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We present a general framework to tackle the problem of finding time-independent dynamics generating target
unitary evolutions. We show that this problem is equivalently stated as a set of conditions over the spectrum of
the time-independent gate generator, thus transforming the task to an inverse eigenvalue problem. We illustrate
our methodology by identifying suitable time-independent generators implementing Toffoli and Fredkin gates
without the need for ancillae or effective evolutions. We show how the same conditions can be used to solve the
problem numerically, via supervised learning techniques. In turn, this allows us to solve problems that are not
amenable, in general, to direct analytical solution, providing at the same time a high degree of flexibility over the
types of gate-design problems that can be approached. As a significant example, we find generators for the Toffoli
gate using only diagonal pairwise interactions, which are easier to implement in some experimental architectures.
To showcase the flexibility of the supervised learning approach, we give an example of a non-trivial four-qubit
gate that is implementable using only diagonal, pairwise interactions.

Let us consider the synthesis of a quantum operation G
(a gate) from the underlying dynamics of a quantum system.
Unitarity of G allows for the identification of a Hermitian gen-
eratorHG such that G = eiHG (we assume units such that the
simulation time t is dimensionless, and rescale it so that the
desired gate is successfully achieved at t = 1). In general, such
generator typically contains highly non-local interactions that
can be difficult to realize in a given physical setup. However,
for a choice of the platform to use for the implementation of
G, it is generally possible to single out a sub-set Γ of physical
interactions that can be realized relatively easily and inexpen-
sively. The question that we aim at addressing here is thus: is
it possible to synthesise G from a generator HG comprising
operations drawn only from an assigned Γ?

This question is very relevant in the context of quantum sim-
ulation, for instance, where the problem of general reachability
of a target dynamics, given a set of physical interactions to be
used to construct the simulation strategy, is key [1]. However,
it is also important for the realization of large-scale quantum
computation [2, 3], which relies on the capability of imple-
menting entangling gates between many qubits and with high
fidelity. A notable case is the quantum Toffoli gate, a uni-
versal reversible logic three-qubit gate [4] that is optimal for
quantum error correction [5–8], and is a key component for
reversible arithmetic operations such as modular exponenti-
ation [9]. Unfortunately, the natural dynamics generating a
Toffoli gate requires non-local three-qubit interactions, which
cannot be easily implemented in experimental architectures.
Possible ways to overcome the limitation of gate synthesis,
simulation, and reachability, typically consists of a suitable use
of the additional processing power offered by larger Hilbert
spaces [10] encompassing ancillary information carriers, and
the embedding of quantum control techniques [11].

The identification of suitable alternatives to such expensive
strategies for gate synthesis and simulation would represent
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a significant contribution to the ongoing effort towards the
translation of theoretical protocols to the production line of
quantum technologies [12].

In this Letter we show that, by exploiting symmetries and
degeneracy of the target gate, and making use of the power of
machine learning-enhanced quantum information processing,
it is indeed possible to identify successful architectures for
arbitrary gate synthesis and simulation. More specifically,
given a certain set Γ of physical interactions that can be realized
inexpensively in a given physical platform, we introduce three
conditions that, if met, produce a Hamiltonian H̃ comprising
only operations drawn from Γ and such that G = exp(iH̃).

On one hand, the abovementioned conditions can be used to
find exact gate-design strategies. We show relevant instances
of such possibility by devising Toffoli and Fredkin gates using
only pairwise interactions. On the other hand, the same condi-
tions provide enhanced numerical ansatz for a speedy design of
arbitrary N-qubit gates. In particular, we present a supervised-
learning optimisation technique to train qubit networks, and
demonstrate algorithm-training instances of three-qubit Toffoli
and Fredkin gates. We go beyond the three-qubit scenario by
designing a four-qubit gate using only two-qubit interactions.
A significant boost in performance is here made possible by
the use of automatic differentiation, which allows to speed-up
gradient-descent-based optimization techniques in a flexible
way, at the same time avoiding numerical errors and instabili-
ties arising from numerical differentiation techniques.

We also discuss the implications of our framework for prob-
lems extending beyond the field of quantum computing and
addresssing quantum communication via perfect state-transfer
approaches [13, 14].

General methodology.– We start our analysis by com-
puting the Hamiltonian HG that generates the target gate
G = eiHG . Using the spectral decomposition of G, we have
HG = −iU Log(Λ)U†, where G = UΛU†, Log denotes the
principal branch of the logarithm, and Λ is a diagonal matrix
with the eigenvalues of U. Fixing a branch for the logarithm
makes it single-valued, andHG uniquely determined from G.
In general, the generatorHG will contain both physical interac-
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tions, that can be realized easily in a given physical setup, and
unphysical ones, i.e. dynamics that are not naturally achieved
in the chosen experimental platform of the problem. Our goal is
to construct a new Hamiltonian H̃G, comprising only physical
interactions, such that G = exp(iHG) = exp(iH̃G).

We assume that H̃G depends on a quantity λ that
parametrizes the set of physical interactions to be used. For
instance, in a spin system, the physical interactions can be a
certain subset of the possible two-body and single-body inter-
actions, like the set of Heisenberg coupling strengths and local
magnetic fields. In general, H̃G(λ) may also model a system
where the original register is coupled to auxiliary degrees of
freedom, though we will here focus on the case without ancil-
lary qubits. The following three conditions are necessary and
sufficient for H̃G to satisfy our requirements:

H̃G contains only physical interactions, (1a)

[H̃G,HG] = 0, (1b)

Eig(H̃G −HG) = {2πni with ni ∈ Z}. (1c)

Requirements (1b) and (1c) ensure that G = exp(iH̃G −
iHG) exp(iHG) and exp(iH̃G − iHG) = 1, while condition
(1a) reiterates the constraints we are imposing on H̃G. While
condition (1b) may seem excessively restrictive, this turns out
to not be the case. To see this, consider the spectral decom-
position G =

∑
k λk

∑
j Pk j of a general gate G. Here, Pk j is

the jth trace-1 projector in the kth degenerate subsector of the
eigenspace [15]. It follows thatHG and H̃G have the following
expressions

HG = −i
∑

k

Log(λk)Ik, H̃G = HG + 2π
∑
k, j

νk jPk j, (2)

Here Ik =
∑

j Pk j, which is not (in general) an identity (or
diagonal) matrix, and we have used the general expression for
the logarithm log λ = Log λ + 2πiν, with ν ∈ Z, applied to
every term of the spectral decomposition of G. Therefore, for
any choice of H̃G we have [H̃G,HG] = 0.

The set of conditions (1a)-(1c) considerably simplifies the
problem of gate simulation, and can be constructively used in
several ways. On one hand, they can be analytically solved
in at least some situations of physical interest. On the other
hand, they can be used to produce an efficient starting point for
numerical optimization techniques. The general procedure is
to start from a generically parameterized expression for H̃G(λ)
satisfying condition (1a), and then proceed to use (1b) to both
significantly reduce the set of possible interactions and impose
constraints on the parameters. The problem is then reduced to
the enforcing of the constraints on the spectrum of the genera-
tor summarised by condition (1c). This is the non-trivial step in
the procedure, which we will however show to be analytically
solvable in at least some cases. This strategy therefore reduces
the task of constrained gate design into an inverse eigenvalue
problem, a topic well studied in the field of numerical analy-
sis [16]. More generally, we develop a numerical supervised
learning technique to avoid having to directly tackle the solu-
tion of the non-trivial eigenvalue problem posed by Eq. (1c).
It is worth noting that, while H̃G produces the same unitary

evolution given by HG at time t = 1, the dynamics will in
general be different at 0 < t < 1.

Applications: Toffoli and Fredkin gates.– The quantum Tof-
foli gateUToff is a control-control-NOT that flips the state of
the target qubit (qubit 3 in our notation) when the state of the
two controls (qubits 1 and 2) is |1〉1 ⊗ |1〉2, and acts trivially on
qubit 3 otherwise. Its realization is an important step towards
the construction of quantum computers [8, 17–19]. A time-
independent two-body Hamiltonian that simulatesUToff with
four qubits has been obtained in [20] using a numerical opti-
mization technique, while three qubits have only been found to
make approximate and classical Toffoli gates [21]. Here, fol-
lowing the construction in Eq. (1), we find an analytic solution
that requires as few as three qubits. Its generator, obtained by
taking the principal value of the logarithm ofUToff , is

HToff =
π

8
(1 − σz

1)(1 − σz
2)(1 − σx

3), (3)

whose only three-qubit term is ∝ σz
1σ

z
2σ

x
3, where σαi is the

αth Pauli matrix acting on qubit i. We now write a general
parametrised generator H̃Toff as

H̃Toff = h01 +
∑

hi,ασ
α
i +

∑
Jα,βi, j σ

α
i σ

β
j . (4)

The above expression, containing 37 parameters, automatically
satisfies condition (1a) in that it corresponds to an H̃Toff with-
out three-qubit interactions. Imposing condition (1b) further
removes 12 parameters, leaving us with 25 (see Section I in
the Supplementary Material for more details). This number
is still too high to easily solve the inverse eigenvalue problem
embodied by condition (1c). We thus impose some physi-
cally plausible assumptions on the coefficients, in order to
obtain a generator with a small enough number of parame-
ters for which condition (1c) can be satisfied and the resulting
equations are simple enough to be solvable. In particular,
we impose Jxz

12 = Jzx
12 = Jxx

13 = Jxx
23 = 0, Jzx

13 = Jzx
23 = π/8,

Jzz
23 = −Jzz

13 and hz
1,2 = −π/8. The rationale behind these

assumptions is to look for a generator that is diagonal with
respect to the first two qubits, does not use σy

i operators, and
does not introduce new off-diagonal interactions, on top of the
ones already in the principal generator. This last assumption
is useful because it implies a reduced number of parameters
in H ′Toff

≡ H̃Toff − HToff , which is the operator on which we
have to impose Eq. (1c). Note that the above does not uniquely
identify the set of assumptions, and different assumptions lead-
ing to different classes of solutions are indeed possible. In
the Supplementary Materials we present another example of
generator, that is obtained via different assumptions. Imposing
the above constraints we obtain

H ′Toff = (π/8)σz
1σ

z
2σ

x
3 + (h0 − π/8)1 + (hx

3 + π/8)σx
3+

(Jzz
12 − π/8)σz

1σ
z
2 + Jzz

13(σz
1 − σ

z
2)σz

3.
(5)

The problem is now to find values for the coefficients in Eq. (5)
such that exp(iH ′Toff

) = 1, which is equivalent to finding co-
efficients such that all the eigenvalues of H ′Toff

are integer
multiples of 2π. Solving for h0, hx

3, J
zz
12, J

zz
13 gives a family of so-

lutions parametrized by the 4 integer coefficients ν1, ν2, ν3, ν4.
The full expression is given in the Supplementary Materials.
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A simpler family of solutions depending on a single integer
parameter is obtained imposing ν1 = ν2 = ν3 = 0 and ν4 = ν,
and reads

H̃Toff(ν) =
π

8

[
1 + 4|ν| − 2σx

3 − σ
z
1 − σ

z
2 + (σz

1 + σz
2)σx

3

+ (1 − 4|ν|)σz
1σ

z
2 +
√

16ν2 − 1(σz
2 − σ

z
1)σz

3

]
.

(6)

As can be directly verified, for non-zero integer values of ν,
the above satisfies exp(iH̃Toff(ν)) = UToff . It is interesting to
remark that the generator in Eq. (6) can also be deduced directly
by using only properties of the Pauli matrices, as shown in the
supplementary materials (while this is harder in the case of the
generator provided for the Fredkin in Eq. (8)). Thus, a highly
non-trivial three-qubit gate such as Toffoli’s, which in principle
requires three-body interactions as in Eq. (3), can be obtained
exactly without three-qubit interactions.

On a similar note, it is possible to use the framework pro-
vided by Eqs. (1a) and (1c) to find a Hamiltonian that does not
contain three-qubit interaction terms, and generates the Fred-
kin gate at suitable time. The Quantum Fredkin gateUFred is a
three qubits gate which swaps two qubits conditionally to the
first qubit being in the |1〉 state, and is of use for a number of
quantum information protocols [22, 23]. A time-independent
two-body Hamiltonian that simulatesUFred with 4 qubits has
been obtained in [20] using a numerical optimization technique.
We find an analytic solution that requires as few as three qubits.
Explicitly

HFred =
π

8

(
1 − σz

1

) 1 − ∑
α=x,y,z

σα2σ
α
3

 , (7)

where the control qubit is the first one. Clearly, the above
Hamiltonian contains both two-body and three-body interac-
tions. We now write down the general parameterized expres-
sion H̃G(λ) for a 3-qubit Hamiltonian containing only pairwise
diagonal interactions, and imposing Eq. (1b) we cut the num-
ber of parameters λ down to 22. Imposing some physically
plausible additional conditions, like the symmetry of second
and third qubit, we finally manage to reduce the number of
parameters enough to solve the eigenvalue problem, finding
the following solution

H̃Fred=
π

8

√143
5
1 + 5

√
3σx

1

 (σx
2 + σx

3)−
3π
8

 ∑
α=x,y,z

σα2σ
α
3−1


+
π

2
σz

1

3
2

√
7
5

(σz
2 + σz

3) + 1

 . (8)

This proves that also the Fredkin gate, a non-trivial gate
with several applications, can be implemented without time-
dependent dynamics using only at most two-qubit interac-
tions. The physical reason behind this simplification can be
understood from the study of the spectral properties. For ex-
ample, the gate UFred has only two eigenvalues, λ± = ±1
with λ+ having a sevenfold degeneracy due to the symme-
tries of the gate. De facto, such degeneracy makes the time-
evolution operator generated by HFred operate in a two-level

subspace. On the other hand, the spectrum of H̃Fred −HFred is
{−4π,−2π, 0, 0, 0, 2π, 2π, 4π}, showing that the heavy degener-
acy in the spectrum ofHFred is partially lifted when considering
H̃Fred − HFred, and the dynamics thus occurs in an larger ef-
fective Hilbert space. Nonetheless, although exp(itH̃Fred) is
non-symmetric for most of the evolution times, by construction
all the symmetries are restored at t = 1, as well as at any subse-
quent integer times. This example nicely shows that breaking
the symmetries of a gate G, exploiting its degenerate space,
can help the gate simulation when restricting the set of viable
interactions.

Perfect state transfer.– A one-dimensional quantum walk
is described by the Hamiltonian HW =

∑N−1
k=1 Jk |k〉 〈k−1| +

Bk |k〉 〈k|, where N is the length of the lattice upon which the
walk takes place, Jk the transition rates between adjacent sites,
Bk the local energies and |k〉 defines the state where the “walker”
is at the k-th site. A quantum walk Hamiltonian HW admits
perfect state transfer (PST) at time t, i.e. the initial state of
the walker initially at site k is perfectly retrieved at site N −
j + 1 if e−itHW = Ξ, where Ξk j = δk,N− j+1 is the reflection
matrix. Necessary and sufficient conditions for PST are well
understood [13, 14]: firstly,HW has to be “mirror-symmetric”,
that is [HW ,Ξ] = 0, and secondly the eigenvalues {Ek} ofHW
should to satisfy the condition eiEk t = (±1)k.

We show now that finding the parameters {Jk, Bk} for PST is
a particular case of the Hamiltonian design problem for gate
simulation. Specifically, the conditions for PST can be obtained
from the construction in Eq. (1). In a 1D quantum walk, the
“physical” couplings are the nearest neighbour interactions, but
HΞ = i log(Ξ) = π(Ξ − 1)/2 is long range. Using HW as
Hphys(λ), where λ = {Jk, Bk}, and defining H ′ = HW − HΞ

following condition (1c), where the physical interactions in
HΞ have been reabsorbed into the definition ofHW , one finds
that: (i) condition (1b) is equivalent to the mirror-symmetry
request [HW ,Ξ] = 0; (ii) from conditions (1c) and from the
definitions ofHW andHΞ, one finds that the spectrum ofHW
satisfies eiEk t = (±1)k — indeed the eigenvalues of Ξ are {0, π},
so Ek = π(2nk + 1) for integer nk. It is straigthforward to
extend the above proof for more general transfers, such as with
long-range interactions [24], or for perfect fractional revivals
[25, 26].

Supervised learning approach– We now describe a different
methodology to solve the difficult part of the conditions given
in Eq. (1), that is imposing the condition on the eigenvalues.
While the direct algebraic approach fails as soon as we con-
sider more than a few parameters, and for example already
fails to find solutions for the Toffoli gate with only diagonal
interactions, the method we present here scales much better
with the number of interactions and is easily generalized to any
kind of structure of the qubit network. The idea is to adopt a su-
pervised learning approach to solve the optimization problem
of finding the set of Hamiltonian parameters generating a target
evolution. A first exploration of such a method has been laid
down in Ref. [20]. However, we have been able to significantly
improve on this work, by borrowing from machine learning
techiques commonly used to train neural networks. As we
show below, this results in a more efficient training and allows
for the exploration of a richer set of scenarios.



4

The problem we set up to solve is a generalized version
of the one presented above. Given a target gate G and a pa-
rameterized Hamiltonian H(λ) =

∑
i λiOi, where λ = {λi} is

a set of real parameters and Oi are Hermitian operators, we
want to find the set λ0 such that exp(iH(λ0)) = G. This can
be reframed as an optimization problem by considering the
fidelity function F (λ, ψ) ≡ 〈ψ|G† exp(iH(λ))|ψ〉, for an arbi-
trary state |ψ〉. Clearly, F (λ0, ψ) = 1 for all |ψ〉 if and only
if exp(iH(λ0)) = G. A possible approach to find such λ0 is
to consider the average fidelity function F̄ (λ), defined as the
average of F (λ, ψ) over all ψ. Given that explicit formulas
are known for F̄ [27–29], standard optimisation methods can
be applied directly to F̄ to find solutions to the gate design
problem 1. This method, however, turns out to be inefficient for
the problem at hand, due to the complexity of the underlying
parameter space. We therefore turn to a different technique,
exploiting how the fidelity landscape changes when changing
the state |ψ〉 [20]. We can indeed use the fact that the only
values of λ for which the fidelity is 1 regardless of |ψ〉 are
those corresponding to our solution. By employing a gradient
descent technique [31, 32] and different |ψ〉 at different steps,
we implement the following iterative procedure:

1. Choose an initial set of parameters λ.

2. Generate a random set of input states |ψk〉, k = 1, ...,Nb,
with Nb the size of the mini-batches chosen beforehand.

3. For each k, compute ∇λF (λ, ψk). The use of machine
learning frameworks like Theano [33], TensorFlow [34],
or PyTorch [35] (among others), enabled the calcula-
tion of gradients automatically from the chain rule, thus
avoiding numerical errors arising from numerical differ-
entiation algorithms.

4. Update the coupling strengths λ. We here do this using
the so-called momentum gradient descent method [36],
corresponding to the following updating rule:

v→ γv + η∇λF (λ, ψk),
λ→ λ + v,

(9)

where the learning rate η and the momentum term γ are
hyperparameters to be chosen beforehand. The value of
the learning rate is also chosen to be decreasing with the
iteration number.

5. Return to point 2, until a satisfactory value of the fidelity
is obtained.

A more in-depth explanation of the techniques involved is pro-
vided in the Supplementary Materials. To find the interaction
parameters implementing a Toffoli gate, using only one-qubit

1 Note that in principle a more reliable figure of merit to evaluate the perfor-
mance of a gate would be the diamond distance [30]. However, in all the
instances we considered, the two quantities are actually equivalent since we
always obtain unit fidelity (within numerical errors).

interactions and two-qubit diagonal interactions (that is, in-
teractions of the form σα1σ

α
2 ), we start the numerical training

from the Hamiltonian obtained by imposing Eq. (1b) on the
parametrized Hamiltonian containing the required interactions,
which has the form

H̃Toff = hz
1σ

z
1 + hz

2σ
z
2 + hx

3σ
x
3 + (Jxx

13σ
x
1 + Jxx

23σ
x
2)(1 + σx

3)

+

∑
j=1,2

Jzz
j3(1 + σz

j)

σz
3 + Jyy

12(σx
1σ

x
2 + σ

y
1σ

y
2) + Jzz

12σ
z
1σ

z
2.

(10)
Starting the training from Eq. (10), many different solutions
can be found, depending on the chosen initial conditions and
the random states that are used at each run. In Fig. 1 (a), sev-
eral different solutions are shown, proving that it is indeed
possible to implement a Toffoli gate using only pairwise diago-
nal interactions. This analysis can be extended to the case of
a Fredkin gate, whose generator with only diagonal pairwise
interactions and commuting with the principal generator of the
Fredkin is found to have at most two-body terms. Using this
model as starting point for the training we again obtain several
solutions, some of which are shown in Fig. 1 (b).

More generally, we need not limit ourselves to the training
of three-qubit networks. To illustrate this, we provide yet
another example of successful application of our framework,
this time to implement a non-trivial unitary evolution over
four qubits. In particular, we successfully train a four-qubit
network to implement the doubly-controlled Fredkin gateUFF ,
defined asUFF ≡ |0〉〈0| ⊗ UFred + |1〉〈1| ⊗ UFred, whereUFred
denotes a Fredkin gate in which the control qubit is the third
one, and the target ones the first two. It turns out that this four-
qubit gate can be implemented using no more than two-qubit
interactions, and that furthermore this set can be restricted to
only consider diagonal ones. Some examples of such solutions
are shown in Fig. 1 (c). Note that to obtain these results no
ad-hoc reasoning was used, nor ansatz such as those used
to derive Eqs. (6) and (8) were needed. This, in particular,
makes it easy to test any hypothesis such as “can gate X be
implemented using only set of interaction Y” without having
to go through extra ad-hoc calculations.

Conclusions– We have presented a general framework to ap-
proach constrained gate-synthesis problems. We have showed
that the procedure is amenable to direct analytical solution,
providing time-independent Hamiltonians generating Toffoli
and Fredkin gates using only undemanding diagonal interac-
tions and no ancillary qubits. To our knowledge, no previous
attempt at such a decomposition has been reported so far. Gen-
erality can be added to our approach by powerful techniques
of supervised learning of the interaction parameters, which
allowed to find Hamiltonians with specified sets of interactions
producing target unitary evolutions. Our approach and results
are potentially of great interest to optimize experimental im-
plementations of quantum algorithms in architectures such as
linear optics and super conductive qubits.
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FIG. 1. Eight different sets of interaction parameters generating the Toffoli gate [panel (a)] and the Fredkin one [panel (b)]. For each shown
solution the training was started from the ansatz provided by Eq. (10), and the analogous equation for the Fredkin, respectively. Panel (c):
Eight sets of interaction parameters for the “double Fredkin” gate. Each one of the shown solutions corresponds to unit fidelity up to numerical
precision (that is, fidelities greater than 1 − 10−16). We refer to the Supplementary Materials for the details of the optimisations.

Project TEQ (grant 766900), and the Royal Society. LI is partially supported by Fondazione Angelo della Riccia.

[1] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,”
Rev. Mod. Phys. 86, 154 (2014).

[2] Michael A Nielsen and Isaac Chuang, Quantum computation
and quantum information (Cambridge Academic Press, 2002).

[3] Daniel Gottesman, “Theory of fault-tolerant quantum computa-
tion,” Physical Review A 57, 127 (1998).

[4] Yaoyun Shi, “Both toffoli and controlled-not need little help to
do universal quantum computation,” arXiv:0205115 (2002).

[5] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H.
Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum
error correction,” Physical Review Letters 81, 2152 (1998).

[6] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, “Realization of three-qubit quan-
tum error correction with superconducting circuits,” Nature 482,
382–385 (2012).

[7] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler,
M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the
quantum toffoli gate with trapped ions,” Physical Review Letters
102, 040501 (2009).

[8] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff,
“Implementation of a toffoli gate with superconducting circuits,”
Nature 481, 170–172 (2011).

[9] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta,
Costantino S. Yannoni, Mark H. Sherwood, and Isaac L. Chuang,
“Experimental realization of shor’s quantum factoring algorithm
using nuclear magnetic resonance,” Nature 414, 883–887 (2001).

[10] T. Cubitt, A. Montanaro, and S. Piddock, “Universal quantum
hamiltonians,” arXiv:1701.05182 (2017).

[11] Domenico d’Alessandro, Introduction to quantum control and
dynamics (CRC press, 2007).

[12] J. Preskill, “Quantum computing in the nisq era and beyond,”
ArXiv e-prints (2018), arXiv:1801.00862 [quant-ph].

[13] Man-Hong Yung and Sougato Bose, “Perfect state transfer, effec-
tive gates, and entanglement generation in engineered bosonic
and fermionic networks,” Physical Review A 71, 032310 (2005).

[14] Alastair Kay, “A review of perfect state transfer and its applica-
tion as a constructive tool,” International Journal of Quantum
Information 08, 641–676 (2009).

[15] The projectors are such that
∑

j Pk j = 1k, Pk jPk j′ = 0 if j , j′,
and Pk jPk′ j′ = 0 if k , k′ for any j, j′.

[16] S Friedland, J Nocedal, and M L Overton, “The formulation and
analysis of numerical methods for inverse eigenvalue problems,”
SIAM Journal on Numerical Analysis 24, 634–667 (1987).

[17] Ehsan Zahedinejad, Joydip Ghosh, and Barry C Sanders, “De-
signing high-fidelity single-shot three-qubit gates: A machine
learning approach,” Physical Review Applied 6 (2015).

[18] Ehsan Zahedinejad, Joydip Ghosh, and Barry C. Sanders, “High-
fidelity single-shot toffoli gate via quantum control,” Physical
Review Letters 114, 200502 (2015).
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Supplementary Material

In Section I of this Supplementary Materials we ex-
plore further the solution framework introduced in the main
text. All presented results are readily reproducible via the
Mathematica code freely accessible in the GitHub repos-
itory at lucainnocenti/quantum-gate-learning-1803.07119-
Mathematica-code. In Section II are given the details of
the supervised learning approach to the gate design problem.
Again, all results are reproducible using the code available in
the GitHub repository at lucainnocenti/quantum-gate-learning-
1803.07119.

I. ANALYTICAL APPROACH

In this section we provide a detailed description of how to
apply the framework, introduced in the main text, to approach
gate design problems analytically.

In Section I A we prove that a CNOT gate cannot be imple-
mented using only single-qubit interactions. While this is an
obvious result, the calculation can be interesting to show, in a
simple case, how the eigenvalue conditions given in Eq. (1c)
can be used to rule out that a gate can be implemented with
a specific set of interactions. In Section I B we show how
to use our framework to derive Hamiltonians implementing
the Toffoli gate, using only one- and two-qubit interactions.
In Section I C we show how one of the solutions obtained
in Section I B could have been obtained via direct analytical
reasoning, without any knowledge of the conditions given in
the main text. This provides some insight into how the solu-
tions actually generate the Toffoli gate, and illustrates the kind
of ad-hoc non-trivial reasoning that, without the use of Eq. (1),
would have been necessary to find such solutions.

For notational convenience, we will in this section denote
Pauli matrices with Xi,Yi,Zi, instead of σx

i , σ
y
i , and σz

i as in
the main text.

A. Proof that CNOT needs 2-qubit terms

We here show how to use our framework to prove that a
CNOT gate cannot be implemented using only one-qubit inter-
actions. While this result is trivial, it is nonetheless interesting
to show how the framework can be used to obtain this kind of
impossibility results.

The spectral decomposition of the CNOT reads

CNOT = Z+
1 + Z−1 X+

2 − Z−1 X−2 , (S1)

where we made a canonical choice for the basis of the three-
fold degenerate eigenspace corresponding to the eigenvalue
+1, and defined Z±i ≡ (1 ± Zi)/2, and similarly for X±i . More
explicitly, we are considering the following basis set of trace-
1 projectors for the degenerate space: {Z+

1 Z+
2 ,Z

+
1 Z−2 ,Z

−
1 X+

2 },
whereas the fourth projector is bound to be Z−1 X−2 . The corre-
sponding principal HamiltonianHCNOT, obtained by directly

taking the logarithm of Eq. (S1), is:

HCNOT = πZ−1 X−2 . (S2)

Let us now consider what happens when the multivaluedness
of the logarithm is taken into account, but no rotation of the
degenerate eigenspace is performed. Considering only the
factors with two-qubit interactions, the following expression is
found:

HCNOT/2π ∼ ν12Z1Z2 + 2π(1/2 + ν43)Z1X2, (S3)

where here νi j ≡ νi − ν j, and νi ∈ Z is the integer produced by
application of the logarithm to the i-th projector. Note how the
Z1X2 factor cannot be removed by any choice of νi, which could
be interpreted as a proof that two-qubit interaction terms are
indeed necessary to implement the CNOT gate. This, however,
does not in principle preclude the possibility that an appropriate
rotation of the degenerate space allows to obtain a generator
with only local terms. To verify that this is not the case, we
would have to consider a generic rotation R of the degenerate
space, that is, an operator of the form R =

∑3
i, j=1 ri j

∣∣∣+1i

〉〈
+1 j

∣∣∣,
with |+1i〉 the i-th eigenvector in a fixed base of the degenerate
space. The problem is then that of finding a unitary R and
integers νi such that

ν1R(Z+
1 Z+

2 )R† + ν2R(Z+
1 Z−2 )R† + ν3R(Z−1 X+

2 )R†

+(ν4 + 1/2)Z−1 X−2

does not contain 2-qubit interactions. The solution of this
problem is non-trivial, mostly due to the many (9 in this case)
parameters characterising a general unitary R. To avoid search-
ing solutions for such a system, we try a different approach
to the problem. Let us denote with H̃ a generator with the
required properties: one that generates the same unitary as
HCNOT and contains only 1-qubit interaction terms. Its general
form will be:

H̃ = h0 +

3∑
α=1

(hα1σ
α
1 + hα2σ

α
2 ). (S4)

As shown in the main text, for H̃ to correctly generate CNOT, it
must commute with the principal generatorHCNOT. Imposing
this commutativity removes most of the parameters hαi , leaving
us with the following simplified expression:

H̃ = h0 + h1,3Z1 + h2,1X2. (S5)

The only missing step is now to impose the eigenvalues of
HCNOT − H̃ to be integer multiples of 2π. This gives the
following system of equations:

2πν1 = (−π + 4h0 − 4h1,3 − 4h2,1)/4,
2πν2 = (+π + 4h0 + 4h1,3 − 4h2,1)/4,
2πν3 = (+π + 4h0 − 4h1,3 + 4h2,1)/4,
2πν4 = (−π + 4h0 + 4h1,3 + 4h2,1)/4,

(S6)

https://github.com/lucainnocenti/quantum-gate-learning-1803.07119-Mathematica-code
https://github.com/lucainnocenti/quantum-gate-learning-1803.07119-Mathematica-code
https://github.com/lucainnocenti/quantum-gate-learning-1803.07119
https://github.com/lucainnocenti/quantum-gate-learning-1803.07119
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with νi ∈ Z. The above system can be seen to have no solution
for h0, h1,3, h2,1, therefore definitively proving that there is no
rotation of the degenerate space, and integer parameters νi,
that allow to generate the CNOT gate using only one-qubit
interactions.

B. Toffoli gate: derivation through conditions

We show here the details of how, using Eqs. (1), (2) and
(3) in the main text, we can obtain a family of Hamiltonian
generators for the Toffoli gate, containing only single- and
two-qubit interactions.

The Toffoli gate can be written as

UToff = Z+
1 + Z−1 [Z+

2 + Z−2 (X+
3 − X−3 )], (S7)

where we defined Z±i ≡ (1 ± Zi)/2, and similarly for X±i . The
principal generator ofUToff isHToff = πZ−1 Z−2 X−3 , that is, high-
lighting the three-qubit interaction term,

HToff = (1- and 2-qubit terms) − π/8 Z1Z2X3. (S8)

We start by writing down the general parametrisation of an
Hamiltonian containing only one- and two-qubit interactions:

H̃Toff = h01 +
∑

hi,ασ
α
i +

∑
Jα,βi, j σ

α
i σ

β
j . (S9)

Assuming for simplicity that H̃Toff does not contain Yi compo-
nents, and imposing the commutativity withHToff , we get the
following expression:

H̃Toff =h01 + hx
3X3 + hz

1Z1 + hz
2Z2+

Jzx
13Z1X3 + Jzx

23Z2X3 + Jzz
12Z1Z2+

(Jxx
13 X1 + Jxx

23 X2)(1 + X3)+
(Jzx

12X2 + Jzz
13Z3)(1 + Z1)+

(Jxz
12X1 + Jzz

23Z3)(1 + Z2).

(S10)

As can be directly verified, the above satisfies [H̃Toff ,HToff] =

0 while also containing only one- and two-qubit interactions,
and no Pauli Y matrices. We could now directly try and find
the set of parameters making the eigenvalues of H̃Toff −HToff

all integer multiples of 2πi, but the associated calculations
are made hard by the many parameters involved. It turns out
however that we can make a number of further assumptions on
the form of H̃Toff , and still obtain a viable family of solutions.
One such set of assumptions, that leads to a satisfying family of
solutions, is Jxz

12 = Jzx
12 = 0, Jzx

13 = Jzx
23 = π/8, Jxx

13 = Jxx
23 , Jzz

23 =

−Jzz
13, and hz

1 = hz
2 = −π/8. With these assumptions Eq. (S10)

becomes

H̃Toff =h01 + hx
3X3 − π/8(Z1 + Z2)(1 − X3)+

Jzz
12Z1Z2 + Jxx

13(X1 + X2)(1 + X3)+
Jzz

13(Z1 − Z2)Z3.

(S11)

Finally, we impose that the generator is diagonal on the first
two qubits, that is, Jxx

13 = 0. Using this simplified expression,

H ′Toff
= H̃Toff −HToff becomes

H ′Toff =π/8 Z1Z2X3 + (h0 − π/8)1+

(hx
3 + π/8)X3 + (Jzz

12 − π/8)Z1Z2+

Jzz
13(Z1 − Z2)Z3.

(S12)

With the above simplified expression it is now possible to
directly solve the eigenvalue problem. This results in the fol-
lowing family of solutions:

H̃Toff =
π

8

[
1 + 4

(
ν1 + ν2 + 2ν3 +

√
(ν3 − ν4)2

)
− (Z1 + Z2)(1 − X3) + X3(−2 − 8ν1 + 8ν2)

+ 4Z1Z2

(
1/4 + ν1 + ν2 − 2ν3 −

√
(ν3 − ν4)2

)
+ (Z2 − Z1)Z3

√
c(ν1, ν2, ν3, ν4)

]
,

(S13)

with

c(ν1, ν2, ν3, ν4) = − (1 + 4ν1 − 4ν2 + 4ν3 − 4ν4)
× (1 + 4ν1 − 4ν2 − 4ν3 + 4ν4) =

= −[(1 + 4ν12)2 − (4ν34)2],

(S14)

for all integer values of νi such that c(ν1, ν2, ν3, ν4) ≥ 0. The
corresponding spectrum ofH ′Toff

= H̃Toff −HToff is

λ1 = λ2 = 2πν1,

λ3 = λ4 = 2πν2,

λ5 = λ6 = 2πν3,

λ7 = λ8 = 2π(ν3 + |ν3 − ν4|),

(S15)

while the spectrum of H̃Toff changes only in that λ2 = 2π(ν1 +

1/2). Consistently with this, λ2 is also the eigenvalue corre-
sponding to the non-degenerate eigenspace ofHToff , while all
the other eigenvalues correspond to eigenvectors orthogonal to
this one. More specifically, we have

|λ1〉 = |0, 0,−〉 ,
|λ2〉 = |1, 1,−〉 ,
|λ3〉 = |1, 1,+〉 ,
|λ4〉 = |0, 0,+〉 ,
|λ5〉 = |1, 0〉 ⊗ N5 [(a − b) |0〉 + |1〉] ,
|λ6〉 = |0, 1〉 ⊗ N6 [(a + b) |0〉 + |1〉] ,
|λ7〉 = |1, 0〉 ⊗ N6 [(a + b) |0〉 − |1〉] ,
|λ8〉 = |0, 1〉 ⊗ N5 [(a − b) |0〉 − |1〉] ,

(S16)

where

a =
|ν̄34|

1 + ν̄12
, b =

√
ν̄2

34 − (ν̄12 + 1)2

1 + ν̄12
, (S17)

It is worth noting that the orthogonality of these eigenvectors
follows from the easily verified property of the above coeffi-
cients: a2−b2 = 1. Furthermore, we note that c(ν1, ν2, ν3, ν4) ≥
0 cannot be satisfied unless ν3 , ν4. This in turn, looking at
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Eq. (S16), reveals that all the solutions are made possible by a
non-trivial lifting of the degeneracy of the subspaces |0, 1〉〈0, 1|
and |1, 0〉〈1, 0|. Let us now try to understand how and why the
derivedH ′Toff

works. Let us use the notation Pi ≡ |λi〉〈λi|, and
consider the projector over the last two eigenvectors. High-
lighting the 3-qubit terms, we find

P7 ' −N2
6

Z1Z2

4

[(
(a + b)2 − 1

)Z3

2
− (a + b)X3

]
,

P8 ' −N2
5

Z1Z2

4

[(
(a − b)2 − 1

)Z3

2
− (a − b)X3

]
.

(S18)

The term in the Hamiltonian to which these two projectors
contribute is 2πν3,4(P7 + P8), with ν3,4 = ν3 + |ν3 − ν4|. A little
algebra reveals that the 3-qubit terms in P7 + P8 are

−
Z1Z2Z3

8

[
N2

6
(
(a + b)2 − 1

)
+ N2

5
(
(a − b)2 − 1

)]
+

Z1Z2X3

4

[
N2

6 (a + b) + N2
5 (a − b)

]
.

(S19)

Recalling the definitions of a, b,N5,N6, we see that the coeffi-
cient of Z1Z2Z3 vanishes, and the resulting expression becomes

P7 + P8 = (...) + Z1Z2X3
1 + 4(ν1 − ν2)

16|ν3 − ν4|
. (S20)

Substitution of the appropriate values of νi shows that the above
term can be used to generate the 3-qubit factor π/8 Z1Z2X3,
without introducing additional 3-qubit factors. In Box 1 are
given the full expressions for the projectors and the found
solutions for the Toffoli gate. It is also interesting to note that
all of the above still holds if the Xi operators are replaced with
Yi operators. That is, the expressions found solving for the
Toffoli, by simple substitution Xi → Yi, also give a generator
with only 2-qubit interactions for the CCY gate (that is, the
gate that applies Y to the third qubit conditionally to the first 2
qubits being in the |1〉 state).

A different way to understand H̃Toff is to analyse the four
two-dimensional subspaces on the main diagonal, exploit-
ing the fact that H̃Toff acts diagonally on the first two qubits.
Straightforward calculations lead to

〈00|H̃Toff |00〉 = π [(ν1 + ν2) − (ν1 − ν2)X] ,

〈01|H̃Toff |01〉 = 2πν3 + π|ν34|(1 − σ01),

〈10|H̃Toff |10〉 = 2πν3 + π|ν34|(1 − σ10),

〈11|H̃Toff |11〉 =
π

2
[(1 + 2(ν1 + ν2)) − (1 + 2ν12)X] ,

where

σ01 ≡
(1 + 4ν12)X +

√
cZ

4|ν34|
,

σ10 ≡
(1 + 4ν12)X −

√
cZ

4|ν34|
.

(S21)

It can be verified that for all values of ν1, ν2, ν3, ν4, the two-
dimensional identity and X are correctly generated in the |00〉
and |11〉 spaces, respectively. On the other hand, in the |01〉

and |10〉 spaces, the two-dimensional identity is generated as
long as ν3 , ν4, as was also derived before.

In particular, the class of solutions given by ν1 = ν2 = ν3 = 0
is

π

8

[
1 + 4|ν4| − 2X3 − Z1 − Z2 + (Z1 + Z2)X3

+Z1Z2(1 − 4|ν4|) + (Z2 − Z1)Z3

√
16ν2

4 − 1
]
,

(S22)

for all ν4 , 0. It is interesting to look at the explicit form of the
exponentials generated by this class generators. Computing
exp

(
iH̃ t

)
with H̃ as in Eq. (S22), we get the following unitary:

12 0 0 0
0 S (t, ν4) 0 0
0 0 S (t, ν4) 0
0 0 0 X(t)

 , (S23)

where

S (t, ν4) =

(
a + b c

c a − b

)
, (S24)

a =
1 + e2iπtν4

2
, c =

1 − e2iπtν4

8ν4
,

b =
(−1 + e2iπtν4 )

√
16ν2

4 − 1

8ν4
,

(S25)

and

X(t) =
1
2

(
(1 + eiπt) (1 − eiπt)
(1 − eiπt) (1 + eiπt)

)
(S26)

For large (in modulus) values of ν4, a + b→ e2iπtν4 , a − b→ 1
and c→ 0, so that the exponential becomes

1

e2iπtν4

1
e2iπtν4

1
X(t)


, (S27)

which very closely resembles the matrix obtained by exponen-
tiating the principal generatorHToff = πZ−1 Z−2 X−3 :

exp(itHToff) =


1

1

1

X(t)

 . (S28)

A different solution derived from Eq. (S13) is

H̃Toff =
9π
8

+
3π
4

X3 −
π

8
(Z1 + Z2) +

π

8
Z1Z2

+
π

8
(Z1 + Z2)X3 −

√
7π
8

(Z1 − Z2)Z3.

(S29)
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Box 1: Toffoli

P1 = Z+
1 Z+

2 X−3 , P2 = Z−1 Z−2 X−3 , P3 = Z+
1 Z+

2 X+
3 , P4 = Z−1 Z−2 X+

3 ,

P5 = Z−1 Z+
2

1
2|ν̄34|

[
|ν̄34| + (1 + ν̄12)X3 −

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
,

P6 = Z+
1 Z−2

1
2|ν̄34|

[
|ν̄34| + (1 + ν̄12)X3 +

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
,

P7 = Z−1 Z+
2

1
2|ν̄34|

[
|ν̄34| − (1 + ν̄12)X3 +

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
,

P8 = Z+
1 Z−2

1
2|ν̄34|

[
|ν̄34| − (1 + ν̄12)X3 −

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
.

P1 + P2 =
1
4

(1 + Z1Z2)(1 − X3), P3 + P4 =
1
4

(1 + Z1Z2)(1 + X3).

P5 + P6 =
1

4|ν̄34|

[
(1 − Z1Z2)|ν̄34| + (1 − Z1Z2)X3(1 + ν̄12) + (Z1 − Z2)Z3

√
ν̄2

34 − (1 + ν̄12)2
]
,

P7 + P8 =
1

4|ν̄34|

[
(1 − Z1Z2)|ν̄34| − (1 − Z1Z2)X3(1 + ν̄12) − (Z1 − Z2)Z3

√
ν̄2

34 − (1 + ν̄12)2
]
.

It is easily verified from the above that

P1 + P2 + P3 + P4 =
1
2

(1 + Z1Z2), P5 + P6 + P7 + P8 =
1
2

(1 − Z1Z2),

so that the sum of the projectors gives the identity as it should. On the other hand, multiplying by the appropriate νi
factors, we get

2π [ν1(P1 + P2) + ν2(P3 + P4)] = (...) +
π

2
(ν2 − ν1)Z1Z2X3,

2π [ν3(P5 + P6) + ν4(P7 + P8)] = (...) +
π

2
(ν1 − ν2)Z1Z2X3 +

π

8
Z1Z2X3,

with the last identity holding for ν3 , ν4.

Moreover, it is worth noting that Eq. (S13) is only one possible
family of solutions, and that different assumptions will lead
to different ones. For example, a similar reasoning as above,
starting however from the assumptions Jzz

23 = Jzz
13 will lead to

solutions such as (note the use of (Z1 + Z2) terms here, making
this solution not derivable from Eq. (S13)):

H̃Toff =
9π
8
−

7π
8

X3 +

√
15π
8

Z3 +
π

8
Z1Z2

π

8
(Z1 + Z2)

−1 +
5
2

X3 +

√
15
2

Z3

 . (S30)

C. Toffoli gate: an example of direct a posteriori derivation

We will here show a line of thought that could have conceiv-
ably led to Eq. (S22) (in the case ν4 = 1), by direct analysis,

and without using any of the tools shown in the paper. It will
be useful to keep in mind the expressions of Z1 ± Z2:

Z2 + Z1 = diag(2, 2, 0, 0, 0, 0,−2,−2),
Z2 − Z1 = diag(0, 0,−2,−2, 2, 2, 0, 0).

(S31)

Given that we want to generate a CC-X gate, and remembering
that exp

[
iπ
2 (1 − X)

]
= X, it is reasonable to start building our

Hamiltonian as

H1 = −π
(Z1 + Z2

2

) (1 − X3

2

)
, (S32)

which however will generate an X evolution both in the |00〉
and in the |11〉 sectors, while we want it only in the latter sector:
H1 � diag(−X−, 0, 0, X−). We can remove the term in the |00〉
sector exploiting the sign difference introduced by Z1 + Z2, by
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directly adding an appropriate 1-qubit interaction term:

H2 =
1
2

[
H1 +

π

2
(1 − X3)

]
= π diag(0, X−/2, X−/2, X−),

(S33)

where we remember that exp(iπX−) = X. Equation (S33) now
correctly reproduces the evolution on |00〉 and |11〉, but also
wrongly evolves |01〉 and |10〉. To remove these additional
terms while at the same time leaving the others unaffected we
use the fact that exp(iπ(1 ± σ)) = 1, for any normalised vector
of sigma matrices: σ ≡

∑3
i=1 niσi with n2

1 + n2
2 + n2

3 = 1. To
convert the central terms in Eq. (S33) into something like this
we observe that we can rewrite the second term in the above
equation as

π/4(1 − X3) = π/8(2 − 2X3) = π/8(5 − 3 − 2X3). (S34)

Remembering that Z1Z2 = diag(1,−1,−1, 1), we substitute the
above with π/8(5 − 3Z1Z2 − 2X3). This change affects only
the central terms, converting the expression into: π diag(0, 1 −
X/4, 1−X/4, X−). The reason this form is preferable is that we
can now simply add a factor in the central terms to convert them
into an expression of the form 1 − σ. Adding an interaction of
the form πα(Z2 − Z1)Z3 gives

π diag(0, 1 − X/4 − 2αZ, 1 − X/4 + 2αZ, X−). (S35)

For the central terms to exponentiate to the identity we need
them to become of the form 1 − σ with normalised σ. This is
easily achieved by choosing α = ±

√
15/8. The final expression

is therefore:

8/π H3 = −(Z1 + Z2)(1 − X3)

+(5 − 3Z1Z2 − 2X3) ±
√

15(Z2 − Z1)Z3.
(S36)

Note that instead of πα(Z2 − Z1)Z3 we could have equivalently
chosen πα(Z2 − Z1)O3 for any O3 = aY3 + bZ3 and a2 + b2 = 1.
The above reasoning explains the origin of the weird

√
15

factor: it comes as the coordinate necessary to make the vector
unitary: for X/4 + xZ/4 to be normalized, x =

√
15 must be

satisfied.

II. SUPERVISED LEARNING APPROACH

We here study more in depth the following problem: given a
target gateG and a parametrised HamiltonianH(λ) =

∑
k λkσk,

with λk ∈ R and σk Hermitian operators, what is the set of
parameters λ0 such that exp(iH(λ0)) = G? We present a super-
vised learning approach to numerically solve this problem, con-
siderably extending the ideas presented in Ref. [20]. Thanks
to a number of numerical optimisation techniques, and in par-
ticular the use of Automatic Differentiation (AD) [37–40], we
can explore a variety of different scenarios, optimising over
potentially hundreds of Hamiltonian parameters. On top of
this, condition (1b) in the main text is used to further speed-up
the numerical training, removing many interaction parameters
that are known not to lead to the target gate.

A. Supervised learning

Supervised learning is the task of inferring or approximating
a function, given a set of pre-labeled data [31, 41]. A super-
vised learning algorithm starts with some model — a functional
relation gλ parametrised by a set of parameters λ— and finds
a λ0 making gλ0 as close as possible to a target function f . To
do this, a set of pre-labeled training data {(x1, y1), (x2, y2), ...}
is used, where here yk = f (xk) is the output that we want the
algorithm to associate to the input xk.

Among the most used supervised learning models are Neural
Networks (NNs) [42, 43]. These are parametric non-linear
models which play a prominent role in many machine learning
tasks, such as dimensionality reduction, classification, and
feature extraction [42, 43]. NNs have also recently proven
useful for several problems in quantum many-body theory [44–
51], quantum compilation [52], quantum stabilizer codes [53]
and entanglement quantification [54].

A NN is trained by optimising its parameters using a dataset
of pre-labelled data. A common way to do this is use varia-
tions of a gradient-descent-based technique named Stochastic
Gradient Descent (SGD). Gradient descent algorithms aim to
optimize a problem function f (x), starting from an initial point
x0 and performing a number of small steps towards the direc-
tion of maximum slope (that is, ∇ f (x)). The optimal point
xopt is thus obtained via a sequence of small perturbations of
the point x, which starting from x0 reaches the nearest local
stationary point by following the slope. In the simplest version
of the algorithm, the update rule is simply x → x − η∇ f (x),
with η a small real parameter commonly referred to as learning
rate. SGD, on the other hand, is suitable for a situation in
which one is given a parametrised functional relationship of
the form f (x; w), and asked for a set of “parameters” w0 such
that f (x; w0) is minimum (maximum) for all inputs x. Such
a case can be handled via SGD, which in its simplest form
involves picking a random x1, executing a number of gradient
descent iterations over w, then picking a new x2 and iterating
the procedure. The updating rule for SGD is therefore of the
form

w→ w − η∇w f (x; w). (S37)

While standard gradient descent, being a local optimisation
algorithm, is liable to getting stuck in local minima, SGD can
at least partially avoid this issue, in that generally a local min-
imum for an input x is not a local minimum for a different
input x′. Many variations of SGD are used in different circum-
stances. For example, in the so-called mini-batch SGD, instead
of updating with a single input x, one uses a batch of inputs
{x1, ..., xM}, and updates the parameters using the averaged
gradient: w→ w − η

∑M
k=1 ∇w f (xk; w)/M. More sophisticated

updating rules are used to increase the training efficiency in
different circumstances. Common techniques involve dynami-
cally updating the learning rate, or using momentum gradient
descent [55, 56] techniques.

To see how this class of optimisation problems is relevant to
us, consider the fidelity function F defined as

F (λ, ψ) ≡ 〈ψ|G† exp(iH(λ))G|ψ〉 , (S38)
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with G the target gate, λ the set of parameters, and ψ an input
state. The gate design problem is then equivalent to finding λ
such that F (λ, ψ) is maximised (that is, equal to 1) for all ψ.
One possibility to solve this problem is to consider the average
fidelity F̄ (λ), for which explicit formulas are known [27–29].
Standard optimisation methods, like standard gradient descent
or differential evolution, can be applied directly on F̄ (λ). This,
however, reveals to be impractical, due to the complexity of
the associated parameter landscapes. On the other hand, SGD
allows to use a simple and efficient local maximisation method,
while at the same time being less prone to getting stuck in local
maxima. This works particularly well in this case, because we
know that the sets of parameters corresponding to the target
gate are all and only those such that for all inputs ψ the fidelity
is unitary.

A crucial step, efficiency-wise, in gradient descent algo-
rithms, is the evaluation of the gradient. Numerically approx-
imating the gradient, as done in previous works [20], is gen-
erally inefficient and scales badly with the number of opti-
mised parameters. Here we will instead make use of the pow-
erful technique of Automatic Differentiation (AD) [38, 40],
described in Section II B. AD dramatically improves the train-
ing efficiency, allowing to explore a richer variety of circum-
stances.

B. Backpropagation

The gradient evaluation phase is efficiency-wise crucial for
the training of a neural network. Computing the partial deriva-
tives of the cost function with a standard method, like finite
differences, has a complexity O(N3

w), with Nw the number of
parameters to differentiate [31]. This inefficiency can how-
ever be avoided using error backpropagation via AD. With
this technique, the complexity of the gradient evaluation phase
can be cut down to O(N2

w) [31]. This works by first decom-
posing the cost function of the model in terms of elementary
operations, that is, functions the gradient of which is known
analytically. In this way the computational graph representing
the functional relation between input and output is built. A
computational graph is a directed acyclic graph, whose nodes
represent the operations, and edges the flowing direction of in-
puts into outputs (see Fig. S1). Once the computational graph
is built, the gradients with respect to the model parameters
can be computed efficiently. This happens in two stages, as
schematically illustrated in Fig. S1. At first, every node of the
computational graph is progressively computed, starting from
the inputs (the current values of the model parameters) up to
the final value of the error function. During this process, the
intermediate values of the elementary operations are cached.
This is the so-called feed-forward phase. The second phase
(so-called backpropagation phase) starts from the output, and
consists of progressively computing the gradients of the error
function with respect to the independent variables.

To better understand AD, let us consider a simple example.
Suppose the error function of the model is of the form g(w) ≡
f ( f (2)( f (1)(w))), where w is a set of parameters, and f (i) are
intermediate “elementary” functions, the gradients of which

are supposed to be known analytically. Making use of the chain
rule, the gradient of g reads

∇g(w) =
∑

k

∂k f (y(2))∇ f (2)
k (y(1)), (S39)

where y(2) = f (2)( f (1)(w)) and y(1) = f (1)(w). During the feed-
forward phase the values of y(1) and then y(2) are progressively
computed and cached. Using y(2), and the known expression
for ∂k f , ∂k f (y(2)) is then efficiently computed. The process
continues by evaluating ∇ f (2)

k , which is written as

∇ f (2)
k (y(1)) =

∑
j

∂ j f (2)
k (y(1))∇ f (1)

j (w). (S40)

Again, being y(1) already computed during the feed-forward,
∂ j f (2)

k (y(1)) is readily computed. The last component needed
for the full gradient is ∂i f (1)

j (w), all parts of which are known.
This method therefore allows to efficiently evaluate numerical
the gradient of complicated functions, without approximating
the derivatives.

In the context of training neural networks, the function to
be derived is the cost function of the network, that is, roughly
speaking, the (euclidean) distance between the result obtained
for an input and the corresponding training output. For the
gate design problem, we will use another notion of distance
between output obtained and output expected. For quantum
states, the fidelity between these turns out to work well.

C. Implementation details

We used python as language of choice for the implemen-
tation of the supervised learning. Being Python language of
widespread use in the machine learning community, many li-
braries and frameworks are available to build computational
graphs over which AD can be used. In particular, we used
Theano [33], together with the QuTiP library for the simula-
tion of the dynamics of quantum systems [57, 58].

Our implementation allows the training of an arbitrary target
gate, parametrised via a time-independent HamiltonianH(λ).
The parametrisation is completely arbitrary (provided the de-
pendence on the parameters is linear), so that the Hamiltonian
can be chosen as H(λ) =

∑
i λiAi for any set of matrices Ai

and number of parameters λi. This is made possible by the
flexibility of AD, which allows to automatically build an effi-
ciently differentiable computational graph, without needing to
hardcode the structure of the Hamiltonian.

The goal of the algorithm is, given a target gate G and a
parametrisation for the Hamiltonian H(λ), find the λ0 such
that exp(iH(λ0)) = G. We use for the purpose mini-batch
SGD with momentum. The mini-batch version of SGD in-
volves computing the gradient, at every iteration, averaging
over the gradients computed for a number of states. Making
such batches of states larger or smaller allows to enhance or
decrease the variance of the gradients with respect to the input
state. The use of momentum [55, 56] involves using a modified
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FIG. S1. Examples of AD in backpropagation mode. (a) Schematic representation of AD of a function with one output and two inputs. Starting
from numerical values for x1 and x2, one computes g(x1, x2) and then f (g(x1, x2)). To get∇ f (g(x1, x2)), one then computes f ′(g(x1, x2))∂ig(x1, x2).
Note that all components of this expression are known: f ′ and ∂ig are known by assumption, and the value of g(x1, x2) has been computed and
cached in the forward propagation phase. (b) Example of application of AD to compute the gradient of cos(x1 x2). (c) Using the same example
function as (b), we give an example of the actual number computed at all stages when the inputs are (x1, x2) = (π/2, 2).

version of Eq. (S37). The updating rule is instead given by

v→ γv + η∇λF (ψ, λ),
λ→ λ + v,

(S41)

where here η is the learning rate and γ the momentum. The
use of the auxiliary parameter v during the training discour-
ages sudden changes of direction, and can make the training
significantly more efficient [55].

While the cost function F is always real, some of the in-
termediate calculations needed to compute it involve complex
numbers. While this poses no fundamental problems, many
of the Machine Learning (ML) libraries do not support AD
over functions with complex inputs or outputs. We worked
around this problem using a similar trick to the one reported
in [59]. In particular, to use the existing framework, we mapped
the problem into one involving only real numbers. To do
this, we map complex matrices into real ones via the bijection
A 7→ Re(A) ≡ 1 ⊗ AR − iσy ⊗ AI , where AR and AI are the real
and imaginary parts of A, respectively. At the same time, state
vectors are to be mapped to Ψ 7→ Re(Ψ) ≡ (ΨR,ΨI)T . It is easy
to verify that with this mapping AΨ 7→ Re(AΨ) = Re(A)Re(Ψ),
so that all calculations can be equivalently be carried out with
the real versions of matrices and vectors.

More specifically, the employed algorithm involves the fol-
lowing steps:

1. Choose an initial set of parameters λ (randomly, or spe-
cific values if one has an idea of where a solution might
be). A number of other hyperparameters have to be de-
cided at this step, depending on the exact SGD method
used. In particular, for mini-batch SGD with momen-
tum and decreasing learning rate, one has to decide the
momentum γ, the initial value of η, the rate at which

η decreases during the training, and the size Nb of the
batches of states used for every gradient descent step.

2. Repeat the following loop Ne times, or until a satisfac-
tory result is obtained. Each such iteration is conven-
tionally named an epoch. Another hyperparameter to be
chosen beforehand is the number of training states Ntr
to be used in each epoch. Once this is fixed, every epoch
will involve a number Ntr/Ne of gradient descent steps,
each one using Ne states for a single gradient calculation.
Ne random training states are sampled, to be used during
the epoch.

(a) Pick Nb of the Ne training states.

(b) Forward-propagate each state of the sample, and
then backpropagate the gradients, thus computing
the average gradient over the mini-batch ∇λF (λ).

(c) Update the coupling strengths λ as per Eq. (S41).

(d) Return to point (a).

D. Results

A sample of training results for Toffoli, Fredkin, and ”dou-
ble Fredkin” gates are given in Fig. 1 (a), (b), and (c) in the
main text. In Figs. S2 to S4 are shown the training histories of
the parameters for eight different solutions for Toffoli, Fredkin
and double Fredkin, respectively. These illustrate how quickly
the networks converge for different initial values of the param-
eters. In all the shown cases the target gates are obtained with
unit fidelity up to numerical precision (that is, all fidelities are
between 1 − 10−16 and 1). Different sets of optimisation hy-
perparameters are found to give acceptable solutions. For the
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trainings shown in this paper we used a dynamically updated
learning rate given, for the kth epoch, by η = 1/(1 + kα) with
the decay rate α = 0.005. The other hyperparameters were
chosen as γ = 0.5, Nb = 2, Ntr = 200. Different initial values
for the parameters were tested, but in most cases we started the
training with either vanishing or random (following a normal
distribution) parameters. For the training of the four-qubit gate
we found the network to converge sooner to a solution when
the parameters were initialised to a positive value (often with
all parameters initialised to 4).

In Figs. S5 to S7 we report the behaviour of the fidelity
upon changes of the learnt Hamiltonian parameters, for Toffoli,
Fredkin and double Fredkin gates, respectively. As shown

in these plots, the stability of the implemented gates with
respect to variations of time and interactions values greatly
varies between different solutions, as well as between different
parameters in the same solutions.

Additional solutions, as well as the exact numbers charac-
terising such solutions, can be found on the GitHub repository
lucainnocenti/quantum-gate-learning-1803.07119. This repos-
itory contains all the code used to reproduce the solutions
presented in this paper, as well as to train arbitrary gates on
arbitrary numbers of qubits. Even more generally, arbitrary
(linearly) parametrised matrices can be used as training model,
allowing a high degree of flexibility.

https://github.com/lucainnocenti/quantum-gate-learning-1803.07119
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FIG. S2. Training histories for the Toffoli gate with only diagonal interactions. In each plot are reported the values of the 9 network parameters
during the training process, for each training epoch te. Each training process was left running until convergence to unit fidelity, therefore, the
number of epochs in the horizontal axes differs for different trainings instances. The histories shown here correspond to training instances in
which the parameters were initialised at various values, as seen from the leftmost values in each plot.
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FIG. S3. Training histories for the Fredkin gate with only diagonal interactions. In each plot are reported the values of the 9 network parameters
during the training process, for each training epoch te. Each training process was left running until convergence to unit fidelity, therefore, the
number of epochs in the horizontal axes differs for different trainings instances. The histories shown here correspond to training instances in
which the parameters were initialised at various values, as seen from the leftmost values in each plot.
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FIG. S4. Training histories for the double-Fredkin gate with only diagonal interactions. In each plot are reported the values of the 18 network
parameters during the training process, for each training epoch te. Each training process was left running until convergence to unit fidelity,
therefore, the number of epochs in the horizontal axes differs for different trainings instances. All the histories shown here correspond to training
instances in which the parameters were initialised to 4.
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FIG. S5. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the Toffoli gate. The five test states ψ are sampled randomly. (a) Global
relative variations of λ, that is, plotting the fidelity against αλ for 0.9 ≤ α ≤ 1.1. Note that this is equivalent to studying how the fidelity changes
with respect to uncertainties in the evolution time, that is, how much does exp(iH t′) differ from exp(iH t). (b) Same as (a) but with 0 ≤ α ≤ 1.2.
(c) Plot of Fλ(ψ) against absolute variations of a single element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like (c) but for λ2.
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FIG. S6. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the Fredkin gate. The five test states ψ are sampled randomly. (a) Global
relative variations of λ, that is, plotting the fidelity against αλ for 0.9 ≤ α ≤ 1.1. Note that this is equivalent to studying how the fidelity changes
with respect to uncertainties in the evolution time, that is, how much does exp(iH t′) differ from exp(iH t). (b) Same as (a) but with 0 ≤ α ≤ 1.2.
(c) Plot of Fλ(ψ) against absolute variations of a single element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like (c) but for λ2.
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FIG. S7. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the double Fredkin gate. The five test states ψ are sampled randomly.
(a) Global relative variations of λ, that is, plotting the fidelity against αλ for 0.9 ≤ α ≤ 1.1. Note that this is equivalent to studying how the
fidelity changes with respect to uncertainties in the evolution time, that is, how much does exp(iH t′) differ from exp(iH t). (b) Same as (a) but
with 0 ≤ α ≤ 1.2. (c) Plot of Fλ(ψ) against absolute variations of a single element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d)
Like (c) but for λ2.
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