
Embedded Policing and Policy Enforcement Approach for Future
Secure IoT Technologies

Siddiqui, F. M., Hagan, M., & Sezer, S. (2018). Embedded Policing and Policy Enforcement Approach for Future
Secure IoT Technologies. In Living in the Internet of Things: Cybersecurity of the IoT - 2018: Proceedings IET.
DOI: 10.1049/cp.2018.0010

Published in:
Living in the Internet of Things: Cybersecurity of the IoT - 2018: Proceedings

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2018 IET.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Aug. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/160110189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/embedded-policing-and-policy-enforcement-approach-for-future-secure-iot-technologies(6112694c-809a-4b0f-8c7a-e0a2a0e5973a).html

1

Embedded Policing and Policy Enforcement Approach for Future

Secure IoT Technologies

Fahad Siddiqui*, Matthew Hagan*, Sakir Sezer*

* Center for Secure Information Systems (CSIT), Queen’s University Belfast, UK

Keywords: FPGA, MPSoC, Root-of-trust, ARM TrustZone.

Abstract

The Internet of Things (IoT) holds great potential for

productivity, quality control, supply chain efficiencies and

overall business operations. However, with this broader

connectivity, new vulnerabilities and attack vectors are

being introduced, increasing opportunities for systems to

be compromised by hackers and targeted attacks. These

vulnerabilities pose severe threats to a myriad of IoT

applications within areas such as manufacturing,

healthcare, power and energy grids, transportation and

commercial building management. While embedded

OEMs offer technologies, such as hardware Trusted

Platform Module (TPM), that deploy strong chain-of-trust

and authentication mechanisms, still they struggle to

protect against vulnerabilities introduced by vendors and

end users, as well as additional threats posed by potential

technical vulnerabilities and zero-day attacks. This paper

proposes a pro-active policy-based approach, enforcing

the principle of least privilege, through hardware Security

Policy Engine (SPE) that actively monitors

communication of applications and system resources on

the system communication bus (ARM AMBA-AXI4).

Upon detecting a policy violation, for example, a malicious

application accessing protected storage, it counteracts

with predefined mitigations to limit the attack. The

proposed SPE approach widely complements existing

embedded hardware and software security technologies,

targeting the mitigation of risks imposed by unknown

vulnerabilities of embedded applications and protocols.

1 Introduction

The IoT market has grown significantly, with a massive range

of IoT products reaching further into different areas,

including home user’s private lives, the enterprise, as well as

deployment to control critical manufacturing and industrial

appliances [1]. Indeed, estimates from Gartner predict that

IoT will proliferate to 20.5 Billion Devices by 2020 [2].

Simultaneously, so too has the opportunity for malicious

actors to take advantage of IoT devices, exposing them to a

myriad of security risks [3]. These security risks may include

compromising the user’s privacy, damaging industrial

applications, steal information from an enterprise, or using the

IoT’s own computing resources to launch attacks elsewhere,

as seen in the Mirai botnet [4].

The required level of security for IoT cannot be defined

generically due to highly versatile application markets such as

mobile, consumer electronics, medical and industrial control

solutions. IoT security is a challenging research problem, with

trust issues at every level, from authentication of the user,

communication between interconnected devices, handling of

sensitive data and the potential for malware and physical

attacks to compromise any aspect of the ecosystem [5].

With such a wide range of potential attacks, efforts must be

made at all levels of design to incorporate security, to ensure

trustworthiness of devices, and to prevent compromise of user

data and device. It includes design philosophy, software and

hardware architectures, choice of components used and even

where manufacturing takes place [6]. In addition, relevant

secure practices must be extended to and enforced at every

layer within the IoT ecosystem, which typically comprises of

the following components:

• Cloud: Providing data storage and overarching

computing services.

• Gateway: Interfacing the edge to the cloud component.

• Edge: The end-point device containing sensors and

actuators.

As IoT devices have increased in computing capability and

extensively used to handle sensitive tasks and information,

the industry has responded by providing secure

methodologies and technologies to enhance trustworthiness

and ensure correct function of the devices [7], [8]. These

technologies involve both hardware and software, along with

practices for design and development. This paper will survey

some of these technologies, looking at existing solutions that

provide root-of -trust and protect critical data such as private

keys and embedded Intellectual Property (IP). Also,

technologies that protect the operating device from malicious

use will be surveyed, including architectural based methods

of segregating critical and non-critical applications, regarding

device storage, execution and memory. Software solutions

will also be considered, particularly those that enhance

segregation of potentially malicious applications from critical

system components. However, while these technologies have

relevance and offer protections to IoT devices, vulnerabilities

continued to be found and exploited within IoT devices, with

the security technology itself often being the weakness

allowing access. Also, new vulnerabilities continue to be

found, such as application and protocol implementation issues

that inadvertently allow malicious use without any security

technologies being aware.

2

To counter these issues and to complement existing security

technologies, this paper introduces the concept of a Security

Policy Engine (SPE), a hardware-based solution that monitors

activities on the System-on-chip (SoC) communications bus.

The proposed system utilises access control type policies to

prevent unauthorised access to components by applications.

The SPE is physically segregated from the operating system

(OS) but can monitor activities such as sensor and actuator

controls, application-specific access to peripherals,

communication channels and other system resources using the

system communication bus. The security policies are pre-

defined policy comprising of two parts, (1) A whitelist of

permitted access control and transaction rules used for system

monitoring, and (2) A list of countermeasures, executed when

a rule violation occurs. The SPE can co-operate with on-chip

security components to initiate programmed attack responses

to protect security critical assets. The proposed SPE is a

hardware-based SoC security component designed for

resource-constrained IoT devices.

2 Background

2.1 Secure IoT device life cycle

A concept of design for security has introduced to cater for

the increasing complexity of IoT ecosystems and to attain a

secure development life cycle [9], [10], [11]. A secure IoT

device life cycle requires incorporation of security measures

within every component, from securing the device, the data

within the device and the communication channel between

edge and the cloud service [12], [13], for the entire lifespan of

the device, from deployment to decommission, as shown in

Figure 1. The design and development stage should mitigate

for security issues not yet known, allowing for capacity to add

additional functionality after deployment or to conform with

additional regulations after deployment. To achieve the

desired device flexibility, the embedded designers have

introduced hardware and software co-design approaches

within the IoT ecosystem. The involvement of multiple

designers and developers working at different hardware and

software stacks increase the complexity of the ecosystem.

One company may design a device, another supplies

component software, another operates the network in which

the device is embedded, and another deploys the device. A

lack of clear security decisions and responsibilities opens IoT

devices to a range of risks, vulnerabilities and attacks [14],

[15]. The security challenge has further magnified by a lack

of comprehensive, widely adopted standards for IoT security.

Life Cycle Stage Hardware Security Requirements Security Measures

Manufacturing • Secure programming.

• Circumvent device impersonation and

overbuilding

• Unique device hardware identity

• Bit-stream encryption

• Certificate of conformance

Deployment • Secure provisioning and management.

• Secure configuration and control.

• Secure monitoring and diagnosis

• Secure boot

• Secure storage of secret data

Field Upgrade • Secure firmware update to enforce and

maintain chain-of-trust.

• Firmware integrity to circumvent malicious

software updates.

• Data integrity check mechanism

• Authentication and authorisation

mechanisms

• Anti-tamper protection

Decommission • Secure device disposal to ensure

confidentiality of secret data.

• Invalidate device and cannot be reinserted into

the supply chain again.

• Secret data zeroization.

• Revocation of certificate of conformance

• Certificate revocation list (CRL)

Table 1: Classification of security requirements based on device life cycle.

Decommision
Design and

Development

Manufacturing

Deployment

Field Upgrade

Secure
Programming

Secure
Provisioning

Secure
Update

Secure
Disposal

Secure
Development

Figure 1: Secure embedded development life cycle of IoT devices.

3

The issue has been deemed serious enough that proposals to

regulate IoT have been made at US Congress [16] and EU

government levels [17]. Table 1 outlines the security

requirements and measures to attain, deploy and ensure

secure embedded development life cycle. These security

requirements set the embedded design architectural choices to

harness and enforce robust IoT security practices.

2.2 Root-of-trust (RoT) in IoT devices

To support, the security requirements listed in Table 1,

confidentiality and authentication must adhere to the

root/trust anchor. The trust anchor can be implemented using

hardware and software approaches. Within the target device,

the root-of-trust (RoT) implements the trust anchor [11],

[18], [19]. The security device uses a Proof-of-Knowledge

approach based on challenge-response protocol. The host

authority initiates the verification process by:

• Generating a random challenge for the device.

• The device performs a cryptographic function using

secret data and returns the output response.

• If the target device’s output satisfies the challenge, the

verifying authority treats the target as authentic.

When the concept of RoT first emerged, a software approach

was used, with secret data stored in non-volatile memory as

shown in Figure 2. The verifying authority read the secret

data to confirm the authenticity of the device. However, this

software RoT has exposed to device impersonation attacks.

The trust anchor/root must be baked within the device as a

unique ID to circumvent this problem. Because, it is relatively

difficult for an attacker to modify the functionality of the

hardware to the extent where the hardware is immutable [6],

[11], [20]. Therefore, hardware root-of-trust (HRoT) has

introduced, as shown in Figure 2. It allows the device to

generate a unique and unalterable identity by using a

Physically Unclonable Function (PUF). PUF provides a

unique challenge-response mechanism dependent on the

complex and variable nature of the silicon material used to

manufacture the device. By baking the trust anchor within the

device, it provides isolated hardware-based verification of the

target device and enables robust post-manufacturing device

provisioning options to OEM and customers by generating

PUF dependent obfuscated private keys (even unknown to

chip manufacturers). The HRoT serves as device primary

root-of-trust on which the remaining trust chain is built,

maintained from system boot-up to power-down, improving

firmware verification and integrity checks.

2.3 Trusted computing technologies and embedded

security

The goal of Trusted computing is to develop technologies,

which give users guarantees about the behaviour of the

software running on their devices. A device can be trusted if it

always behaves in an expected manner for the intended

purpose even when the attacker gains control of the device

[21]. It is a complex goal, covering security aspects that result

in a wide range of hardware and software co-design solutions.

Many IoT designs make use of software portability, porting

operating systems, network communication stacks, software

libraries and service that were not designed primarily for

secure or machine-to-machine (M2M) devices to reduce time-

to-market and gain a competitive advantage. As a result, these

devices might sub-optimally designed for their use case,

which may impose a security risk. A similar trend is observed

where third-party IP (usually encrypted netlist) is integrated

to build secure hardware architectures and platforms which

has opened doors to hardware trojan and malware. To

address this issue while retaining benefits of software

computing, hardware architects adopted the concept of

software virtualisation and propagated it into hardware

architectures. As a result, many embedded platforms can run

operating systems (OS), such as Linux that significantly

improving functionality and enabling for matured software-

based security applications to further enhance device security.

Support of privileged and non-privileged modes by OS

provided a method to achieve isolation and segregation of

system resources.

Intel Software Guard Extensions (SGX) is an example of an

architecture extension that allows user level applications to

make use of protected regions of memory, known as enclaves,

to perform execution in isolation, with privacy from higher

privileged applications, the OS, hypervisor, as well as drivers

and device firmware. This therefore, allows running of trusted

code within untrusted environments such as the cloud or

device deployments. AEGIS, ARM TrustZone, TrustLite and

Sanctum are other examples of architectures that support

hardware isolation and allow execution of secure code within

confined environment [22], [23], [24].

The Trusted Execution Environment (TEE), written by

GlobalPlatform [25], is the secure area of the main processor

that provides isolated execution of trusted application

resources. The TEE is isolated from the Rich Execution

Environment (REE) where the untrusted OS runs. The REE

resources are accessible from TEE but not vice versa unless

explicitly allowed by TEE. Some embedded solution

providers have developed their own TEE solutions such as

Hardware Root-of-trust

Software Root-of-trust

PUF

Anti-Tamper
Module

Sensors

Memory

Host Processor (CPU, µC, µP)

Human
Machine
Interface

Connectivity

Power
Management

Unit

NVM/Secure
Software

Crypto

AES SHA

Figure 2: Software and Hardware Root-of-Trust

4

Trustonics and Qualcomm QSEE. A TPM harnesses and

maintains embedded chain-of-trust by authenticating devices

and systems with the help of dedicated cryptographic

hardware units. The TPM security functions are enforced and

managed by the TEE, which runs on a virtualised hardware

and shares the same system resources as the application. The

ARM TrustZone is an example of such hardware-based

system security architecture that virtually segregates the

system resources into secure and non-secure worlds.

From the silicon and IP manufacturer’s business point-of-

view, embedded device security could be a feature that can be

enabled and disabled on-demand or offered with optional

levels of protection depending on the desired application use-

case. To meet versatile IoT application requirements, it can be

flexible on-demand hierarchical segregation of system

resources into multiple secure islands that can only exchange

data within their designated secure island.

2.4 Trusted computing-based solutions

Samsung Knox is a security suite developed for mobile

devices that employs trusted computing. Knox features a

layered array of features, presented to the user as a secure

environment for segregating work and personal activities.

Bootloader protection verifies the integrity of the secure

world OS and the kernel. Security Enhancements for Android

to prevent unauthorised application access, based on

confidentiality requirements. TrustZone-based Integrity

Measurement Architecture (TIMA) monitors the kernel to

detect compromise and corruption from within the TrustZone.

The attestation feature to remotely validate the device’s

authenticity before access. Knox makes use of ARM

TrustZone, providing a TEE platform for securing the

contained work environment and associated applications,

increasing security within Bring your own device (BYOD)

deployments [26].

2.5 Software-based IoT security solutions

The Android Application Sandbox is a method used by the

Android OS to segregate applications from one another, thus

preventing one application from being able to access data

from another application, except under controlled

circumstances. Android makes use of Security-Enhanced

Linux (SELinux) to enhance the Application sandbox and

ensure application permissions, as configured by the user, are

adhered to [27].

SELinux is an access control layer, implemented within the

Kernel, enforcing policies to ensure minimal privileges are

granted to applications, to limit their function only to how

they are specified. Within a SELinux environment, an

exploited vulnerability will be unable to gain access beyond

the SELinux boundaries, as defined by the administrator,

enforcing the principle of least privilege [28]. Designed by

the NSA and RedHat, SELinux has widely used within

commercial Linux deployments.

Software containerisation implements a form of application

isolation, under the same kernel instance. Containers allow

for segregation of applications while allowing access to OS

components that have been assigned access, with kernel

measures to limit resource consumption. Due to the usage of

the system’s native kernel, containerisation does not apply

overheads that virtualisation consists of. Containers have

been adopted for use in mobile applications by several

vendors including Samsung (Knox), IBM (MaaS360),

Blackberry (Secure Work Space) and Google (Android for

Work) [29], [26], [30].

3 Vulnerabilities and threats posed to IoT

3.1 IoT relevant security issues and root causes

IoT devices may be attacked and compromised by a wide

range of methods, including the same as those used against

cloud and regular IT systems along with new attack vectors

created by the IoT. These attacks may target a wide range of

aspects, from the protocol stack to the systems’ applications,

bootloader and hardware peripherals, including even the

security technologies designed to protect them. The following

examples specify some common design vulnerabilities

affecting IoT, along with their root causes that enable them to

be use against IoT devices. This section will survey

embedded and IoT device hardware and software security

vulnerabilities and attacks reported in open literature.

Software configuration: Perhaps the best attack to affect IoT

devices is the Mirai Botnet, which affected network

connected webcams and DVRs, amongst other devices.

Taking advantage of poor device configuration practices by

the IoT OEM, this attack scanned the internet, compromising

the IoT devices using a standard password and open telnet

port, peaked at 600,000 infections. Upon installing a basic

malware application, it made use of IoT’s network

connectivity to launch Distributed Denial-of-Service (DDOS)

attacks against online hosting services, including OVH and

DynDNS, peaking at a record 1.2Tb/s [4].

Software development: Use of vulnerable libraries and

components: The OpenSSL Heartbleed CEV-2014-0160 is a

prime example. This vulnerability consisted of a missing

boundary check within a memcpy function, allowing an

attacker to view arbitrary data from the OS memory.

Vulnerabilities of this nature are of serious risk to IoT as their

smaller memory size eases the difficulty in locating sensitive

data [31].

Key management practices: Another attack leveraged key

management vulnerabilities in the ZigBee IoT wireless

protocol and side-channel analysis of device to extract a

common firmware-signing key, to spread malware using

ZigBee as the communication medium. The firmware image-

signing key could be extracted from the device using

correlation power analysis, allowing modified malicious

firmware to be installed. This compromised device could

propagate to nearby devices, taking advantage of a leaked

universal key for the ZigBee protocol, compromising them

with the same malicious firmware update [32].

5

User interface: When interface methods are used to protect

the device and user, they may become an attack surface.

Vulnerabilities have been found to exist in mobile and

touchscreen devices, (CVE-2015-3860) allowing bypass of

the lock screen, as well as theft based “Factory Reset

Protection” on Android devices. These methods involve

taking advantage of sophisticated navigation structures and

unprotected text entries, allowing a malicious user to escape

locked environment [33].

Kernel and driver: These issues are a source of major

vulnerabilities in embedded devices, due to the low-level

access these components require. Vulnerabilities such as

(CVE-2016–5195) Dirty COW (Copy on write), exploit a

race condition found in kernel memory subsystem and

handling of read-only memory mappings. An unprivileged

user could exploit this with a simple program to gain write

access to read-only memory [34].

Hardware-based: ARM TrustZone was shown to lack proper

rollback protection in the secure boot. Using an old key, an

attacker could load a malicious application into the TEE to

run in the secure world, providing access to the device’s

secret data [20]. Mitigation of this attack type is to formulate

a well-defined rollback and update policy. Qualcomm's QSEE

and Samsung Exynos devices have been found vulnerable to

similar downgrade and rollback attacks [35]. Chen et al.

further compromised ARM TrustZone cache. Using side

channel analysis, the attackers were successfully able to

monitor cache activity of Android’s cryptographic operations

[36]. Mitigation of cache-based attacks consists of deploying

different caches or to clear the cache when switching from

secure to non-secure world. Frédéric has launched attack

against an Amlogic S905 processor that uses ARM TrustZone

for DRM & other security features. He successfully managed

to bypass secure boot and break the chain-of-trust deploying

series of attacks [37].

Insider and user error: Finally, it should not be understated

that the user can inadvertently or deliberately cause system

vulnerabilities [38].

3.2 Shortcomings of existing solutions

After reviewing different aspects of security problems in IoT

devices, their security methodologies and architectures to

protect secret assets. It is clear that these existing approaches

fall short of their desired security goals. This due to:

• A complex IoT eco-system where different vendors are

developing hardware, software and security components,

leading to interoperability issues and vulnerabilities in

hardware, software and protocol stack boundaries.

• Development of inconsistent and vulnerable software

applications, libraries and protocols, caused by lack of

security aware design and development practises.

• A lack of IoT security standards which vendors can

incorporate to improve their product development life

cycle to reduce root cause of vulnerabilities.

Though reliance on robust and secure software development

practices focusing on application, kernel and device-driver

layers alone is not sufficient. Since vulnerabilities may be

found and exploited in other areas outside of the developer’s

control, such as a CPU vulnerability, a flaw within a common

standard, or other unforeseen failures. Additionally, existing

trusted computing technologies may later be compromised, if

the components it relies upon are found to be vulnerable, as

has been shown with Intel SGX and ARM TrustZone

technology. Finally, it is important to mention that even when

the devices are operating correctly, they may be compromised

due to human operational errors, be that a user

misconfiguration, error, exposure of authentication through a

social engineering attack, or insider threat.

4 Embedded policing and policy enforcement

approach

To approach the identified shortcomings in this paper, we

propose a policing and policy enforcement approach, to

enhance system security and scalability by complementing

existing security technologies and embedded architectures.

Based on hardware, but complementing software concepts

such as SELinux, this policing approach follows the principle

of least privilege, monitoring system communication and

behaviour of the system resources and comparing it to

authorised behaviours for that resource. In case of unexpected

behaviour, for example, a malicious action from a

compromised application or launching of attack by the

adversary, the system can take active and passive counter-

measures to mitigate the attack and protect the system assets.

Like SELinux, the proposed policy approach aims to limit an

attack’s capability, assuming other system protections have

failed. Expected behaviours shall be defined as the system

security policy, which can be updated at any stage of the

device life cycle. The policing approach, deployed at the

system communication layer, will be transparent to existing

embedded system architectures that use the de-facto industry

standard ARM AMBA-AXI4 SoC bus communication

protocol, along with their software stacks (bare-metal,

embedded Linux, Real-time operating system (RTOS),

Hypervisor, device drivers etc.). The proposed policing and

policy enforcement system architecture will not only enhance

the security of the device but will also improve its flexibility

to meet changing security requirements of next-generation

embedded and IoT architectures, as well as the next-

generation of threats.

4.1 Embedded policy platform architecture

Embedded systems are complex, with system designers and

software developers often required to consolidate different

functionalities into a single application by combining

sensitive and non-sensitive data. Heterogeneous

multiprocessor system-on-chip (MPSoC) platforms composed

of multiple processors, hardware IPs, on-chip support of

major peripheral interfaces and shared memory resources, are

a suitable choice to achieve design goals, as this aids

adaptability, reusability, and upgradability and reduces time-

6

to-market. They offer on-chip hardware security features to

protect the critical assets and attain security that is essential

requirements of next-generation secure systems. To realise

the proposed policing and policy enforcement approach, we

present a system architecture that uses Xilinx Zynq

UltraScale+ MPSoC as shown in Figure 3. This platform has

chosen due to the on-chip availability of hardware security

and cryptographic features, essential for building HRoT.

The MPSoC features an on-chip Quad-core ARM Cortex-A53

Application Processing Unit (APU) for general purpose

computing and a Dual-core ARM Cortex-R5 Real-time

Processing Unit (RPU) for critical applications requiring

deterministic low-latency. The APU supports multiple

software stack configurations based on application design

requirements. It can be configured to execute applications as

bare metal, Linux, hypervisor software stacks [39]. It has an

ARM TrustZone hardware module that extends the secure and

non-secure world applications to ARM AMBA-AXI4 bus

transaction using non-secure (NS) bit of AxPROT and limits

access to the system resources. In proposed system

architecture, it has assumed that user software will execute on

APUs and treat it as untrusted application host processor that

utilises system data and memory resources. On the other

hand, the application to configure and manage the critical

components of our proposed system architecture will run on

RPU and be treated as trusted application. RPU has a dual

64KB tightly-coupled memory (TCM) that is physically

isolated from APU, L1 and L2 cache memory. This system

security boundary has highlighted in Figure 3. This physical

isolation and segregation ensure that untrusted applications

cannot read, write or modify any part of TCM, overcoming

one of the shortfalls of virtualised security architectures.

Central to our policing and policy enforcement approach are

following hardware engines:

1. Security policy engine (SPE)

2. Security response engine (SRE)

3. Anti-tamper engine (ATE)

The proposed SPE has implemented using FPGA glue logic

to monitor system-level communication among system

peripherals and memory blocks, comparing against the

defined policies for each resource, and initiates pro-active

response actions to counteract attacks. Therefore, it can be

ported to other FPGA and ASIC architectures as IP and is not

limited to the proposed platform. To maximise flexibility to

changes in security policies, each hardware engine has AXI4-

Lite communication, that can be used by the RPU to

configure and program engine specific security parameters.

This can fulfil the proposed architecture to meet the dynamic

security requirements of different devices.

 The ARM AMBA-AXI4 protocol specification specifies that

the bus establishes the communication between a master and

a slave using five separate channels; address write, write

Real-time Processing Unit (RPU)

TCM
64KB

Application Processing Unit (APU)

ARM
Cortex-A53

L1 I/D Cache
32 KB

ARM
Cortex-A53

ARM
Cortex-A53

ARM
Cortex-A53

L1 I/D Cache
32 KB

L1 I/D Cache
32 KB

L1 I/D Cache
32 KB

L2 Cache
1 MB

AMBA-AXI4

PCIe
Network
(Ethernet,

Bluetooth)

Sensor
(Audio, Video)

I/O
(SPI, I2C, DAC,

ADC)

SPE SPE SPE SPE

External
DDR

SP
E

ARM
Cortex-R5

ARM
Cortex-R5

TCM
64KB

AMBA-AXI4

Trusted Platform Module
(Cryptographic functions, PUF,

Secure storage)

SPE configuration/control
SPE response
Anti-Tamper response
Non-secure data interface
Secure data interface

Security
Response

Engine (SRE) Anti-Tamper
Engine
(ATE)

Figure 3: Block diagram of system architecture to implement the proposed policing and policy enforcement approach. It

allows to harness and enforce defined security policies within FPGA MPSoC platform.

SLAVEMASTER

Address
Write

Write
Data

Write
Response

Address
Read

Read
Data

Address
Write

Write
Data

Write
Response

Address
Read

Read Data

BID
BRESP

BVALID
BREADY

AWID
AWADDR
AWLEN
AWSIZE

AWBURST
AWPROT
AWVALID
AWREADY

ARID
ARADDR
ARLEN
ARSIZE

ARBURST
ARPROT
ARVALID
ARREADY

WDATA
WSTRB
WLAST

WVALID
WREADY

RDATA
RRESP
RLAST

RVALID
RREADY

RID

Figure 4: ARM AMBA-AXI4 compliant master-slave

communication interface signals

7

data, write response, address read and read data as

illustrated in Figure 4. Each channel has VALID and READY

handshake signals. VALID indicates that data available on the

bus is valid, and READY indicates that the receiver is ready

to receive the data. To exchange data, both VALID and

READY signals should be active. Both address channels have

3-bit AxPROT signals, where the non-secure (NS) bit

indicates the security attribute of the transaction.

4.2 Security policy Engine (SPE)

The idea of the SPE is comparable to a policy-based hardware

firewall, which checks the approved list of devices, and either

grants or restrict access to the device. The SPE engine

enforces system resource specific requirements by actively

monitoring shared communications at the interface between

AMBA-AXI4 bus and target system resource (memory,

sensor, actuator etc.) The SPE is capable of independently

monitoring and enforcing policies related to that resource.

The SPE itself is composed of an AXI4 sniffer block, Device

table, Policy table, Decision block and Engine configuration

block as shown in Figure 5.

4.2.1 SPE Hardware Components

AXI4-Sniffer: This component monitor and maintain the

necessary AXI4 handshake signals as defined in ARM

AMBA-AXI4 communication protocol specification, until the

decision block checks and grants access to the target system

resource as shown in Figure 5. This component is essential to

maintain correct system level communication.

The AXI4-sniffer receives AXI-transaction from the shared

system communication bus and samples requesting resource

and target resource addresses. It samples AWVALID and

ARVALID control signals to identify whether the requesting

resource has asked for reading or writing operation on the

target resource. It samples the target address, AWADDR or

ARADDR, and forwards it to the policy table. The resource

address is passed to the device table to locate the base-address

of the policies stored in the policy table as shown in Figure 5.

During this process, to maintain physical isolation between

requesting resource and the target resource, the AXI4-sniffer

physically blocks the handshake signals by de-asserting

WVALID and RVALID control signals. Once the decision

block validates and allows access, based on the defined

policy, the AXI4-sniffer asserts the WVALID or RVALID

signals respectively.

Device table: This contains the list of trusted requesting

resources that are permitted to access the target resource. In

this table, each trusted requesting resource has a

corresponding base-address of the security policies that

specify the access rights linked to it, as shown in Figure 5.

The length of the device table is limited to the number of

requesting resources. It can be realised by distributed RAM

that uses LUT resources of FPGA logic to extract policy table

address. The device table allows not only to filter trusted and

un-trusted requesting resources but can be used to detect

intrusions. If an intrusion is detected, it can be suppressed by

initiating a pro-active mitigation response by SRE to secure

the system’s assets.

Policy table: This contains the permission rights of the target

resource that corresponds to each trusted requesting resource.

The stored policies can be simple as address read/write

permissions or complex policies to check variable length

(AxSIZE and AxLEN) transfers, security profile assigned by

the software (AxPROT), or quality of service (AxQOS). It

can be realised by block RAM (BRAM) in FPGA logic. From

a software point-of-view, the policy table not only provides

means to secure assets, it also provides a mechanism that can

be used for secure provisioning of the device at any stage of

the device life cycle, by defining role-based access policies.

Decision block: This receives the programmed/reference

policy issued by the policy table, compares the status of AXI4

signals, as per security policy and generates a result. The

generated result will be passed to AXI-Sniffer, which then

either grant or block the requested AXI4 transaction as shown

in Figure 5.

Engine configuration block: This provides functionality to

program and configure the security parameters of the SPE,

using a secure application running on the RPU via the AXI4-

Lite communication interfaces, as shown in Figure 5. It

allows programming and updating of both the device table

and the policy table.

4.3 Security Response Engine (SRE)

This engine provides effective active responses to security

threats reported by the decision block, to initiate mitigation

response. It does this by interrupting the secure code running

on the RPU and requests the time-critical interrupt service.

The pro-active response shall be initiated by executing the

interrupt service routine (ISR) of the SRE and is enforced by

the ATE. Following are examples of pro-active responses that

can be enforced:

Security Policy Engine (SPE)

Policy
Table

Device
Table

Device#1
Device#2
Device#3

Device#N

CONTROL

STATUS

MODE

AXI4 Sniffer

DeviceAddr

Decision
Block

Resource_Addr

AXI4-Lite Configuration Interface

Engine Configuration Block

response

Figure 5: Block diagram of Security Policy Engine (SPE)

8

• Erasure of secret keys stored in the device to ensure

confidentiality.

• Permanent disabling of the system cryptographic

functions, if the system has compromised.

• Disabling system read-back interfaces.

• Initiation of secure lockdown of the system resources.

• Initiation of system reset.

4.4 Anti-tamper engine (ATE)

This engine enforces the pro-active measures initiated by the

SRE. Also, it provides passive physical security measures

against hardware level attacks, such as side- channel analysis,

by monitoring the devices physical parameters such as

voltage and temperature. An alarm can be initiated if the

system violates the set conditions. Following are the anti-

tamper features that can be ensured:

• Maintain uninterruptable internal clock sources.

• Monitoring on single-event-upset to ensure fault tolerant

execution during operational device life cycle.

• Voltage and temperature monitoring to ensure device

operation and resist against active hardware attacks.

4.5 Area and timing results

The proposed security policy engine (SPE) and its hardware

components presented in Section 4.2 are coded in Verilog

HDL. The design was simulated and synthesised using Xilinx

Vivado v2017.1 on the high-end chips of the Zynq-7000 and

Zynq UltraScale+ MPSoC family. The area and timing results

are reported in Table 2. The device table implemented using

Distributed RAM utilises 32 LUTRAM, while the policy

table used a BRAM. The design is compact and consumes

less than 1% of FPGA glue logic available on Zynq chips.

The reported timing results shows that SPE can operate at

maximum 250 MHz and 333 MHz on Kintex-7 and Kintex

UltraScale+ chips. The reported timing is limited by the

maximum possible speed of ARM AMBA-AXI4 bus on these

chips [40], [41].

5 Preliminary Use-case

A heterogeneous system composed of BRAM based memory

devices has realised as shown in Figure 6. It has considered

that specific location of each device holds secret assets that

shall be protected to ensure confidentiality. Each device is

connected to the host through the ARM AMBA-AXI4

communication bus via an AXI4-interconnect. To integrate

the proposed approach, the SPE has integrated between the

device and the shared AXI4 bus. It polices the addressed

transactions, checks the read and write access policy attached

to the requesting resource (BRAM memory location) and

either grants or refuses access to the asset as shown in Figure

6. In this use case, a bare-metal software application approach

has been adopted to avoid software development complexity.

At power-up, the host application configures the platform by

programming the device and policy table of each SPE through

the AXI4-Lite interface as shown in Figure 6. The policy

table stores the register read and write access permissions for

each device.

The presented system is synthesized and implemented on the

widely available Avnet Zedboard (Zynq-7000) and Xilinx

ZCU102 (Zynq UltraScale+) evaluation boards using Xilinx

Vivado v2017.1. Table 3 reports the preliminary

implementation results. The BRAM utilisation of both

implementations is consistent. Each SPE has used single

BRAM each to implement policy table, while each memory

device consumed two BRAMs. Due to technology scaling and

MPSoC FPGA fabric

(technology)

Speed

Grade

Area Frequency

(MHz) LUT LUTRAM FF BRAM

Zynq-7000 Kintex-7 (28nm) -3 87 32 304 1 250

Zynq UltraScale+ EG Kintex UltraScale+ (16nm) -3 55 32 235 1 333

Table 2: Synthesis results of proposed security policy engine (SPE) on Zynq-7000 and Zynq UltraScale+ MPSoC

Table 2: Comparison of secure features supported by leading FPGA MPSoC

AXI4-Lite

Device#N

SPE

AXI4-Interconnect

Device#1

SPE

ARM Cortex-A

Policy Table
Device
Table

Device 1
0x000

0xFFF

0x004
0

1

1
1

0

1

R WAddress

Device N

Figure 6: Read/write policy enforcement on simple

memory devices within MPSoC.

Development

Board

FPGA fabric

(technology)

Speed Grade Area Utilisation Frequency

(MHz) LUT LUTRAM FF BRAM

Zedboard Artix-7 (28nm) -1 1043 91 1436 6 164

ZCU102 Kintex UltraScale+ (16nm) -2 2750 116 3354 6 302

Table 3: Implementation results of proposed security policy engine (SPE) on Zedboard and ZCU102

Table 2: Comparison of secure features supported by leading FPGA MPSoC

9

better silicon (speed grade), ZCU102 implementation

achieved ≈ 1.84 times better timing than Zedboard. However,

it comes at the cost of ≈ 2.63 and 2.33 times more LUT and

FF utilisation required by the system infrastructure (AXI-

Interconnect, Reset processing system etc.) essential for Zynq

UltraScale+ MPSoC.

6 Conclusion and future work

The paper has presented preliminary proof-of-concept work.

The proposed policing approach will not only help to tackle

security problems for future embedded devices, but also

existing hardware architectures that did not consider security

as a design requirement in their design flow. The integration

of a software-defined and hardware-enforced security policy

engine (SPE) brings adaptability to security platforms, where

the same platform can be used to fulfil the diverse security

requirements of different application domains and security

levels. Additionally, the proposed system architecture

compliments state-of-art chain-of-trust and authentication

mechanisms, which mitigates against existing vulnerabilities

and attacks and provides robust security measures to

circumvent new vulnerabilities and attack vectors.

The presented work will be continued to enable secure

configuration of system hardware components and policing of

more complex communication attributes. From a software

perspective, future work shall be targeted to provide isolation

and segregation of hardware resources requested by software

components, while being managed by the operating system.

References

[1] D. Evans, "The Internet of Things: How the Next

Evolution of the Internet is Changing Everything," Cisco

Internet Business Solutions Group (IBSG), Cisco,

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/I

oT_IBSG_0411FINAL.pdf, (2011).

[2] R. v. d. Meulen, "Gartner Says 8.4 Billion Connected

"Things" Will Be in Use in 2017, Up 31 Percent From 2016,"

Gartner, https://www.gartner.com/newsroom/id/3598917,

(2017).

[3] Y. Yang et al, "A Survey on Security and Privacy Issues

in Internet-of-Things," IEEE Internet of Things Journal, vol.

4, pp. 1250-1258, (2017).

[4] Antonakakis, Manos and April, Tim and Bailey, Michael

and Bernhard, Matt and Bursztein, Elie and Cochran, Jaime

and Durumeric, Zakir and Halderman, J Alex and Invernizzi,

Luca and Kallitsis, Michalis and others, "Understanding the

Mirai Botnet," USENIX Security Symposium, .

[5] A. Rodriguez-Mota et al, "Towards IoT cybersecurity

modeling: From malware analysis data to IoT system

representation," in 2016 8th IEEE Latin-American

Conference on Communications (LATINCOM), pp. 1-6,

(2016).

[6] A. Sengupta and S. Kundu, "Guest Editorial Securing IoT

Hardware: Threat Models and Reliable, Low-Power Design

Solutions," IEEE Transactions on very Large Scale

Integration (VLSI) Systems, vol. 25, pp. 3265-3267, (2017).

[7] C. Lesjak, D. Hein and J. Winter, "Hardware-security

technologies for industrial IoT: TrustZone and security

controller," in 41st Annual Conference of the IEEE Industrial

Electronics Society (IECON), (2015).

[8] H. He et al, "The security challenges in the IoT enabled

cyber-physical systems and opportunities for evolutionary

computing & other computational intelligence," in IEEE

Congress on Evolutionary Computation (CEC), pp. 1015-

1021, (2016).

[9] H. Khattri, N. K. V. Mangipudi and S. Mandujano,

"HSDL: A security development lifecycle for hardware

technologies," in 2012 IEEE International Symposium on

Hardware-Oriented Security and Trust, pp. 116-121, (2012).

[10] S. Sicari et al, "Security, privacy and trust in Internet of

Things: The road ahead," Computer Networks, vol. 76, pp.

146-164, (2015).

[11] G. Chopra, R. Kumar Jha and S. Jain, "A survey on ultra-

dense network and emerging technologies: Security

challenges and possible solutions," Journal of Network and

Computer Applications, vol. 95, pp. 54-78, (2017).

[12] B. Zhang et al, "The cloud is not enough: Saving IoT

from the cloud," in 7th USENIX Workshop on Hot Topics in

Cloud Computing (HotCloud'15), (July, 2015).

[13] F. Bonomi et al, "Fog computing and its role in the

internet of things," in Proceedings of the First Edition of the

MCC Workshop on Mobile Cloud Computing, Helsinki,

Finland, pp. 13-16, (2012).

[14] A. R. Sadeghi, C. Wachsmann and M. Waidner,

"Security and privacy challenges in industrial internet of

things," in 2015 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), pp. 1-6, (2015).

[15] M. M. Hossain, M. Fotouhi and R. Hasan, "Towards an

analysis of security issues, challenges, and open problems in

the internet of things," in 2015 IEEE World Congress on

Services, pp. 21-28, (2015).

[16] S. Warner and M. R., "To provide minimal cybersecurity

operational standards for Internet-connected devices

purchased by Federal agencies, and for other purposes."

Senate Bill: Homeland Security and Governmental Affairs,

https://www.congress.gov/bill/115th-congress/senate-

bill/1691/text, (2017).

[17] ENISA, "Infineon – NXP – STMicroelectronics –

ENISA Common Position On Cybersecurity,"

https://www.enisa.europa.eu/publications/enisa-position-

papers-and-opinions/infineon-nxp-st-enisa-position-on-

cybersecurity, (2015).

[18] T. Abera et al, "Invited - things, trouble, trust: On

building trust in IoT systems," in Proceedings of the 53rd

Annual Design Automation Conference, Austin, Texas, pp.

121:6, (2016).

10

[19] G. Tuna et al, "A survey on information security threats

and solutions for Machine to Machine (M2M)

communications," Journal of Parallel and Distributed

Computing, vol. 109, pp. 142-154, (2017).

[20] U.S Department of Homeland Security, "Strategic

principles for securing the Internet of Things (IoT),"

Guidance Publication:, https://www.dhs.gov/securingtheIoT,

(2016).

[21] P. Maene et al, "Hardware-Based Trusted Computing

Architectures for Isolation and Attestation," IEEE

Transactions on Computers, vol. PP, pp. 1, (2017).

[22] G. E. Suh et al, "AEGIS: Architecture for tamper-evident

and tamper-resistant processing," in Proceedings of the 17th

Annual International Conference on Supercomputing, San

Francisco, CA, USA, pp. 160-171, (2003).

[23] P. Koeberl et al, "TrustLite: A security architecture for

tiny embedded devices," in Proceedings of the Ninth

European Conference on Computer Systems, Amsterdam, The

Netherlands, pp. 10:14, (2014).

[24] V. Costan, I. Lebedev and S. Devadas, "Sanctum:

Minimal hardware extensions for strong software isolation,"

in 25th {USENIX} Security Symposium ({USENIX} Security

16), pp. 857-874, (2016).

[25] GlobalPlatform, "The Trusted Execution Environment:

Delivering Enhanced Security at a Lower Cost to the Mobile

Market," White Paper,

https://www.globalplatform.org/documents/GlobalPlatform_T

EE_White_Paper_Feb2011.pdf, (2011).

[26] Samsung Electronics, "In-Depth Look at Capabilities:

Samsung KNOX and Android for Work," White Paper,

https://kp-

cdn.samsungknox.com/759d1af2cb26204a2f4852b151d9dc9c

.pdf, (2015).

[27] Google, “System and kernel security”,

https://source.android.com/security/overview/kernel-

security#the-application-sandbox Security overview

document, (2017).

[28] M. B. Gregory and A. S. Reninger, "Teaching SELinux

in introductory information assurance classes," in 42nd

Hawaii International Conference on System Sciences (HICSS)

, Big Island, HI, pp. 1-8, (20 Jan, 2009).

[29] T. Meng, Z. Shang and K. Wolter, "An empirical

performance and security evaluation of android container

solutions," in International Conference on Cyber Security and

Protection of Digital Services (Cyber Security), London, UK,

pp. 1-8, (19 Oct, 2017).

[30] BlackBerry, "Secure Work Space for iOS and Android,"

White Paper,

https://uk.blackberry.com/content/dam/blackBerry/pdf/busine

ss/english/bes10/BES10-2-SWS-EMM-data-sheet.pdf,

(2013).

[31] I. Ghafoor et al, "Analysis of OpenSSL heartbleed

vulnerability for embedded systems," in 17th IEEE

International Multi Topic Conference (INMIC), pp. 314-319,

(30 Apr, 2015).

[32] E. Ronen et al, "IoT goes nuclear: Creating a ZigBee

chain reaction," in IEEE Symposium on Security and Privacy

(SP), pp. 195-212, (26 June, 2017).

[33] National Institute of Standards and Technology, (NIST),

"CVE-2015-3860 Detail," Software Vulnerability,

https://nvd.nist.gov/vuln/detail/CVE-2015-3860, (2015).

[34] A. P. Saleel, M. Nazeer and B. D. Beheshti, "Linux

kernel OS local root exploit," in IEEE Long Island Systems,

Applications and Technology Conference (LISAT), pp. 1-5, (8

Aug, 2017).

[35] Y. Chen et al, "Downgrade Attack on TrustZone,"

Computing Research Repository (CoRR), vol.

abs/1707.05082, (2017).

[36] M. Lipp et al, "ARMageddon: Cache attacks on mobile

devices," in 25th {USENIX} Security Symposium ({USENIX}

Security 16), pp. 549-564, (2016).

[37] Fred, "Amlogic S905 SoC: bypassing the (not so) Secure

Boot to dump the BootROM,",

http://www.fredericb.info/2016/10/amlogic-s905-soc-

bypassing-not-so.html, (2016).

[38] F. L. Greitzer et al, "Analysis of unintentional insider

threats deriving from social engineering exploits," in IEEE

Security and Privacy Workshops (SPW), San Jose, CA, pp.

236-250, (20 Nov, 2014).

[39] Xilinx, "Zynq UltraScale+ MPSoC Embedded Design

Methodology Guide," UG1228 (V1.0), Xilinx

Inc.,https://www.xilinx.com/support/documentation/sw_manu

als/ug1228-ultrafast-embedded-design-methodology-

guide.pdf, (2017).

[40] Xilinx, "Zynq-7000 All Programmable SoC (Z-7030, Z-

7035, Z-7045, and Z-7100) : DC and AC Switching

Characteristics," DS191 (V1.18),

https://www.xilinx.com/support/documentation/data_sheets/d

s191-XC7Z030-XC7Z045-data-sheet.pdf, (2017).

[41] Xilinx, "Zynq UltraScale+ MPSoC Data Sheet: DC and

AC Switching Characteristics," DS925 (V1.9),

https://www.xilinx.com/support/documentation/data_sheets/d

s925-zynq-ultrascale-plus.pdf, (2017).

