the economical need for a financial
return of an expensive treatment facility as well as the paucity of
suitable laboratory space and animal facilities close by.

At the same time, there is a great need for more comprehensive
and systematic RBE studies. The increased RBE in the distal fall-off
of the Bragg-peak holds the potential for risks, i.e. potentially
increased side effects due to uncertain RBE, as well as benefits,
i.e. potentially enhanced tumor local control rates if they can be
exploited through the use of intensity-modulated proton beam
therapy. Additionally, RBE values in some tumors may be increased
due to genomic factors as discussed above. Treatment planners will
tackle dose distributions and range uncertainties, but pre-clinical
research will need to shed light onto proton-specific normal tissue
complications and tumor sensitivities. These findings should sup-
port patient stratification and guide a clinician’s decision whether
or not PBT is favored in an individual patient. Therefore, a proton-
specific experimental pipeline is needed to support the translation
of pre-clinical findings into clinically useful knowledge.

Recently, a pipeline for pre-clinical studies of radiation/drug
combinations was proposed, emphasizing the importance of the
in vitro clonogenic survival assay, medium/high-throughput assays
for drug screening, physiological 3-dimensional (3D) assays as well
as growth delay and tumor control experiments in vivo [74]. All of
these techniques and endpoints have similar relevance for proton
research. Limited access to proton beam time, nonetheless, lowers
the number of biological samples which can be exposed and
directly influences the range of parameters that can be studied in
combination with proton radiation, e.g. number of cell lines/mod-
els, time points, radiation doses, drugs in different concentrations.
As a consequence, the question arises which biological models
should be used for proton research. It is increasingly held that a
small number of established cell lines are not representative of
the heterogeneity of human cancers although controversy exists
[75–77]. Established cell lines do have the advantage that they
grow reliably, are often genomically characterized, and are func-
tionally studied (including characterization of radiation sensitiv-
ity). Over 20 years ago, the NCI60 cell line panel comprising nine
cancer entities was established to standardize cancer drug research.
Similar platforms are being developed for radiation purposes
[78,79]. Analogously, panels of annotated cancer and normal cell
lines with clinical relevance for PBT would be very useful. Such cell
lines should have known X-ray (+/� drug) sensitivities. Selective
inclusion of responder and non-responder cell lines for proton
experiments would be of great value for mechanistical insight
and for translational approaches as they might be indicative for
clinical patient selection. Primary cell cultures preferentially grown
as 3D models would be useful to confirm findings. Especially
patient-derived cultures such as tumor or normal tissue organoids
could help to stratify patients in the future if a correlation of results
proton beam therapy. Radiother Oncol (2018), https://doi.org/10.1016/j.
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Fig. 3. Proposed translational pipeline for discovering clinically useful biomarkers that predict variable RBE values. See text for details.
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from in vitro organoid cultures and patients’ treatment outcomes
could be established.

Performing in vivo experiments at clinical or experimental pro-
ton beam lines poses further challenges, including positioning of
the animal and dose description for a small field [80]. For normal
tissue endpoints, the RBE of protons is generally in the order of
�1.1 as reviewed [2,81]. However, much of these data pertain to
skin reactions, and clinically significant endpoints such as involv-
ing the central nervous system or heart remain poorly studied.
For tumor models, there exists a paucity of data. The tumor growth
delay for a subcutaneous FaDu xenograft model following pulsed
and continuous proton beams in comparison to 6 MV photons
led to RBE values of 1.22 and 1.10, respectively [82]. In a Hep3B
hepatoma xenograft model treated with 3 daily doses of 3 Gy
230 MeV protons at mid-SOBP or 6 MV photons, proton treatment
resulted in 1.4-fold greater tumor growth delay which was statis-
tically significant. Moreover, the in vivo effect mirrored the
increased proton sensitivity seen in an in vitro colony formation
assay, where the RBE at 0.5 survival fraction was around 1.5 (esti-
mated from Fig. 2c in Ref. [82]). The authors also demonstrated
that the difference in tumor effect between protons and photons
could be pharmacologically enhanced. More in vivo data are
urgently needed to derive in vivo RBE estimates and identify
molecular targets for proton-specific radiosensitization.

Experience in photon research highlights the enormous rele-
vance of tumor xenograft models for clinical translation [83–85].
Particularly, local tumor control dose experiments have demon-
strated great potential relative to tumor growth delay in translat-
ing knowledge to the clinic [86,87]. However, subcutaneously
transplanted tumors reach the desired tumor volume with tempo-
ral variations. Given the most often strictly defined days of proton
beam time, loss of a large number of animals due to tumors of
undesirable size faces ethical and biostatistical concerns. Further-
more, clinically relevant fractionation schedules, such as 30 frac-
tions in 6 weeks, need to be adapted to proton beam availability.
Here, shorter, hypofractionated schedules may be a viable and clin-
ically relevant option. Still, local tumor control (TCD50) experi-
ments require approximately 80–100 animals per treatment arm,
which essentially limits these studies to proton centers with ded-
icated rooms for experimental purposes.
Please cite this article in press as: Willers H et al. Toward A variable RBE for
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To conclude, the establishment of a proton-adapted NCI60-like
cancer cell line panel would be desirable to study mechanistic RBE
effects, especially in combination with targeted drugs (Fig. 3).
Patient-derived 3D/organoid cultures should be used for validation
of results and, if a correlation with patient-outcome can be shown,
may guide patient stratifications in the future. Clinically relevant
in vivo experiments will be the bottle neck for the translational
chain. These studies should considernot only relevant tumormodels
but also normal tissue endpoints, LET, and fractionation and thus
may be best performed in centers with dedicated experimental
rooms.

Toward clinical evidence for a variable proton RBE

In the clinical practice of heavy ion beam therapy, biologic
effect models are explicitly considered in the treatment planning
process in order to limit high-LET depositions in critical normal tis-
sues. While the models used for treatment planning may differ
between centers, with different models being used in Asia and Eur-
ope, variable RBE is incorporated in each. This has not been the
case for PBT where it has been assumed that the RBE of protons
is a constant value of 1.1 [2]. Around the world there has been a
rapid expansion in the number of proton centers. As the number
of patients treated with PBT increases, there is growing debate
regarding the RBE of PBT [51,88–91].

In the laboratory, recent evidence indicates that the capacity for
proton beams to cause biological damage is substantially higher
near the distal, high-LET region [81,92–94]. This is true both for
tumors as well as normal tissues. This is, of course, well known
for heavy ions, but as yet not explicitly incorporated into proton
treatment planning. Arguments most often made in support of a
continued use of an RBE of 1.1 include that relative to heavy ions,
the areas of high LET within a proton beam are very small and
likely clinically insignificant if not within a critical organ at risk,
and that there are no clinical data to suggest that the proton RBE
is not 1.1 in most patients.

Increasingly, however, investigators are challenging the use of
a generic RBE value of 1.1 for PBT using laboratory and clinical
data. There are now several studies which have documented
increased cell kill in the distal regions of proton beams, which
proton beam therapy. Radiother Oncol (2018), https://doi.org/10.1016/j.
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is supported by the observation of differential DNA damage along
the beam path [92,93]. Clinically, the group at MD Anderson doc-
umented increased rates of post-radiation MR imaging changes in
ependymoma patients treated with PBT compared to photons
[14]. Such changes are indicative of early radiation injury and
serve as an imaging biomarker of differential damage between
these radiation types. In order to further evaluate the etiology
of these changes, this group used Monte Carlo techniques to com-
pute proton dose and LET distributions and found significant cor-
relations between LET, dose, and regions of imaging change in
these patients. Others are now expanding research in this area
by conducting laboratory investigations, using normal tissue
models, and clinical studies in expanded patient cohorts and
other disease sites to better characterize the biologic effectiveness
of PBT. Mining existing data bases and registries, especially at
high-volume proton centers, may reveal associations between
unusual biological effects and PBT (https://www.ptcog.ch/
archive/patient_statistics/Patientstatistics-updateDec2016.pdf).
For example, recent patient data indicate that for parenchymal
lung changes induced by end-of-range protons the RBE is >1.1
[95]. On the other hand, no apparent increase was observed in
brainstem necrosis in pediatric patients treated with PBT [96].
In contrast to a potentially variable tumor RBE, biological mecha-
nisms underlying any RBE variations in normal tissues (other
than low a/b values and LET increases at end-of-range) are essen-
tially unknown at this time.

High level evidence for an increase in tumor RBE >1.1 in
patients treated with PBT is also currently lacking. Because RBE
increases may only exist in a subset of patients, such as the 20–
25% of patients with HR/FA defects [97], associated local tumor
control or survival effects are most likely missed when analyzing
the study populations as a whole. Ideally, predictive biomarkers
for tumor RBE >1.1 are needed to enrich a study population before
randomizing patients to PBT vs photons in a clinical trial. Searches
for a clinical signal of increased proton sensitivity and unusual
responders in the randomized trials of PBT vs photons completed
or soon to be completed will be of great interest [98]
(NCT01512589, NCT01893307).

As the amount of data regarding a role for variable RBE
increases, it seems that the field of PBT may follow that of heavy
ions, with assessments of biological effectiveness incorporated into
the treatment planning process. With newer proton therapy deliv-
ery modalities, in particular spot scanning proton therapy, inten-
sity modulated proton therapy (IMPT) plans may be developed to
preferentially divert high LET protons away from normal tissues
into the target volume. This should reduce normal tissue damage
while simultaneously increasing biologically effective doses to tar-
gets and perhaps even augmenting pre-existing RBE advantages
due to certain DNA repair defects, further expanding the therapeu-
tic index for PBT.
Conclusions

If we could predict variable RBE values in patients, we would be
able to optimally use and personalize PBT. For example, such mark-
ers may facilitate selection of patients with proton-sensitive can-
cers if these patients would have been otherwise ineligible for
PBT. Dose de-escalation may be possible to reduce normal tissue
toxicity especially in pediatric patients. Knowledge of an increased
tumor RBE may allow us to develop biologically optimized thera-
pies to enhance local control, for example through optimized IMPT
or specific drug combinations, while RBE biomarkers in normal tis-
sues could lead to a better understanding and prevention of unu-
sual PBT-associated toxicity. We also note that there continues to
be a major international debate regarding the cost-effectiveness
Please cite this article in press as: Willers H et al. Toward A variable RBE for
radonc.2018.05.019
of proton therapy [1,99–102]. Public, policy makers, and payers
want to see evidence for the superiority of PBT and quantification
of benefit, which to date has been framed only in technological
terms. Realizing a biological advantage of PBT in subsets of cancer
patients (and/or an increased risk for treatment toxicity in some
patients), would fundamentally impact and redirect this debate.
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