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Abstract 

The Internet of Things (IoT) holds great potential for 

productivity, quality control, supply chain efficiencies and 

overall business operations. However, with this broader 

connectivity, new vulnerabilities and attack vectors are 

being introduced, increasing opportunities for systems to 

be compromised by hackers and targeted attacks. These 

vulnerabilities pose severe threats to a myriad of IoT 

applications within areas such as manufacturing, 

healthcare, power and energy grids, transportation and 

commercial building management. While embedded 

OEMs offer technologies, such as hardware Trusted 

Platform Module (TPM), that deploy strong chain-of-trust 

and authentication mechanisms, still they struggle to 

protect against vulnerabilities introduced by vendors and 

end users, as well as additional threats posed by potential 

technical vulnerabilities and zero-day attacks. This paper 

proposes a pro-active policy-based approach, enforcing 

the principle of least privilege, through hardware Security 

Policy Engine (SPE) that actively monitors 

communication of applications and system resources on 

the system communication bus (ARM AMBA-AXI4). 

Upon detecting a policy violation, for example, a malicious 

application accessing protected storage, it counteracts 

with predefined mitigations to limit the attack. The 

proposed SPE approach widely complements existing 

embedded hardware and software security technologies, 

targeting the mitigation of risks imposed by unknown 

vulnerabilities of embedded applications and protocols. 

1 Introduction 

The IoT market has grown significantly, with a massive range 

of IoT products reaching further into different areas, 

including home user’s private lives, the enterprise, as well as 

deployment to control critical manufacturing and industrial 

appliances [1]. Indeed, estimates from Gartner predict that 

IoT will proliferate to 20.5 Billion Devices by 2020 [2]. 

Simultaneously, so too has the opportunity for malicious 

actors to take advantage of IoT devices, exposing them to a 

myriad of security risks [3]. These security risks may include 

compromising the user’s privacy, damaging industrial 

applications, steal information from an enterprise, or using the 

IoT’s own computing resources to launch attacks elsewhere, 

as seen in the Mirai botnet [4]. 

The required level of security for IoT cannot be defined 

generically due to highly versatile application markets such as 

mobile, consumer electronics, medical and industrial control 

solutions. IoT security is a challenging research problem, with 

trust issues at every level, from authentication of the user, 

communication between interconnected devices, handling of 

sensitive data and the potential for malware and physical 

attacks to compromise any aspect of the ecosystem [5]. 

With such a wide range of potential attacks, efforts must be 

made at all levels of design to incorporate security, to ensure 

trustworthiness of devices, and to prevent compromise of user 

data and device. It includes design philosophy, software and 

hardware architectures, choice of components used and even 

where manufacturing takes place [6]. In addition, relevant 

secure practices must be extended to and enforced at every 

layer within the IoT ecosystem, which typically comprises of 

the following components: 

 

• Cloud: Providing data storage and overarching 

computing services. 

• Gateway: Interfacing the edge to the cloud component. 

• Edge: The end-point device containing sensors and 

actuators. 

 

As IoT devices have increased in computing capability and 

extensively used to handle sensitive tasks and information, 

the industry has responded by providing secure 

methodologies and technologies to enhance trustworthiness 

and ensure correct function of the devices [7], [8]. These 

technologies involve both hardware and software, along with 

practices for design and development. This paper will survey 

some of these technologies, looking at existing solutions that 

provide root-of -trust and protect critical data such as private 

keys and embedded Intellectual Property (IP). Also, 

technologies that protect the operating device from malicious 

use will be surveyed, including architectural based methods 

of segregating critical and non-critical applications, regarding 

device storage, execution and memory. Software solutions 

will also be considered, particularly those that enhance 

segregation of potentially malicious applications from critical 

system components. However, while these technologies have 

relevance and offer protections to IoT devices, vulnerabilities 

continued to be found and exploited within IoT devices, with 

the security technology itself often being the weakness 

allowing access. Also, new vulnerabilities continue to be 

found, such as application and protocol implementation issues 

that inadvertently allow malicious use without any security 

technologies being aware. 
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To counter these issues and to complement existing security 

technologies, this paper introduces the concept of a Security 

Policy Engine (SPE), a hardware-based solution that monitors 

activities on the System-on-chip (SoC) communications bus. 

The proposed system utilises access control type policies to 

prevent unauthorised access to components by applications. 

The SPE is physically segregated from the operating system 

(OS) but can monitor activities such as sensor and actuator 

controls, application-specific access to peripherals, 

communication channels and other system resources using the 

system communication bus. The security policies are pre-

defined policy comprising of two parts, (1) A whitelist of 

permitted access control and transaction rules used for system 

monitoring, and (2) A list of countermeasures, executed when 

a rule violation occurs. The SPE can co-operate with on-chip 

security components to initiate programmed attack responses 

to protect security critical assets. The proposed SPE is a 

hardware-based SoC security component designed for 

resource-constrained IoT devices. 

 

2 Background 

2.1 Secure IoT device life cycle 

A concept of design for security has introduced to cater for 

the increasing complexity of IoT ecosystems and to attain a 

secure development life cycle [9], [10], [11]. A secure IoT 

device life cycle requires incorporation of security measures 

within every component, from securing the device, the data 

within the device and the communication channel between 

edge and the cloud service [12], [13], for the entire lifespan of 

the device, from deployment to decommission, as shown in 

Figure 1. The design and development stage should mitigate 

for security issues not yet known, allowing for capacity to add 

additional functionality after deployment or to conform with 

additional regulations after deployment. To achieve the 

desired device flexibility, the embedded designers have 

introduced hardware and software co-design approaches 

within the IoT ecosystem. The involvement of multiple 

designers and developers working at different hardware and 

software stacks increase the complexity of the ecosystem. 

One company may design a device, another supplies 

component software, another operates the network in which 

the device is embedded, and another deploys the device. A 

lack of clear security decisions and responsibilities opens IoT 

devices to a range of risks, vulnerabilities and attacks [14], 

[15]. The security challenge has further magnified by a lack 

of comprehensive, widely adopted standards for IoT security. 

Life Cycle Stage Hardware Security Requirements Security Measures 

Manufacturing • Secure programming. 

• Circumvent device impersonation and 

overbuilding 

• Unique device hardware identity 

• Bit-stream encryption 

• Certificate of conformance  

Deployment • Secure provisioning and management. 

• Secure configuration and control. 

• Secure monitoring and diagnosis 

• Secure boot 

• Secure storage of secret data 

Field Upgrade • Secure firmware update to enforce and 

maintain chain-of-trust. 

• Firmware integrity to circumvent malicious 

software updates. 

• Data integrity check mechanism 

• Authentication and authorisation 

mechanisms 

• Anti-tamper protection 

Decommission • Secure device disposal to ensure 

confidentiality of secret data.  

• Invalidate device and cannot be reinserted into 

the supply chain again. 

• Secret data zeroization. 

• Revocation of certificate of conformance 

• Certificate revocation list (CRL) 

Table 1: Classification of security requirements based on device life cycle. 
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Figure 1: Secure embedded development life cycle of IoT devices. 
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The issue has been deemed serious enough that proposals to 

regulate IoT have been made at US Congress [16] and EU 

government levels [17].  Table 1 outlines the security 

requirements and measures to attain, deploy and ensure 

secure embedded development life cycle. These security 

requirements set the embedded design architectural choices to 

harness and enforce robust IoT security practices. 

2.2 Root-of-trust (RoT) in IoT devices 

To support, the security requirements listed in Table 1, 

confidentiality and authentication must adhere to the 

root/trust anchor. The trust anchor can be implemented using 

hardware and software approaches. Within the target device, 

the root-of-trust (RoT) implements the trust anchor [11], 

[18], [19]. The security device uses a Proof-of-Knowledge 

approach based on challenge-response protocol. The host 

authority initiates the verification process by: 

 

• Generating a random challenge for the device. 

• The device performs a cryptographic function using 

secret data and returns the output response. 

• If the target device’s output satisfies the challenge, the 

verifying authority treats the target as authentic. 

 

When the concept of RoT first emerged, a software approach 

was used, with secret data stored in non-volatile memory as 

shown in Figure 2. The verifying authority read the secret 

data to confirm the authenticity of the device. However, this 

software RoT has exposed to device impersonation attacks.  

The trust anchor/root must be baked within the device as a 

unique ID to circumvent this problem. Because, it is relatively 

difficult for an attacker to modify the functionality of the 

hardware to the extent where the hardware is immutable [6], 

[11], [20]. Therefore, hardware root-of-trust (HRoT) has 

introduced, as shown in Figure 2. It allows the device to 

generate a unique and unalterable identity by using a 

Physically Unclonable Function (PUF). PUF provides a 

unique challenge-response mechanism dependent on the 

complex and variable nature of the silicon material used to 

manufacture the device. By baking the trust anchor within the 

device, it provides isolated hardware-based verification of the 

target device and enables robust post-manufacturing device 

provisioning options to OEM and customers by generating 

PUF dependent obfuscated private keys (even unknown to 

chip manufacturers). The HRoT serves as device primary 

root-of-trust on which the remaining trust chain is built, 

maintained from system boot-up to power-down, improving 

firmware verification and integrity checks. 

2.3 Trusted computing technologies and embedded 

security 

The goal of Trusted computing is to develop technologies, 

which give users guarantees about the behaviour of the 

software running on their devices. A device can be trusted if it 

always behaves in an expected manner for the intended 

purpose even when the attacker gains control of the device 

[21]. It is a complex goal, covering security aspects that result 

in a wide range of hardware and software co-design solutions. 

Many IoT designs make use of software portability, porting 

operating systems, network communication stacks, software 

libraries and service that were not designed primarily for 

secure or machine-to-machine (M2M) devices to reduce time-

to-market and gain a competitive advantage. As a result, these 

devices might sub-optimally designed for their use case, 

which may impose a security risk. A similar trend is observed 

where third-party IP (usually encrypted netlist) is integrated 

to build secure hardware architectures and platforms which 

has opened doors to hardware trojan and malware. To 

address this issue while retaining benefits of software 

computing, hardware architects adopted the concept of 

software virtualisation and propagated it into hardware 

architectures. As a result, many embedded platforms can run 

operating systems (OS), such as Linux that significantly 

improving functionality and enabling for matured software-

based security applications to further enhance device security. 

Support of privileged and non-privileged modes by OS 

provided a method to achieve isolation and segregation of 

system resources. 

Intel Software Guard Extensions (SGX) is an example of an 

architecture extension that allows user level applications to 

make use of protected regions of memory, known as enclaves, 

to perform execution in isolation, with privacy from higher 

privileged applications, the OS, hypervisor, as well as drivers 

and device firmware. This therefore, allows running of trusted 

code within untrusted environments such as the cloud or 

device deployments. AEGIS, ARM TrustZone, TrustLite and 

Sanctum are other examples of architectures that support 

hardware isolation and allow execution of secure code within 

confined environment [22], [23], [24].  

The Trusted Execution Environment (TEE), written by 

GlobalPlatform [25], is the secure area of the main processor 

that provides isolated execution of trusted application 

resources. The TEE is isolated from the Rich Execution 

Environment (REE) where the untrusted OS runs. The REE 

resources are accessible from TEE but not vice versa unless 

explicitly allowed by TEE. Some embedded solution 

providers have developed their own TEE solutions such as 

Hardware Root-of-trust

Software Root-of-trust

PUF

Anti-Tamper 
Module

Sensors

Memory

Host Processor (CPU, µC, µP)

Human 
Machine 
Interface

Connectivity

Power 
Management 

Unit

NVM/Secure 
Software

Crypto

AES SHA

 
 

Figure 2: Software and Hardware Root-of-Trust 
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Trustonics and Qualcomm QSEE.  A TPM harnesses and 

maintains embedded chain-of-trust by authenticating devices 

and systems with the help of dedicated cryptographic 

hardware units. The TPM security functions are enforced and 

managed by the TEE, which runs on a virtualised hardware 

and shares the same system resources as the application. The 

ARM TrustZone is an example of such hardware-based 

system security architecture that virtually segregates the 

system resources into secure and non-secure worlds. 

From the silicon and IP manufacturer’s business point-of-

view, embedded device security could be a feature that can be 

enabled and disabled on-demand or offered with optional 

levels of protection depending on the desired application use-

case. To meet versatile IoT application requirements, it can be 

flexible on-demand hierarchical segregation of system 

resources into multiple secure islands that can only exchange 

data within their designated secure island. 

2.4 Trusted computing-based solutions 

Samsung Knox is a security suite developed for mobile 

devices that employs trusted computing. Knox features a 

layered array of features, presented to the user as a secure 

environment for segregating work and personal activities. 

Bootloader protection verifies the integrity of the secure 

world OS and the kernel. Security Enhancements for Android 

to prevent unauthorised application access, based on 

confidentiality requirements. TrustZone-based Integrity 

Measurement Architecture (TIMA) monitors the kernel to 

detect compromise and corruption from within the TrustZone. 

The attestation feature to remotely validate the device’s 

authenticity before access. Knox makes use of ARM 

TrustZone, providing a TEE platform for securing the 

contained work environment and associated applications, 

increasing security within Bring your own device (BYOD) 

deployments [26]. 

2.5 Software-based IoT security solutions 

The Android Application Sandbox is a method used by the 

Android OS to segregate applications from one another, thus 

preventing one application from being able to access data 

from another application, except under controlled 

circumstances. Android makes use of Security-Enhanced 

Linux (SELinux) to enhance the Application sandbox and 

ensure application permissions, as configured by the user, are 

adhered to [27].  

SELinux is an access control layer, implemented within the 

Kernel, enforcing policies to ensure minimal privileges are 

granted to applications, to limit their function only to how 

they are specified. Within a SELinux environment, an 

exploited vulnerability will be unable to gain access beyond 

the SELinux boundaries, as defined by the administrator, 

enforcing the principle of least privilege [28]. Designed by 

the NSA and RedHat, SELinux has widely used within 

commercial Linux deployments.  

Software containerisation implements a form of application 

isolation, under the same kernel instance. Containers allow 

for segregation of applications while allowing access to OS 

components that have been assigned access, with kernel 

measures to limit resource consumption. Due to the usage of 

the system’s native kernel, containerisation does not apply 

overheads that virtualisation consists of. Containers have 

been adopted for use in mobile applications by several 

vendors including Samsung (Knox), IBM (MaaS360), 

Blackberry (Secure Work Space) and Google (Android for 

Work) [29], [26], [30].  

3 Vulnerabilities and threats posed to IoT 

3.1 IoT relevant security issues and root causes 

IoT devices may be attacked and compromised by a wide 

range of methods, including the same as those used against 

cloud and regular IT systems along with new attack vectors 

created by the IoT. These attacks may target a wide range of 

aspects, from the protocol stack to the systems’ applications, 

bootloader and hardware peripherals, including even the 

security technologies designed to protect them. The following 

examples specify some common design vulnerabilities 

affecting IoT, along with their root causes that enable them to 

be use against IoT devices. This section will survey 

embedded and IoT device hardware and software security 

vulnerabilities and attacks reported in open literature. 

 

Software configuration: Perhaps the best attack to affect IoT 

devices is the Mirai Botnet, which affected network 

connected webcams and DVRs, amongst other devices. 

Taking advantage of poor device configuration practices by 

the IoT OEM, this attack scanned the internet, compromising 

the IoT devices using a standard password and open telnet 

port, peaked at 600,000 infections. Upon installing a basic 

malware application, it made use of IoT’s network 

connectivity to launch Distributed Denial-of-Service (DDOS) 

attacks against online hosting services, including OVH and 

DynDNS, peaking at a record 1.2Tb/s [4].  

 

Software development: Use of vulnerable libraries and 

components: The OpenSSL Heartbleed CEV-2014-0160 is a 

prime example. This vulnerability consisted of a missing 

boundary check within a memcpy function, allowing an 

attacker to view arbitrary data from the OS memory. 

Vulnerabilities of this nature are of serious risk to IoT as their 

smaller memory size eases the difficulty in locating sensitive 

data [31]. 

 

Key management practices: Another attack leveraged key 

management vulnerabilities in the ZigBee IoT wireless 

protocol and side-channel analysis of device to extract a 

common firmware-signing key, to spread malware using 

ZigBee as the communication medium. The firmware image-

signing key could be extracted from the device using 

correlation power analysis, allowing modified malicious 

firmware to be installed. This compromised device could 

propagate to nearby devices, taking advantage of a leaked 

universal key for the ZigBee protocol, compromising them 

with the same malicious firmware update [32]. 
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User interface: When interface methods are used to protect 

the device and user, they may become an attack surface. 

Vulnerabilities have been found to exist in mobile and 

touchscreen devices, (CVE-2015-3860) allowing bypass of 

the lock screen, as well as theft based “Factory Reset 

Protection” on Android devices. These methods involve 

taking advantage of sophisticated navigation structures and 

unprotected text entries, allowing a malicious user to escape 

locked environment [33]. 

 

Kernel and driver: These issues are a source of major 

vulnerabilities in embedded devices, due to the low-level 

access these components require. Vulnerabilities such as 

(CVE-2016–5195) Dirty COW (Copy on write), exploit a 

race condition found in kernel memory subsystem and 

handling of read-only memory mappings. An unprivileged 

user could exploit this with a simple program to gain write 

access to read-only memory [34]. 

 

Hardware-based: ARM TrustZone was shown to lack proper 

rollback protection in the secure boot. Using an old key, an 

attacker could load a malicious application into the TEE to 

run in the secure world, providing access to the device’s 

secret data [20]. Mitigation of this attack type is to formulate 

a well-defined rollback and update policy. Qualcomm's QSEE 

and Samsung Exynos devices have been found vulnerable to 

similar downgrade and rollback attacks [35]. Chen et al. 

further compromised ARM TrustZone cache. Using side 

channel analysis, the attackers were successfully able to 

monitor cache activity of Android’s cryptographic operations 

[36]. Mitigation of cache-based attacks consists of deploying 

different caches or to clear the cache when switching from 

secure to non-secure world.  Frédéric has launched attack 

against an Amlogic S905 processor that uses ARM TrustZone 

for DRM & other security features. He successfully managed 

to bypass secure boot and break the chain-of-trust deploying 

series of attacks [37]. 

 

Insider and user error: Finally, it should not be understated 

that the user can inadvertently or deliberately cause system 

vulnerabilities [38]. 

3.2 Shortcomings of existing solutions 

After reviewing different aspects of security problems in IoT 

devices, their security methodologies and architectures to 

protect secret assets. It is clear that these existing approaches 

fall short of their desired security goals. This due to: 

 

• A complex IoT eco-system where different vendors are 

developing hardware, software and security components, 

leading to interoperability issues and vulnerabilities in 

hardware, software and protocol stack boundaries. 

• Development of inconsistent and vulnerable software 

applications, libraries and protocols, caused by lack of 

security aware design and development practises. 

• A lack of IoT security standards which vendors can 

incorporate to improve their product development life 

cycle to reduce root cause of vulnerabilities. 

Though reliance on robust and secure software development 

practices focusing on application, kernel and device-driver 

layers alone is not sufficient. Since vulnerabilities may be 

found and exploited in other areas outside of the developer’s 

control, such as a CPU vulnerability, a flaw within a common 

standard, or other unforeseen failures. Additionally, existing 

trusted computing technologies may later be compromised, if 

the components it relies upon are found to be vulnerable, as 

has been shown with Intel SGX and ARM TrustZone 

technology. Finally, it is important to mention that even when 

the devices are operating correctly, they may be compromised 

due to human operational errors, be that a user 

misconfiguration, error, exposure of authentication through a 

social engineering attack, or insider threat. 

4 Embedded policing and policy enforcement 

approach 

To approach the identified shortcomings in this paper, we 

propose a policing and policy enforcement approach, to 

enhance system security and scalability by complementing 

existing security technologies and embedded architectures. 

Based on hardware, but complementing software concepts 

such as SELinux, this policing approach follows the principle 

of least privilege, monitoring system communication and 

behaviour of the system resources and comparing it to 

authorised behaviours for that resource. In case of unexpected 

behaviour, for example, a malicious action from a 

compromised application or launching of attack by the 

adversary, the system can take active and passive counter-

measures to mitigate the attack and protect the system assets. 

Like SELinux, the proposed policy approach aims to limit an 

attack’s capability, assuming other system protections have 

failed. Expected behaviours shall be defined as the system 

security policy, which can be updated at any stage of the 

device life cycle. The policing approach, deployed at the 

system communication layer, will be transparent to existing 

embedded system architectures that use the de-facto industry 

standard ARM AMBA-AXI4 SoC bus communication 

protocol, along with their software stacks (bare-metal, 

embedded Linux, Real-time operating system (RTOS), 

Hypervisor, device drivers etc.). The proposed policing and 

policy enforcement system architecture will not only enhance 

the security of the device but will also improve its flexibility 

to meet changing security requirements of next-generation 

embedded and IoT architectures, as well as the next-

generation of threats. 

4.1 Embedded policy platform architecture 

Embedded systems are complex, with system designers and 

software developers often required to consolidate different 

functionalities into a single application by combining 

sensitive and non-sensitive data. Heterogeneous 

multiprocessor system-on-chip (MPSoC) platforms composed 

of multiple processors, hardware IPs, on-chip support of 

major peripheral interfaces and shared memory resources, are 

a suitable choice to achieve design goals, as this aids 

adaptability, reusability, and upgradability and reduces time-
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to-market. They offer on-chip hardware security features to 

protect the critical assets and attain security that is essential 

requirements of next-generation secure systems. To realise 

the proposed policing and policy enforcement approach, we 

present a system architecture that uses Xilinx Zynq 

UltraScale+ MPSoC as shown in Figure 3. This platform has 

chosen due to the on-chip availability of hardware security 

and cryptographic features, essential for building HRoT. 

The MPSoC features an on-chip Quad-core ARM Cortex-A53 

Application Processing Unit (APU) for general purpose 

computing and a Dual-core ARM Cortex-R5 Real-time 

Processing Unit (RPU) for critical applications requiring 

deterministic low-latency. The APU supports multiple 

software stack configurations based on application design 

requirements. It can be configured to execute applications as 

bare metal, Linux, hypervisor software stacks [39]. It has an 

ARM TrustZone hardware module that extends the secure and 

non-secure world applications to ARM AMBA-AXI4 bus 

transaction using non-secure (NS) bit of AxPROT and limits 

access to the system resources. In proposed system 

architecture, it has assumed that user software will execute on 

APUs and treat it as untrusted application host processor that 

utilises system data and memory resources. On the other 

hand, the application to configure and manage the critical 

components of our proposed system architecture will run on 

RPU and be treated as trusted application. RPU has a dual 

64KB tightly-coupled memory (TCM) that is physically 

isolated from APU, L1 and L2 cache memory. This system 

security boundary has highlighted in Figure 3. This physical 

isolation and segregation ensure that untrusted applications 

cannot read, write or modify any part of TCM, overcoming 

one of the shortfalls of virtualised security architectures. 

Central to our policing and policy enforcement approach are 

following hardware engines: 

 

1. Security policy engine      (SPE) 

2. Security response engine  (SRE) 

3. Anti-tamper engine           (ATE) 

 

The proposed SPE has implemented using FPGA glue logic 

to monitor system-level communication among system 

peripherals and memory blocks, comparing against the 

defined policies for each resource, and initiates pro-active 

response actions to counteract attacks. Therefore, it can be 

ported to other FPGA and ASIC architectures as IP and is not 

limited to the proposed platform. To maximise flexibility to 

changes in security policies, each hardware engine has AXI4-

Lite communication, that can be used by the RPU to 

configure and program engine specific security parameters. 

This can fulfil the proposed architecture to meet the dynamic 

security requirements of different devices. 

 The ARM AMBA-AXI4 protocol specification specifies that 

the bus establishes the communication between a master and 

a slave using five separate channels; address write, write 
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Figure 3: Block diagram of system architecture to implement the proposed policing and policy enforcement approach. It 

allows to harness and enforce defined security policies within FPGA MPSoC platform. 
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communication interface signals 
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data, write response, address read and read data as 

illustrated in Figure 4. Each channel has VALID and READY 

handshake signals. VALID indicates that data available on the 

bus is valid, and READY indicates that the receiver is ready 

to receive the data. To exchange data, both VALID and 

READY signals should be active. Both address channels have 

3-bit AxPROT signals, where the non-secure (NS) bit 

indicates the security attribute of the transaction. 

4.2 Security policy Engine (SPE)  

The idea of the SPE is comparable to a policy-based hardware 

firewall, which checks the approved list of devices, and either 

grants or restrict access to the device. The SPE engine 

enforces system resource specific requirements by actively 

monitoring shared communications at the interface between 

AMBA-AXI4 bus and target system resource (memory, 

sensor, actuator etc.) The SPE is capable of independently 

monitoring and enforcing policies related to that resource. 

The SPE itself is composed of an AXI4 sniffer block, Device 

table, Policy table, Decision block and Engine configuration 

block as shown in Figure 5. 

4.2.1 SPE Hardware Components 

AXI4-Sniffer: This component monitor and maintain the 

necessary AXI4 handshake signals as defined in ARM 

AMBA-AXI4 communication protocol specification, until the 

decision block checks and grants access to the target system 

resource as shown in Figure 5. This component is essential to 

maintain correct system level communication.  

The AXI4-sniffer receives AXI-transaction from the shared 

system communication bus and samples requesting resource 

and target resource addresses. It samples AWVALID and 

ARVALID control signals to identify whether the requesting 

resource has asked for reading or writing operation on the 

target resource. It samples the target address, AWADDR or 

ARADDR, and forwards it to the policy table. The resource 

address is passed to the device table to locate the base-address 

of the policies stored in the policy table as shown in Figure 5. 

During this process, to maintain physical isolation between 

requesting resource and the target resource, the AXI4-sniffer 

physically blocks the handshake signals by de-asserting 

WVALID and RVALID control signals. Once the decision 

block validates and allows access, based on the defined 

policy, the AXI4-sniffer asserts the WVALID or RVALID 

signals respectively. 

 

Device table: This contains the list of trusted requesting 

resources that are permitted to access the target resource. In 

this table, each trusted requesting resource has a 

corresponding base-address of the security policies that 

specify the access rights linked to it, as shown in Figure 5.  

The length of the device table is limited to the number of 

requesting resources. It can be realised by distributed RAM 

that uses LUT resources of FPGA logic to extract policy table 

address. The device table allows not only to filter trusted and 

un-trusted requesting resources but can be used to detect 

intrusions. If an intrusion is detected, it can be suppressed by 

initiating a pro-active mitigation response by SRE to secure 

the system’s assets. 

  

Policy table: This contains the permission rights of the target 

resource that corresponds to each trusted requesting resource. 

The stored policies can be simple as address read/write 

permissions or complex policies to check variable length 

(AxSIZE and AxLEN) transfers, security profile assigned by 

the software (AxPROT), or quality of service (AxQOS). It 

can be realised by block RAM (BRAM) in FPGA logic. From 

a software point-of-view, the policy table not only provides 

means to secure assets, it also provides a mechanism that can 

be used for secure provisioning of the device at any stage of 

the device life cycle, by defining role-based access policies. 

Decision block: This receives the programmed/reference 

policy issued by the policy table, compares the status of AXI4 

signals, as per security policy and generates a result. The 

generated result will be passed to AXI-Sniffer, which then 

either grant or block the requested AXI4 transaction as shown 

in Figure 5.  

 

Engine configuration block: This provides functionality to 

program and configure the security parameters of the SPE, 

using a secure application running on the RPU via the AXI4-

Lite communication interfaces, as shown in Figure 5. It 

allows programming and updating of both the device table 

and the policy table. 

4.3 Security Response Engine (SRE) 

This engine provides effective active responses to security 

threats reported by the decision block, to initiate mitigation 

response. It does this by interrupting the secure code running 

on the RPU and requests the time-critical interrupt service. 

The pro-active response shall be initiated by executing the 

interrupt service routine (ISR) of the SRE and is enforced by 

the ATE. Following are examples of pro-active responses that 

can be enforced: 

 

 
Security Policy Engine (SPE)

Policy 
Table

Device 
Table

Device#1
Device#2
Device#3

Device#N

CONTROL

STATUS

MODE

AXI4 Sniffer

DeviceAddr

Decision
Block

Resource_Addr

AXI4-Lite Configuration Interface

Engine Configuration Block

response

 
 

Figure 5: Block diagram of Security Policy Engine (SPE) 
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• Erasure of secret keys stored in the device to ensure 

confidentiality. 

• Permanent disabling of the system cryptographic 

functions, if the system has compromised. 

• Disabling system read-back interfaces. 

• Initiation of secure lockdown of the system resources. 

• Initiation of system reset. 

4.4 Anti-tamper engine (ATE) 

This engine enforces the pro-active measures initiated by the 

SRE. Also, it provides passive physical security measures 

against hardware level attacks, such as side- channel analysis, 

by monitoring the devices physical parameters such as 

voltage and temperature. An alarm can be initiated if the 

system violates the set conditions. Following are the anti-

tamper features that can be ensured: 

 

• Maintain uninterruptable internal clock sources. 

• Monitoring on single-event-upset to ensure fault tolerant 

execution during operational device life cycle. 

• Voltage and temperature monitoring to ensure device 

operation and resist against active hardware attacks. 

4.5 Area and timing results 

The proposed security policy engine (SPE) and its hardware 

components presented in Section 4.2 are coded in Verilog 

HDL. The design was simulated and synthesised using Xilinx 

Vivado v2017.1 on the high-end chips of the Zynq-7000 and 

Zynq UltraScale+ MPSoC family. The area and timing results 

are reported in Table 2. The device table implemented using 

Distributed RAM utilises 32 LUTRAM, while the policy 

table used a BRAM. The design is compact and consumes 

less than 1% of FPGA glue logic available on Zynq chips. 

The reported timing results shows that SPE can operate at 

maximum 250 MHz and 333 MHz on Kintex-7 and Kintex 

UltraScale+ chips. The reported timing is limited by the 

maximum possible speed of ARM AMBA-AXI4 bus on these 

chips [40], [41]. 

5 Preliminary Use-case 

A heterogeneous system composed of BRAM based memory 

devices has realised as shown in Figure 6. It has considered 

that specific location of each device holds secret assets that 

shall be protected to ensure confidentiality. Each device is 

connected to the host through the ARM AMBA-AXI4 

communication bus via an AXI4-interconnect. To integrate 

the proposed approach, the SPE has integrated between the 

device and the shared AXI4 bus.  It polices the addressed 

transactions, checks the read and write access policy attached 

to the requesting resource (BRAM memory location) and 

either grants or refuses access to the asset as shown in Figure 

6. In this use case, a bare-metal software application approach 

has been adopted to avoid software development complexity.  

At power-up, the host application configures the platform by 

programming the device and policy table of each SPE through 

the AXI4-Lite interface as shown in Figure 6. The policy 

table stores the register read and write access permissions for 

each device. 

The presented system is synthesized and implemented on the 

widely available Avnet Zedboard (Zynq-7000) and Xilinx 

ZCU102 (Zynq UltraScale+) evaluation boards using Xilinx 

Vivado v2017.1. Table 3 reports the preliminary 

implementation results. The BRAM utilisation of both 

implementations is consistent. Each SPE has used single 

BRAM each to implement policy table, while each memory 

device consumed two BRAMs. Due to technology scaling and 

MPSoC FPGA fabric  

(technology) 

Speed 

Grade 

Area Frequency 

(MHz) LUT LUTRAM FF BRAM 

Zynq-7000 Kintex-7 (28nm) -3 87 32 304 1 250 

Zynq UltraScale+ EG Kintex UltraScale+ (16nm) -3 55 32 235 1 333 

Table 2: Synthesis results of proposed security policy engine (SPE) on Zynq-7000 and Zynq UltraScale+ MPSoC 

Table 2: Comparison of secure features supported by leading FPGA MPSoC 

 

AXI4-Lite

Device#N

SPE

AXI4-Interconnect

Device#1

SPE

ARM Cortex-A

Policy Table
Device 
Table

Device 1
0x000

0xFFF

0x004
0

1

1
1

0

1

R WAddress

Device N

 
 

Figure 6: Read/write policy enforcement on simple 

memory devices within MPSoC. 

Development  

Board 

FPGA fabric  

(technology) 

Speed Grade Area Utilisation Frequency 

(MHz) LUT LUTRAM FF BRAM 

Zedboard  Artix-7 (28nm) -1 1043 91 1436 6 164 

ZCU102 Kintex UltraScale+ (16nm) -2 2750 116 3354 6 302 

Table 3: Implementation results of proposed security policy engine (SPE) on Zedboard and ZCU102 

 

Table 2: Comparison of secure features supported by leading FPGA MPSoC 
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better silicon (speed grade), ZCU102 implementation 

achieved ≈ 1.84 times better timing than Zedboard. However, 

it comes at the cost of ≈ 2.63 and 2.33 times more LUT and 

FF utilisation required by the system infrastructure (AXI-

Interconnect, Reset processing system etc.) essential for Zynq 

UltraScale+ MPSoC.  

6 Conclusion and future work 

The paper has presented preliminary proof-of-concept work. 

The proposed policing approach will not only help to tackle 

security problems for future embedded devices, but also 

existing hardware architectures that did not consider security 

as a design requirement in their design flow. The integration 

of a software-defined and hardware-enforced security policy 

engine (SPE) brings adaptability to security platforms, where 

the same platform can be used to fulfil the diverse security 

requirements of different application domains and security 

levels. Additionally, the proposed system architecture 

compliments state-of-art chain-of-trust and authentication 

mechanisms, which mitigates against existing vulnerabilities 

and attacks and provides robust security measures to 

circumvent new vulnerabilities and attack vectors.  

The presented work will be continued to enable secure 

configuration of system hardware components and policing of 

more complex communication attributes.  From a software 

perspective, future work shall be targeted to provide isolation 

and segregation of hardware resources requested by software 

components, while being managed by the operating system.   
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