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Abstract—Cloud infrastructure-as-a-service (IaaS) provides
on-demand resources at low cost. IaaS users anticipate stable
performance for their applications so that the applications’
Quality of Service (QoS) constraints are satisfied. However, they
generally experience performance variability in their deployed
applications, primarily due to multi-tenancy. Such variability
may lead to QoS violations for the applications. Existing cloud
infrastructure solutions offered by different cloud providers
(CPs) do not have facilities to detect such QoS violations. Hence,
cloud users need to take responsibility for monitoring the perfor-
mance of their applications in order to detect application-specific
QoS violations. To support cloud users on this, researchers
have proposed a few user-centric cloud monitoring frameworks.
However, these frameworks do not detect application-specific
QoS violations. In this paper, we propose a novel algorithm
for detecting QoS violation for media streaming applications. At
each detection instance, the algorithm compares the cumulative
value of the expected streamed data against the cumulative
value of the measured streamed data. Based on this comparison,
the algorithm may raise QoS violation alarms. We evaluate
the algorithm by deploying a media streaming application in
a lab-based cloud set-up. Experimental results demonstrate that
the proposed algorithm can reliably detect QoS violation for
streaming applications deployed in the cloud.

Index Terms—Cloud Computing, Cloud Monitoring, QoS Vi-
olation Detection, Media Streaming Application

I. INTRODUCTION

A number of cloud infrastructure as a service (IaaS) providers
such as Amazon Elastic Compute Cloud (EC2), Google
Compute Engine (GCE), Microsoft Azure, IBM Bluemix,
Rackspace, etc., offer computing resources on a pay-as-you-go
basis at low cost. In addition, they provide elasticity through
which cloud users can scale up or down the resources to
match their performance requirements. These features have
promoted the growth of IaaS. Gartner1 has reported that IaaS
has grown more than 40% in revenue every year since 2011
and they expect a growth of more than 25% every year through
2019. Despite this growth, often there is a conflict between
the resource-centric interface exposed by cloud providers
(CPs) and what cloud users actually require. Specifically,
IaaS users anticipate stable performance for their applications
so that the applications’ QoS constraints/requirements are
satisfied. But, cloud applications generally exhibit performance

1http://www.gartner.com/newsroom/id/3354117

variability at the post-deployment phase. Work such as [1],
[2] experimentally demonstrates the existence of performance
variability in cloud applications. Such variability may lead
to scenarios where the applications’ expected performance
is not fully satisfied causing QoS violation. Performance
variability in cloud applications may arise for a number of
reasons at different levels: cloud infrastructure (scheduled or
unscheduled downtime), network (routing problems, loss of
intermittent packets to and from the cloud central network, and
problems with ISPs), and multi-tenancy (over-provisioning of
physical resources). Amongst these, multi-tenancy is assumed
to be the most dominant cause of performance variability
and subsequent QoS violation for cloud applications [3].
The multi-tenancy problem occurs when CPs try to optimise
cloud resource utilisation by allocating maximum number of
virtual machines (VMs) on minimum number of physical
machines (PMs). This is mainly because cloud resources, such
as network and storage, are shared amongst all the VMs
hosted in a single PM [4], [5]. Moreover, while undertaking
the optimisation tasks, CPs’ resource schedulers do not con-
sider the characteristics of the applications running inside the
VMs in terms of their performance requirements. The multi-
tenancy problem may persist even when cloud users select a
specialised dedicated cluster of PMs, as the central network
of the cloud is shared amongst many such clusters. Co-located
VMs (hosted in the same PM), which run similar applications,
may compete for the same shared resources [2]. Examples of
applications which may suffer from multi-tenancy are latency-
sensitive applications like web services or bandwidth-sensitive
applications like media streaming.

Existing cloud infrastructure solutions offered by different
CPs such as Amazon EC2, Google Compute Engine (GCE),
Microsoft Azure, etc., do not have facilities to detect the
applications’ QoS violations. Therefore, cloud users need to
take responsibility for monitoring the performance of their
deployed applications to detect the QoS violations. This moti-
vates the need for user-centric cloud monitoring frameworks.
Recently, cloud computing researchers in [6], [7], [8], [9] have
proposed such frameworks. However, these frameworks do
not detect cloud applications’ QoS violations, i.e. application-
specific QoS violations.

In this paper, we propose a solution for detecting



application-specific QoS violations through user-centric cloud
monitoring. In order to demonstrate the viability of the pro-
posed solution we consider the widely deployed media stream-
ing application as a use case. We select media streaming as
our use case due its growing popularity as reported by Global
Internet Phenomena Report [10]. A recent report [11] estimates
that streaming traffic will occupy up to 82% of the whole
internet traffic by 2021. Specifically, we consider the media
streaming services of small and medium-sized enterprises
(SMEs) which are hosted in public clouds, rather than those
hosted in private data centres, e.g. YouTube2. We also believe
that media streaming service providers such as Netflix3 who
host their services in Amazon, may also benefit from using the
proposed QoS violation detection approach. Moreover, media
streaming applications are bandwidth-sensitive, and therefore,
are expected to experience QoS violation due to the multi-
tenancy problem caused by sharing of network resources.

To detect the QoS violations, we propose a novel detection
algorithm (see Figure 1). At each detection instance, the
algorithm compares the cumulative value of the expected
streamed data against the cumulative value of the measured
streamed data. Based on this comparison, the algorithm may
raise QoS violation alarms. Measured streamed data are the
network throughput collected from the VM that is running the
streaming application, whereas the expected streamed data is
calculated by using a model that considers application-level
metrics (number and bit-rate of the active connections of the
streaming application). The detection algorithm can be inte-
grated into the user-centric cloud management framework, My-
Minder. MyMinder was proposed by our previous work in [12]
as a complete solution to cloud application management. In
particular, on accurately identifying the QoS violations using
the detection algorithm, MyMinder can support cloud users
in taking dynamic decisions on whether to continue with
the current CP or to migrate their services to another CP
in order to achieve performance stability or to avoid future
service failure. However, taking such dynamic decisions and
the subsequent inter-cloud migrations are not within the scope
of this paper, and interested readers can refer to [12].

To evaluate the performance of the proposed Detection algo-
rithm, we performed experiments in a lab-based cloud set-up.
The experiments considered the multi-tenancy problem as the
cause for the QoS violation. Experimental results demonstrate
that the proposed algorithm can reliably detect QoS violation
for streaming applications deployed in the cloud.

In summary, our contributions in this paper are two-fold:

1) We propose a novel detection algorithm, which can de-
tect QoS violation for streaming applications in the form
of insufficient data streamed to the clients. The algorithm
raises a QoS violation alarm when the cumulative value
of the measured streamed data is less than the expected
streamed data.

2https://www.youtube.com/
3https://www.netflix.com/gb/

Fig. 1: Detection Algorithm

2) We evaluate the performance of the proposed QoS viola-
tion detection algorithm by deploying a media streaming
application (representative of real-world media stream-
ing applications running in the cloud), and by designing
a benchmark for generating realistic media streaming
client requests.

The remainder of the paper is organised as follows. Section II
defines the both explicit and implicit QoS violation of user
applications. Section III provides a detailed explanation of
the proposed QoS violation detection approach. Experimental
results are evaluated and discussed in Section IV. Section V
discusses the related work in cloud monitoring, QoS violation
detection, and management of media streaming applications in
the cloud. Section VI concludes the paper and discusses the
future work.

II. EXPLICIT AND IMPLICIT QOS VIOLATIONS OF USER
APPLICATIONS

Explicit QoS Violation: CPs guarantee QoS to their users
through SLAs which generally include resource availability in
the form of number of processing cores, memory, storage, and
in some cases network bandwidth. When CPs fail to maintain
the guaranteed QoS (resource availability), explicit QoS viola-
tion can be considered. For example, in Amazon EC2 when a
running instance has no external network connectivity, a QoS
violation is signalled.

Implicit QoS Violation: Network bandwidth availability is
not explicitly guaranteed in most of the cloud instances and
only a few CPs specify guarantees of bandwidth available
for a particular group of VM types, (e.g. Amazon EC2 EBS-
optimised4 VMs provide support for enhanced networking). If
a cloud user fails to get the amount of network throughput that
is required by the deployed application, then no QoS violation
is considered. This is because the user cannot claim a violation
for getting low throughput if the CP did not commit to it
in the SLA. However, this can be considered as an implicit
QoS violation which is specific to the deployed application.
This motivates the need for a user-centric monitoring and
QoS violation detection approach which can consider the QoS
required by user applications, even if it is not part of the SLA.
As we consider media streaming application as a use case
in our work, we consider the following research questions
to propose an application-specific QoS violation detection
approach.

4https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html



1) How to define QoS violations which are specific to
media streaming applications?

2) Which application-level and resource-level metrics to
consider to detect such QoS violations?

3) How to integrate the application-level metrics with the
resource-level metrics in order to propose a correct QoS
violation detection algorithm for streaming applications?

In the following section we discuss how our approach ad-
dresses these research questions.

III. A QOS VIOLATION DETECTION APPROACH FOR
STREAMING APPLICATIONS

This section introduces the media streaming applications,
defines the QoS violations specific to the media streaming
applications, and discusses the proposed approach to detect
such QoS violations.

A. Media Streaming Applications

Streaming video or audio incorporate the streaming of data
from a server to a number of clients who can watch the
video or listen to the audio stored in the server. In case
of video streaming applications like YouTube, Netflix, etc.,
the server hosts a variety of videos to serve the clients who
request the videos from different media playing devices such
as smartphones, computers, tablets, etc. Specifically, the server
hosts different types of videos which have different bit-rate
(speed of the video transfer from server to the clients) in
order to meet the clients’ device characteristics (i.e. supported
resolution, network bandwidth, etc.). For example, low bit-rate
videos for smartphones and high bit-rate videos for computer
systems. The streaming of the videos from the server to the
clients is performed through various internet protocols which
allow the streaming in real-time, e.g. real-time streaming
protocol (RTSP). To play the streamed videos without any
interruption or quality compromise, these protocols support
pre-buffering by streaming the video content at a higher bit-
rate.

B. QoS Violations Specific to Streaming Applications

For applications like media streaming, the QoS specific to the
applications can be defined in terms of the quality of the videos
that are streamed to their viewers or clients (from here on
we will use the terms viewers and clients interchangeably).
Violation of such QoS can be considered when viewers expe-
rience time delays or degraded video quality while watching
the streaming videos. Time delays during streaming may occur
due to incomplete transcoding of the videos by the streaming
server processors or due to insufficient availability of the
network bandwidth. Transcoding is the technique of converting
the video streams into the format that matches viewers’ device
characteristics. Degradation of video quality may result from
arrival of too many client requests at the streaming server. This
is because all the media streaming servers have a saturation
point (maximum number of acceptable client requests), beyond
which they cannot serve the client requests with the expected

quality and in some cases they may even fail to serve few of
the requests.

Media streaming service providers who deploy their services
in cloud data centres may resolve the time delays due to the
transcoding task either by scaling up the number of VMs that
are used for performing the transcoding, or by storing several
pre-transcoded versions of the videos to serve different types
of devices [13]. Also, they can maintain the quality of the
streamed videos by limiting the number of client requests
within the saturation point of the streaming server. In addition,
media streaming service providers can have the guarantee of
QoS in terms of the CPU performance from the CPs so that
they can maintain the quality of the streamed videos. Hence,
there are adequate solutions to avoid QoS violations caused
either due to incomplete transcoding, or due to the arrival
of too many client requests. However, there is no specific
solution to avoid QoS violations occurring due to insufficient
availability of the network bandwidth. This is mainly because
CPs do not explicitly guarantee QoS in terms of the network
performance. Therefore, we aim to detect QoS violations
caused by insufficient availability of the network bandwidth
so that the media streaming service providers can maintain the
QoS of the applications by migrating them to other VMs which
show less volatility in its network performance. Specifically,
we aim to detect QoS violations in the form of insufficient
amount of data streamed to the clients, which arise due to
multi-tenancy (sharing of network resources amongst a number
of VMs) adopted by the CPs. Such QoS violations may also
arise due to factors outside the cloud network (e.g. in the
viewers’ network), but, in this paper, our assumption is that
those factors are insignificant. In particular, we do not consider
the potential side effects of severe network issues which may
arise outside the cloud infrastructure.

C. Moving Average Based QoS Violation Detection

To propose a QoS violation detection algorithm, we carried out
an experiment on the normal behaviour of a media streaming
application using the popularly used moving average based
approach to detect violation. During the experiment, we set
up a media streaming server inside a VM hosted in a physical
machine in our lab-based cloud testbed (Section IV details the
experimental set-up). Client requests for the streaming server
were sent from another machine (outside the cloud testbed).
Specifically, during the experimental period, 100 simultaneous
client requests were sent for a 10-minute video with bit-rate
of 790 Kbps. Figure 2 (top) presents the timeseries graphs for
the instantaneous and moving average values of the network
throughput collected from the VM that is running the media
streaming server. The window size for the moving average
is considered to be 60. As is evident from the graphs the
fluctuating network behaviour of media streaming causes the
instantaneous values of the throughput (represented by the
black line) to frequently drop below the expected throughput
(ET) values (represented by the blue line) resulting in false
positives. ET is calculated accruing to the Formula 1 which
considers the application-level metrics (number and bit-rate
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Fig. 2: Network throughput (top) and cumulative data streamed
(bottom) by the streaming server

of the active connections of the media streaming application).
The formula is based on the fact that, for each type of
requested video, the media streaming server is expected to
provide the bit-rate that the video type requires for maintaining
the quality of the streamed videos. In our experiment we used
RTSP as the internet protocol, which supports pre-buffering by
streaming the video content at a higher bit-rate. This explains
the reason for network throughput being less than the ET at
some points of time, in which we assume that the streaming
server is sending the video content at a lower bit-rate. In
Figure 2 we can observe that considering moving average
values (represented by the red line) reduces the false positives
to a large extent, but, there still remains a few false positives.

ET (t) = ∑
i∈video types

ni(t)×bitratei (1)

where ET (t) = expected throughput at time t
ni = no. of active connections of video type i
bitratei = bit-rate of connections of video type i

D. Cumulative Value Based QoS Violation Detection

Based on the experimental findings from the previous sub-
section, we propose a cumulative value based approach to
detect the QoS violation which does not raise false positives.
The approach uses a novel detection algorithm which firstly
calculates the cumulative data that is expected to be streamed
(Expected Cumulative Streamed Data - ECSD) at every point
of time. Secondly, at every detection point, the algorithm

compares the cumulative data that is actually streamed (Mea-
sured Cumulative Streamed Data - MCSD) with the ECSD. If
MCSD < ECSD, the algorithm raises a QoS violation alarm
indicating that the streaming of the videos are delayed or the
quality of the streamed videos are compromised. MCSD is
the cumulative value of the network throughput (resource-level
metric), whereas ECSD is calculated by the ECSD calculation
model which uses Formula 3. The formula considers the
application-level metrics (duration of active sessions and their
bit-rate). In the formula, we consider three cases for the
duration of active sessions (see Formula 2): (i) for all active
sessions, i.e. if the client i is alive and streaming at the current
time t; (ii) for the sessions which are not started, i.e. if the
client i has not started streaming at the current time t; and (iii)
for the sessions which are completed, i.e. if the client i has
finished the streaming.

di(t) =


0 t < si

t− si si ≤ t ≤ fi

fi− si fi < t
(2)

Where di = duration of session i
t = current time
si = start time of session i
fi = end time of session i

ECSD(t) = ∑
i∈all sessions

di(t)×bitratei (3)

Figure 2 (bottom) presents the timeseries graphs of the
MCSD and ECSD values which are obtained from the same
normal behaviour experiment that is explained in the previous
sub-section. From the graphs we can observe that the the
MCSD values are always higher than the ECSD values except
for a few occasions in the beginning of the timeseries, which
may be seen as false positives To reduce such false positives,
the algorithm further considers a violation detection window
that sets the number of consecutive violations which need to
appear before raising the QoS violation issue to the cloud
user. Important to note that, at the end of the streaming the
MCSD value is higher than the ECSD value. This is due to
the protocol overhead which includes headers and metadata.

Overall, the novelty of our approach lies in the consideration
of dynamic values of the cumulative streamed data to perform
the QoS violation check. This is important because of the
dynamic nature of the media streaming requests in terms of
the variations in the number of active client sessions and the
bit-rate of the streamed videos. The accuracy of detection
may be compromised along with high false positives if we
consider static QoS violation detection approach, where the
threshold for QoS violation is statically decided based on only
the resource-level metrics such as the network throughput.

Figure 3 depicts the overall framework of the proposed QoS
violation detection. The framework consists of data collection
from the VM, where a media streaming server is deployed,
and data processing which is performed in a remote detection
system. The Data Collector module collects the network



Fig. 3: QoS Violation Detection Framework

throughput generated by “dstat”5 (a tool for generating re-
source statistics) inside the VM. The Data Collector further
collects the application-level metrics (number and bit-rate of
the active connections of the media streaming application).
The frequency of collecting these metrics is 1 second. The
Data Collector combines these metrics by their data collection
timestamps and saves them in a CSV file. This file is then
sent to the detection system via HTTP. The detection system
processes the data (saved in the Data Storage) sent by the
Data Collector module in order to detect the QoS violation.
Specifically, the detection system uses the Detection Algorithm
which takes the input data points from the Data Storage
and identifies the QoS violation by processing these data
points. The detection system is integrated with a Spark6

framework to enable faster processing of the data and to
achieve scalability while processing data collected from large
number of monitored VMs. The pseudocode in Algorithm 1
presents the steps of the Detection algorithm: pseudocode lines
2 and 3 show how the MCSD and ECSD are calculated,
respectively; and pseudocode lines 4-12 illustrate the condition
for raising the QoS violation alarms. Importantly, the MCSD
and ECSD values are always reset (pseudocode lines 11) once
the algorithm raises a QoS violation. Although we decided
the window size for the violation detection based on our
experiments, this may require further tuning for the same or
different use cases.

IV. EXPERIMENTAL EVALUATION

We evaluate the proposed QoS violation detection algorithm
by deploying a Darwin media streaming server7 in a lab-
based cloud setup; we then monitor the streaming data it
provides across all clients, and employ the violation detection
algorithm. We intentionally choose the lab-based cloud setup
over public clouds, which allows us to control and evaluate
the correctness of the proposed detection mechanism, since the
server-client configuration is non-trivial. This setup does not

5http://dag.wiee.rs/home-made/dstat/
6http://spark.apache.org
7https://macosforge.github.io/dss/

Algorithm 1 QoS Violation Detection Algorithm

input: NT - Network throughput
input: bitrate - Bit-rate of requested videos
input: VWS - Violation detection window size = 5
output: ViolationAlarm - True/False

1: for each time t do
2: MCSD(t)← ∑i∈all clients NTi
3: ECSD(t)← ∑i∈all clients di×bitratei
4: if MCSD(t)< ECSD(t) then
5: ViolationCount←ViolationCount +1
6: else
7: ViolationCount← 0
8: end if
9: if ViolationCount = VWS then

10: return True
11: end if
12: end for
13: return False

restrict the applicability of the proposed algorithm, which can
be translated to applications deployed in public clouds. The
metrics required by the algorithm, such as dstat and Darwin
measurements, do not require privileges beyond the admin
privileges on the deployed VM; therefore, they can be used
in public clouds. This section presents our evaluation of the
proposed QoS violation detection, in particular its reliability
and accuracy.

A. Experimental Setup

Testbed: We deploy the Darwin server in our lab-based cloud
testbed that is set up on Machine-I via a kvm hypervisor. The
cloud testbed hosts three VMs: VM1, VM2, and VM3. The
VMs are accessible from outside the testbed via a bridged
network that is connected to a 1GbE network switch. Figure 4
depicts the overall setup of the cloud testbed – the server,
the client machines, and the monitoring machine. Table I
presents the configuration of the machines. Client requests
for the Darwin server are sent from three different client



TABLE I: Experimental Machine Configuration

Machine-I, Machine-II Machine-III Machine-IV Machine-V
Processor Single Intel Xeon E5-2650v4

@2.2Ghz (12 cores)
4x Intel(R) Xeon(R) CPU
E5-2609 v2 @2.50GHz (4
cores each)

96x Intel(R) Xeon(R) CPU
E7-4860 v2 @2.60GHz (12
cores each)

Dual Intel E5-2620v4
@2.1Ghz (8 cores each)

RAM 64GB DDR4 16GB 256GB 32GB DDR4
Disk Capacity 1TB SATA HDD 500GB 2x 500GB 1TB SATA HDD
OS CentOS 7.4.1708 CentOS 7.2.1511 CentOS 7.1.1503 CentOS 7.2.1511

Fig. 4: Experimental Setup

machines: Machine-II, Machine-III, and Machine-IV, which
are connected to a 10GbE network switch. All the client
machines have sufficient compute, I/O, and network capacity,
so performance loss is only propagated through multi-tenancy
on the server side. This is part of our assumption that outside
the cloud infrastructure, no significant bottlenecks exist. The
QoS violation detection system is set up on a remote mon-
itoring machine, Machine V. This monitoring node monitors
the application-level and the resource-level metrics from the
cloud testbed in order to analyse them and to provide general
QoS violation detection capabilities, which are not tied to the
physical server or the service it provides. This setup of a
violation detection system outside the cloud testbed eliminates
performance degradation due to coscheduling a service, such
as a streaming service and a monitoring service, on the same
physical node. In general, the monitoring and detection node
may require intensive CPU resources in its own right, while
running more advanced QoS violation detection algorithms.

B. Darwin Server

We use Darwin server release version 5.3.0. We introduce
minor modifications in order to enable the proposed ECSD
model of this work (see Equation 2).

C. Client Requests for Darwin Server

We generate the client requests for Darwin server using a
Poisson distribution8, so that the client requests closely follow
the pattern of the real-world media steaming client requests.
For experimenting with different types of streaming requests,
clients may request:
• sample videos of duration ranging from 1 to 10 minutes
• for each of these, clients may request a bitrate of low

(102kbps), medium (290kbps), or high (790kbps).
The underlying media streaming protocol is RTSP which is
taken from the CloudSuite benchmark 9.

D. Detection of QoS Violation

In this section we demonstrate how the proposed violation
detection algorithm can detect QoS violations. Specifically,
we present the results from two experiments: Experiment-
I and Experiment-II. The experiments evaluate the proposed
algorithm on different streaming scenarios: (a) without any
co-located service hosted on the physical machine running the
streaming service, and (b) with co-located service hosted on
the physical machine running the streaming service. In both
experiments, the Darwin streaming server is hosted in VM1
of the cloud testbed (Machine-I).

Experiment-I: In this experiment 200 clients request high
bitrate videos with 10-minute duration from a client machine
(Machine-II), with exactly one new client request arriving each
second (within the first 200 seconds). This setup emulates the
scenario where Darwin server is streaming “popular” videos.
Figure 5 presents the timeseries graphs of the network through-
put (collected by dstat) and the cumulative data streamed
(calculated by MCSD calculator and ECSD calculation model)
by the Darwin server while there is no co-located service
hosted on the cloud testbed. From the throughput graph
we can observe the fluctuating network behaviour of the
streaming, which as discussed earlier in Section III, cannot
justify a moving average based QoS violation detection ap-
proach. However, the cumulative data streamed graph clearly
shows that MCSD values are always higher than the ECSD
values, i.e. the cumulative values do not fulfil the condition
(MCSD < ECSD) set by the detection algorithm for QoS
violation. Hence, the algorithm is performing correctly without
raising any false positives. Figure 6 presents the timeseries
graphs of the network throughput and the cumulative data
streamed by the Darwin server while a co-located Darwin

8https://www.umass.edu/wsp/resources/poisson/
9http://cloudsuite.ch



streaming server is hosted in VM2 of the cloud testbed.
The co-located server receives 800 streaming requests for
high bitrate videos with 10-minute duration from a different
client machine (Machine-III). While serving the client requests
for two different streaming servers, the available network
bandwidth of the cloud testbed gets overwhelmed. Hence, the
cloud testbed starts suffering from the multi-tenancy effect.
This is evident from the throughput graph (Figure 6) which
shows that the Darwin server (running in VM1) is streaming
less data compared to the previous scenario (see throughput
graph in Figure 5) where there is no co-located service hosted
on the cloud testbed. This behaviour indicates that the QoS for
the Darwin streaming service (running in VM1) is violated due
to the multi-tenancy effect in the cloud testbed. Our algorithm
correctly detects this QoS violation as we can observe from
the cumulative data streamed graph (Figure 6) that the MCSD
values are always lower than the ECSD values, fulfilling the
condition (MCSD < ECSD) set by the algorithm.
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Fig. 5: Streaming Hi10 videos without co-located service

Experiment-II: In this experiment 400 clients request
mixed bitrate (high: 50 clients, medium: 150 clients , and
low: 200 clients) videos with 3-10 minute duration from all
the three client machines (Machine-II, III, IV). This setup
emulates the scenario where Darwin server is streaming mixed
type of videos. Figure 7 presents the timeseries graph of the
cumulative data streamed by the Darwin server while there is
no co-located service hosted on the cloud testbed. From the
graph we can observe the behaviour similar to Experiment-I,
i.e. MCSD < ECSD for all the detection points and hence,
there is no false positives. However, while performing a
series of experiments with different combinations of the bit-
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Fig. 6: Streaming Hi10 videos with co-located service

rate and the number of requests we observe that in some
occasions, the MCSD values drop slightly below the ECSD
values at the end of the streaming. An example can be seen
in Figure 8. However, we do not expect false positives due
to such behaviour, because the proposed detection algorithm
considers a violation detection window, specifically to deal
with such situations. Figure 9 presents the timeseries graph
of the cumulative data streamed by the Darwin server while
two co-located Darwin streaming servers are hosted in VM2
and VM3 of the cloud testbed. The co-located servers receive
in total 600(V M1)+600(V M2) = 1200 streaming requests for
high bitrate videos with 10-minute duration from two different
client machines (Machine-III and Machine-IV). Similar to
Experiment-I, our algorithm correctly detects the QoS vio-
lation due to the multi-tenancy effect that is arising in this
scenario. We can observe this from the graph presented in
Figure 9.

E. Observations and Limitations

We found during our experimental evaluation that starting an
excessive number of client requests per Darwin server instance
does not lead to all requests being served. In particular:
• a configuration file restricts the number of active sessions

per Darwin server, so that they do not exceed the satura-
tion point

• when deploying one Darwin server per VM, all server
instances across different VMs start limiting the number
of active sessions. Usually, once a certain threshold of
active sessions is reached, client requests do not get an
active data connection.
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Fig. 8: Streaming mixed videos without co-located service
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Fig. 9: Streaming mixed videos with co-located service

The implications of these observations are that we are unable
to set up experiments with arbitrarily large number of client
requests per server instance.

V. RELATED WORK

We discuss various cloud monitoring frameworks and the
management of media streaming applications in the following
sub-sections.

A. Cloud Monitoring for QoS Violation Detection

Cloud IaaS users may exhibit QoS violations (both explicit
and implicit) for a number of reasons which can be traced by
monitoring the behaviour of the applications or the underlying

cloud infrastructure at runtime. Accurate detection of QoS vi-
olations require monitoring some specific performance metrics
from the cloud, which in some cases may be restricted to only
the CPs. Thus, we can perform QoS violation detection based
on user-centric and CP-centric monitoring.

CP-centric monitoring: In case of IaaS, CPs monitor the
performance metrics from their cloud infrastructure (e.g. VM
or physical machines hosting the VMs) in order to detect per-
formance bottlenecks of the applications hosted in the cloud.
The performance bottlenecks or anomalies in the cloud may
arise due to the failure of the data centre software/hardware
or due to security attacks such as the distributed denial of
service (DDoS) attack. Recently, researchers like [14], [15],
[16], [17] have implemented statistical and machine learning
based techniques to detect performance anomalies in the cloud,
specifically in IaaS. Authors in [18], [19] have proposed a
monitoring system for the CPs, which can detect violations
for all the services (IaaS, PaaS, SaaS) in a cloud data centre.
For example, they can monitor the request rates of a web
application deployed in the cloud to detect if the request rates
exceed the threshold value, i.e. the capacity limit of the VMs
provisioned to the user. To detect the violations, they propose
a window-based state monitoring approach which is resilient
to noises and outliers and performs the monitoring with low
communication cost and high scalability.

User-centric monitoring: Public CPs like Amazon EC2,
Rackspace, Microsoft Azure, etc. provide monitoring frame-
works for their users so that they can monitor and analyse
the performance of the deployed applications. Specifically,
these frameworks monitor resource utilisation metrics (e.g.
CPU utilisation, data transfer, disk usage, etc.) from the VMs
that are assigned to the users as well as the metrics and
log files related to the deployed applications. Using these
monitoring frameworks cloud users can even set alarms based
on fixed threshold in order to receive notifications on important
performance variation or to take automated actions such as
autoscaling. However, these frameworks do not provide in-
depth analysis of the cloud application behaviour in terms of
detecting QoS violations.

Researchers in [7], [8], [20], [21], [22], [23], [24], [25]
have proposed various user-centric monitoring, benchmarking
and prediction techniques which can monitor and analyse the
performance metrics such as CPU utilisation, network band-
width, throughput, latency etc. Researchers in [26] propose a
cloud management framework named Bazaar which provides a
job-centric interface for IaaS users, specifically for supporting
deployment of data analytics applications. In Bazaar, tenants
can feed their high-level goals for their applications, based on
which Bazaar can predict the resources required to achieve
those goals. Importantly, Bazaar claims to choose the best
combination of resources for the users. The main aim of
Bazaar is to bridge the gap between the cloud providers and
their users. All these research work can help cloud users in the
pre-deployment phase in terms of selecting the most suitable
cloud IaaS. However, for detecting QoS violations specific to
the deployed applications, cloud users need monitoring in the



post-deployment phase.
The work in [6] propose user-centric cloud monitoring

system in the post-deployment phase. Specifically, they use
an early warning indicator system to detect possible future
violation in the performance metrics or in the performance
of the provisioned VM. They also provide support for cloud
users in managing the QoS of their deployed services based
on the comparison between the observed and the predicted
QoS. They only consider VM-level metrics (CPU, memory,
and disk) to detect the QoS violations, which may not be
sufficient to detect application-specific QoS violations. There
are works like [9], [27] which aim to provide monitoring as
a service (MaaS) in order to support cloud users in achieving
their requirements such as scalability, fault tolerance, self-
managing, and application-level monitoring. Their goal is to
provide a cloud management system which brings simplicity
for managing the deployed applications and they do not focus
on monitoring the performance for violation detection. Our
work is different from these as we monitor and analyse the
application-level metrics as well as the VM-level metrics
in order to detect QoS violations which are specific to the
deployed applications.

B. Managing Media Streaming Applications in the Cloud

Media streaming applications are often deployed in the cloud
in order to avail the benefit of IaaS such as scalability, flex-
ibility, etc. Management of streaming applications (deployed
using cloud IaaS) with respect to maintaining the QoS for
their viewers has recently received attention from the cloud
researchers [28], [29], [30], [31]. Most recently the work
in [13] have proposed an on-demand video stream transcoding
for streaming applications deployed in the cloud in order to
maximise viewers’ satisfaction. They consider QoS demand of
the viewers in terms of minimising startup delay and meeting
presentation deadline. They introduce a cost efficient VM
provisioning which can allow dynamic reconfiguring of the
cluster of heterogeneous VMs in order to maintain viewers’
QoS. Similar to them, we also aim to maintain the QoS for
the streaming application viewers, but, in our case we detect
the QoS violation occurring due to multi-tenancy, which can
be resolved by migrating the streaming application to another
VM which has better network performance.

VI. CONCLUSION AND FUTURE WORK

Despite the proliferation of cloud computing services, cloud
users are not always satisfied with the services that they
receive. In general, IaaS users experience performance vari-
ability in their deployed applications for a number of reasons;
amongst which multi-tenancy is assumed to be the domi-
nant reason. Multi-tenancy results from a phenomenon where
CPs try to optimise cloud resource utilisation by allocating
maximum number of VMs on minimum number of physical
machines. Existing cloud infrastructure solutions offered by
different CPs do not have facilities to detect QoS violations
for cloud applications. Also, the user-centric cloud monitoring
frameworks proposed by various researchers do not detect such

application-specific QoS violations. Therefore, we propose a
novel algorithm for detecting QoS violation for cloud applica-
tions, specifically for media streaming applications. The algo-
rithm considers the QoS violation in the form of insufficient
data streamed to the media streaming clients. We evaluate the
algorithm by deploying a Darwin media streaming service in
a lab-based cloud test-bed. Experimental results demonstrate
that the proposed algorithm can reliably detect QoS violation
with few or no false positives. Hence, we can adopt the
algorithm in the user-centric cloud management framework,
MyMinder, which is proposed by our previous work in [12].
The algorithm will serve in the re-active detection module in
MyMinder.

In future, we aim to deliver services for the other modules
in MyMinder: (i) pro-active QoS violation detection algorithm,
so that we can predict future QoS violations to avoid service
failure; (ii) decision making algorithm to decide on which
CP to migrate the deployed application in case QoS violation
is detected; and (iii) prototype for inter-cloud migration that
can enable migrating the deployed application to a better
performing CP.
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